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A B S T R A C T

Electroencephalogram (EEG) signals are pivotal in clinical medicine, brain research, and neurological
disorder studies. However, their susceptibility to contamination from physiological and environmental
noise challenges the precision of brain activity analysis. Advances in deep learning have yielded supe-
rior EEG signal denoising techniques that eclipse traditional approaches. In this research, we deploy
the Retentive Network architecture—initially crafted for large language models (LLMs)—for EEG
denoising, exploiting its robust feature extraction and comprehensive modeling prowess. Furthermore,
its inherent temporal structure alignment makes the Retentive Network particularly well-suited for
the time-series nature of EEG signals, offering an additional rationale for its adoption. To conform
the Retentive Network to the unidimensional characteristic of EEG signals, we introduce a signal
embedding tactic that reshapes these signals into a two-dimensional embedding space conducive to
network processing. This avant-garde method not only carves a novel trajectory in EEG denoising but
also enhances our comprehension of brain functionality and the accuracy in diagnosing neurological
ailments. Moreover, in response to the labor-intensive creation of deep learning datasets, we furnish a
standardized, preprocessed dataset poised to streamline deep learning advancements in this domain.

1. Introduction
Electroencephalography (EEG) measures neural activity

as potential fluctuations on the scalp, primarily emanating
from the brain’s gray matter [42] [26]. This neural activity
is detected via an array of electrodes strategically placed on
the scalp [35] [34]. Analyzing EEG data yields a broad range
of physiological, psychological, and pathological insights
[29]. Yet, the high temporal resolution characteristic of EEG
signals renders them vulnerable to diverse and complex
noise sources such as cardiac, ocular, and muscular artifacts,
as well as environmental interference [14]. The prevalent
intrusion of these noises during the acquisition phase sig-
nificantly hampers the isolation of unadulterated EEG sig-
nals, thus severely restricting advancements in EEG-related
research and practical applications [24] [33]. Consequently,
there is an imperative need for a robust EEG denoising tech-
nique that effectively reduces noise without compromising
critical signal information, which is vital for advancing EEG
research.

A multitude of traditional denoising techniques for EEG
signal enhancement has been advanced, encompassing both
regression-based and adaptive filter-based methodologies.
Regression-based strategies involve estimating the noise
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component with a pre-established noise model and subse-
quently subtracting this estimate to purify the EEG data,
thereby producing a cleaner signal [21] [8]. Conversely,
adaptive filtering operates on a fundamentally different
principle, adjusting filter coefficients in real-time based on
incoming EEG data to attenuate noise [10] [16]. However,
these conventional techniques have their limitations. The
tuning of hyperparameters in these methods critically affects
the denoising performance, requiring expert judgment to
optimize settings. Moreover, there is a risk of losing vital
EEG information during noise reduction, which could detri-
mentally affect further analytical work.

The EEG signal is a complex waveform characterized
by nonlinear features crucial for its analysis. Therefore,
denoising methods must preserve these nonlinear features
while eliminating noise [29]. The advancement in computer
processing power and the expansion of EEG datasets [42]
have spurred recent research endeavors to leverage deep
learning for EEG signal denoising. Commonly employed ar-
chitectures for EEG denoising networks include feedforward
neural networks (FNN) [4] [40], convolutional neural net-
works (CNN) [1] [29], and recurrent neural networks (RNN)
[41], along with their variations, such as long and short-term
memory networks (LSTM) [22] [42]. As EEG is collected
in the time dimension, establishing a temporal relationship
between sampling points, basic network architectures have
demonstrated significant improvement in denoising perfor-
mance compared to traditional methods. However, they face
challenges either in retaining temporal information or lack-
ing global modeling capability while preserving temporal
information. To address this, some studies have explored
integrating the Transformer model [36] into EEG denoising
tasks, as it [25] effectively preserves temporal information
and enables efficient data parallel computation, yielding
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notable results. In EEG signal processing, it is critical to
accurately capture temporal order information, as patterns
and features in these signals are often synchronized with spe-
cific neurophysiological events. Although the Transformer
provides a powerful algorithm to process sequential data
through an attentional mechanism, it does not explicitly en-
code the temporal order of the signals, but rather introduces
this information indirectly through positional encoding. This
may lead to insufficient sensitivity to the temporal dynamics
of EEG signals in some cases.

In recent years, with the rapid advancement of large
language model (LLM), a novel network called Retentive
Network [30] has emerged. Retentive Network gains its
intuitive understanding of the temporal order in a sequence
by introducing the decay mask Retention mechanism. With
this mechanism, the input sequences are made naturally
chronologically sequential, thus providing an effective way
to model the inherent temporal dynamics of EEG signals.
This approach is more suitable for processing EEG data
as it is able to capture and utilize changes in bioelectrical
activity over time, and thus may perform better than the stan-
dard Transformer model in practical applications. Retentive
Network exhibits a favorable disposition towards temporal
information, boasts robust global modeling capabilities for
nonlinear features, and demonstrates commendable perfor-
mance. However, when applied directly to denoise EEG
signals, a challenge arises. This stems from the fact that
EEG signals possess temporal characteristics and encompass
global nonlinear features. Unfortunately, using Retentive
Network directly for EEG denoising is unfeasible due to
a misalignment in the dimensional requirements. Retentive
Network, designed for two-dimensional input, conflicts with
the one-dimensional nature of EEG signals. Unlike the ap-
proach in [25], reshaping a 1D signal into a 2D format
results in a fixed sum of input dimensions after reshaping,
compromising subsequent network feature extraction. To
address this issue, we propose a signal embedding method
capable of transforming the signal into a sequence of arbi-
trary length and embedding dimensions, enhancing network
flexibility. Additionally, while EEGdenoiseNet [42] intro-
duces a standard deep learning EEG dataset, expediting the
development of EEG denoising methods, the dataset remains
unprocessed, lacking sample pairs. This necessitates mixing
various noise types (muscle artifacts and eye artifacts) dur-
ing preprocessing. Divergent data preprocessing approaches
may yield disparate network results, impeding the compari-
son of methodologies. To mitigate this, we curated an open-
source dataset using the huggingface datasets library [17]
from preprocessed data. 1 2

The main contributions of this paper can be summarized
as follows:
(1) Proposal of Signal Embedding. In order to efficiently

extract features from EEG signals, we introduce a
method called signal embedding, which adds an embed-
ding dimension to EEG signals. This method achieves

1https://github.com/woldier/EEGDiR
2https://huggingface.co/datasets/woldier/eeg_denoise_dataset

the enhancement of feature information of EEG signals
through the embedding strategy. The introduction of
this method not only enhances the adaptability of the
network, but also positively impacts the overall improve-
ment of the system performance.

(2) Introducing Retentive Network for EEG Signal De-
noising. For the first time, we introduce the Retentive
Network architecture into the field of EEG signal de-
noising to address the temporal nature of EEG signals,
providing a new way to explore the intersection of EEG
signals and natural language processing and expanding
the scope of related research. It provides a new way
to explore the intersection of EEG signal and natural
language processing, and also expands the scope of
related research.The introduction of Retentive Network
allows us to take full advantage of its time-series infor-
mation friendly and global modeling, thus realizing a
new denoising method for EEG signal.

(3) Provide open source datasets. When examining the
standard deep learning EEG dataset provided by EEG-
DenoiseNet, we observe that the raw nature of the
dataset and the absence of pairs of training samples
hinder the comparison of different methods. To address
this limitation, we create an open-source dataset using
preprocessed data. This not only eliminates challenges
related to noise and ensures data consistency but also
facilitates the exploration of deep learning-based de-
noising methods for EEG signals.

2. Related work
2.1. Traditional Methods

Regression methods typically depend on exogenous ref-
erence channels such as EOG, EMG, or ECG [40] to model
and eliminate associated noise [16]. The efficacy of these
methods is contingent upon the quality of the reference
channels. Poor quality or absence of these channels sig-
nificantly undermines the performance of the regression
model. Furthermore, many regression methods, especially
linear regression, presuppose a linear relationship between
the data. However, the association between EEG signals and
noise is often nonlinear, particularly when noise sources
are complex, such as muscle activity or eye movement.
This complexity necessitates more sophisticated nonlinear
models for effective noise removal.

The Wavelet Transform method [38] is used to convert
time-domain signals into time and frequency domains. This
method is favored over the Fourier Transform due to its
better tunable time-frequency tradeoff and its capability to
analyze non-stationary signals. It operates by mapping the
signal into the wavelet domain, where distinct properties of
wavelet coefficients generated by signal and noise at various
scales are utilized [5]. The primary goal is to eliminate noise-
generated wavelet coefficients while preserving those from
the actual signals. However, this method may lack sensitivity
to the specific time-frequency characteristics of the noise in
complex EEG signals.
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Figure 1: The diagram illustrates the training procedure of the deep learning method. It includes the Data Processing stage, where
raw EEG data and various artifacts undergo preprocessing to create a suitable dataset for deep learning. The dataset comprises
sample pairs, namely Noisy EEG signal and Noise-free EEG signal, representing EEG signals with and without noise, respectively.
Throughout the training process, the Noisy EEG signal serves as the network input. The network, in turn, produces the Denoised
EEG signal, which is utilized as the input for the subsequent training steps. The Loss Function calculates the disparity between the
Denoised EEG signal and the Noise-free EEG signal, facilitating the optimization of the network. The black dashed box delineates
the inference phase of the network, omitting the optimization component. This inference stage can be likened to the end-to-end
output where the Noisy EEG signal is input into the network, yielding the Denoised EEG signal as the output.

To overcome these challenges, deep learning methods
have become a promising alternative, thanks to their robust
feature learning and representation capabilities, achieving
significant successes in EEG denoising tasks.

2.2. Deep Learning Methods
In recent years, deep learning has significantly advanced

in fields such as natural language processing [36] [32] [23]
and computer vision [9] [27]. Notably, its application to
signal processing has demonstrated remarkable efficacy in
signal denoising [29] [40] [42] [25] [37] [40] [2].

To address ocular artifacts, and muscle artifacts in EEG
signals, Yang et al. [40] introduced DLN, a straightforward
and efficient fully-connected neural network that surpasses
traditional EEG denoising methods in processing efficiency,
requiring no human intervention. Sun et al. [29] proposed a
one-dimensional residual CNN (1D-ResCNN) model based
on convolutional neural network CNN, showcasing superior
denoising performance compared to DLN by adeptly em-
ploying various convolutional kernel sizes (1×3, 1×5, 1×7)
and integrating a residual layer [9]. Zhang et al. [42] pre-
sented a comprehensive EEG dataset, reducing the dataset
collection challenge, and outlined four fundamental network
models utilizing fully connected neural networks (FCNN),
convolutional neural networks (CNN), and recurrent neu-
ral networks (RNN) for the removal of ocular and muscle
artifacts. Additionally, Pu et al. [25] introduced EEGDnet,
leveraging the Transformer model, which outperforms prior
networks in both nonlocal and local self-similarity within
the model architecture. On Zhang et al.’s benchmark EEG
dataset, EEGDnet surpasses previous networks in eliminat-
ing ocular artifacts, and muscle artifacts. This body of work
provides valuable references and innovations to propel the
advancement of EEG deep learning.

The temporal information in EEG signals is inherently
long-term and characterized by numerous temporal cor-
relations. Traditional methods often encounter difficulties
in handling extensive time-series data. However, the inte-
gration of deep learning methods proves advantageous in
accommodating the temporal intricacies of EEG signals. As
EEG signals emanate from the entire brain, comprehensive
global modeling becomes imperative for enhanced com-
prehension and processing. Despite the simplicity and effi-
ciency of the DLN model, its fully-connected structure may
exhibit limitations when dealing with prolonged time-series
information and global modeling. While the 1D-ResCNN
model surpasses DLN in denoising performance, its depen-
dence on a single convolutional kernel size might present
constraints. The model could face challenges in addressing
multi-scale features and intricate temporal information. In
the case of EEGDnet, its incorporation of the Transformer
model demonstrates superior architectural performance con-
cerning nonlocal and local self-similarity. However, given
the diverse frequencies present in EEG signals, effective
feature capture across different scales becomes crucial.

2.3. Dataset Preparation
In order to prepare data for deep learning, the raw

EEG data and various artifacts undergo preprocessing, as
illustrated in the left half of Fig. 1. This includes cropping,
signal stacking, normalization, and other operations to create
a dataset suitable for deep learning. The creation of this
dataset is foundational to our study, as it provides immediate
access to preprocessed EEG data for training deep learning
models. However, data preprocessing is laborious and time-
consuming, underscoring the importance of providing an
out-of-the-box (i.e., no data preprocessing required) dataset
readily available to researchers.

During the training phase of the deep learning method,
employ the framework depicted in the right half of Fig. 1,
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where noisy EEG signals and noiseless EEG signals form
pairs for training. The objective of training is to model the
noisy EEG signals to produce outputs closely resembling
the noise-free state by learning the network’s weighting
parameters. Initially, the noisy EEG signal is inputted into
the network to generate the corresponding denoised EEG
signal. The discrepancy between this denoised EEG signal
and the actual noise-free EEG signal is quantified as a loss,
calculated by the loss function.

The black dashed box in the figure delineates the net-
work’s inference process. During inference, the network
directly takes the noisy EEG signal as input and outputs
the denoised EEG signal, bypassing the optimization of the
weighting parameters. This end-to-end inference capability
enables the network to denoise new and unknown EEG
signals in practical applications. The primary objective of
the entire training process is noise suppression by optimizing
the network parameters to extract true signal features amidst
noise interference. This design facilitates the network to
learn more effective representations, enhancing its denoising
performance and providing robust support for real EEG
signal processing.

Given the shared structure between the training and
inference processes, and provide an out-of-the-box dataset
readily available to researchers. Researchers can concentrate
their efforts on investigating the network’s architecture. This
facilitates a more profound exploration of the application of
deep learning in EEG signal processing.

3. Method
3.1. Overall structure of the EEGDiR network

In this paper, we present EEGDiR, a novel network
model tailored for EEG signal denoising. Our model in-
corporates Retentive Network into the realm of EEG signal
denoising, introducing innovative perspectives to signal pro-
cessing tasks. The overall network structure (see Fig. 2(a))
involves processing the noisy signal y through signal embed-
ding, elaborated later, to augment the embedding dimension.
Subsequently, the noise signal y undergoes processing via
stacked DiR Blocks at multiple levels, with the final output
linearly projected to match the input dimension. EEGDiR
operates as an end-to-end model, taking a noisy input signal
y and generating the corresponding noiseless signal 𝑥̂. Fig.
2(b) depicts the structure of the DiR Block, which begins
with pre-Norm, followed by multi-scale Retention and a
Residual Connection [9]. By using skip connections, resid-
ual learning enables the network to learn residual mappings,
which can help mitigate the degradation problem associated
with increasing network depth. These residual connections
provide shortcuts for gradient flow, making it easier for the
network to optimize the deeper layers and improve overall
performance. The output of the residual join undergoes pre-
Norm once more before serving as the input for the Fully
Functional Network (FFN). The term "pre-Norm" refers to
Layer Normalization, employed for normalization before
each submodule. Layer Normalization (LN) [3] is another

normalization technique that serves as an alternative to tra-
ditional Batch Normalization (BN) [12]. While BN can face
challenges in performance when dealing with small batch
sizes, Layer Normalization aims to address these issues by
normalizing at the layer level. It is crucial to note that an FFN
typically includes a fully-connected module with a hidden
layer that doubles the hidden dimension. The FFNs output
layer reduces the hidden dimension to align with the input.
The dimensions of input and output vectors remain constant
across DiR and its submodules. Figure 2(c) illustrates the
signal embedding structure, the input sequence is segmented
into new sequences of length 𝑙𝑠∕∕𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 based on the
patch size. The initial hidden dimension of these sequences
is equal to the patch size after reshaping. Through linear
projection, the hidden dimension of the projected sequences
matches the final hidden dimension. Given that EEG signals
may encompass multiple frequencies and require effective
feature capture at different scales, signal embedding is intro-
duced to intelligently handle temporal information at vary-
ing scales. It enhances context preservation and temporal
relationship retention by merging consecutive samples into
a patch.

3.2. Muti-Scale Retention
In this study, we explore the integration of the Retentive

Network model, originally designed for Natural Language
Processing, into the realm of EEG signal denoising. It is
important to emphasize that while the Retentive Network
has demonstrated remarkable success in natural language
processing, our investigation centers on its applicability to
EEG denoising. The Retentive Network is comprised of
L identical modules arranged in a stacked fashion, featur-
ing residual connectivity and pre-LayerNorm akin to the
Transformer architecture. Each Retnet module comprises
two sub-modules: the Multi-scale Retention (MSR) module
and the Feedforward Network (FFN) module. For a given
input sequence 𝑠 = 𝑠1𝑠2𝑠3… 𝑠𝑙𝑠 (where 𝑙𝑠 denotes the length
of the sequence), the input vector is initially transformed to
𝑋0 =

[

𝑥1, 𝑥2,… , 𝑥𝑙𝑥
]

∈ ℝ𝑙𝑥×𝑑𝑚𝑜𝑑𝑒𝑙 , where 𝑑𝑚𝑜𝑑𝑒𝑙 is the
hidden dimension. Subsequently, the Retnet Block can be
computed for each layer, denoted as 𝑋𝑙 = 𝑅𝑒𝑡𝑛𝑒𝑡(𝑋𝑙−1), 𝑙 ∈
[1, 𝐿]. The Simple Retention layer is defined as follows [30]:

𝑄 = (𝑋𝑊𝑄)⊙ Θ, 𝐾 = (𝑋𝑊𝐾 )⊙ Θ̄, 𝑉 = 𝑋𝑊𝑉 (1)

Θ𝑛 = 𝑒𝑖𝑛𝜃 , 𝐷𝑚𝑛 =

{

𝛾𝑛−𝑚, 𝑛 ≥ 𝑚
0, 𝑛 < 𝑚

(2)

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) = (𝑄𝐾𝑇 ⊙𝐷)𝑉 (3)

where Θ̄ is the complex conjugate ofΘ [31] [28],𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈
ℝ𝑙𝑥×𝑙𝑥 , 𝐷 ∈ ℝ𝑙𝑥×𝑙𝑥 combines causal masking and exponen-
tial decay of relative distances into one matrix.
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Figure 2: (a) illustrates the architecture of the EEGDiR network. This network generates hidden dimensions through Signal
Embedding and obtains the output via linear projection and transformation following multi-level DiR Block processing. EEGDiR
operates as an end-to-end model, taking a noisy signal as input and producing a noise-free signal, denoted as 𝑥̂. The DiR
Block, depicted in (b), comprises Pre-Norm, Multi-scale Retention, and Residual Connection, with Pre-Norm utilizing Layer
Normalization. The Signal Embedding structure, outlined in (c), involves segmenting the input sequence into new sequences
based on the patch size. The hidden dimension after reshaping aligns with the patch size, and after linear projection, it matches
the final hidden dimension.

To achieve a multichannel-like effect, input sequences
can be projected to lower dimensions 𝑑 times, akin to the
multiple-header mechanism in Transformer. This method
is employed in each Retention layer with multiple headers
ℎ = 𝑑𝑚𝑜𝑑𝑒𝑙

𝑑 , where 𝑑 represents the length of the sequences
in each header. Each header utilizes distinct 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈
ℝ𝑑×𝑑 , constituting the Muti-Scale Retention (MSR) block.
Different 𝛾 hyperparameters are assigned to various heads in
MSR, maintaining simplicity with the same 𝛾 across differ-
ent layers. Additionally, a swish [13] gate is incorporated to
enhance nonlinear features in each layer. Given an input 𝑋,
the mathematical representation of the Muti-Scale Retention
is provided as follows:

𝛾 = 1 − 2−5−𝑎𝑟𝑟𝑎𝑛𝑔𝑒(0,ℎ) ∈ 𝑅ℎ (4)

ℎ𝑒𝑎𝑑𝑖 = 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝛾𝑖) (5)

𝑌 = 𝐺𝑟𝑜𝑢𝑝𝑁𝑜𝑟𝑚𝑛(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)) (6)

𝑀𝑆𝑅(𝑋) = (𝑠𝑤𝑖𝑠ℎ(𝑋𝑊𝐺)⊙ 𝑌 )𝑊𝑜 (7)

Here, 𝑊𝐺,𝑊𝑂 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 are learnable parameters,
and GroupNorm normalizes the output of each head. Group
Normalization (GN) [39] is an alternative to traditional
Batch Normalization (BN) [12] that addresses the issue of
poor performance with small batch sizes. By normalizing
within groups, GN provides a more robust estimation of
statistics and helps mitigate the negative impact of small
batch sizes or imbalanced data distribution.

3.3. Signal Embedding
In our extended investigation, it was observed that when

the input sequence 𝑠 = 𝑠1𝑠2𝑠3… 𝑠𝑙𝑠 ∈ ℝ𝑙𝑠×1 is relatively
short, direct embedding is feasible. However, in general
scenarios, where the time-series information of the signal
is usually lengthy, direct embedding incurs high compu-
tational complexity, hindering effective network training.
To address this, we propose the introduction of a concept
termed "patch", involving the amalgamation of a series of
consecutive samples into a single input feature. This concept
is inspired by speech signal processing, where a solitary
sample may inadequately represent the current word, while
a segment of samples offers more semantic expressiveness.
It is noteworthy that EEG signals frequently encompass
extensive temporal information, and signal embedding in-
telligently captures this temporal data. By grouping consec-
utive samples into patches, the network better retains context
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and temporal relationships in the signal, enhancing denois-
ing effectiveness. This approach aligns with speech signal
processing, where context is pivotal for accurate speech
comprehension. Consequently, this paper introduces signal
embedding, a more efficient process tailored to the charac-
teristics of EEG signals.

The complete signal embedding process is illustrated in
Figure 2(c). Assuming a given patch size, the original se-
quence is divided accordingly, reducing the sequence length
to 𝑙𝑠∕∕𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒. Subsequently, each patch undergoes re-
shaping and linear projection to attain the desired hidden
dimension. This process not only mitigates computational
complexity but also preserves timing information more ef-
fectively. It’s crucial to note that the signal embedding used
here does not employ positional encoding. This is because
the Retention mechanism already incorporates positional
encoding considerations, obviating the need for additional
positional encoding. Mathematically, it can be expressed as
follows:

𝑠′ = 𝑃𝑎𝑡ℎ𝑐ℎ𝑓𝑖𝑦(𝑠) = 𝑠′1𝑠
′
2𝑠

′
3… 𝑠′𝑙𝑠

𝑝

∈ ℝ
𝑙𝑠
𝑝 ×𝑝 (8)

𝑋0 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠′;𝜔) = [𝑥1, 𝑥2,… , 𝑥
|𝑥|] ∈ ℝ

𝑙𝑠
𝑝 ×𝑑𝑚𝑜𝑑𝑒𝑙

(9)

𝑋0 = 𝑆𝑖𝑔𝑛𝑎𝑙𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠;𝜔) (10)

Equation (8) delineates the patching process, wherein the
original sequence 𝑠 is segmented into smaller sequences
through patching, with each patch serving as an input fea-
ture. This operation not only preserves the feature informa-
tion of the input (EEG signal) but also significantly truncates
the length of the input sequence, thereby diminishing the
computational complexity of subsequent operations. Here,
𝑠′ denotes the sequence post the patch operation. In Equation
(9), we illustrate the feature embedding, signifying that after
the patch sequence 𝑠′, linear projection of the feature size
results in the generation of the larger feature size 𝑋0. This
dispersion of signal features is conducive to the subsequent
network’s extraction of diverse features. This process allows
the signal features to be spread out, facilitating the network
in extracting distinct feature types. Here, 𝜔 denotes the
learnable parameter, and 𝑋0 remains consistent with the
preceding section. If we conceptualize patching and em-
bedding as an end-to-end operation, it can be expressed as
(10). In other words, the input 𝑠′ can be derived from the
signal embedding module to yield 𝑋0, with 𝜔 serving as the
learnable parameter, akin to (9).

4. Experiments and results
4.1. Preliminary

Signals disturbed by noise are acquired through the
linear combination of the electrooculogram (EOG) or elec-
tromyogram (EMG) with the pristine electroencephalogram

(EEG). This procedure can be mathematically represented as
Equation (11) [42]. The mixed EEG noise signal is denoted
as 𝑦 ∈ ℝ𝑙𝑦 , where 𝑦 represents the sequence length. The
noise-free EEG signal, denoted as 𝑥 ∈ ℝ𝑙𝑥 , serves as the
ground truth, and 𝑛 ∈ ℝ𝑙𝑛 represents ocular artifacts or
muscle artifacts. It is important to note that the lengths of
each sequence 𝑙𝑥, 𝑙𝑦, 𝑙𝑛 are equal. To control the noise level
during mixing, we introduce the hyperparameter 𝜆, regu-
lating the signal-to-noise ratio (SNR) of the noisy signal.
Adjustment of different 𝜆 values enables effective control of
SNR magnitude to adapt to various noise environments. The
SNR is calculated using Equation (12), while 𝜆 is determined
by Equation (13), where 𝑅𝑀𝑆(⋅) denotes the root mean
square of the sample, 𝑅𝑀𝑆(𝑥) is the root mean square of
the noiseless EEG signal 𝑥, and RMS 𝑅𝑀𝑆(𝜆 ⋅𝑛) is the root
mean square of the mixed noise 𝜆⋅𝑛. These formulas provide
flexible adjustment of the signal-to-noise balance to meet
diverse signal quality requirements in specific application
scenarios.

𝑦 = 𝑥 + 𝜆 ⋅ 𝑛 (11)

𝑆𝑁𝑅 = 10𝑙𝑜𝑔(
𝑅𝑀𝑆(𝑥)

𝑅𝑀𝑆(𝜆 ⋅ 𝑛)
) (12)

𝜆 =
𝑅𝑀𝑆(𝑥)

𝑅𝑀𝑆(𝑛) ⋅ (𝑆𝑁𝑅
10 )10

(13)

In the context of deep learning applied to EEG signal
denoising, the denoising process can be conceptualized as
a nonlinear mapping function. This function, denoted as
𝑥̂ = 𝐹 (𝑦; 𝜃), maps the EEG signal 𝑦 with noise to the
corresponding noise-free signal 𝑥̂. Here, 𝐹 (⋅) represents the
nonlinear mapping function, our neural network model, and
𝜃 is the model’s learnable parameter. To facilitate better
parameter learning, we employ the mean square error (MSE)
as the loss function. The MSE is defined by calculating the
squared difference between the predicted value 𝑥̂𝑖 and the
true value 𝑥𝑖 for each sample point 𝑖 of the signal, summing
these differences, and dividing by the number of samples 𝑛.
Mathematically, this is expressed as Equation (14).

𝕃(𝑥, 𝑥̂) = 1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥̂𝑖)2 (14)

4.2. Experiments Detail
4.2.1. Datasets

To assess the denoising efficacy of the proposed EEGDiR
model, we utilized the EEGDenoiseNet dataset [5], a widely
adopted dataset in deep learning for EEG signal denoising,
for both training and testing. The dataset encompasses
various signal categories, including 4515 pristine EEG
signals, 3400 ocular artifacts, and 5598 muscle artifacts.
Each sample has a sampling time of 2 seconds at a rate of
256 samples per second. Pure EEG signals are denoted as 𝑥
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in Equation (11), while ocular artifacts or muscle artifacts
are denoted as 𝑛 in Equation (11).

For signals contaminated with ocular artifacts, 3400
samples were randomly chosen from pure EEG signals and
all 3400 ocular artifact signals. Subsequently, the training
and test sets were constructed in an 8:2 ratio, respectively.
At specified signal-to-noise ratio (SNR) levels (-7 dB to 2
dB), pure EEG signals were linearly combined with ocular
artifacts to generate ocular artifact-contaminated signals 𝑦.
Notably, the parameter 𝜆 for superimposing eye movement
artifacts in Equation (13) was directly calculated based on
the given SNR value to obtain 𝑦. This dataset is referred to
as the EOG dataset.

The signals contaminated with muscle artifacts were
derived from pure EEG signals, and all 4515 samples were
utilized along with the 5598 samples from the EOG ar-
tifact signals. To maintain consistency in the number of
samples from pure EEG signals and EMG artifact signals,
some samples from the pure EEG signal were reused. The
resulting dataset was partitioned into training and test sets
in an 8:2 ratio. Similarly, using specified SNR levels, pure
EEG signals were randomly combined with EMG artifacts to
generate EMG artifact-contaminated signals 𝑦. This dataset
is denoted as the EMG dataset.

To validate our proposed network thoroughly, we utilize
a semi-simulated EEG dataset (SS2016) [15], contaminated
with ocular artifacts, alongside clean EEG signals. This
dataset is notable for containing both clean EEG signals
and their contaminated counterparts. Collected from 54 par-
ticipants during a closed-eye experiment, the signals are
devoid of ocular artifacts. Electroencephalogram (EEG) sig-
nals were recorded from 19 electrodes placed according to
the International 10-20 system, with each experiment lasting
approximately 30 seconds and sampled at 200 SPS[20]. The
dataset, comprising pure and contaminated EEG signals,
comprises 54 matrices, each corresponding to one partici-
pant. Each matrix consists of 19 channels, each representing
the signal recorded by an electrode. The number of sampling
points for channel signals ranged from 5600 to 8400. Data
synthesis involved overlaying EOG data onto EEG signals,
resulting in recordings of about 30 seconds in duration but
with varying sample counts. For ease of processing, we
segmented the data without overlap into small segments of
512. Post-segmentation, we obtained 11495 samples, with
Figure 3 displaying segments 1-4 for participant 1.

Subsequently, we calculated the SNR values of each
sample, rounding them, and depicted the results in Figure
4. Upon observation, we noted SNR values ranging between
-10 to 20, with a relatively large number of samples falling
within the -5 to 15 range, and fewer samples at other SNR
values, posing challenges for network learning. To address
this, we followed the data processing approach of the EEG-
Denoise dataset, separating the noise (n) from the pure signal
(x) and contaminated signal (y). We then multiplied n by
different 𝜆 values to attain noise levels ranging from -7dB
to 2dB. However, we observed that when the signal-to-noise
ratio of signal pairs in the original dataset was high, such

(a) (b)

(c) (d)

Figure 3: The recorded signals from the first electrode of
Participant 1 in SS2016 are displayed in sequence as segments
1 through 4, denoted as (a), (b), (c), and (d) respectively.
Each segment comprises 512 samples, with a sampling rate of
200 SPS.

Figure 4: The SNR distribution of the SS2016 dataset after
signal segmentation is depicted in the figure. It’s important to
highlight that the SNR values are rounded up for statistical
simplicity. The horizontal axis represents various SNR levels
ranging from -10 to 20, while the vertical axis indicates the
number of segments corresponding to each SNR level.

as Figure 3b and Figure 3b, excessively large 𝜆 values were
required to achieve low signal-to-noise levels, resulting in
signal amplification beyond realistic levels. Data like this
not correspond to actual noisy signals and were deemed
unsuitable for training samples. Thus, we discarded pairs of
samples with SNR higher than 5dB from the original dataset,
resulting in a final sample count of 6716. We assigned dif-
ferent 𝜆 values to n corresponding to each signal, obtaining
noise levels from -7dB to 2dB. This dataset is denoted as the
SS2016 EOG dataset. The resulting dataset was partitioned
into training and test sets in an 8:2 ratio.

In order to facilitate the learning procedure, we normal-
ized the input contaminated EEG segment and the ground-
truth EEG segment by dividing the standard deviation of
contaminated EEG segment according to Equation (15),
where 𝜎𝑦 is the standard deviation of 𝑦 (artifact contaminated
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signal).

𝑥̂ = 𝑥
𝜎𝑦

, 𝑦̂ =
𝑦
𝜎𝑦

(15)

However, it is important to note that the EEGDenoiseNet
dataset solely provides raw data, and the data provided
by SS2016 is not segmented, necessitating researchers to
conduct their own processing. This procedure is relatively
intricate, posing inconvenience for the exploration of EEG
signal denoising through deep learning methodologies. To
address this challenge, this paper undertakes the preprocess-
ing of the dataset and subsequently shares the processed
dataset as an open-source resource, now accessible on the
Hugging Face Hub. The primary objective of this endeavor is
to facilitate researchers access to and utilization of processed
data, enabling them to concentrate more on the investigation
of EEG deep learning denoising methods without being en-
cumbered by the intricacies of data processing. By providing
this dataset as an open-source entity, our aim is to stimulate
increased research in EEG signal processing and offer a more
streamlined resource for the academic community.

4.2.2. Train details
In this investigation, we opted to implement the EEGDiR

model utilizing the PyTorch deep learning framework, renowned
for its widespread usage and adaptability. To enhance the
training efficiency of the network, we employed the AdamW
[43] optimizer, a proficient choice for managing large-scale
deep learning models. The learning rate was set to 5𝑒−4, and
the betas parameter ranged from (0.5, 0.9), with meticulous
adjustment to optimize the network training process.

Throughout the training phase, the network underwent
5000 epochs to ensure comprehensive learning of dataset
features. Furthermore, we configured the batch size to 1000,
a standard choice that balances memory utilization and train-
ing efficacy. Notably, for accelerated training, we harnessed
the computational capabilities of an NVIDIA GeForce RTX
4090 Graphics Processing Unit (GPU). Leveraging the par-
allel computing power of GPUs significantly augmented the
speed of deep learning model training, facilitating rapid
experimentation and tuning for researchers.

4.3. Results
4.3.1. Comparing method

We conducted comparative experiments to assess the
efficacy of our proposed EEGDiR model against established
state-of-the-art deep learning EEG denoising networks, en-
compassing the following models:

(1) Simple Convolutional Neural Networks (SCNN) [42]:
Network Structure: Four 1D convolutional layers with
1 × 3 convolutional kernels, a 1-step size, and 64 chan-
nels.
Interlayer Structure: Batch Normalization and ReLU
activation functions follow each convolutional layer.
Output: Features linearly projected through fully con-
nected layers to match input dimensions.

(2) One-dimensional Residual Convolutional Neural Net-
works (1D-ResCNN) [29]:
Network Structure: Utilizes three distinct convolutional
kernels (1×3, 1×5, 1×7) ResBlocks for parallel feature
extraction.
ResBlock Structure: Each ResBlock comprises four 1D
convolutional layers, with every two forming a residual
block.
Interlayer Structure: Activation through Batch Normal-
ization and ReLU functions for each residual block.
Output: Concatenation of the three ResBlocks’ out-
puts, linearly projected through fully connected layers
to maintain input dimensions.

(3) Long Short Term Memory (LSTM) Network:
A Long Short-Term Memory (LSTM) network, adapted
from [11], is considered the benchmark for recurrent
neural networks (RNNs) [41]. LSTM is capable of learn-
ing long-term dependencies, which aids in distinguish-
ing long-term features in noise and EEG signals. Each
EEG sample is sequentially fed into LSTM cells, and
the output is derived from the state of each cell through
a fully-connected network.

(4) EEG Denoise Network (EEGDnet) [25]:
Network Structure: Incorporates a Transformer infras-
tructure with four Transformer layers, featuring an
Attention module and a FeedForward Network (FFN)
module in each layer.
Module Structure: Layer Normalization applied to the
input of each module.
Output: Linear projection to maintain input dimensions.

These benchmark networks represent diverse EEG de-
noising methodologies, serving as benchmarks to validate
the superiority of our proposed EEGDiR model in denois-
ing performance. These comparisons aim to offer readers
a comprehensive understanding of the EEGDiR model’s
performance.

4.3.2. Evaluation measures
We assess the denoising outcomes using three methods:

Relative Root Mean Squared Error in the temporal domain
(𝑅𝑅𝑀𝑆𝐸𝑡), 𝑅𝑅𝑀𝑆𝐸 in the spectral domain (𝑅𝑅𝑀𝑆𝐸𝑠),
and the correlation coefficient (𝐶𝐶) [42]. This selection is
grounded in a profound understanding of EEG signal charac-
teristics. Firstly, considering the temporal significance of the
EEG signal, we employ 𝑅𝑅𝑀𝑆𝐸𝑡 to quantify the relative
error between the denoised and original signals in the time
domain. This method exhibits sensitivity to denoising tech-
niques preserving temporal information. Secondly, as EEG
signals encapsulate rich spectral information with research
often focusing on specific frequency ranges, 𝑅𝑅𝑀𝑆𝐸𝑠
is employed to ensure the preservation of features in the
frequency domain. Lastly, acknowledging the synergistic
activities between different brain regions in EEG signals,
𝐶𝐶 serves as an evaluation metric. 𝐶𝐶 reflects the linear
relationship between the denoised and original signals, cru-
cial for maintaining vital information about interregional
correlation. The combined use of these methods facilitates a
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comprehensive evaluation of denoising performance across
time and frequency domains, considering their adaptability
to EEG signal characteristics. The mathematical expressions
for 𝑅𝑅𝑀𝑆𝐸𝑡, 𝑅𝑅𝑀𝑆𝐸𝑠, and 𝐶𝐶 are represented in Equa-
tion (16), (17), and (18) respectively, where𝑅𝑀𝑆(⋅) denotes
root mean square, 𝑃𝑆𝐷(⋅) denotes power spectral density,
and 𝐶𝑜𝑣(⋅), 𝑉 𝑎𝑟(⋅) represent covariance and variance, re-
spectively.

𝑅𝑅𝑀𝑆𝐸𝑡 =
𝑅𝑀𝑆(𝐹 (𝑦) − 𝑥)

𝑅𝑀𝑆(𝑥)
=

𝑅𝑀𝑆(𝑥̂ − 𝑥)
𝑅𝑀𝑆(𝑥)

(16)

𝑅𝑅𝑀𝑆𝐸𝑠 =
𝑅𝑀𝑆(𝑃𝑆𝐷(𝐹 (𝑦)) − 𝑃𝑆𝐷(𝑥))

𝑅𝑀𝑆(𝑃𝑆𝐷(𝑥))
=

𝐶𝑜𝑣(𝑥̂, 𝑥)
𝑉 𝑎𝑟(𝑥̂)𝑉 𝑎𝑟(𝑥)

(17)

𝐶𝐶 =
𝐶𝑜𝑣(𝐹 (𝑦), 𝑥)

√

𝑉 𝑎𝑟(𝐹 (𝑦))𝑉 𝑎𝑟(𝑥)
=

𝐶𝑜𝑣(𝑥̂, 𝑥)
√

𝑉 𝑎𝑟(𝑥̂)𝑉 𝑎𝑟(𝑥)
(18)

4.3.3. Ablation study
In this study, we pioneer the application of the Retnet

network to EEG signal denoising and introduce the innova-
tive concept of signal embedding. To assess the impact of
each hyperparameter on denoising performance, we conduct
ablation experiments, marking the inaugural exploration of
these techniques. Our initial focus is on the influence of
patch size and hidden dimension, investigating their effects
on network performance. Table 1 presents quantized re-
sults for the network applied to EOG, EMG and SS2016
EOG datasets under various configurations of patch size and
hidden dimension hyperparameters. Notably, we observe
an enhancement in denoising performance with decreasing
patch size while maintaining a consistent hidden dimension.
This improvement is attributed to the impact of patched
sequence length on the network’s feature extraction capa-
bility—smaller patch sizes result in larger mini sequence
lengths, preserving more information and thereby improving
denoising effectiveness. However, a cautious approach is
essential as blindly reducing patch size escalates computa-
tional complexity due to increased sequence length. Thus, a
delicate balance between denoising performance and com-
putational efficiency is imperative. Furthermore, maintain-
ing the same patch size, an increased hidden dimension
corresponds to improved denoising performance, aligning
with the intuitive understanding that higher dimensionality
facilitates enhanced feature extraction.

Subsequently, we assess the impact of varying the num-
ber of block layers L on network performance. Table 2
displays the denoising quantization results for the model
applied to EOG, EMG and SS2016 EOG datasets, with
fixed parameters patch size 16, hidden dimension 512, and
heads 8. The observations indicate a gradual enhancement in
denoising performance with an increasing number of layers.
This improvement is ascribed to the benefits of residual
connections, whereby a higher number of layers does not

lead to overfitting. The increased network depth contributes
to superior feature extraction capabilities.

Following the ablation study, optimal performance is
achieved when employing a patch size of 16, hidden di-
mension of 512, 8 heads, and 4 layers. Consequently, this
configuration is chosen as the benchmark for subsequent
comparisons with other networks.

4.3.4. Denoising effect of each method at all noise
levels

Table 3 illustrates the denoising efficacy of various meth-
ods on EOG, EMG and SS2016 EOG datasets. The out-
comes in this table lead to the following:

(1) Due to its relatively simplistic structure comprising only
four convolutional layers and lacking residual connec-
tions, SCNN exhibits suboptimal denoising effects, po-
tentially prone to overfitting.

(2) Featuring a more intricate architecture incorporating
diverse convolutional kernels for multi-scale feature
extraction and alleviating overfitting through the intro-
duction of residual connections, 1D-ResCNN surpasses
SCNN, significantly enhancing denoising outcomes.
Thanks to the temporal information added to the input
by the LSTM structure, LSTM exhibits better denoising
results than 1D-ResCNN.

(3) Leveraging the transformer architecture, EEGDnet ex-
cels in denoising, benefitting from the global modeling
prowess of the attention mechanism, complemented by
residual connections and layer normalization. This re-
sults in substantial denoising improvements compared
to SCNN, 1D-ResCNN and LSTM.

(4) Capitalizing on the Retentive Network, EEGDiR achieves
superior denoising performance by comprehensively
understanding input temporal information and exhibit-
ing robust global modeling capabilities. The incorpo-
ration of residuals and multiple normalizations (layer
norm, group norm) further distinguishes EEGDiR, out-
performing other networks. Moreover, guided by our
proposed signal embedding, EEGDiR intelligently pro-
cesses temporal information. This strategy adeptly cap-
tures the contextual and temporal relationships within
EEG signals, aligning with their prolonged temporal
characteristics. The signal embedding strategy con-
tributes to optimized denoising performance, reinforc-
ing EEGDiR’s exceptional superiority over alternative
networks.

4.3.5. Denoising effect of each method at different
noise levels

In the subsequent section, we present the quantitative
benchmarking results (𝑅𝑅𝑀𝑆𝐸𝑡, 𝑅𝑅𝑀𝑆𝐸𝑠, 𝐶𝐶 ) of di-
verse methods across varying SNR levels in the test set. Fig-
ures 5, Figures 6 and Figures 7 showcase the test outcomes
on the EOG, EMG and SS2016 EOG test dataset, pivotal for
evaluating the denoising efficacy of the methods.
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Table 1
The effect of patch size and hidden dim on the noise reduction performance of EEGDiR. Note mini sequence length must be
𝑙𝑠∕∕𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, where 𝑙𝑠 = 512, with 8 Heads and 4 DiRBlock layers.

Patch
size

Mini seq.
length

Hidden
dim

EOG dataset EMG dataset SS2016 EOG dataset
𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶

32 16 512 0.339 0.367 0.928 0.556 0.561 0.793 0.357 0.392 0.932
32 16 256 0.353 0.377 0.911 0.569 0.575 0.791 0.397 0.466 0.916
32 16 64 0.382 0.371 0.909 0.572 0.577 0.790 0.420 0.525 0.903
16 32 512 0.327 0.361 0.932 0.532 0.501 0.807 0.315 0.362 0.948
16 32 256 0.348 0.371 0.925 0.598 0.573 0.776 0.357 0.395 0.932
16 32 64 0.374 0.378 0.912 0.654 0.593 0.701 0.401 0.443 0.913

Table 2
The effect of the layers of EEGDiR on the noise reduction performance. Note that patch size ,hidden dim and N Heads equal to
16, 512 and 8 respectively.

Pathch size EOG dataset EMG dataset SS2016 EOG dataset
𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶

4 0.327 0.361 0.932 0.532 0.501 0.807 0.315 0.362 0.948
3 0.356 0.380 0.925 0.578 0.583 0.789 0.381 0.447 0.922
2 0.372 0.383 0.917 0.591 0.596 0.781 0.396 0.461 0.917
1 0.394 0.429 0.908 0.613 0.594 0.766 0.411 0.478 0.911

(1) Primarily, the performance of all methods exhibits a
decline as the SNR level decreases. This negative corre-
lation arises due to the gradual increase in noise level,
posing a greater challenge for the methods in noise
removal.

(2) Among the methods, SCNN displays the highest𝑅𝑅𝑀𝑆𝐸𝑡
and 𝑅𝑅𝑀𝑆𝐸𝑠, along with the lowest 𝐶𝐶 . This indi-
cates SCNN inferior denoising performance, attributed
to its relatively simple network structure hindering
effective input feature extraction. In contrast, the more
intricate 1D-ResCNN and LSTM yields significantly
improved denoising outcomes. However, compared to
EEGDnet with a Transformer model and global model-
ing capability, there are discernible performance gaps.
The EEGDiR, incorporating Rententive Network and
signal embedding, achieves the lowest 𝑅𝑅𝑀𝑆𝐸𝑡 and
𝑅𝑅𝑀𝑆𝐸𝑠, coupled with the highest 𝐶𝐶 . It excels in
denoising tasks across varying noise levels.

(3) Analyzing the𝑅𝑅𝑀𝑆𝐸𝑡 results on the EOG and SS2016
EOG dataset, denoising performance improves with
decreasing noise levels and increasing SNR levels across

all methods. However, the performance gap between
methods persists, potentially due to EOG noise being
more easily removed than EMG noise. On the EMG
dataset, the performance gap diminishes as noise levels
decrease (SNR levels increase), particularly evident for
SCNN, 1D-ResCNN, LSTM, and EEGDnet. Never-
theless, EEGDiR maintains superior denoising perfor-
mance.

(4) Evaluation of the 𝑅𝑅𝑀𝑆𝐸𝑠 results on the EOG and
SS2016 EOG dataset indicates weaker denoising per-
formance for SCNN, 1D-ResCNN and LSTM, possibly
due to limited global modeling capability. Conversely,
EEGDnet and EEGDiR exhibit superior denoising per-
formance owing to their robust global modeling ability.
On the EMG dataset, despite decreasing differences in
performance as noise levels decrease, EEGDnet and
EEGDiR consistently outperform SCNN, 1D-ResCNN
and LSTM.

(5) Examination of 𝐶𝐶 results on the EOG and SS2016
EOG dataset reveals improved denoising performance
for all methods as noise levels decrease, with relatively

Table 3
Average performances of all SNRs (from −7 dB to 2 dB). The smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠 , and the larger 𝐶𝐶, the better
denoising effect. Note that all the models are trained and tested on the same data set. The baseline of EEGDiR consists of 4
layers and 8 Heads with patch size 16 and hidden dim 512. For 𝑅𝑅𝑀𝑆𝐸𝑡 , 𝑅𝑅𝑀𝑆𝐸𝑠 , the lower the better. For 𝐶𝐶, the higher
the better. The best result is shown in bold.

Model EOG dataset EMG dataset SS2016 EOG dataset
𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶 𝑅𝑅𝑀𝑆𝐸𝑡 𝑅𝑅𝑀𝑆𝐸𝑠 𝐶𝐶

SCNN 0.6176 0.5905 0.7938 0.7342 0.7977 0.7364 0.5893 0.6724 0.8156
1D-ResCNN 0.5409 0.5900 0.8503 0.6921 0.6848 0.7434 0.5523 0.5804 0.8552

LSTM 0.5290 0.4894 0.8449 0.6560 0.6092 0.7461 0.4823 0.5573 0.8747
EEGDnet 0.4819 0.4647 0.8725 0.6200 0.5565 0.7711 0.4594 0.5267 0.8875

EEGDiR(ours) 0.3279 0.3616 0.9329 0.5322 0.5004 0.8072 0.3146 0.3613 0.9488
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(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 5: Performance of four deep-learning networks at
different SNR levels with EOG dataset artifact removal. The
smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠 , and the larger Correlation
Coefficient(𝐶𝐶), the better denoising effect. The denoising
performance increases as the SNR increases.

(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 6: Performance of four deep-learning networks at
different SNR levels with EMG dataset artifact removal. The
smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠, and the larger Correlation
Coefficient(𝐶𝐶), the better denoising effect. The denoising
performance increases as the SNR increases.

(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 7: Performance of four deep-learning networks at differ-
ent SNR levels with SS2016 EOG dataset artifact removal. The
smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠, and the larger Correlation
Coefficient(𝐶𝐶), the better denoising effect. The denoising
performance increases as the SNR increases.

stable performance differences. In the EMG dataset,
SCNN exhibits poorer performance due to the dataset’s
more complex noise. Conversely, the denoising per-
formance of the remaining three networks improves
as noise levels decrease, with consistent performance
differences. Notably, EEGDiR maintains excellent de-
noising performance throughout.

Figures 8, Figures 9 and Figures 10 illustrate the ANOVA
results for models evaluated on the EOG, EMG and SS2016
EOG datasets. Drawing conclusions from the provided in-
formation and ANOVA analyses, the following observations
emerge:

(1) 𝑅𝑅𝑀𝑆𝐸𝑡 Rancking: The denoising performance across
the four methods is observed as follows: SCNN < 1D-
ResCNN < LSTM < EEGDnet < EEGDiR. ANOVA
analysis indicates significant differences in 𝑅𝑅𝑀𝑆𝐸𝑡,
with marked distinctions in the EOG dataset and rela-
tively modest differences in the EMG dataset. EEGDiR
significantly outperforms other methods in time-domain
denoising for both EOG, EMG and SS2016 EOG datasets,
followed by EEGDnet, LSTM and 1D-ResCNN, while
SCNN exhibits the least efficacy.

(2) 𝑅𝑅𝑀𝑆𝐸𝑠 Rancking: The denoising performance order
for 𝑅𝑅𝑀𝑆𝐸𝑠 is 1D-ResCNN < SCNN < LSTM <
EEGDnet < EEGDiR. The occurrence of 1D-ResCNN
< SCNN is attributed to 1D-ResCNN superior ex-
traction of features in the time domain, leading to
diminished denoising performance in the spectral fea-
tures. ANOVA results show a significant difference in
𝑅𝑅𝑀𝑆𝐸𝑠 among methods on the EOG and SS2016
EOG dataset, while the difference is relatively weak
on the EMG dataset. EEGDiR significantly outper-
forms other methods in spectral denoising, followed by
EEGDne, LSTM and SCNN, while 1D-ResCNN is less
effective.

(3) 𝐶𝐶 Metric Ranking: The denoising performance se-
quence on the𝐶𝐶 metric remains SCNN < 1D-ResCNN
< LSTM < EEGDnet < EEGDiR. ANOVA analysis
reveals a significant difference in 𝐶𝐶 between methods
for the EOG and SS2016 EOG dataset, while the differ-
ence is relatively weak for the EMG dataset. Comparing
mean values, EEGDiR excels in correlation, followed by
EEGDnet and 1D-ResCNN, while SCNN exhibits poor
CC performance.

In summary, the outstanding denoising performance
of the EEGDiR method can be attributed to multiple fac-
tors. The Rentetive Network architecture provides enhanced
global modeling capability, enabling a more accurate restora-
tion of input timing information. The proposed signal em-
bedding method adeptly handles the prolonged temporal
information of EEG signals, capturing context and tempo-
ral relationships intelligently through the combination of
successive sampling points into patches. This advantage
enables EEGDiR to achieve superior denoising effects in
both the time domain and spectral characteristics. Addi-
tionally, the synergy of residual connectivity and multiple
normalization methods (layer norm, group norm) enhances
EEGDiR denoising performance and robustness to noise.
The advanced Retnet architecture, skillful embedding strat-
egy, and enhanced network design collectively contribute
to EEGDiR exceptional performance in time-domain and
spectral denoising, as well as correlation.

4.3.6. Visualization of denoising results for each
method on EOG and EMG datasets

The visualization results depicting the impact of EOG
and EMG noise on EEG signals are presented in Figure
11a, Figure 11b and Figure 11c, yielding the following
observations. It is noteworthy that the dataset has undergone
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(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 8: Performance of four DL networks (SCNN, 1D-
ResDNN, LSTM, EEGDnet, EEGDiR) in EOG dataset artifact
removal. The smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠, and the
larger Correlation Coefficient(𝐶𝐶), the better denoising effect.
EEGDiR models robustly outperform other model for EEG
denosing.

(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 9: Performance of four DL networks (SCNN, 1D-
ResDNN, LSTM, EEGDnet, EEGDiR) in EMG dataset artifact
removal. The smaller 𝑅𝑅𝑀𝑆𝐸𝑡 and 𝑅𝑅𝑀𝑆𝐸𝑠, and the
larger Correlation Coefficient(𝐶𝐶), the better denoising effect.
EEGDiR models robustly outperform other model for EEG
denosing.

variance normalization. When presenting the visualization
results, Equation (15) is employed to scale down the results
to the original data scale, enhancing the accuracy of show-
casing the noise effect on EEG signals.

(1) All methods exhibit some degree of noise suppression
in noisy signals, underscoring the variability among dif-
ferent denoising approaches. Particularly notable is the
substantial difference between the denoising results of
the SCNN method and the noisy signal. This divergence
may be attributed to the relatively simplistic network
structure of SCNN, hindering comprehensive feature
extraction.

(2) The relatively complex structure and residual connectiv-
ity of LSTM and 1D-ResCNN result in an improvement
in denoising compared to SCNN, emphasizing the im-
pact of network architecture on denoising performance.
Leveraging the global modeling and feature extraction
capabilities facilitated by the Transformer’s attention
mechanism, EEGDnet outperforms SCNN, LSTM and

(a) 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (b) 𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 (c) 𝐶𝐶

Figure 10: Performance of four DL networks (SCNN, 1D-
ResDNN, LSTM, EEGDnet, EEGDiR) in SS2016 EOG
dataset artifact removal. The smaller 𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 and
𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙, and the larger Correlation Coefficient(𝐶𝐶),
the better denoising effect. EEGDiR models robustly outper-
form other model for EEG denosing.

1D-ResCNN in denoising. This underscores the en-
hancement of network performance with the introduc-
tion of the attention mechanism.

(3) Overall, the denoising effect achieved by EEGDiR
closely approaches that of a noise-free signal. This no-
table advantage can be attributed to the synergistic effect
of the Retentive Network architecture and our proposed
signal embedding, tailored to match the characteristics
of EEG signals. Firstly, the Retentive Network archi-
tecture enhances understanding of timing information
in EEG signals through its robust global modeling ca-
pability. This enables the network to accurately capture
the complex time-domain structure, thereby improving
denoising performance. Secondly, our signal embedding
method adeptly addresses the challenge of handling long
temporal information in EEG signals. By intelligently
grouping consecutive sampling points into patches, this
method effectively preserves the context and temporal
relationships of the signal, facilitating the network in
learning and restoring features more efficiently. The
sensitivity to long temporal information aligns with
the characteristics of EEG signals, forming the basis
for EEGDiR outstanding denoising effect. Therefore,
the performance of EEGDiR in approaching noise-free
signals arises not only from the superior processing
of temporal information by the Retention mechanism
but also from the mutually reinforcing capabilities of
Retentive Network and signal embedding. This synergy
enables the network to better comprehend and process
the intricate structure of EEG signals.

5. Discussions
In our analysis, we compared various denoising method-

ologies by examining their efficacy on the EOG, EMG, and
SS2016 EOG datasets as presented in Table 3. Our find-
ings underscore the significant advancements our EEGDiR
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(a) Denoising outcomes on EOG dataset.

(b) Denoising outcomes on EMG dataset.

(c) Denoising outcomes on SS2016 EOG dataset

Figure 11: Visualization of denoising outcomes for various
state-of-the-art models: (a) Denoising outcomes on EOG
dataset. (b) Denoising outcomes on EMG dataset. (b) De-
noising outcomes on SS2016 EOG dataset. A closer inspection
can be facilitated by zooming in for a more detailed view. It is
important to highlight that we have restored the network out-
put’s amplitude back to the original data scale through back-
normalization. The temporal domain operates at a sampling
rate of 256 SPS for EOG and EMG dataset. The temporal
domain operates at a sampling rate of 200 SPS for SS2016
EOG dataset. From the provided results, it is evident that the
denoising results achieved by the proposed EEGDiR model in
this study closely approximate the true signal.

model, incorporating the Retentive Network and signal em-
bedding techniques, makes over other methods.

Comparative Analysis of Denoising Methods. The
data reveals that simpler models like SCNN, despite their

utility, fall short in more complex noise environments due
to their basic structures and lack of advanced features like
residual connections. Conversely, 1D-ResCNN improves
upon this by utilizing diverse convolutional kernels and
residual connections to mitigate overfitting, thereby enhanc-
ing denoising results. Notably, the LSTM model, which
integrates temporal information directly into its structure,
outperforms 1D-ResCNN by better handling the dynamics
within EEG signals. EEGDnet, leveraging the global model-
ing capabilities of the transformer architecture, enhanced by
residual connections and layer normalization, significantly
surpasses both SCNN and 1D-ResCNN. The most robust
performance, however, is exhibited by EEGDiR. This model
not only understands complex temporal sequences better due
to the Retentive Network but also optimizes the handling of
these sequences through our innovative signal embedding
approach. This dual strategy is particularly effective in
preserving the contextual and temporal integrity of EEG
signals, which is crucial given their prolonged time-series
nature.

Performance Across Different Noise Levels. Our study
also evaluated the performance of these methods across
varying SNR levels, as depicted in Figures 5, 6, and 7.
All methods demonstrated declining performance with de-
creasing SNR, highlighting the challenges posed by in-
creased noise levels. However, EEGDiR consistently out-
performed other methods at all noise levels, achieving the
lowest RRMSE and highest correlation coefficients. This
suggests that EEGDiR’s architecture and signal processing
strategies are well-suited to effectively reduce noise while
preserving the integrity of the EEG signal.

Broader Implications. The success of the Retentive
Network in this context not only paves the way for its use
in EEG signal denoising but also suggests its applicability
to other types of temporal signals, such as electromagnetic
and seismic data. The ability of the Retentive Network to
process temporal information effectively, coupled with our
signal embedding technique, offers a robust framework for
denoising tasks across various domains requiring detailed
temporal analysis. Moreover, this framework holds signifi-
cant potential for enhancing downstream EEG tasks, such as
classification [19], motor imagery [7], brain recognition [18]
and fatigue detection [6], suggesting broad applicability in
enhancing the accuracy and effectiveness of these complex
applications.

6. Conclusion
By incorporating the Retentive Network architecture and

employing signal embedding for processing EEG signals,
this study introduces an innovative methodology aiming
to leverage Retentive Network comprehensively for EEG
signal denoising. The integration of Retentive Network ar-
chitecture enhances the understanding and processing of
temporal information in EEG signals, while the utilization of
signal embedding underscores the processing of prolonged
temporal information and feature extraction. Experimental
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results showcase the outstanding denoising performance of
our proposed EEGDiR network on EOG, EMG and SS2016
EOG datasets. In comparison to traditional EEG denoising
methods, EEGDiR demonstrates notable enhancements in
temporal information processing and global modeling.

The global modeling prowess of EEGDiR, coupled with
its favorable handling of temporal information, positions
it as an optimal choice for processing EEG signals. The
incorporation of signal embedding further refines the rep-
resentation of EEG signals, preserving context and temporal
relationships more effectively. The synergistic application of
the Retentive Network and signal embedding strategy yields
a substantial improvement in the denoising performance of
the EEGDiR network.

This study holds significant implications as a guide
for integrating deep learning into neuroscience, offering
valuable insights to enhance the efficacy and application
potential of EEG signal processing. By providing an out-
of-the-box deep learning dataset, our contribution enables
subsequent researchers to expedite EEG signal denoising
research by eliminating the need for extensive data prepro-
cessing. This accelerates the development of EEG signal
denoising methods.
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