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Abstract

We present a new software package designed to reduce the computational burden of hadron
collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid pack-
age converts interpolated weight tables provided by APPLgrid files into a more efficient
format for PDF fitting by the combination with PDF and αs evolution factors provided
by APFEL. This combination significantly reduces the number of operations required to
perform the calculation of hadronic observables in PDF fits and simplifies the structure
of the calculation into a readily optimised scalar product. We demonstrate that our tech-
nique can lead to a substantial speed improvement when compared to existing methods
without any reduction in numerical accuracy.
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1. Introduction

Measurements at colliders such as the Tevatron and Large Hadron Collider (LHC)
have a unique capacity to shed light upon the internal dynamics of the proton and provide
constraints upon proton PDFs [1]. However including large hadron collider datasets in
PDF fits can provide a significant challenge due to the large computational footprint of
performing accurate theoretical predictions over the many iterations required in a fitting
procedure. In order to make the fullest use of current and future LHC results, efficient
strategies for the computation of these observables must therefore be employed.

The typical Monte Carlo software packages used to perform predictions for hadron
collider observables cannot be easily deployed in a PDF fit due the processing time required
to obtain accurate results (usually of the order of a few hours or more per data point). To
overcome such limitations, the typical strategy adopted for fast cross section prediction
relies on the precomputation of the partonic hard cross sections in such a way that the
standard numerical convolution with any set of PDFs can be reliably approximated by
means of interpolation techniques.

Such interpolation strategies are implemented in the APPLgrid [2] and FastNLO [3]
projects. For the computation of the hard cross sections, these packages rely on external
codes to which they are interfaced by means of a suite of functions allowing for the filling of
PDF- and αs-independent look-up tables of cross section weights. Monte Carlo programs
such as MCFM [4] and NLOJet++ [5] have been interfaced directly to APPLgrid/FastNLO
and more recently dedicated interfaces to automated general-purpose event generators
have been developed. The aMCfast [6] and MCgrid [7] codes can generate interpola-
tion grids in APPLgrid/FastNLO format by extracting the relevant information from the
MadGraph5 aMC@NLO [8] and SHERPA [9] event generators respectively.

While these tools have proven to be invaluable in the extraction of parton densities,
the volume of experimental data made available by LHC collaborations for use in PDF
fits is already stretching the capabilities of the typical fitting technology. A standard
global PDF fit may now include thousands of hadronic data points for which predic-
tions have to be computed thousands of times during the minimisation process. As a
consequence, performing these predictions using the standard interpolating tools, i.e.
APPLgrid and FastNLO, starts to become prohibitively time-consuming. For this reason a
high-performance tool tailored specifically to the requirements of PDF analysis becomes
increasingly important.

The FastKernel method was developed to address this problem in the context of
the NNPDF global analyses [10]. This method differs from the standard procedure à la
APPLgrid or FastNLO in that it maximises the amount of information that is precom-
puted prior to fitting so as to minimise the amount of operations required during the fit.
More specifically, the FastKernel method relies on the combination of precomputed hard
cross sections with DGLAP evolution kernels into a single look-up table, here called a
FastKernel (FK) table. In this way the prediction for a given hadronic observable can
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be obtained by performing a simple matrix product between the respective FK table and
PDFs evaluated directly at the fitting scale.

In this paper we present the APFELgrid package, a public implementation of the
FastKernel method in which the hard partonic cross sections provided in an APPLgrid

look-up table are combined with the DGLAP evolution kernels provided by the APFEL

package [11].
This paper proceeds as follows. In Sect. 2 we present the technical details of the

implementation of the FastKernel method. This is followed in Sect. 3 by a performance
benchmark of the APFELgrid library and resulting FK tables. Finally, in Sect. 4 we
summarise the results discussed in this work.

2. Interpolation tools for collider observables

Hadron collider observables are typically computed in QCD by means of a double
convolution of parton densities with a hard scattering cross section. Consider for example
the calculation of a general cross section pp→ X with a set of PDFs {f}:

σpp→X =
∑
s

∑
p

∫
dx1 dx2 σ̂

(p)(s) αp+pLO
s (Q2)F (s)(x1, x2, Q

2) , (1)

where Q2 is the typical hard scale of the process, the index s sums over the active partonic
subprocesses in the calculation, p sums over the perturbative orders used in the expansion,
pLO is the leading-order power of αs for the process and σ̂(p)(s) is the NpLO contribution
to the cross section for the partonic subprocess scattering (s) → X. F (s) represents the
subprocess parton density:

F (s)(x1, x2, Q
2) =

∑
i,j

C
(s)
ij fi(x1, Q

2)fj(x2, Q
2) , (2)

where the C
(s)
ij matrix enumerates the combinations of PDFs contributing to the s-th

subprocess. The central observation of tools such as APPLgrid and FastNLO is that the
PDF and αS dependence may be factorised out of the convolution via expansion over a
set of interpolating functions, spanning Q2 and the two values of parton-x. For example
one may represent the subprocess PDFs and αS in terms of Lagrange basis polynomials
Iτ (Q2), Iα(x1) and Iβ(x2) as:

αp+pLO
s (Q2)F (s)(x1, x2, Q

2) =∑
α,β,τ

αp+pLO
s (Q2

τ )F
(s)
αβ,τ Iτ (Q

2) Iα(x1) Iβ(x2),
(3)

where we use the shorthand F
(s)
αβ,τ = F (s)(xα, xβ, Q

2
τ ). Using these expressions in the

double convolution of Eq. (1) one can finally obtain an expression for the desired cross
section which depends upon the subprocess PDFs only through a simple product:
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σpp→X =
∑
p

∑
s

∑
α,β,τ

αp+pLO
s (Q2

τ )W
(p)(s)
αβ,τ F

(s)
αβ,τ , (4)

where

W
(p)(s)
αβ,τ = Iτ (Q2)

∫
dx1 dx2 σ̂

(p)(s) Iα(x1) Iβ(x2) , (5)

consists of the convolution of the hard cross section with the interpolating polynomials.
This information may be stored in a precomputed look-up table. The final expression for
the cross section in Eq. (4) is therefore a considerably simpler task to perform inside a fit
than the direct evaluation of the double convolution.

2.1. The FastKernel method

A number of tools (e.g. APFEL, HOPPET [12] and QCDNUM [13]) are available which
perform PDF evolution via an analogous interpolation procedure. In such a way PDFs
at a general scale Qτ may be expressed as a product of PDFs at some initial fitting scale
Q0 and an evolution operator obtained by the solution of the DGLAP equation.

fi(xα, Q
2
τ ) =

∑
k

∑
β

Aταβ,ik fk(xβ, Q
2
0) , (6)

where latin indices run over PDF flavour, greek indices run over points in an initial-
scale interpolating x-grid and the evolution operator A may be accessed directly in the
APFEL package. Given this operator, we may replace the (general-scale) PDFs used in
the subprocess parton density Eq. (2) with their equivalent expressions evaluated at the
fitting scale as

F
(s)
αβ,τ =

∑
i,j

∑
k,l

∑
δ,γ

C
(s)
ij

[
Aταδik fk(xδ, Q

2
0)A

τ
βγjl fl(xγ, Q

2
0)
]

=
∑
k,l

∑
δ,γ

C̃
(s),τ
kl,αβγδfk(xδ, Q

2
0)fl(xγ, Q

2
0) ,

(7)

with the object

C̃
(s),τ
kl,αβγδ =

∑
i,j

C
(s)
ij A

τ
αδikA

τ
βγjl , (8)

combining the operations of subprocess density construction and PDF evolution. Going
further and using the expression for subprocess parton densities in Eq. (7) in the full cross
section calculation we obtain

σpp→X =
∑
k,l

∑
δ,γ

∑
p

∑
s

∑
α,β

∑
τ

αp+pLO
s (Q2

τ )W
(p)(s)
αβ,τ C̃

(s),τ
kl,αβγδfk(xδ, Q

2
0)fl(xγ, Q

2
0) . (9)
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Performing some further contractions it is possible to obtain an extremely compact expres-
sion for the calculation of the cross section in question, in terms of only the initial-scale
PDFs and summing only over the initial scale interpolating x-grid and the incoming par-
ton flavours:

σpp→X =
∑
k,l

∑
δ,γ

W̃kl,δγ fk(xδ, Q
2
0)fl(xγ, Q

2
0), (10)

where the object:

W̃kl,δγ =
∑
p

∑
s

∑
α,β

∑
τ

αp+pLO
s (Q2

τ )W
(p)(s)
αβ,τ C̃

(s),τ
kl,αβγδ (11)

is referred to here as an FK table, and combines the information stored in APPLgrid-style
interpolated weight grids with analogously interpolated DGLAP evolution operators. This
combination enables for a maximally efficient expression for the calculation of observables
at hadron colliders under PDF variation, without invoking any additional approximation.

2.2. Features and limitations of FK tables

The FK product of Eq. (10) differs with respect to the product in Eq. (4) in several
notable ways. Firstly the typical APPLgrid or FastNLO products use as input PDFs at a
general scale, requiring that PDF evolution e.g. Eq. (6) be performed for every variation
of the PDFs during the fit. In the FK product this evolution is pre-cached at the stage of FK
table generation, requiring only initial-scale PDFs at the time of fitting. This pre-caching
of the evolution also removes the need to sum over hard scale and perturbative order
during the fit, further reducing the number of operations required. As the FK product
acts directly at the fitting scale, it benefits from the typically reduced number of active
partonic modes, with the sum over flavours in Eq. (10) being limited to those directly
parametrised in the fit. Having reduced the calculation to such a simple form, it is also
straightforward to apply standard computational tools such as multi-threading through
e.g OpenMP or Single Instruction Multiple Data (SIMD) operations such as SSE or AVX
to further reduce computational expense.

While these features provide significant performance enhancements, the FK table for-
mat is not suitable as a complete replacement for tools such as APPLgrid. The pre-
computation of the PDF evolution necessarily means that all theory parameters such as
perturbative order, strong coupling and factorization/renormalization scales are inextri-
cably embedded in each FK table. In order to perform PDF fits including variations of
these parameters, multiple FK tables must be computed, each with different theory set-
tings. While performing such a re-calculation directly from Monte Carlo codes would
be exceptionally time consuming, the data representation in APPLgrid files allows for an
efficient (re)-combination with varying theory parameters.

6



3. Performance benchmarks

We shall now examine the performance differences between the two expressions for fast
interpolated cross section prediction Eq. (4) (APPLgrid) and Eq. (10) (FK). In order to
provide a comprehensive benchmark, we consider here a wide range of processes including
LHC and Tevatron electroweak vector boson production measurements [14–22], tt̄ total
cross sections [23–26], double-differential Drell-Yan cross sections [27, 28] and inclusive
jet data [29–32]. Predictions are performed over a wide range of kinematics, for a total
of 52 source APPLgrid files corresponding to the majority of available LHC and Tevatron
datasets applicable to PDF determination. While the source APPLgrid files have varying
grid densities in x and Q2, for the purposes of comparison the corresponding FK tables
are produced consistently with 30 points in x, and at an initial scale below the charm
threshold, therefore with seven active partonic species. These settings are chosen so as to
provide a realistic comparison, in a production environment the density and distribution
of the x-grid may be adjusted to match interpolation accuracy requirements. For these
comparisons the FK table is stored as double-precision in memory for table generation and
in single-precision for the purposes of computing the FK product.

In Fig. 1 we compare the average time taken per datapoint for the FK and APPLgrid

calculations, for all of the 52 tables. We show timings for the FK calculation in four
different configurations: AVX-OpenMP 2x (2 CPU cores), AVX, SSE3 and the standard
double precision product. Due to the inherent structural differences between the FK

and APPLgrid procedures, results from the FK calculation are systematically faster than
those from APPLgrid. In particular, when comparing FK AVX-OpenMP 2x to APPLgrid

timings we obtain minimally a factor of ten improvement in speed for electroweak vector
boson production and a maximum factor of 2000 improvement in predictions for inclusive
jet data. Across all processes and kinematic regions we observe significant performance
improvements from using the FK calculation even without the use of SIMD or multi-
threading.

While sheer computational speed is typically the primary consideration when compu-
ting observables in a PDF fit, other factors such as table size in the filesystem and memory,
along with the computational cost of pre-computing FK tables must be considered. Indeed,
the computation of the FK table in Eq. (11) requires a great deal of operations which
can be time consuming, particularly in the case of source APPLgrid files with very high
interpolation precision.

In Fig. 2 we examine the FK table generation time with APFELgrid, FK table file size and
memory usage of the FK tables arising from the same source APPLgrid files as discussed
in Fig. 1. When examining the table generation time per point, we observe timings from
a few milliseconds to 3.5 minutes per point, with differences arising from the varying grid
densities used in the input APPLgrid files. In terms of the grid size on disk, FK tables are
typically larger than their corresponding APPLgrid files, primarily as the FK file format
is encoded in plain text for compatibility whereas APPLgrid files are expressed in binary
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as ROOT files. However when measuring the in-memory resident set size used by the two
procedures, the amount of system memory used by FK tables is systematically less than
APPLgrid files for all processes considered here by at least 75%. Note that this effect is
in part due to the differing precisions of the default representations.

4. Conclusion

In this work we have demonstrated that by employing the so-called FastKernel

method, it is possible to convert an APPLgrid weight table into a derived format, referred
to as an FK table, including the effects of PDF and αs evolution. This procedure has
been implemented in the APFELgrid package, supplied as a set of C++ routines designed
to supplement the PDF evolution library APFEL with FK table generation capabilities.
The APFELgrid package allows one to obtain a computationally efficient expression for
the calculation of hadronic cross sections, in terms of only the initial-scale PDFs and
summing only over the initial scale interpolating x-grid and the incoming parton flavours.
The simple structure of the resulting product makes FK tables particularly suitable for
the efficient use of computational tools such as SIMD and OpenMP.

We have shown that in several practical examples the numerical evaluation of an FK

product is considerably faster than the corresponding APPLgrid product, even in the case
where neither SIMD or multi-threading are applied. FK tables are supplied in a simple
plain-text format in order to simplify the construction of user interfaces, and therefore
are typically larger than corresponding APPLgrids. However we have shown that the in-
memory resident set sizes occupied by FK tables are typically smaller than those required
by APPLgrids, in our examples by at least 75%.

The substantial speed improvement of FK tables with respect to APPLgrid in associa-
tion with the reduction in memory footprint makes the APFELgrid code a valuable tool
for modern PDF fits including large collider datasets.

The APFELgrid package and associated documentation are publicly available from the
webpage:

https://github.com/nhartland/APFELgrid
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Figure 1: Performance comparisons between FK with AVX-OpenMP 2x, AVX, SSE3, double
precision convolution and APPLgrid convolution time per point and process.
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