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EFFECTS OF EDGE ADDITION OR REMOVAL ON

THE NULLITY OF A GRAPH

AHMET BATAL

Abstract. Lights Out is a game which can be played on any
graph G. Initially we have a configuration which assigns one of
the two states on or off to each vertex. The aim of the game is to
turn all vertices to off state for an initial configuration by activating
some vertices where each activation switches the state of the vertex
and all of its neighbors. If the aim of the game can be accomplished
for all initial configurations then G is called always solvable. We
call the dimension of the kernel of the closed neighborhood matrix
of the graph over the field Z2, nullity of G. It turns out that G

is always solvable if and only if its nullity is zero. Moreover, the
number of solutions of a given configuration is also determined
by the nullity. We investigate the problem of how nullity changes
when an edge is added to or removed from a graph. As a result we
show that for every graph with positive nullity there exists an edge
whose removal decreases the nullity. Conversely, we show that for
every always solvable graph which is not an even graph with odd
order, there exists an edge whose addition increases the nullity. We
also show that if an always solvable graph is not even, then there
is an edge whose removal increases the nullity.

1. Introduction

Lights Out is a game which can be played on any undirected simple
graph G(V,E). The rules of the game are as follows. Initially every
vertex has one of the two states on or off. Every push on a vertex
switches the state of the vertex and all of its neighbors. This push is
called the activation of the vertex. The aim of the game is to turn all
vertices to off state by applying an activation pattern. It can be easily
observed that the order in which the vertices are pushed is unimportant
for the final result. Moreover pushing a vertex even number of times is
equivalent to not pushing it and pushing a vertex odd number of times
is equivalent to pushing it once. Therefore, any activation pattern can
be identified by the set of activated vertices. On the other hand, any
initial configuration can be identified by the set of on state vertices.
Note also that there is a one to one correspondence between the subsets
of V (G) and elements of Zn

2 where n is the order of V (G). Indeed, if
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we enumerate V (G) as V (G) = {v1, ..., vn} then every set S can be
characterized by its characteristic column vector xS = (s1, ..., sn)

t ∈
Z
n
2 , where xS(vi) := si = 1 if vi ∈ S, and si = 0 otherwise. Conversely,

every element x of Zn
2 is the characteristic vector of its support set

which consists of those vertices v such that x(v) = 1. Hence, any
activation pattern and initial configuration can be identified by the
vectors of Zn

2 as well.
If an activation pattern set P (activation pattern vector p) turns

all vertices to off state for a given initial configuration set C (initial
configuration vector c) , then C (c) is called solvable and P (p) is called
a solving pattern for C (c). We may also say P solves C (p solves c).
The graph G is called always solvable if every configuration is solvable.

For a vertex v, the set N [v] = {u ∈ V | u = v or u is adjacent to v}
is called the closed neighborhood set of vertex v. Observe that P solves
C if and only if N [v] ∩ P is odd for all v ∈ C and even otherwise. We
define the dot product between two vectors x, y ∈ Z

n
2 as x · y := xty.

Then, the above observation can be rephrased as P solves C if and only
if xN [v] ·xP = 1 for all v ∈ C and 0 otherwise. As it is first observed by
Sutner [11],[12], this is equivalent to say that P solves C if and only if

(1) NxP = xC

over the field Z2, where N := N(G) is the the closed neighborhood
matrix of G whose ith column (equivalently row) is the characteristic
vector of N [vi].

Let us denote the kernel of N by Ker(N). Elements of Ker(N) are
called null patterns. ν(G) := dim(Ker(N(G)) is called the nullity of
G. The above formulation (1) between an initial configuration and its
solving pattern leads us several observations [11],[12],[1]:

(O 1 ) A graph G is always solvable iff ν(G) = 0.
(O 2 ) Number of solving patterns for a given configuration is 2ν(G).

Indeed, if p solves c, then p+ ℓ solves c as well for every null pattern
ℓ.

(O 3 ) A configuration vector (set) is solvable iff it (its characteristic
vector) is orthogonal to every null pattern.

Suppose there is a vector s solving the all-ones configuration 1 :=
(1, ..., 1)t. Then, the support set S of s is an odd dominating set, i.e.;
N [v] ∩ S is odd for all v ∈ V . Therefore, we call s an odd dominating
pattern. Interestingly, every graph has an odd dominating pattern, or
equivalently all-ones configuration 1 is solvable in every graph [11] (see
also [5], [6], [8]).

How the nullity of a graph changes when a vertex is removed or
what the nullity of the emergent graph becomes when two graphs are
joined together by a single or multiple edges were investigated by sev-
eral authors [2], [3], [9], [7] (see also [4] and [10] for recent articles
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on the subject). However, no previous studies appear to have investi-
gated how nullity changes when an edge is added to or removed from
a graph. In this paper we fill this gap. Indeed, we do this in a more
general context. To understand the generality of our context let G be
a graph, A1, A2 be two disjoint subsets of V (G). Then we define the
following operation on G. For every pair of vertices u ∈ A1 and v ∈ A2

we add the edge uv (the edge joining u and v) to G if u and v are not
adjacent and we remove the edge uv from G if u and v are adjacent. So
if A1 and A2 consist of single vertices, then the operation corresponds
to simple edge removal or addition, depending on whether u and v are
adjacent in G or not. Then we investigate how nullity changes when
this operation is applied to the graph under different scenarios as we
stated in Proposition 2.10 through Proposition 2.21. The results are
summarized in Table 1.

These results enable us to obtain important corollaries such as the ex-
istence of edges in a graph whose addition/removal inreases/decreases
the nullity of the graph. More precisely, we show in Theorem 3.1 that
for a graph with nonzero nullity, there always exists an edge whose re-
moval decreases the nullity. Conversely, we show in Theorem 3.5 that
if an always solvable graph is not an even graph with odd order, then
there exists an edge whose addition increases the nullity. Moreover, we
prove in Theorem 3.6 that if an always solvable graph is not an even
graph, then there exists an edge whose removal increases the nullity.
In addition to these main theorems we prove several more results in
one of which we give a characterization of always solvable graphs.

2. Nullity change under the general edge addition and

removal operation

Lemma 2.1. Let x satisfy x · ℓ0 = 1 for some null pattern ℓ0. Then,
x · ℓ = 1 for exactly half of the null patterns ℓ.

Proof. Equality of the number of null patterns ℓ satisfying x · ℓ = 0
and x · ℓ = 1 follows from the fact that if a null pattern ℓ satisfies
x · ℓ = 0, then the null pattern ℓ+ ℓ0 satisfies x · (ℓ+ ℓ0) = 1; and if a
null pattern ℓ satisfies x · ℓ = 1, then the null pattern ℓ + ℓ0 satisfies
x · (ℓ+ ℓ0) = 0. �

Lemma 2.1, together with (O 2 ) and (O 3 ) gives us the following
proposition.

Proposition 2.2. Let c be a solvable configuration on a graph G and
A be a subset of V (G). Then, A is not solvable if and only if xA ·p = 1
for exactly half of the solving patterns p for c. A is solvable if and and
only if either

Case i) xA · p = 1 for all solving patterns p for c, or
Case ii) xA · p = 0 for all solving patterns p for c.
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Motivating ourselves by the above proposition we make the following
definition.

Definition 2.3. We say a subset A of V (G) is half odd activated (HO)
if it is not solvable. If A is solvable, for a given solvable configuration c,
we say A is c-always odd activated (c-AO), c-never odd activated (c-
NO) if Case (i) or Case (ii) holds, respectively. In the case where c =
1, instead of saying A is 1-always odd activated, 1-never odd activated;
we simply say A is always odd activated (AO), never odd activated
(NO), respectively. Further, we say a vertex v is half activated, always
activated, or never activated if {v} is half odd activated, always odd
activated, or never odd activated, respectively.

Remark 2.4. By (O 3), we see that for a vertex u, {u} is not solvable
if and only if ℓ(u) = x{u} · ℓ = 1 for some null pattern ℓ.

Remark 2.5. Let s be an odd dominating pattern and p be a solving
pattern for xA. Then xA ·s = Np·s = p·Ns = p·1. Hence, always odd
activated sets are precisely those sets whose solving patterns have odd
cardinality and never odd activated sets are precisely those sets whose
solving patterns have even cardinality.

For a given vector x, let x := x+ 1.

Lemma 2.6. A vector x (a set A) is solvable if and only if x (Ac) is
solvable.

Proof. Note that if a configuration x is solvable, then x = 1 + x is
solvable since it is the sum of two solvable configurations. Converse
also holds since x = x. Note also that if x is the characteristic vector
of a set A, then x is the characteristic vector of Ac. �

Lemma 2.7. For a given graph G let the configuration x be solvable.
Then x · p = 0 for all solving patterns p for x.

Proof. Let N be the closed neighborhood matrix of G, p be a solving
patterns for x, and s be an odd dominating pattern of G. Then N(p+
s) = x + 1 = x. Moreover N can be written as N = I + L + Lt

where I is the identity matrix and L is a lower triangular matrix with
0 diagonal entries. Consequently,
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x · p = N(p+ s) · p

= (N(p+ s))tp

= ptNp+ (Ns)tp

= ptp+ ptLp+ ptLtp+ 1tp(2)

= p · p+ p · (Lp) + (Lp) · p+ 1 · p

= (p+ 1) · p

= p · p

= 0.

�

Lemma 2.8. A set A is AO (NO) if and only if A is xA-AO (xA-NO).

Proof. Let s be an odd dominating pattern and r be a solving pattern
for xA. So s + r solves 1 + xA = xA. By Lemma 2.7, xA · (s + r) = 0.
Hence, xA · s = xA · r. �

Lemma 2.9. Let G be a graph; A1, A2 be two disjoint solvable subsets
of V (G). Then the followings hold.

i) If A1 and A2 are both AO or both NO, then A1 is xA2
-NO if and

only if A2 is xA1
-NO.

ii) If A1 is AO and A2 is NO, then A1 is xA2
-NO if and only if A2

is xA1
-AO.

Proof. Let p1, p2 be solving patterns for xA1
, xA2

, respectively. Let us
first assume that A1 and A2 are both AO or both NO. Then A1∪A2 is
NO since A1 and A2 are disjoint. By Lemma 2.8 it is xA1∪A2

-NO. On
the other hand, N(p1+p2) = xA1

+xA2
= xA1

+1+xA1
+1 = xA1∪A2

.
Hence, xA1∪A2

· (p1 + p2) = 0. Explicitly this means xA1
· p1 + xA1

·
p2 + xA2

· p1 + xA2
· p2 = 0. By Lemma 2.7, xA1

· p1 = xA2
· p2 = 0.

So xA1
· p2 + xA2

· p1 = 0, which implies xA1
· p2 = xA2

· p1.
In the second case where A1 is AO and A2 is NO, the proof follows

the same lines as in the above case but this time A1 ∪A2 is AO which
leads us xA1

· p2 + xA2
· p1 = 1. Hence, xA2

· p1 = 1− xA1
· p2. �

Let G be a graph, A1, A2 be two disjoint subsets of V (G). We define
the graph G∗ as the resulting graph of the following operation. For
every pair of vertices u ∈ A1 and v ∈ A2 we add the edge uv to G if u
and v are not adjacent and we remove the edge uv from G if u and v
are adjacent. Let N , N∗ be the closed neighborhood matrices of G, G∗,
respectively. Let V (G) = {v1, ..., vn}. Realize that the relation between
the closed neighborhood matrices N and N∗ is given by N∗ = N + J
where J is the matrix with entries
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(J)ij =

{

1 if vi ∈ A1, vj ∈ A2 or vj ∈ A1, vi ∈ A2

0 otherwise

}

,(3)

This implies that for any pattern p we have

(4) N∗p = Np+ (xA1
· p)xA2

+ (xA2
· p)xA1

.

Let ∆ν = ν(G∗) − ν(G). In the following propositions we state
solving patterns for which configurations in G correspond to an odd
dominating pattern of G∗ and how ∆ν and activation types of A1 and
A2 change under different cases.

In the proofs of the following propositions we reserve the notations
p1 and p2 for arbitrary solving patterns for xA1

, xA2
, respectively; and

we reserve the notations r1 and r2 for arbitrary solving patterns for
xA1

, xA2
, respectively.

Proposition 2.10. Let A1 and A2 be NO sets in G. Also assume that
A2 is xA1

-NO in G. Then for any pattern p, N∗p = 1 if and only if Np =
1. Moreover, A1 and A2 are NO in G∗ and ∆ν = 0.

Proof. Let N∗p = 1. First, assume that xA1
· p = 0 and xA2

· p =
1. Then, by (4), Np = xA1

. By the assumption of the proposition
xA2

· p = 0, which is a contradiction.
Second, assume that xA1

· p = 1 and xA2
· p = 0. Then, by (4),

Np = xA2
. By Lemma 2.9, A2 is xA1

-NO is equivalent to say A1 is
xA2

-NO. Hence xA1
· p = 0, which is a contradiction.

Third assume that xA1
· p = 1 and xA2

· p = 1. Then, by (4),
Np = xA1∪A2

= xA1
+ xA2

, which means p = p1 + r2.

(5) 1 = xA2
· p = xA2

· p1 + xA2
· r2 = xA2

· r2

by the assumption. On the other hand, A2 is NO implies A2 is xA2
-NO

by Lemma 2.8. Hence xA2
· r2 = 0, which contradicts with (5).

Consequently, the only possibility is that xA1
·p = 0 and xA2

·p = 0,
which, by (4), gives Np = 1.

Conversely, let Np = 1. Then p is an odd dominating pattern of G.
Since A1 and A2 are NO in G, this gives xA1

· p = 0 and xA2
· p = 0,

which together with (4), implies N∗p = 1.
Since the odd dominating patterns of G and G∗ are identical, the

activation types of sets does not change. Hence A1 and A2 are NO in
G∗. Also the fact that the number of odd dominating patterns of G
and G∗ are the same, implies ν(G) = ν(G∗) by (O 2 ). Hence ∆ν = 0.

�

Proposition 2.11. Let A1 and A2 be NO sets in G. Also assume that
A2 is xA1

-AO in G. Then for any pattern p, N∗p = 1 if and only if Np =
1 or Np = xA1

or Np = xA2
or Np = xA1∪A2

. Moreover, A1 and A2

are HO in G∗, and ∆ν = 2.
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Proof. Let N∗p = 1. Then, by (4), we have

Np = 1+ (xA1
· p)xA2

+ (xA2
· p)xA1

.

Hence, depending on the the value of xA1
·p and xA2

·p, one of the four
cases Np = 1, Np = xA1

, Np = xA2
, or Np = xA1∪A2

must hold.
Conversely, let us first assume that Np = 1. Then by assumption

xA1
· p = xA2

· p = 0. By (4), N∗p = 1.
Second, let Np = xA1

. Then by assumption, xA2
· p = 1. Moreover,

by Lemma 2.7, xA1
· p = 0. Thus, by (4), N∗p = xA1

+ xA1
= 1.

Third, let Np = xA2
. By assumption and Lemma 2.9, xA1

· p = 1.
Moreover, by Lemma 2.7, xA2

·p = 0. Then, by (4), N∗p = xA2
+xA2

=
1.

Lastly, let Np = xA1∪A2
= xA1

+ xA2
= xA1

+ xA2
. Hence p =

p1 + r2 = p2 + r1. Note that by assumption A1 and A2 are NO. By
Lemma 2.8, A1 and A2 are xA1

-NO and xA2
-NO, respectively. Hence,

xA1
· r1 = xA2

· r2 = 0. Moreover, by assumption and Lemma 2.9,
xA2

· p1 = xA1
· p2 = 1. Then, xA1

· p = xA1
· p2 + xA1

· r1 = 1,
and xA2

· p = xA2
· p1 + xA2

· r2 = 1. Consequently, by (4), N∗p =
xA1∪A2

+ xA1
+ xA2

= 1.
Note that there exist 2ν(G) patterns p for each case Np = 1, Np =

xA1
, Np = xA2

, and Np = xA1∪A2
. So there exist total of 2ν(G)+2

patterns satisfying one of the four cases. On the other hand there exist
2ν(G

∗) odd dominating patterns of G∗. Hence, ν(G∗) = ν(G)+2, which
implies ∆ν = 2. Moreover, xA1

· p is zero in the first two cases and
one in the last two cases, which makes A1 a HO set in G∗. Similarly,
xA2

· p is zero in the first and third cases and one in the second and
fourth cases. Hence, A2 is HO in G∗ as well.

�

Proposition 2.12. Let A1 be a NO and A2 be a AO set in G. Also
assume that A2 is xA1

-NO in G. Then for any pattern p, N∗p =
1 if and only if Np = xA2

or Np = xA1∪A2
. Moreover, A1 is a AO and

A2 is a HO set in G∗, and ∆ν = 1.

Proof. Let N∗p = 1. Assume first that xA1
· p = xA2

· p = 0. Then,
by (4), we have Np = 1. But then xA2

· p = 1 since A2 is an AO set
in G, which is a contradiction.

Assume that xA1
·p = 0, xA2

·p = 1. By (4), Np = xA1
. Then xA2

·
p = 0 by the assumption of the proposition, which is a contradiction.
Hence Np = xA2

or Np = xA1∪A2
.

Conversely, assume Np = xA2
. Then xA1

· p = 1 by the assumption
of the proposition and Lemma 2.9. Moreover, xA2

· p = 0 by Lemma
2.7. Hence, by (4), N∗p = 1.

Assume Np = xA1∪A2
= xA1

+xA2
= xA2

+xA1
. Then p = p1+r2 =

p2 + r1. Moreover, xA1
· p2 = 1 by the assumption of the proposition

and Lemma 2.9. In view of Lemma 2.8, xA1
· r1 = 0 since A1 is a
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NO set in G, and xA2
· r2 = 1 since A2 is a AO set in G. Therefore,

xA1
· p = xA1

· p2 + xA1
· r1 = 1, and xA2

· p = xA2
· p1 + xA2

· r2 = 1.
Then, by (4), N∗p = 1.

There exist 2.2ν(G) patterns satisfying Np = xA2
or Np = xA1∪A2

,
and there are 2ν(G

∗) odd dominating patterns of G∗. Hence ν(G∗) =
ν(G) + 1, which gives ∆ν = 1. xA1

· p = 1 in both cases Np =
xA2

and Np = xA1∪A2
, which makes A1 an AO set in G∗. On the other

hand, xA2
·p is 0 in the case Np = xA2

and 1 in the case Np = xA1∪A2
.

Hence A2 is a HO set in G∗. �

Proposition 2.13. Let A1 be a NO and A2 be an AO set in G. Also
assume that A2 is xA1

-AO in G. Then for any pattern p, N∗p =
1 if and only if Np = xA1

. Moreover, A1 is a NO and A2 is an AO
set in G∗, and ∆ν = 0.

Proof. Let N∗p = 1. First assume that xA1
· p = 0 and xA2

· p = 0.
Then, by (4), Np = 1. This implies xA2

· p = 1 by assumption, which
is a contradiction.
Second assume that xA1

· p = 1 and xA2
· p = 0. Then, by (4),

Np = xA2
. By assumption and Lemma 2.9, xA1

· p = 0, which is a
contradiction.
Third assume that xA1

· p = 1 and xA2
· p = 1. Then, by (4), Np =

xA1
+ xA2

, which implies p = p1 + r2. Because A2 is an AO set in G,
xA2

· r2 = 1 by Lemma 2.8. Thus, xA2
· p = xA2

· p1 + xA2
· r2 = 0,

which is a contradiction.
So the only possible case is xA1

· p = 0 and xA2
· p = 1, which by (4),

gives Np = xA1
.

Conversely, if Np = xA1
, then xA2

·p = 1 by assumption. Moreover,
xA1

· p = 0 by Lemma 2.7. Thus, by (4), N∗p = xA1
+ xA1

= 1.
There exist 2ν(G) patterns satisfying Np = xA1

and there are 2ν(G
∗)

odd dominating patterns of G∗. Hence ν(G∗) = ν(G), which gives
∆ν = 0. Moreover xA1

· p = 0 and xA2
· p = 1 in case of Np = xA1

.
Hence A1 is a NO and A2 is an AO set in G∗. �

Proposition 2.14. Let A1 and A2 be two AO sets in G. Also as-
sume that A2 is xA1

-NO in G. Then for any pattern p, N∗p =
1 if and only if Np = xA1∪A2

. Moreover, A1 and A2 are AO sets in
G∗ , and ∆ν = 0.

Proof. Let N∗p = 1. First assume that xA1
· p = xA2

· p = 0. Then,
by (4), Np = 1. Since A1 is an AO set in G we must have xA1

·p = 1,
which is a contradiction.

Second assume that xA1
· p = 0, xA2

· p = 1. Then, by (4), Np =
xA1

. So, by the assumption of the proposition xA2
· p = 0, which is a

contradiction.
Third assume that xA1

·p = 1, xA2
·p = 0. Then, by (4), Np = xA2

.
By the assumption of the proposition and Lemma 2.9, xA1

· p = 0,
which is a contradiction.
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So the last case where xA1
· p = 1, xA2

· p = 1 is the only possible
case, which leads to Np = xA1∪A2

by (4).
Conversely, let Np = xA1∪A2

= xA1
+ xA2

= xA2
+ xA1

. Then,
p = p1 + r2 = p2 + r1. By assumption A1 and A2 are AO. By
Lemma 2.8, A1 and A2 are xA1

-AO and xA2
-AO, respectively. Hence,

xA1
· r1 = xA2

· r2 = 1. Moreover, by assumption and Lemma 2.9,
xA2

· p1 = xA1
· p2 = 0. Then, xA1

· p = xA1
· p2 + xA1

· r1 = 1,
and xA2

· p = xA2
· p1 + xA2

· r2 = 1. Consequently, by (4), N∗p =
xA1∪A2

+ xA1
+ xA2

= 1.
There exist 2ν(G) patterns satisfying Np = xA1∪A2

and there are
2ν(G

∗) odd dominating patterns of G∗. Hence, ν(G∗) = ν(G), which
gives ∆ν = 0. Moreover xA1

· p = 1 and xA2
· p = 1 in case of xA1∪A2

.
Therefore, A1 and A2 are AO sets in G∗. �

Proposition 2.15. Let A1 and A2 be two AO sets in G. Also as-
sume that A2 is xA1

-AO in G. Then for any pattern p, N∗p =
1 if and only if Np = xA1

or Np = xA2
. Moreover, A1 and A2 are

HO sets in G∗, and ∆ν = 1.

Proof. Let N∗p = 1. First assume that xA1
·p = xA2

·p = 0. Then, by
(4), Np = 1. Since A1 is an AO set in G, we must have xA1

· p = 1,
which is a contradiction.

Second assume that xA1
· p = xA2

· p = 1. Then, by (4), Np =
xA1∪A2

= xA2
+ xA1

. Thus, p = p2 + r1. By assumption of the propo-
sition and Lemma 2.9, xA1

·p2 = 1. Lemma 2.8 and the fact that A1 is
an AO set in G imply xA1

· r1 = 1. Thus, xA1
·p = xA1

·p2+xA1
· r1 =

1 + 1 = 0, which is a contradiction.
So either the case where xA1

· p = 0, xA2
· p = 1 or the case where

xA1
· p = 1, xA2

· p = 0 holds true, which, by (4), leads to Np = xA1

or Np = xA2
, respectively.

Conversely, assume first that Np = xA1
. By the assumption of the

proposition, xA2
· p = 1. By Lemma 2.7, xA1

· p = 0. Hence, by (4),
Np = xA2

+ xA2
= 1.

Second assume thatNp = xA2
. By the assumption of the proposition

and by Lemma 2.9, xA1
· p = 1. By Lemma 2.7, xA2

· p = 0. Hence, by
(4), Np = xA2

+ xA2
= 1.

There exist 2.2ν(G) patterns satisfying Np = xA1
or Np = xA2

,
and there are 2ν(G

∗) odd dominating patterns of G∗. Hence ν(G∗) =
ν(G) + 1, which gives ∆ν = 1. xA1

·p is 0 in the case Np = xA1
and 1

in the case Np = xA2
, which makes A1 a HO set in G∗. On the other

hand, xA2
· p is 1 in the case Np = xA1

and 0 in the case Np = xA2
.

Hence, A2 a HO set in G∗ as well.
�

Proposition 2.16. Let A1 be a NO and A2 be a HO set in G. Then
for any pattern p, N∗p = 1 if and only if Np = 1 with xA2

· p =
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0 or Np = xA1
with xA2

· p = 1. Moreover, A1 is a NO and A2 is a
HO set in G∗, and ∆ν = 0.

Proof. Let N∗p = 1. First assume that xA1
· p = 1 and xA2

· p = 0.
Then, by (4), Np = xA2

. By Lemma 2.6 A2 is solvable, which is a
contradiction.

Second assume that xA1
· p = 1 and xA2

· p = 1. Then, by (4),
Np = xA1∪A2

. By Lemma 2.6, A1 ∪ A2 is solvable, i.e.; it is not HO.
On the other hand, A1 is NO and A2 is HO imply A1 ∪ A2 is HO.
Thus, we have a contradiction.

So either xA1
· p = xA2

· p = 0, which, by (4), implies Np = 1 with
xA2

· p = 0; or xA1
· p = 0 and xA2

· p = 1, which, by (4), implies
Np = xA1

with xA2
· p = 1.

Conversely, first assume that Np = 1 with xA2
· p = 0. Since A1 is

NO in G, we have xA1
·p = 0. Hence, by (4), N∗p = 1. Second assume

that Np = xA1
with xA2

· p = 1. Then, by Lemma 2.7, xA1
· p = 0.

Thus, by (4), N∗p = xA1
+ xA1

= 1.
Since A2 is HO in G, there are 2ν(G)−1 patterns satisfying Np =

1 with xA2
·p = 0, and also there are 2ν(G)−1 patterns satisfying Np =

xA1
with xA2

· p = 1. So there are 2ν(G) patterns satisfying one of
the two cases. On the other hand, there are 2ν(G

∗) odd dominating
patterns of G∗. Hence, ν(G∗) = ν(G), which gives ∆ν = 0. In each
case, xA1

·p = 0, which makes A1 a NO set in G∗. On the other hand,
xA2

· p = 0 in the first case and xA2
· p = 1 in the second one, which

makes A2 a HO set in G∗. �

Proposition 2.17. Let A1 be an AO and A2 be a HO set G. Then
for any pattern p, N∗p = 1 if and only if Np = xA1

with xA2
· p = 1.

Moreover, A1 is a NO and A2 is an AO set G∗, and ∆ν = −1.

Proof. Let N∗p = 1. First assume that xA1
·p = xA2

·p = 0. Then, by
(4), Np = 1. Then, xA1

·p = 0 since A1 is AO, which is a contradiction.
Second assume that xA1

· p = 1 and xA2
· p = 0. Then, by (4),

Np = xA2
. By Lemma 2.6, A2 is solvable, which is a contradiction.

Third assume that xA1
· p = 1 and xA2

· p = 1. Then, by (4),
Np = xA1∪A2

. By Lemma 2.6, A1 ∪A2 is solvable. On the other hand,
A1 is AO and A2 is HO imply A1 ∪ A2 is HO, which means it is not
solvable. Thus, we have a contradiction.

So the only possible case is xA1
· p = 0 and xA2

· p = 1, which by
(4), gives Np = xA1

with xA2
· p = 1.

Conversely assume that Np = xA1
with xA2

·p = 1. By Lemma 2.7,
xA1

· p = 0. Hence, by (4), N∗p = xA1
+ xA1

= 1.
Since A2 is HO in G, there are 2ν(G)−1 patterns satisfying Np =

xA1
with xA2

·p = 1, On the other hand, there are 2ν(G
∗) odd dominat-

ing patterns of G∗. Hence, ν(G∗) = ν(G) − 1, which gives ∆ν = −1.
The above equivalence shows that when N∗p = 1, xA1

· p = 0 and
xA2

· p = 1, which makes A1 a NO and A2 an AO set G∗. �
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Lemma 2.18. Let G be a graph, c be a solvable configuration in G
and S be the set of all solving patterns for c with |S| = n. Let A1

and A2 be two disjoint HO sets in G. For i ∈ {1, 2}, define the sets
Oi = {p ∈ S | xAi

· p = 0} and Ii = {p ∈ S | xAi
· p = 1}. Then,

|O1 ∩O2| = |I1 ∩ I2|, and A1 ∪A2 is c-NO, HO, or c-AO if and only if
|O1 ∩O2| = n/2, n/4, or 0, respectively.

Proof. First note that, by Proposition 2.2, |O1| = |I1| = |O2| = |I2| =
n/2 since A1 and A2 are HO. Moreover,

I1 = S ∩ I1 = (O2 ∩ I1) ∪ (I2 ∩ I1)

O2 = S ∩ O2 = (O1 ∩ O2) ∪ (I1 ∩O2),

which imply n/2 = |O2 ∩ I1|+ |I2 ∩ I1| = |O1 ∩O2|+ |I1 ∩O2|. Hence,
|O1 ∩ O2| = |I1 ∩ I2|. Let O12 := {p ∈ S | xA1∪A2

· p = 0}. Since
xA1∪A2

· p = xA1
· p + xA2

· p, we have O12 = (O1 ∩ O2) ∪ (I1 ∩ I2).
Hence, |O12| = |O1 ∩ O2| + |I1 ∩ I2| = 2|O1 ∩ O2|. Now, the result
follows by the fact that A1 ∪ A2 is c-NO, HO, or c-AO if and only if
|O12| = n, n/2, or 0, respectively.

�

Proposition 2.19. Let A1, A2, and A1 ∪ A2 be HO sets in G. Then
for any pattern p, N∗p = 1 if and only if Np = 1 with xA1

· p =
xA2

· p = 0. Moreover, A1 and A2 are NO sets in G∗ and ∆ν = −2.

Proof. Let N∗p = 1. Assume that xA1
·p = 0 and xA2

·p = 1. Then, by
(4), Np = xA1

. By Lemma 2.6 A1 is solvable, which is a contradiction.
Assuming xA1

·p = 1 and xA2
·p = 0 leads to a similar contradiction.

Assuming xA1
· p = 1 and xA2

· p = 1 we obtain Np = xA1∪A2
by

(4). Hence A1 ∪A2 is solvable, which is a contradiction.
So the only possible case is xA1

· p = 0 and xA2
· p = 0, which by

(4), gives Np = 1.
Conversely, if p satisfies the condition Np = 1 with xA1

· p = 0 and
xA2

· p = 0 then we get N∗p = 1 by (4).
Note that the above condition on p is equivalent to say that p ∈

O1 ∩O2, where O1 and O2 are the sets defined as in Lemma 2.18 with
c = 1. If we denote the number of odd dominating patterns of G by n,
then the number of patterns satisfying the condition is n/4 by Lemma
2.18. This is equivalent to say that ∆ν = −2 since the number of odd
dominating patterns of G and G∗ are 2ν(G) and 2ν(G

∗), respectively.
Lastly, since xA1

· p = xA2
· p = 0 for all odd dominating patterns p

of G∗, we conclude that A1 and A2 are NO in G∗.
�

Proposition 2.20. Let A1, A2 be HO, and A1 ∪ A2 be AO sets in
G. Then for any pattern p, N∗p = 1 if and only if Np = xA1∪A2

with
xA1

· p = xA2
· p = 1. Moreover, A1 and A2 are AO sets in G∗ and

∆ν = −1.
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Proof. Let N∗p = 1. Assuming xA1
· p = 0, xA2

· p = 1 or xA1
· p = 1,

xA2
·p = 0 leads us to the contradictions as in the proof of Proposition

2.19.
Assuming xA1

· p = xA2
· p = 0, we obtain Np = 1 by (4). This

gives xA1∪A2
·p = 1 since A1∪A2 is AO in G. However, by assumption

xA1∪A2
· p = xA1

· p+ xA2
· p = 0, which gives us a contradiction.

So the only possible case is xA1
·p = xA2

·p = 1, which by (4), gives
Np = xA1∪A2

.
Conversely, if p satisfies the condition Np = xA1∪A2

with xA1
· p =

xA2
· p = 1, then N∗p = 1 by (4).

Note that the above condition on p is equivalent to say that p ∈
I1 ∩ I2, where I1 and I2 are the sets defined as in Lemma 2.18 with
c = xA1∪A2

. Note that A1∪A2 is xA1∪A2
-NO by Lemma 2.7. Therefore,

if we denote the number of patterns satisfying Np = xA1∪A2
by n, then

the number of patterns satisfying the condition is n/2 by Lemma 2.18.
This is equivalent to say that ∆ν = −1 since the number of patterns
satisfying Np = xA1∪A2

is 2ν(G) and the number of odd dominating
patterns of G∗ is 2ν(G

∗).
Lastly, since xA1

· p = xA2
· p = 1 for all odd dominating patterns p

of G∗, we conclude that A1 and A2 are AO in G∗. �

Proposition 2.21. Let A1, A2 be HO, and A1 ∪ A2 be NO sets in
G. Then for any pattern p, N∗p = 1 if and only if Np = 1 with
xA1

· p = xA2
· p = 0 or Np = xA1∪A2

with xA1
· p = xA2

· p = 1.
Moreover, A1 and A2 are HO sets in G∗ and ∆ν = 0.

Proof. Let N∗p = 1. Assuming xA1
· p = 0, xA2

· p = 1 or xA1
· p = 1,

xA2
·p = 0 leads us to the contradictions as in the proof of Proposition

2.19. Therefore, either xA1
· p = xA2

· p = 0 or xA1
· p = xA2

· p = 1,
which, by (4), gives Np = 1 or Np = xA1∪A2

, respectively.
Conversely, if p satisfies the conditions Np = 1 with xA1

· p =
xA2

· p = 0 or Np = xA1∪A2
with xA1

· p = xA2
· p = 1, then in both

cases N∗p = 1 by (4).
Note that the first condition on p is equivalent to say that p ∈

O1 ∩ O2, where O1 and O2 are the sets defined as in Lemma 2.18
with c = 1. A1 ∪ A2 is a NO set by assumption. So if we denote
the number of odd dominating patterns of G by n, then the number
of patterns satisfying the first condition is n/2 by Lemma 2.18. The
second condition on p is equivalent to say that p ∈ I1∩I2, where I1 and
I2 are the sets defined as in Lemma 2.18 with c = xA1∪A2

. Note that
A1 ∪A2 is xA1∪A2

-NO by Lemma 2.7. Also, the number of the solving
patterns for xA1∪A2

is equal to number of odd dominating patterns of
G, which is n. Hence the number of patterns satisfying the second
condition is n/2 by Lemma 2.18. So in total, there are n patterns
satisfying the first or second condition. Therefore, the number of odd
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dominating patterns of G, which is 2ν(G) is equal to the number of odd
dominating patterns of G∗, which is 2ν(G

∗). Hence ∆ν = 0.
We see that odd dominating patterns p of G∗ satisfy the first or

second condition. In the first condition xA1
· p = xA2

· p = 0 while in
the second condition xA1

·p = xA2
·p = 1 which makes A1 and A2 HO

sets in G∗. �

We summarize the results obtained from Proposition 2.10 to 2.21 in
the following table.

Table 1.

A1 in G A2 in G A1 in G∗ A2 in G∗ ∆ν
when

A2 in G A1 ∪A2 in G

NO NO
NO NO 0 xA1

-NO -
HO HO 2 xA1

-AO -

NO AO
AO HO 1 xA1

-NO -
NO AO 0 xA1

-AO -

AO AO
AO AO 0 xA1

-NO -
HO HO 1 xA1

-AO -

HO HO
NO NO -2 - HO
AO AO -1 - AO
HO HO 0 - NO

NO HO NO HO 0 - -
AO HO NO AO -1 - -

3. Main Results

In this section we investigate the existence of edges whose addition to
or removal from a graph increases or decreases the nullity of the graph
under some specific conditions. The first natural question we ask is the
following. For a graph with positive nullity should there exist an edge
whose removal decreases the nullity of the graph? As we proved in the
following theorem the answer is affirmative.
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Theorem 3.1. Suppose G is a graph with positive nullity. Then there
exists an edge of G whose removal decreases the nullity.

Proof. Suppose for a contradiction that there does not exist such an
edge. Since ν(G) > 0, there exists a nonzero null pattern. Hence
there is a half activated vertex u of G (see Remark 2.4). Let s be
an odd dominating pattern of G with s(u) = 0. For any half activated
neighbor v of u, s(v) = 0. Otherwise the set {u, v} would be either HO
or AO, in which case the removal of the edge uv decreases the nullity
by Proposition 2.19 and 2.20. On the other hand u does not have any
always activated neighbor. Otherwise, removal of the edge between u
and that activated vertex would decrease the nullity by Proposition
2.17. Hence s(w) = 0 for all neighbors w of u. Then xN [u] · s = 0,
which contradicts with s being an odd dominating pattern. �

As a second question, we can ask the converse of the first one. For
a graph G which is not complete, does there always exist a pair of non
adjacent vertices u and v such that the addition of the edge uv to G
increases the nullity? The answer is an immediate no. Because, for
example, any edge addition to the graph K2 ∪ K2 only decreases the
nullity. But what if the nullity of G cannot decrease, i.e.; what if G is
always solvable? We can see that the answer is still no by considering
the cycle C5. Cycle C5 is always solvable, on the other hand adding any
edge to C5 keeps the nullity zero. Note that C5 satisfies some special
properties such as having an odd order and being an even graph i.e.;
the degrees of all of its vertices are even. It turns out that if the nullity
of an always solvable graph G does not increase by any edge addition
then G must satisfy these two properties as we prove in Theorem 3.5.
Before starting the proof we need the following definitions and lemma.

Definition 3.2. Let G be a graph with vertices u and v. If u and v
are not adjacent then we denote by G+ uv the graph obtained from G
by joining u and v by an edge. If u and v are adjacent then we denote
by G − uv the graph obtained from G by removing the edge between
u and v.

Definition 3.3. We define the parity value pr(x) of a vector x ∈ Z
n
2

as pr(x) := 1 · x.

Hence the parity value of a vector is 0 if it has even number of
nonzero coordinates and 1 if it has odd number of nonzero coordinates.

Lemma 3.4. Let G be an always solvable graph, u be a vertex of G, p
be the solving pattern for x{u}, and s be the odd dominating pattern of
G. Then,

xN [u] · p =

{

pr(s) if u is never activated
1− pr(s) if u is always activated

}

.
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Proof. First we take an enumeration of vertices of G such that u cor-
responds to the first vertex. Now let r be the solving pattern for x{u}.
Hence, r = N−1x{u} which implies r is the first column vector of N−1.
On the other hand, s = N−11, which implies s(u) is equal to the parity
value of the first row vector of N−1. Since N−1 is a symmetric matrix
these two observations imply pr(r) = s(u). Furthermore, note that
p = r+s. Indeed, p = N−1x{u} = N−1(x{u}+1) = N−1x{u}+N−11 =
r+s. Hence pr(p) = pr(r)+pr(s) = s(u)+pr(s). So pr(p) = pr(s) if u
is never activated and pr(p) = 1+ pr(s) = 1−pr(s) if u is always acti-
vated. On the other hand, pr(p) = 1 ·p = xN [u] ·p+xN [u] ·p = xN [u] ·p
since xN [u] · p = (Np)(u) = x{u}(u) = 0. Hence the result follows. �

Theorem 3.5. Suppose G is an always solvable graph which is not an
even graph with odd order. Then, there exists a non-adjacent pair of
vertices u, v in G such that G+ uv is not always solvable.

Proof. First of all note that an always solvable graph has no half ac-
tivated vertices. So all vertices are either always activated or never
activated. Now assume for a contradiction that for all non-adjacent
pair of vertices u and v, G + uv is always solvable. Since G is not an
even graph with odd order, either G is not an even graph or G is an
even graph with even order.

Assume first that G is not an even graph. Then 1 cannot be the odd
dominating pattern. Hence there exists a never activated vertex u of
G. Let p be the solving pattern for x{u}. Let v be another vertex in G
which is not adjacent to u. Since ν(G+uv) = ν(G) = 0, by Proposition
2.11 and 2.12, p(v) = x{v} · p = 0 if v is never activated and p(v) = 1
if v is always activated. Hence xN [u] · p is equal to the parity value of
the always activated vertices which are not adjacent to u. Note that a
never activated vertex has odd number of always activated neighbors
in an always solvable graph. Hence the parity value of the always
activated vertices which are not adjacent to u is equal to 1 − pr(s),
where s is the odd dominating pattern of G. On the other hand, we
have xN [u] ·p = pr(s) by Lemma 3.4 since u is a never activated vertex.
So we arrive at a contradiction.

Assume second that G is an even graph with even order. Then 1

is the odd dominating pattern of G, in other words every vertex is
always activated. Let ũ be one of these vertices. Let ṽ be a vertex in
G which is not adjacent to ũ. Then, since ṽ is also always activated
and ν(G + ũṽ) = ν(G) = 0, by Proposition 2.15, p̃(ṽ) = 0, where p̃ is
the solving pattern for x{ũ}. Hence xN [ũ] · p̃ = 0. However, by Lemma
3.4, xN [ũ] · p̃ = 1 − pr(s) = 1 since the order of G is even and every
vertex is always activated. So we arrive at a contradiction for this case
as well. �
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Note that the converse of Theorem 3.5 does not hold since the empty
graph K3 is an even graph with odd order but every edge addition to
it increases the nullity.

Theorem 3.5 answers the question of existence of an edge addition
which increases the nullity of an always solvable graph. Similarly, we
can ask whether there exists an edge removal which increases the nullity
of an always solvable graph. The answer may be no if the graph is
even. For example, C4 is always solvable and any edge removal keeps
the nullity zero. But if the graph is not even, then the answer is yes as
the following theorem states.

Theorem 3.6. Suppose G is an always solvable graph which is not an
even graph. Then, there exists an edge e of G such that G − e is not
always solvable.

Proof. Assume for a contradiction that there does not exist any edge
whose removal increases the nullity. Since G is not an even graph, 1 is
not the odd dominating pattern. Hence there exists a never activated
vertex u of G. Let p be the solving pattern for x{u}. Let v be a
neighbor of u in G. By assumption, ν(G− uv) = ν(G) = 0. Hence, by
Proposition 2.11 and 2.12, p(v) = x{v} ·p = 0 if v is never activated and
p(v) = 1 if v is always activated. On the other hand, p(u) = x{u}·p = 0
by Lemma 2.7. Moreover, u must have odd number of always activated
neighbors. Therefore, xN [u] · p = 1. However, xN [u] · p = (Np)(u) =
x{u}(u) = 0, which is a contradiction. �

4. Further Results

Theorem 3.1 tells us that for a graph with positive nullity, there
exists an edge whose removal decreases the nullity. However it does
not tell us how much it decreases the nullity. From Table 1 we see
that nullity can decrease by 1 or by 2. So another natural question is
that for graphs with nullity greater than 1 can we always find an edge
whose removal decreases the nullity by 2. The answer of this question is
negative since K2 ∪K2 has nullity 2 but removal of any edge decreases
the nullity only by 1. However, note that although we cannot find an
edge of K2 ∪K2 whose removal decreases the nullity by 2, there exist
edges whose addition decreases the nullity by 2. The following theorem
proves that this is not a coincidence.

Theorem 4.1. Suppose G is a graph with ν(G) ≥ 2. Then either
there exists an edge e of G such that ν(G− e) = ν(G)− 2 or there are
non-adjacent vertices u, v of G such that ν(G+ uv) = ν(G)− 2.

Proof. Assume that the claim does not hold true. Then, for any pair
of half activated vertices u, v, the set {u, v} is not HO. Otherwise,
removal or addition of the edge uv, depending on whether u and v are
adjacent in G or not, would decrease the nullity by 2 by Proposition
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2.19. This is equivalent to say that x{u,v} is solvable. Hence x{u,v} is
orthogonal to every null pattern by (O 3 ).

Now, assuming ν(G) is nonzero, let ℓ be a nonzero null pattern. Since
ℓ is nonzero there exists a half activated vertex u such that ℓ(u) = 1 (see
Remark 2.4). Let v be any half activated vertex other than u. Then,
0 = x{u,v} · ℓ = ℓ(u) + ℓ(v) = 1 + ℓ(v). Hence ℓ(v) = 1. Moreover,
ℓ(w) = 0 for all w which is either never or always activated. Otherwise
{w} would not be solvable by (O 3 ). Hence ℓ is the characteristic vector
of the set of half activated vertices. Since ℓ was an arbitrary nonzero
null pattern, this implies Ker(N) is one dimensional. So ν(G) = 1. �

Another result we have is the following.

Theorem 4.2. Suppose G is an always solvable graph where removal
of every edge increases the nullity. Then, every always activated vertex
of G has even degree and every never activated vertex of G has odd
degree.

Proof. SinceG is always solvable, all vertices are either always activated
or never activated. Let u be an always activated vertex of G. For
any never activated neighbor v of u, since the removal of the edge
uv increases the nullity, by Proposition 2.13 and Lemma 2.9, p(v) =
x{v} · p = 1, where p is the solving pattern for x{u}. Similarly, for
any always activated neighbor w of u, p(w) = 1 by Proposition 2.14.
Moreover, p(u) = x{u}·p = 0 by Lemma 2.7. Consequently, xN [u]·p = 0
if and only if the degree of u is even. On the other hand, xN [u] · p =
(Np)(u) = x{u}(u) = 0. Hence degree of u is even.

Let ũ be a never activated vertex of G. For any never activated
neighbor ṽ of ũ, p̃(ṽ) = 1 by Proposition 2.10, where p̃ is the vector
satisfying N p̃ = x{ũ}. On the other hand, for any always activated
neighbor w̃ of ũ, p̃(w̃) = 0 by Proposition 2.13. p̃(ũ) = x{ũ} · p̃ = 0 by
Lemma 2.7. Consequently, the number of never activated neighbors of
ũ is even since xN [ũ] · p̃ = 0. On the other hand, since there is no half
activated vertex, a never activated vertex has odd number of always
activated neighbors. So the degree of ũ, which is the sum of never and
always activated neighbors of ũ, is odd. �

We finish the set of our results by giving a characterization of always
solvable graphs. First we need to name some types of edge additions.

Definition 4.3. Let G be a graph with a non-adjacent pair of vertices
u and v. Let p be a solving pattern for x{u} in the case {u} is solvable.
Then adding the edge uv to G is called a

Type-1 edge addition if u is never activated, v is always activated,
and p(v) = 1,

Type-2 edge addition if u and v are always activated, and p(v) = 0,
Type-3 edge addition if u is never activated, v is always activated,

and p(v) = 0,
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Type-4 edge addition if u and v are always activated, and p(v) = 1,
Type-5 edge addition if u is always activated, v is half activated,
Type-6 edge addition if u and v are half activated, and {u, v} is half

odd activated.

Theorem 4.4. Suppose G is a graph with n edges where n 6= 0. Then,
G is always solvable if and only if G is obtained from an always solvable
graph with n − 1 edges by a Type-1 or Type-2 edge addition or it is
obtained from an always solvable graph with n−2 edges by a Type-3 or
a Type-4 edge addition followed by a Type-5 or Type-6 edge addition.

Proof. If G is always solvable then it has no half activated vertex. On
the other hand, G must have an always activated vertex v with nonzero
degree. Otherwise G would have a never activated vertex w with no
always activated neighbors since G is nonempty. But then xN [w] · s = 0
where s is the odd dominating pattern of G, which is a contradiction.
Therefore, by Proposition 2.12-2.15, either (Case 1 ) there exists an
edge incident to u whose removal keeps the nullity 0, or (Case 2 )
removal of every edge incident to u increases the nullity by 1.

First assume that Case 1 holds. Then there exists a vertex u adjacent
to v such that G′ := G − uv is always solvable. By Proposition 2.13
and 2.14, types of activations of u and v in G′ are equal to the types
of activations in G. So u and v is either a never activated, always
activated or always activated, always activated pair in G′. Since the
nullity of G = G′ + uv is the same as the nullity of G′ which is 0, this
implies G is obtained from G′ by a Type-1 or Type-2 edge addition by
Proposition 2.12-2.15.

Second assume that Case 2 holds. Then G′ = G− uv has nullity 1
for all u adjacent to v in G. Equivalently, adding the edge uv to G′

decreases the nullity by 1. Considering all possible scenarios stated in
Proposition 2.10-2.21 (or put together in Table 1), we see that adding
the edge uv to G′ can decrease the nullity of G′ by 1 only under two
cases which corresponds Type-5 and Type-6 edge additions. On the
other hand, since the nullity of G′ is 1, there exists an edge e of G′

whose removal decreases the nullity to 0 by Theorem 3.1. Equivalently,
adding the edge e to the always solvable graph G′′ := G′ − e increases
the nullity by 1. Again, considering all possible scenarios stated in
Proposition 2.10-2.21, we see that this is only possible under two cases
which corresponds to Type-3 or Type-4 edge addition.

Sufficiency part of the proof is trivial by definitions of the types of
the edge additions and by Proposition 2.12, 2.13, 2.14, 2.15, 2.17, and
2.20 �
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