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Abstract

Optimal design for generalized linear models has primarily focused on univariate data.
Often experiments are performed that have multiple dependent responses described by
regression type models, and it is of interest and of value to design the experiment for all
these responses. This requires a multivariate distribution underlying a pre-chosen model
for the data. Here, we consider the design of experiments for bivariate binary data which
are dependent. We explore Copula functions which provide a rich and flexible class of
structures to derive joint distributions for bivariate binary data. We present methods
for deriving optimal experimental designs for dependent bivariate binary data using
Copulas, and demonstrate that, by including the dependence between responses in the
design process, more efficient parameter estimates are obtained than the usual practice
of simply designing for a single variable only. Further, we investigate the robustness of
designs with respect to initial parameter estimates and Copula function, and also show
the performance of compound criteria within this bivariate binary setting.

Key words: Bivariate binary response, Copulas, Dependence, D-optimality, Multiple
responses, Multivariate distributions, Optimal design, P -optimality.

1. Introduction

There are many situations where multiple responses are measured during an experi-
ment. For example, in pharmacology and in agriculture, parent drug and metabolite
concentration, drug toxicity and efficacy, or yield and disease resistance of grain from
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a field trial. Poor or incorrect experimental design can lead to inadequate experiments
and the subsequent development of models with unsatisfactory properties.

Unlike design of experiments for univariate responses, design for multiple responses
has not received much attention. Some early work which considered bivariate binary
responses was given by Kanninen (1993) and Alberini (1995). Their focus was on the
design of choice experiments where the interest was in estimating as precisely as possible
a statistic about the public’s willingness to pay for a change in the environmental
quality. However, it is not uncommon for experiments to be designed with respect
to a single response variable, ignoring the possibility that more responses might be
measured. Design research for multiple response models exists where one response is
nested within another, see Waterhouse et al. (2005), Hennig et al. (2007) and McGree
et al. (2009). We aim to develop an approach for the design of experiments which yield
multiple responses that share a dependence structure.

For dose-ranging trials, Heise and Myers (1996), Dragalin and Fedorov (2006) and Dra-
galin et al. (2006) have considered bivariate binary models for the design of experiments
where the interest is in the efficacy and toxicity of a drug. Other research in this field
has come from Rabie and Flournoy (2004) and Dorta-Guerra et al. (2005). In the
context of pharmacokinetic response models, Gueorguieva et al. (2006, 2007), Ogung-
benro et al. (2007) have considered optimal design based on the multivariate normal
distribution.

We present an approach that is useful when standard multivariate distributions are
not applicable (or don’t exist). This approach allows for the specification of arbitrary
dependence structures between the responses. Often when designing an experiment,
the experimenter knows the distribution of the marginal responses with a high degree
of confidence but may not know the joint distribution of the responses. As described
by Nelsen (2006), Copulas are distribution functions with uniform marginals that can
be used to derive the joint distribution of the multiple responses using the marginal
response distributions. This allows arbitrary multivariate distribution functions to be
derived that can account for the dependence between the responses. Our work is more
general but similar in spirit to Gunduz and Torsney (2006). We concentrate on the
bivariate binary response situation but show how this can be extended to a larger class of
multivariate data. We conduct an investigation to determine the loss in design efficiency
when a dependence structure is not accounted for. We also present a computational
exploration into the robustness of optimal designs with respect to initial parameter
estimates and Copula functions.

The outline of the paper is as follows. Preliminaries on generalized linear models,
design, optimality and the expected Fisher information matrix are given in Section 2.
The bivariate binary response model is introduced in Section 3. Copula functions
are formally defined and the Fisher information matrix for a general bivariate binary
response model is derived. Bivariate binary examples follow in Section 4 where the
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robustness of designs and compound criteria are also explored. The paper concludes
with a discussion about the key findings and developments in this paper.

2. Preliminaries

2.1. Generalized Linear Model

Each marginal response is assumed to be modelled by a generalized linear model (GLM)
as described in McCullagh and Nelder (1989). A GLM is defined by (1) the distribution
of the response, with mean � = E(Y ) and variance V ar(Y ) = a(�)V (�), where a(�)
is a scale factor that does not depend on �, (2) a linear predictor � = X� where X is
a n× p matrix of covariates and � = (�1, . . . , �p)

′ is a p× 1 vector of model parameters
and (3) a link function, g(�) = �, which links the mean vector to the linear predictor.

We consider binary responses and the expected value of Y is given by the probability
of success �. Some common link functions for binary data are the logit link function,
g(�) = logit(�) = log {�/(1− �)}, the probit link function, g(�) = Φ−1(�), where
Φ(⋅) is the cumulative distribution function of the standard normal distribution and
the complementary log-log link function, g(�) = log{− log(1− �)}.

2.2. Design

An experimental design � with n support points can be written

� =

{

x1 x2 . . . xn

w1 w2 . . . wn

}

, (1)

where xi ∈ X are the support points (n-vectors also known as elementary designs)
consisting of the explanatory variables which describe the experimental conditions,
with weights wi ∈ [0, 1] summing to 1. The design space can be written Ξ ∈ {� ∈
X × [0, 1]n :

∑n
i=1wi = 1}. For an exact design with N units, the weights are given by

wi = ri/N where ri is the number of replicates of xi. For an approximate design, the
weights represent the amount of experimental effort for each support point.

2.3. Fisher Information Matrix

The Fisher information matrix (FIM), M (�, �), is the negative expectation of the
second order partial derivatives of the log-likelihood l(�;y) with respect to the model
parameters �. That is,

M(�, �) = −E

(

∂2l(�;y)

∂�∂�′

)

. (2)
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It is known that the variance-covariance matrix of any unbiased estimator of � is
bounded below by M−1(�, �). Thus, for a given design � the Fisher information matrix
tells us how well the model parameters are expected to be estimated.

2.4. Optimality

An optimal design is the best choice of design points and corresponding weights with
respect to a given design criterion. A common choice is D-optimality. A design is
D-optimal if it maximizes the determinant of the Fisher information matrix, ∣M (�, �)∣,
or equivalently, minimizes ∣M (�, �)−1∣. The Cramér-Rao lower bound given by Cramér
(1946) says that the optimal design has the minimum variance-covariance for the max-
imum likelihood estimate �̂. Therefore, in general, D-optimal designs provide good
parameter estimates since they minimize the volume of the joint asymptotic confidence
ellipsoid of the parameters.

The D-efficiency of a design � with respect to the optimal design �∗D is given by

Deff =

(

∣M (�, �)∣

∣M (�, �∗D)∣

)1/q

, (3)

where q is the number of model parameters. A D-efficiency of 0.5 means that twice as
much experimental effort is required using � in order to obtain parameter estimates as
accurate as using �∗D.

Product D-optimality (see Atkinson and Cox (1974) and Waterhouse et al. (2005)) can
be used to obtain a design with efficient parameter estimates across a number of models.
It maximizes the product of the determinants of the Fisher information matrices, scaled
by the number of model parameters, for each model.

3. Copulas

There are numerous ways of defining a multivariate distribution for discrete random
variables, here we are concerned only with binary responses. Copula functions provide
a fruitful source of distribution functions, including those commonly known such as
the Archimedian, Clayton, Frank and Gumbel. In the following some background on
Copula functions is given, a bivariate binary model defined and the FIM derived.

As described in Sklar (1959), a Copula is a function C : [0, 1]n → [0, 1] that satisfies

1. C(1, . . . , uj , . . . , 1) = uj , j = 1, . . . , n 0 ≤ uj ≤ 1.

2. C(u1, . . . , un) = 0 if uj = 0, j = 1, . . . , n.

3. C is increasing in each component uj, j = 1, . . . , n.

4



Sklar (1959) postulated that there exists a function C such that

F (y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)). (4)

The converse is if C is a Copula and Fi(yi), i = 1, . . . , n are marginal distributions then
F (y1, . . . , yn) is a distribution function. The copula may also be defined as

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)). (5)

If all the marginal distributions are continuous, then the Copula is unique. If any of
the marginal distributions are discrete then the Copula is only unique on Ran(F1) ×
⋅ ⋅ ⋅ × Ran(Fn) (see Trivedi and Zimmer (2005) for further details). Since Copulas are
also multivariate distributions then the Fréchet-Hoeffding lower and upper bounds also
apply.

Copula functions allow the specification of multivariate distributions with arbitrary
dependence structures. This is a useful tool as distribution functions do not exist for
many common situations such as the bivariate binary data case considered here, and
more generally for, describing dependence between continuous and discrete data. The
next subsection describes some Copula functions for bivariate binary data.

3.1. Bivariate Copulas

A large number of Copulas appear in the literature which impose different dependence
relationships between the marginal distribution functions. The books by Hutchinson
and Lai (1990), Joe (1997) and Nelsen (2006), and a paper by Trivedi and Zimmer
(2005) provide extensive coverage of bivariate Copulas and their properties. In this
section, several Copulas that have been used in applications are presented.

An important (and simple) Copula, the product Copula is given by

C(u1, u2) = u1u2, 0 ≤ u1, u2 ≤ 1. (6)

The product Copula corresponds to independence.

3.2. Archimedean Copulas

A bivariate Archimedean Copula (Genest and MacKay (1986)) is defined as

C(u1, u2;�) =  −1 ( (u1;�) +  (u2;�);�) (7)

where  (u), the generator of the Copula, is a class two function with  (1) = 0,  ′(u) < 0
and  ′′(u) > 0 for all 0 ≤ u ≤ 1. Archimedean Copulas are commonly used due to their
desirable mathematical properties. Examples of such Copulas are given below.
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Clayton Copula

The Clayton Copula (Clayton (1978) and Cook and Johnson (1981)) is given by

C(u1, u2;�) =
(

u−�
1 + u−�

2 − 1
)

−1/�
, � > 0. (8)

As the dependence parameter � → 0, the Clayton Copula approaches (6) and corre-
sponds to independence. As � → ∞, the Copula approaches the Fréchet-Hoeffding
upper bound which is an upper bound on all Copula functions. In the bivariate case,
the upper bound represents perfect positive dependence between variates (similarly for
the lower bound and perfect negative dependence). There are no values of � for which
the Clayton Copula attains the Fréchet-Hoeffding lower bound. This Copula exhibits
strong left tail (with relatively weak right tail) dependence, and cannot account for
negative dependence.

Frank Copula

The Frank Copula (Frank (1979)) is given by

C(u1, u2;�) = −�−1 log

(

1 +
(e−�u1 − 1) (e−�u2 − 1)

e−� − 1

)

, � ∕= 0 (9)

As the dependence parameter � approaches −∞, 0,∞, the Copula approaches the
Fréchet-Hoeffding lower bound, independence and the Fréchet-Hoeffding upper bound,
respectively. This Copula permits negative dependence, and the dependence is sym-
metric in both tails. Notably, both Fréchet-Hoeffding bounds are permissible through
an appropriate choice of �.

Gumbel Copula

The Gumbel Copula (Gumbel (1960)) is given by

C(u1, u2;�) = exp
(

− ((− log u1)
� + (− log u2)

�)
1/�
)

, 1 ≤ � <∞ (10)

As the dependence parameter � approaches 1 and ∞, the Copula approaches indepen-
dence and the Fréchet-Hoeffding upper bound, respectively. There are no values for �
such that the Copula approaches the Fréchet-Hoeffding lower bound. This Copula does
not allow negative dependence, and exhibits strong right tail (with relatively weak left
tail) dependence.
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3.3. Bivariate Binary Model

Let (Yi1, Yi2), i = 1, . . . , n be a bivariate binary response. For each observation there are
four possible outcomes {(0, 0), (0, 1), (1, 0), (1, 1)} where ‘1’ usually represents a success
and ‘0’ a failure.

For a single observation let

py1,y2 = Pr (Y1 = y1, Y2 = y2) , y1, y2 = 0, 1 (11)

be the joint probabilities of Y1 and Y2. The key is to represent the joint probability of
success using a copula representation as in (4). That is,

p11 = C(�1, �2;�) (12)

The remaining joint probabilities can be derived as

p10 = �1 − p11 (13)

p01 = �2 − p11 (14)

p00 = 1− �1 − �2 + p11, (15)

where �r, r = 1, 2 are the marginal probabilities of success.

Note that the bivariate binary models presented in Dragalin et al. (2006), Dragalin and
Fedorov (2006) and Heise and Myers (1996) are special cases of the approach presented
above.

The complete log-likelihood for the bivariate binary model can be written

l(�;y) =
n
∑

i=1

wili(�;y), (16)

where � = (�1,�2, �), wi are the design weights and the log-likelihood for a single
observation is given by

li(�;y) = y1y2 log p11 + y1(1− y2) log p10 + (1− y1)y2 log p01

+ (1− y1)(1− y2) log p00. (17)

The Fisher information for a single observation can be derived as (see also Dragalin
and Fedorov (2006))

M (�, �i) =
∂p

∂�

(

P−1 +
1

1− p11 − p10 − p01
eeT
)

∂p

∂�T
(18)

where p = (p11, p10, p01), P = diag (p) and e = (1, 1, 1)T .
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The expected Fisher information matrix for Copula functions is derived in Appendix
A.

4. Applications

In the following examples, designs are derived that allow for efficient estimation of
parameters for various dependence structures. Firstly, a hypothetical example is con-
sidered to illustrate the methods described earlier. A second example with applications
to pharmacology follows. In both examples, when dependence is assumed, � is pre-
sumed to be estimated.

Throughout the examples, a continuous search, simulated annealing algorithm was used
to find the optimal designs. This algorithm was based on work given by Corana et al.
(1987) and MATLAB source code can be found at www.a-grade.info. The algorithm
starts with an initial random design. A burnin of size (say) 500 iterations is used to
determine the starting temperature which initializes the annealing process. Designs
which yield a larger criterion value are always accepted, while ‘backwards’ steps are
taken with certain probabilities to avoid being trapped in local optima. The search
continues until a predefined precision has been reached.

4.1. Example 1

Let each marginal response be modelled by a three factor main effects logistic GLM
with initial parameters �1 = [1, 4, 1,−1] and �2 = [1,−0.5, 1,−1], with xj ∈ [−1, 1],
for j = 1, 2, 3. That is,

log

(

�1
1− �1

)

= 1 + 4x1 + x2 − x3, (19)

log

(

�2
1− �2

)

= 1− 0.5x1 + x2 − x3. (20)

The dependency between the marginal distributions is modelled using the Frank copula
(9).

Table 1 shows the D-optimal designs for the bivariate binary responses described by
equations (19) and (20) and the Frank Copula. The product optimal design (indepen-
dent case) is also shown. An initial observation is that assuming a dependence between
the two responses can increase the number of support points. In particular, designs for
cases where � > 0 can have up to 10 support points. Moreover, some of the optimal
designs shown have less support points than estimable parameters. This is not uncom-
mon for multivariate designs, and arises as a consequence of the dependence between
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responses. Potentially, each response offers information about any or all parameters
from each model. Also, it is possible that the dependence parameter could be ‘free’ to
estimate, under some models. This is certainly the case when estimating correlation
between two continuous variables, and may extend to this bivariate binary case. Lastly,
the designs shown are not necessarily unique in that there may be multiple solutions
that maximize the determinant of the Fisher information matrix. This is not uncommon
in the univariate case, and may also be seen here in this bivariate situation.

As it may be difficult to determine values of � before running the experiment, it is of
interest to know how sensitive or how robust these Copula designs are with respect to
�. Table 2 presents the D-efficiencies of the designs given in Table 1 with respect to
different � values. As expected, the more � is misspecified, the greater the reduction
in the D-efficiencies of the designs. In particular, assuming � = −20, when in fact
� = 20, leads to a D-efficiency of 0.4594 which is a significant loss in terms of efficient
parameter estimation. More interestingly, high D-efficiencies are seen when the sign of
� is correctly chosen. For example, if it is assumed that � = −5 when indeed the true
value is � = −20, the loss in efficient parameter estimation is minimal shown by a D-
efficiency of 0.9404. A further observation is that the D-efficiencies are not symmetric
around � = 0. That is, assuming � = 20, when in fact � = −20, does not yield the
same D-efficiency when assuming � = −20, when the true value is 20. This could be
tied into the fact that the joint probabilities are also not symmetric around � = 0.

When observing bivariate binary responses, it may not be clear if the responses are
dependent or not. Hence we explore the loss associated with assuming dependence
when the responses are actually independent. Table 3 shows the D-efficiencies of the
D-optimal designs for the models describing the bivariate response in the dependent and
independent cases with respect to the two univariate response models (equations (19)
and (20)). The design which yields the highest product of the two D-efficiencies is the
product D-optimal design as this is (essentially) what is maximized to find this design.
Importantly, the results show that little is lost (with respect to the product design)
when a dependence is assumed between the two bivariate responses. In fact, similar D-
efficiencies are seen for all designs. This means that assuming some dependence between
the responses does not drastically compromise parameter estimation if the responses
are in fact independent.

As mentioned earler, it is common to design such studies by assuming the two responses
are independent. In order to determine how much is lost by assuming independence,
when in fact a dependence structure exists, the product design was compared with the
D-optimal Copula designs. Table 4 shows the performance of the product D-optimal
design in estimating parameters (including �) when a dependence exists between the
two responses. When � < 10, the D-efficiencies are quite reasonable suggesting the
product D-optimal design would perform quite well at estimating the model parameters
and �. However, when � = 20, the D-efficiency becomes quite reduced. This shows
that, assuming independence when in fact a particular dependence structure exists, can
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Efficacy and toxicity (p11)

Efficacy without toxicity (p10)

Toxicity without efficacy (p01)

No efficacy, no toxicity (p00)

Figure 1: Probabilities p11, p10, p01 and p00 given by models (21), Frank Copula and � =
−20,−10,−5, 5, 10 and 20.

compromise parameter estimation.

4.2. Example 2

Consider a clinical trial where the responses are efficacy and toxicity. Let Y1 repre-
sent efficacy and Y2 toxicity. We denote the joint probabilities by (12) with marginal
probabilities of success given by

log

(

�i
1− �i

)

= �i0 + �i1d i = 1, 2 (21)

where d ∈ [0, 10] represents dose and initial parameters �1 = [−1, 1] and �2 = [−2, 0.5]
are taken from Heise and Myers (1996) and the Frank copula is given by (9).

Figure 1 shows the joint probabilities p11, p10, p01 and p00 for various values of � as
a function of dose. The probability of achieving efficacy and toxicity (p11) increases
with dose with the opposite being true for p00; the probability of not achieving efficacy
and no toxicity. The probability of achieving efficacy without toxicity (p10) initially
increases with dose until dose becomes too ‘large’. At this point p10 decreases as the
toxic effect of the drug becomes more likely. Finally, the probability of toxicity without
efficacy p01 is generally quite small (< 0.2).

As a comparison to Figure 1, Figure 2 shows the joint probabilities where the two binary
responses are independent. Hence, the product copula was used to calculate p11, p10,
p01 and p00 for d ∈ [0, 10]. Differences between the joint probabilities are particularly
noticable for � = −20. Moreover, differences are not as obvious when � = 20. This
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Figure 2: Probabilities p11, p10, p01 and p00 given by models (21) and the Product Copula.

shows that the joint probabilities are not symmetric around � = 0.

Table 5 show the D-optimal designs for the independent and dependent responses de-
scribed by equation (21). All designs have three similar support points. In comparison
with the first example, assuming a dependence between the responses does not increase
the number of support points. Further the similarity of all D-optimal designs suggest
that, in this case, the designs are robust to variation in �.

The previous example explored the robustness of D-optimal designs when � was mis-
specified. For this example, a simulation study was run to determine if such designs
were robust to all model parameters (�1, �2 and �) for � equaling -20, -10, -5, 5, 10
and 20. The study was run by assigning each parameter an upper and lower bound.
These bounds were arbitrary chosen as the initial parameters ±1 (respectively). Model
parameters were randomly and uniformly drawn from these intervals and the D-optimal
design constructed. The D-efficiency of this design compared to those given in Table
5 was then calculated. This was repeated 250 times and the results are summarized in
Table 6.

From Table 6, all (mean)D-efficiencies are reasonable for � > −20 given the uncertainty
assumed around the initial parameter estimates. This shows that such designs will
still be able to efficiently estimate misspecified model parameters. Such a property
is important in nonlinear design situations as a D-optimal design is dependent upon
the initial model parameters specified. For � = −20, the misspecification of initial
estimates does seem to affect parameter estimation. In such cases, it may be advisable
to explore techniques to provide some robustness properties to this design.

4.2.1. Compound Criteria

We further explore optimal design for the description of the efficacy and toxicity of a
drug. In phase I/II trials, it is desirable to administer doses such that model parameters
can be estimated as well as possible and also maximize the probability of efficacy
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without toxicity. This requires the derivation of designs to address dual goals of an
experiment. Compound optimal design crtieria construct designs for this purpose. Such
criteria have a long history, see Lauter (1974), Lauter (1976), Lee (1987), Lee (1988),
Cook and Wong (1994), Clyde and Chaloner (1994), Huang and Wong (1998), Wong
(1999) and McGree et al. (2008).

We focus on combining D-optimality with a form of P -optimality (as proposed in
McGree and Eccleston (2008)). P -optimality aims at maximizing the probability of
certain outcomes. Such designs in this context will place all experimental effort on the
(single) dose that maximizes the joint probability of efficacy without toxicity. These
objective functions are combined by jointly maximizing a weighted linear combination of
the logarithm of each criterion (see Atkinson (2008) and McGree and Eccleston (2008)).
The weighting is predefined and allows the experimenter to place more or less emphasis
on estimation or maximizing certain probabilities. We will only consider the equally
weighted scenario. Designs found under such a criterion will be termed DP -optimal.

Figure 3 presents the D- and P -optimal designs for the dependent responses described
by equation (21) for � = −20,−10,−5, 5, 10 and 20. The circles represent the D-
optimal designs with the dose shown by the location and weight shown by the area of
the circles. Since P -optimal designs only consist of a single support point, they are
represented by the straight vertical line. Notably, the plots suggest that the D-optimal
design for � = −20 will be relatively P -efficient as much of the experimental effort is
placed approximately on the P-optimal support point. This is in contrast to � = 20,
where only a small circle is seen about the P -optimal design.

−2 0 2 4 6 8 10
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−2 0 2 4 6 8 10
d
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−2 0 2 4 6 8 10
d

α = −5

−2 0 2 4 6 8 10
d

α = 5

−2 0 2 4 6 8 10
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α = 10

−2 0 2 4 6 8 10
d

α = 20

Figure 3: D- and P -optimal designs for � = −20,−10,−5, 5, 10 and 20.
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Figure 4 shows the DP -optimal designs when each criterion is equally weighted. That
is, both estimation and maximizing p10 are believed to be of equal importance. In
comparison to Figure 3, the shift in experimental effort around the P -optimal design
is obvious. Such designs are therefore more likely to produce efficacious and non-toxic
responses. The trade-off is that parameter estimation will be compromised. Table
7 shows the D-efficiencies of the DP -optimal designs. All efficiencies are quite high
suggesting that the compromise in estimation is minimal.

−2 0 2 4 6 8 10
d

α = −20

−2 0 2 4 6 8 10
d

α = −10

−2 0 2 4 6 8 10
d

α = −5

−2 0 2 4 6 8 10
d

α = 5

−2 0 2 4 6 8 10
d

α = 10

−2 0 2 4 6 8 10
d

α = 20

Figure 4: DP -optimal designs with each criterion is equally weighted and � = −20,−10,−5, 5, 10 and
20.

4.2.2. Different Copula Function?

One obvious design question is, how robust are D-optimal designs with respect to
the choice of Copula? This is a difficult question to answer as an � value for one
Copula will have a different meaning and indeed induce a different dependence between
responses within another Copula. With this in mind, D-efficiencies of optimal designs
were compared under different Copulas with the parameter estimates held fixed. That
is, the D-optimal design under (for example) the Frank Copula with a certain set of
parameters was derived. The performance of this design was then compared with the
D-optimal designs under the Clayton and Gumbel Copula functions (with the same
set of initial parameter estimates used in the Frank Copula). The D-efficiencies of this
comparison will then suggest how robust designs are with respect to different Copula
functions. Table 8 presents these D-efficiencies. All are high meaning that, even though
different dependence structures were assumed between the two responses, relatively
similar designs were found. This may be a consequence of the very limited information
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content within binary data. That is, the subtle differences in dependence structures
may be difficult to see when the responses are binary. Further, it does suggest that,
for this example, the Copula function (and therefore the dependence structure) is not
overly important when designing this experiment. This is useful information as little
is lost in terms of parameter estimation if different Copula functions are used to model
the data.

5. Conclusion

There are many situations where multivariate data (in particular bivariate data) are
observed from an experiment. This paper has developed an approach and methodology
for optimally designing such experiments for bivariate binary data. The innovative
use of Copulas permits a wide class of possible models to be considered. It has been
demonstrated that through our results the dependence between bivariate data can be
utilized to derive a more efficient experiment. Two specific examples were considered.
A generic GLM example and an application to toxicity/efficacy trials. These examples
showed the gains in efficiency and improvement in precision of the parameter estimates
for each response when the dependence is acknowledged. While our work provides
the impetus for consideration of multivariate methods across the spectrum of response
variable types that might be seen in toxicity/efficacy trials, it should not necessarily
be limited to this particular application, and is indeed more generally applicable to
multivariate data. Pharmacology trials should be analyzed in the same manner in
which they are designed such that a Copula method would be required in analysis to
ensure the benefits of the optimal design.

Robustness investigations were also undertaken. Initially it was found that when the
correct sign of the dependence parameter was assumed for the Frank Copula, all designs
were highly D-efficient, despite variation in �. When significant uncertainty exists in
the initial parameter estimates, the precision of estimates was compromised in some
cases. Therefore, it is advisable to consider implementing compromise techniques as
a means of guarding against such pitfalls. Further, for the example considered, the
choice of Copula seemed inconsequential in terms of estimation. Therefore, it may be
that simply assuming a dependence (with the right sign) modelled by some Copula is
enough to derive a robust, efficient experimental design. This needs requires further
investigation.

These methods can be generalized to different multivariate situations with the accom-
panying increased degree of complexity dependent on the dimension of the situation.
Similar approaches to those used here are being developed for other discrete random
variables, the Poisson being the most obvious, and the situation where one response
is discrete and the other continuous, such as a binary and a normal making up the
bivariate responses.
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A. Derivation of the expected Fisher information matrix

To derive M (�, �) for Copula functions, we need the following derivatives.
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Thus M (�, �) can be written
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Considering the product copula (6), the Fisher information matrix can be derived as

M(�, �) =
n
∑

i=1

J1J2V J2

TJ1

T (31)

=
n
∑

i=1

J1

(

1
�1(1−�1)

0

0 1
�2(1−�2)

)

J1

T , (32)

where

J2 =

(

�2 1− �2 −�2
�1 1− �1 −�1

)

. (33)

It can be seen that maximizing the determinant of (32) is equivalent to maximizing the
product of the determinants of the individual information matrices for each response.
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Table 1: D-optimal product and copula designs for � = −20,−10,−5, 5, 10 and 20.

� x1 x2 x3 wi � x1 x2 x3 wi

n/a -1.0000 -1.0000 1.0000 0.0708
-0.6296 1.0000 -1.0000 0.1105
-0.5423 1.0000 1.0000 0.1600
-0.5423 -1.0000 -1.0000 0.1600
-0.0186 -1.0000 1.0000 0.0658
0.0186 1.0000 1.0000 0.0658
0.0186 -1.0000 -1.0000 0.0658
0.5423 -1.0000 1.0000 0.1600
1.0000 -1.0000 -1.0000 0.0708
1.0000 1.0000 1.0000 0.0708

-20 -1.0000 -1.0000 1.0000 0.0608 20 -1.0000 -1.0000 1.0000 0.0504
-0.5368 -1.0000 -1.0000 0.2315 -1.0000 -1.0000 -1.0000 0.0143
-0.5368 1.0000 1.0000 0.2315 -1.0000 1.0000 1.0000 0.0143
-0.5244 1.0000 -1.0000 0.1232 -1.0000 1.0000 -1.0000 0.1306
0.5368 -1.0000 1.0000 0.2315 -0.0101 -1.0000 -1.0000 0.2251
1.0000 -1.0000 -1.0000 0.0608 -0.0101 1.0000 1.0000 0.2251
1.0000 1.0000 1.0000 0.0608 0.0101 -1.0000 1.0000 0.2251

1.0000 -1.0000 1.0000 0.0143
1.0000 -1.0000 -1.0000 0.0504
1.0000 1.0000 1.0000 0.0504

-10 -1.0000 -1.0000 1.0000 0.0630 10 -1.0000 -1.0000 1.0000 0.0533
-0.5027 1.0000 -1.0000 0.1213 -0.9942 1.0000 -1.0000 0.1197
-0.4894 -1.0000 -1.0000 0.2299 -0.8203 -1.0000 -1.0000 0.0212
-0.4894 1.0000 1.0000 0.2299 -0.8203 1.0000 1.0000 0.0212
0.4894 -1.0000 1.0000 0.2299 -0.0348 -1.0000 -1.0000 0.2189
1.0000 -1.0000 -1.0000 0.0630 -0.0348 1.0000 1.0000 0.2189
1.0000 1.0000 1.0000 0.0630 0.0348 -1.0000 1.0000 0.2189

0.8203 -1.0000 1.0000 0.0212
1.0000 1.0000 1.0000 0.0533
1.0000 -1.0000 -1.0000 0.0533

-5 -1.0000 -1.0000 1.0000 0.0618 5 -1.0000 -1.0000 1.0000 0.0550
-0.5140 1.0000 -1.0000 0.1085 -0.9344 1.0000 -1.0000 0.0924
-0.4709 1.0000 1.0000 0.2144 -0.6464 -1.0000 -1.0000 0.0515
-0.4395 -1.0000 -1.0000 0.2241 -0.6464 1.0000 1.0000 0.0515
-0.0373 -1.0000 1.0000 0.0245 -0.0612 -1.0000 -1.0000 0.1960
0.0372 1.0000 1.0000 0.0245 -0.0612 1.0000 1.0000 0.1960
0.4709 -1.0000 1.0000 0.2144 0.0612 -1.0000 1.0000 0.1960
1.0000 -1.0000 -1.0000 0.0662 0.6464 -1.0000 1.0000 0.0515
1.0000 1.0000 1.0000 0.0618 1.0000 -1.0000 -1.0000 0.0550

1.0000 1.0000 1.0000 0.0550
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Table 2: D-efficiencies as a measure of the robustness of the D-optimal designs with respect to � being
misspecified.

Assumed �
-20 -10 -5 5 10 20

-20 1.0000 0.9800 0.9404 0.7006 0.5631 0.5106
-10 0.9917 1.0000 0.9919 0.8389 0.7727 0.7453

True � -5 0.9852 0.9971 1.0000 0.9522 0.9222 0.9068
5 0.8928 0.9139 0.9358 1.0000 0.9949 0.9884
10 0.7071 0.7340 0.7842 0.9905 1.0000 0.9969
20 0.4594 0.4783 0.5975 0.9503 0.9904 1.0000

Table 3: D-efficiencies of designs for models assuming independent and dependent data (Table 1) with
respect to univariate response models.

Model � = -20 � = -10 � = -5 � = 5 � = 10 � = 20 Prod.

1 0.8287 0.8293 0.8250 0.8376 0.8437 0.8479 0.8216
2 0.7338 0.7349 0.7365 0.7056 0.6850 0.6744 0.7602

1× 2 0.6081 0.6095 0.6076 0.5910 0.5779 0.5718 0.6246

Table 4: D-efficiencies of the product design (Table 1 with � = n/a) with respect to D-optimal copula
designs (Table 1 with � = −20,−10,−5, 5, 10 and 20).

� -20 -10 -5 5 10 20

D-efficiency 0.9402 0.9564 0.9818 0.9478 0.8562 0.7748
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Table 5: D-optimal designs for independent and dependent responses where models for both responses
are given by equation (21) and the Frank Copula is assumed for the dependent responses.

� d wi � d wi

n/a 0.0000 0.4216
2.8828 0.3545
6.7297 0.2239

-20 0.0000 0.2718 20 0.0000 0.5604
2.0262 0.5302 2.9568 0.2655
6.8945 0.1980 6.4747 0.1741

-10 0.0000 0.2824 10 0.0000 0.5307
2.0745 0.5209 2.7838 0.2907
6.8851 0.1966 6.4507 0.1786

-5 0.0000 0.3207 5 0.0254 0.4415
2.1782 0.4870 2.4412 0.3736
6.8560 0.1923 6.6656 0.1849

Table 6: Mean D-efficiencies (over 250 random sets of model parameters) of the D-optimal copula
designs for � = −20,−10,−5, 5, 10 and 20.

� -20 -10 -5 5 10 20

Mean D-efficiency 0.5595 0.7391 0.8119 0.8222 0.8202 0.7654

Table 7: D-efficiencies for the DP -optimal designs for � = −20,−10,−5, 5, 10 and 20.

� -20 -10 -5 5 10 20

D-efficiency 0.9319 0.9324 0.9280 0.9037 0.8777 0.8713
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Table 8: D-efficiencies of D-optimal designs with respect to the Clayton, Frank and Gumbel Copulas
with � = 1, 5, 10, 15 and 20.

True Copula Assumed Copula � = 1 � = 5 � = 10 � = 15 � = 20

Clayton Frank 0.9866 0.9786 0.8738 0.8566 0.8381
Gumbel 0.9664 0.9786 0.8667 0.8475 0.8342

Frank Clayton 0.9866 0.9811 0.9153 0.8867 0.8767
Gumbel 0.9776 0.9789 0.9978 0.9998 0.9999

Gumbel Clayton 0.9695 0.9727 0.9005 0.8764 0.8708
Frank 0.9815 0.9658 0.9972 0.9998 0.9999
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