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A B S T R A C T   

Background and objectives: Although ML has been studied for different epidemiological and clinical issues as well 
as for survival prediction of COVID-19, there is a noticeable shortage of literature dealing with ML usage in 
prediction of disease severity changes through the course of the disease. In that way, predicting disease pro
gression from mild towards moderate, severe and critical condition, would help not only to respond in a timely 
manner to prevent lethal results, but also to minimize the number of patients in hospitals where this is not 
necessary. 
Methods: We present a methodology for the classification of patients into 4 distinct categories of the clinical 
condition of COVID-19 disease. Classification of patients is based on the values of blood biomarkers that were 
assessed by Gradient boosting regressor and which were selected as biomarkers that have the greatest influence 
in the classification of patients with COVID-19. 
Results: The results show that among several tested algorithms, XGBoost classifier achieved best results with an 
average accuracy of 94% and an average F1-score of 94.3%. We have also extracted 10 best features from blood 
analysis that are strongly associated with patient condition and based on those features we can predict the 
severity of the clinical condition. 
Conclusions: The main advantage of our system is that it is a decision tree-based algorithm which is easier to 
interpret, instead of the use of black box models, which are not appealing in medical practice.   

1. Introduction 

Since December 2019, global health issues have been caused by the 
outbreaks of the COVID-19 virus. It is still not known how SARS-CoV-2 
triggers wide spectrum of heterogeneous clinical manifestation, from 
asymptomatic cases through acute respiratory distress syndromes to 
multiple organ failure and death [1–4]. Therefore, researchers all over 
the world have been looking to define and stratify predictors of the 

severity of COVID-19 disease in an attempt to properly guide medical 
management. Basic knowledge of pathogenesis of diseases and methods 
of discerning and assessing infection with COVID-19 have been estab
lished. Common blood hematology and clinical biochemistry tests are 
cheap, simple and widely accessible biomarkers. As such, they became 
the preferred method of tracking and predicting disease effects and 
forecasts it [5]. Recognizing the variation and phenotype of certain 
biomarkers as a result of multiple outcomes of COVID-19 will help 
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establish a risk-stratified strategy for the treatment of patients with this 
disease. Among other issues, it is very important to predict the unfa
vorable progression of the illness easily, reliably and timely. The pos
sibility to detect cases that are at imminent risk of death has become an 
urgent, but necessary task [6]. 

Numerous researchers have studied predictors of disease severity in 
COVID-19 patients. Some studies indicated that serious or lethal cases of 
COVID-19 disease have been linked with elevated white blood cell 
count, creatinine, blood urea nitrogen, markers of liver and kidney 
function, interleukin-6 (IL-6), C-reactive protein (CRP), lower lympho
cyte (<1 × 109/L) and platelet counts (<100 × 109/L) as well as albu
min levels compared with milder cases of patients who survived the 
disease [7–9]. These research results provided an initial insight into of 
the effects of the infection by SARS-CoV-2, but due to geographical re
strictions, specific experience of the clinical center and small cohorts, 
the result cannot be generalized [10]. Malik et al. found that particular 
biomarkers have been correlated with poor outcome results in 
COVID-19 hospitalized patients in meta-analysis of 32 trials reflecting 
10,491 reported patients with COVID-19. The biomarkers included low 
lymphocytes, a lower count of platelets and elevated CRP, creatine ki
nase (CK), procalcitonin (PCT), D-dimer, lactate dehydrogenase (LDH), 
alanine aminotransferase (ALT), aspartate aminotransferase (AST) and 
creatinine [10]. Assandri et al. found that certain laboratory tests were 
characteristically altered in patients with of COVID-19 and proposed 
sensitive alternatives to recognize possible COVID-19 cases [1]. Specific 
biomarkers were found to be associated with the clinical outcome [11]. 
Some of the best prognostic markers were found to be neu
trophil/lymphocyte ratio (in patients with a more serious illness) [12], 
CRP and inflammatory cytokines such as IL-6, IL-1 or tumor necrosis 
factor alpha (TNFα) [13]. Other studies also found that CRPO7 mg/dL 
will identify subjects that will develop critical condition [1,11]. After 
extensive research, it can be concluded that achieved results so far show 
inconsistency, biomarkers shown to be predictors of COVID-19 disease 
progression differ from research to research and sometimes are even 
contradictory [14]. Therefore, these is a strong need to investigate other 
strategies such as machine learning method to give a further insight into 
prognostic biomarkers. 

1.1. Related work 

The machine learning (ML) algorithms have been investigated in the 
field of COVID-19 for many purposes including epidemiological and 
clinical issues such as timely detection of disease outbreaks, fast diag
nosis, classification and stratification of radiological images, risk factors 
analysis, as well as prediction of final clinical outcomes [15–20]. Most of 
the papers related to implementation of ML in COVID-19 investigation 
deal with analysis of medical images [21,22]. Another aspect analyzed is 
investigation of blood biomarkers as predictive features of clinical 
outcome. For example, Yan et al. [23] conducted research that used a 
blood sample database of 404 infected patients in the Wuhan region of 
China to classify important biomarkers of the disease seriousness in 
support of decision-making and logistical planners of health systems. To 
achieve this, three biomarkers have been selected using ML which had 
accuracy of more than 90%: LDH, lymphocyte and high sensitivity CRP 
(hs-CRP). This result is supported by current medical knowledge that 
elevated levels of LDH are related to the deterioration of tissues, which 
appear in pneumonia and other infectious and inflammatory diseases 
[24]. The main advantage of this paper is that it introduces a clear and 
operational formula to easily forecast and assess clinical outcome – 
death/survival, allowing the critical patients to be prioritized and 
potentially reduce the mortality rate. The main drawback of this study is 
that their classification is binary – survival/death, which may not be the 
best type of classification in situations where the healthcare systems are 
overloaded. Same group of researchers lead by Yan studied the samples 
of blood of 485 patients from the area of Wuhan, China retrospectively 
to recognize robust and relevant markers of risk mortality [6]. The goal 

was to identify the most discriminatory biomarkers of patient mortality 
by using state-of-the-art interpretable machine learning algorithms. In
puts contained the specific details, symptoms, the blood sample and 
laboratory results on the liver, renal functions, coagulation activity, 
electrolytes and inflammatory factors, collected from patients at 
different stages of disease, and related results for death or survival. The 
research employed a supervised XGBoost model classification. A 
tree-based machine learning model was used to predict the outcomes of 
individual patients (death/survival) using a sample blood test database. 
Same biomarkers (features) as in previous study were experimentally 
chosen with strong predictive degradation values or fatality of disease, 
also matching those in other literature [2,25–27]. As in the previous 
paper, the classification was binary and except predicting survival, does 
not help in reducing the burden put on healthcare system. Huang et al. 
discuss that although the studies by Yan et al. reveal that the mortality 
outcomes in COVID-19 patients are associated with three biomarkers 
using a single-tree XGBoost model, the forecast results are 
over-optimistic. The results of the forecast remain ambiguous (they 
indicate high variability). Hence, Yan et al. assertion on the successful 
prediction dates is insufficiently strong and not fully validated by the 
data provided in the papers. The prediction results may be unreliable. 

Further, Gao et al. present a COVID-19 Mortality Risk Prediction 
(MRPMC) model that uses hospital admission data to streamline patients 
via risk of mortality, allowing prediction of physiological decline and 
death up to 20 days in advance. They implemented four methods of 
machine learning, namely Logistic Regression, Support Vector Machine, 
Gradient Boosted Decision Tree, and Neural Network. The MRPMC was 
tested on internal and external evaluation cohorts and achieved the 
average area under the curve (AUC) of 95% on internal and 97% and 
92% on two different external cohorts, showing that it can have possible 
high utility in future clinical practice [15]. Research by Yao et al. [28] 
implemented the machine learning algorithms to build the COVID-19 
disease detection model. Among several used algorithms (Support Vec
tor Machine, Random Forest, K-nearest neighbors, AdaBoost etc.), SVM 
demonstrated most promising detection accuracy of 81.48% based on 32 
features associated with the COVID-19 disease. Pulgar-Sánchez et al. 
[29] propose two methods - Multilayer Perceptron to predict severe-non 
severe cases of COVID-19 achieving 96.5% accuracy and C4.5 software, 
achieving 89.4% accuracy. Mahdavi et al. [30] proposed SVM for 
invasive and non-invasive groups achieving 0.92% accuracy for joint 
model. Cobre et al. [31] use biochemical tests and machine learning in 
order to predict positivity (positive negative) and disease severity 
(severe-non severe) with ANN as the best method achieving accuracy of 
both models more than 84%. 

1.2. Motivation for the study 

Although there are many papers that deal with implementing ML in 
proposing valid prognostic biomarkers and predictors of survival several 
days in advance, there is limited research in the field focused on clas
sification of patient in more subtle severity-of-illness categories (e.g. 
mild, moderate, severe, critical) during the hospital stay. Such knowl
edge could help physician and hospital managers in decision-making 
process aiming to avoid not only patient’s final unfavorable outcome, 
but also to improve other important secondary treatment endpoints and 
institutional performances which are deteriorated by inappropriate 
measures such as unnecessary prescription of adjunctive drugs (e.g. 
wide-spectrum antibiotics, immune-modulatory biologics), over- 
utilization of sophisticated and invasive diagnostics and inappropriate 
allocation of intensive care beds. Therefore, in this paper we propose a 
methodology based on ML to classify patients into several categories and 
predict the outcome in advance (change of severity of clinical condi
tion). The main objectives and contributions of this paper are: 
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• examine easy interpretable algorithms which are suitable for 
implementation in clinical practices and compare with state-of-the 
art models  

• classify patients into 4 distinct categories (mild, moderate, severe 
and critical) of COVID-19 disease using several machine learning 
methods (K-nearest neighbors (KNN), Support vector machine 
(SVM), Artificial neural network (ANN), Recurrent neural network 
(RNN) and Extreme gradient boost (XGBoost)) and compare the 
performances in order to select the final classification model.  

• predict disease progression (mild to moderate, moderate to severe, 
severe to critical clinical condition) several machine learning 
methods (K-nearest neighbors (KNN), Support vector machine 
(SVM), Decision tree, Extra tree and Gradient Boost regressor (GBR)) 
and compare the performances in order to select the final regression 
model.  

• work with a limited dataset, but implement different methods such 
as data imputation to overcome the drawbacks of small number of 
data 

2. Materials and methods 

This part of the paper explains the dataset first, and after that the 
proposed machine learning methodology. Since the methods can be 
divided into unsupervised (clustering) and supervised methods 
(regression and classification), and independent feature extraction, 
separate sections are created for each implemented sub-method. 

2.1. Dataset 

Blood biomarkers of the patients from two hospitals were used – 

Clinical Center of Kragujevac, Serbia (45 patients) and Clinical Center of 
Rijeka, Croatia (60 patients). In total, the results of blood analyses of 105 
COVID-19 positive patients were collected (42% women, 58% men) and 
the age distribution of the patients in the form mean ± standard devi
ation was 52.77 ± 16.63. For all patients, fever was the most common 
symptom (83%), followed by cough (74.6%) and fatigue (45.7%). 
Described dataset is shown in Fig. 1. 

We divide the clinical data into three subgroups:  

• demographic data (gender and age)  
• symptoms (fever, cough, fatigue, chest pain, muscle pain, headache, 

dyspnea, loss of taste or smell)  
• blood analysis  
• Complete blood count (CBC): erythrocytes (red blood cells (RBC)) – 

red cell indices: hemoglobin (HGB), mean corpuscular volume 
(MCV), mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), red cell distribution width 
(RDW); leucocytes (white blood cells (WBC)) – white cell differen
tials: neutrophils, lymphocytes, monocytes, eosinophils (EOS) and 
basophils (BASO), platelet indices: platelets (PLT) platelet distri
bution width (PDW), mean platelet volume (MPV)  

• Coagulation: prothrombin time (PT), international normalized 
ratio (INR), D-dimer  

• Kidney function: urea, creatinine (CREA)  
• Hepatic function: bilirubin – direct and total, alanine transaminase 

(ALT), aspartate transaminase (AST), gamma-glutamyltransferase 
(also γ-glutamyltransferase, GGT), albumin 

• Enzymes: creatine kinase (CK), also known as creatine phospho
kinase (CPK) or phosphocreatine kinase; lactate dehydrogenase 
(LDH) 

Fig. 1. Graphical representation of clinical data which consist of demographic data, symptoms and blood analysis.  
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• Electrolytes: Sodium (Na), potassium (K) 
• Oxygenation and acid-base balance: arterial blood gas (ABG) an

alyses/tests: partial pressure of oxygen (pO2), arterial partial 
pressure of oxygen (PaO2) partial pressure of carbon dioxide 
(pCO2), arterial partial pressure of carbon dioxide (PaCO2), SpO2 
(peripheral oxygen saturation s. oxygen saturation as measured by 
pulse oximetry), pH:  

• Inflammation indices: C-reactive protein (CRP), procalcitonin 
(PCT)  

• Carbohydrate metabolism (glycemia): GLUC – glucose 

Most patients had multiple blood samples taken during their hospital 
stay. We have considered the day of admission to the hospital and days 
2, 5, 7, 9, 11 and 14 after hospital admission. In order to deal with 
missing data, we used data imputation method. To fill in the missing 
values, we used the mean value of four different values (values from 2 
days before and 2 days after). The aim of this type of data imputation is 
to include the values of analyzes of adjacent days that are not directly 
included in the prediction. 

2.2. ML model development 

Proposed machine learning methodology consists of two main tasks:  

1. Prediction of the blood analysis in advance (in days)  
2. Classification of the severity of clinical condition (mild, moderate, 

severe and critical). 

Proposed methodology is shown in Fig. 2. Proposed methodology has 
been implemented in Python 3.7.4, Spyder environment 3.3.6, using 
CPU Intel Core i5. Given the collected dataset that consists of patient 
data (demographic data, physical symptoms and blood biomarkers) and 
patient condition, we undertake several preprocessing and main analysis 
steps. Since there were a lot of instances without labeled output - 
severity of clinical condition and omitting these instances were signifi
cantly reduced the size of the dataset, we have performed clustering 
(using K-means method). One group clustered around already known 
output label was assumed to associated with a same output label 
meaning the whole cluster was labeled as the same clinical condition. 
Further, feature selection (using ANOVA F-test) in preprocessing stage 
was performed to extract the most important blood biomarkers as pre
dictors of the severity of clinical condition. In the main section of pro
posed method, classification (using several algorithms such as KNN, 
SVM, ANN, RNN and XGBoost) was used to determine the output class 
(mild, moderate, severe and critical), which corresponds to severity of 

clinical condition. In addition, regression (using SVM, Decision tree, 
KNN, Extra tree and GBR) was used to predict changes of biomarkers in 
time (up to 14th day), which would in return affect the change of the 
output class, as patient condition was assessed based on blood 
biomarkers. 

2.2.1. Feature selection 
To evaluate which biomarkers are crucial for determination of the 

severity of clinical condition, we have used Scikit learn function for 
feature selection that selects features according to the K highest scores 
and we have chosen the ten features that had the greatest influence in 
making the effective model. Proposed function for feature selection is 
based on principles of Analysis of variance (ANOVA) which can deter
mine whether the means of three or more groups are different [32]. The 
ANOVA method assesses the relative size between group variance 
compared to the average variance within group variance. ANOVA uses 
F-test which determines the degree of how relatively greater the dif
ference is between group variance compared to within group variance. 
Therefore, to get a statistical conclusion we may compare the F-test 
value calculated from the observed data with the P-values associated 
with the F-test. The features with the F-values below 0.05 (P-value) were 
usually considered to be statistically significantly associated with the 
outcome. 

2.2.2. Unsupervised methods 
In this section, we proposed the use of clustering methods to estimate 

the missing output labels. This section is particularly important, as 
without enough output labels, no ML method will be able to perform 
classification into different categories. In our case, should the instances 
without labels were omitted, the dataset size would significantly reduce. 
Therefore, omitting the instances was not possible and clustering was 
used as a method to estimate the data labels. We have applied several 
different clustering methods (k-means, agglomerative, mean shift) [33], 
all which gave similar results; therefore, we have adopted k-means al
gorithm as the final choice. K-means algorithm requires predefined 
number of clusters and for determining optimal number of clusters 
Elbow method was used. The method will be examined starting from 
two clusters and increasing it in each step by one until the optimal 
number of clusters is determined. For each given number of clusters, the 
sum of intra-cluster distances is computed. The variance of the 
intra-cluster distances between two consecutive numbers of clusters is 
computed. Then, the Elbow method looks into the percentage of vari
ance explained as a function of the number of clusters. One should 
choose a number of clusters so that adding another cluster in the analysis 
does not give much better explanation of the variance. 

Fig. 2. Schematic representation of ML methodology for determination of the severity of clinical condition.  
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In order to better describe the relationship between available fea
tures and clusters, dependencies between clusters and several most 
descriptive features are presented in Fig. 3. The clusters are represented 
by color (purple, blue, green, yellow), while the manually annotated 
class is located next to each instance in the numeric form (class 0 refers 
to mild clinical condition, class 1 refers to moderate, class 2 refers to 
severe and class 3 refers to critical clinical condition). 

If we take into consideration Fig. 3(a), clusters have been presented 
from the aspect of LDH and CRP. We can observe that green cluster is 
associated with higher LDH values, while yellow cluster is associated 
with lower LDH values and drastically higher CRP values. In Fig. 3(b), 
clusters have been presented from the aspect of Urea and Creatinine. In 
this case, it can be concluded that only yellow cluster has high values of 
Urea and Creatinine, which means that high values of these biomarkers 
occur only in blood analyses of patients with critical clinical condition. 
In Fig. 3(c), clusters have been presented from the aspect of Albumins 
and CRP. It can be concluded that only purple and blue clusters have 
higher values of Albumins, but smaller values of CRP which is in 
accordance of mild and moderate clinical conditions, manually anno
tated. Enormously large values of CRP have been related to the critical 
clinical condition i.e. cluster yellow. In Fig. 4(d), clusters have been 
presented from the aspect of WBC and Albumins. In this Figure, it can be 
concluded that only yellow cluster has high values of WBC and smaller 
values of Albumins simultaneously. Regarding the previous cluster- 
feature analysis, each class instance manually marked by the doctor 
has been labeled next to its cluster leading to conclusion that we can now 
translate the cluster to the appropriate class. As a result, the dataset was 
divided in four clusters now assigned to severity of clinical condition and 
the distribution is the following:  

• 31.80% of total data belongs to class of mild clinical condition,  
• 50.90% to moderate,  
• 13.88% to severe,  
• 3.42% belongs to class of critical clinical condition. 

2.2.3. Supervised methods 
In this section, we implement regression analysis to predict the 

values of important features (biomarkers) in the following days, in order 
to be able to further perform the classification of the patients. Such 
coupled methodology will enable us to estimate the patient condition 
development in time. 

2.2.3.1. Regression. Proposed methodology for prediction condition of 
the patient in time is to track and predict the change in biomarkers 
values. Based on changes in blood biomarkers during two weeks’ time, 
we aim to predict the patient’s clinical condition. The main limitation 
was the lack of data for biomarkers in time (full blood analysis on the 
admission day was available for all 105 patients, blood analysis from 
104 patients were available for the second day, on 5th day data for 67 
patients was available, on 7th day data for 68 patients was available, on 
9th day data for 59 patients was available, on 11th day data for 51 
patients was available and on 14th day only data for 44 patients was 
available). It should be emphasized that not always were the data for one 
patient available at each and every time point, but rather spread across 
some days (i.e. for patient 1, blood analysis was available on days 0, 5, 
11, while for patient 2 for days 0, 7,9,14 etc.). Due to the small number 
of patients’ data available in time, in order to predict blood biomarkers 
values, we decided to select 34 patients with a full blood analysis for all 
days. 

We wanted to achieve time dependencies by creating additional 
feature which represents the subtraction between blood analysis for the 
day t and blood analysis for the previous observed day t-1. Among 
several approaches to reorganize the dataset in order to create time 
dependencies between values of biomarkers, auto-regressive model 
proved to be the most efficient way for creating dataset that would be 
appropriate for the regression task. Auto-regressive model by its defi
nition is used for forecasting when there is some correlation between 
values in a time series and the adjacent ones (the values that precede and 
succeed them). In that manner, we have created time-dependencies 
between data because the biomarker values for day t certainly de
pends on the values of the biomarkers for day t-1. In the regression 
model itself we have used this additional feature alongside with blood 
analysis for the day t-1, in order to predict the values of blood bio
markers for the day t. This means that for day 5, day 2 as t-1 and day 5 as 
t were taken as part of analysis. In this way, we have created time de
pendencies between a patient’s blood analysis throughout time and 
expand the dataset for the regression problem. Fig. 4 shows a schematic 
representation of the described methodology. 

After establishing the database, we divided data into training and 
test set - training set consists of data from days 2,5,7,9 and 11, meaning 
that the day 14 belongs to the test set. 

For the prediction of each blood biomarker, several machine learning 
methods (KNN, SVM, Decision tree, Extra tree and Gradient Boost 

Fig. 3. Dependence between clusters and values of different blood biomarkers.  
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regressor) were used and their performances have been compared in 
order to select the final regression model. 

2.2.3.2. Classification. The main task of this paper is to assess how the 
COVID-19 develops over time in patients, meaning to determine the 
patient’s condition 14 days after hospital admission. This was achieved 
by firstly assessing the values of biomarkers using the methods 
explained in the previous section, after which the patients were classi
fied into one of 4 classes (mild, moderate, severe and critical). For 
classification purposes, we have included all patients for whom we had 
blood analysis on a particular day. This means that within this dataset, 
the same patients are repeated multiple times without any dependences 
between different days. This modification is justifiable as in this case, it 
is not important to observe the same patient in time, but to create as 
many different instances as possible, in order to expand the dataset and 
prepare it for the classification task. As a result, the dataset was 
expanded to 497 instances (158 instances belonged to the cluster of mild 
condition, 253 to moderate, 69 to severe and 17 instances belonged to 
the cluster of critical condition). For the described classification task, the 
aim was to create two types of models; the first considered type is based 
on black-box model such as ANN and RNN, which proved to be efficient 
in complex classification tasks. On the other hand, another type of model 
which tend to be more interpretable and simplified was considered. 
Therefore, from the aspect of simplified methods, we adopted SVM, KNN 
and XGBoost. Performances of all mentioned methods have been 
compared in order to select final classification method. For example, 
XGBoost is a supervised machine learning algorithm based on the 
recursive construction of a decision tree, and those trees that most in
fluence the decision of the predictive model can be identified. At each 
decision step in the XGBoost trees, the significance of each feature is 
determined by its accumulated use [6,34]. This is an advantage of 
rule-based algorithms because internal model strategies are easy to 
interpret. Also, the importance of these algorithms in clinical prediction 
is reflected in the fact that the feature values for decision-making are 
known, unlike black box models whose rules and strategies are difficult 
to interpret. 

The model performance was evaluated by assessing different classi
fication metrics: accuracy, precision, sensitivity, specificity and F1 
score. Equations of these metrics are defined below: 

Accuracy=
True positive + True negative

True positive + True negative + False positive + False negative
(1)  

Precision=
True positive

True positive + False positive
(2)  

Sensitivity=
True positive

True positive + False negative
(3)  

Specificity=
True negative

True negative + False positive
(4)  

F1 score=
2⋅Precision⋅Recall
Precision + Recall

(5)  

3. Results 

Ten blood biomarkers were selected as the best features that had the 
greatest contribution to the classification task and most reliably 
described the development of COVID-19 disease in patients, according 
to the previously described methodology. These blood biomarkers and 
their values are presented in Table 1. In addition to values from our 
database presented in the form of mean ± standard deviation, bio
markers values from literature are given, in the form of median and 
mean ± standard deviation. 

For the evaluation of the importance of features, Scikit learn function 
K highest scores was used. The importance of all ten features is shown in 
Fig. 5. Lactate dehydrogenase (LDH) has the highest importance score, 
which can be due to the fact that this enzyme is widely distributed in 

Fig. 4. Schematic representation of principles which was used for database organization.  

Table 1 
Ten blood analysis that had the greatest influence in COVID-19 patient’s clinical 
condition assessment.  

Blood 
biomarker 

Median Mean ± standard deviation  

Mahdavi M. et al. 
[30] 

Yao H. et al. [28] Our 

WBC count 7.8 0.1133 ± 0.3637 8.25 ± 4.72 109/L 
Lymphocytes 1.22 9.0184 ± 8.5835 22.15 ± 11.06% 
MCHC 34 340.1333 ±

14.6198 
335.7 ± 8.16 g/L 

RDW 14 13.2747 ± 1.9499 13.69 ± 1.07% 
Hgb / 126.1133 ±

21.8770 
130.08 ± 21.05 g/ 
L 

Urea / / 7.35 ± 5.76 mmol/ 
L 

Creatinine / / 92.46 ± 69.62 
μmol/L 

Albumins / 65.7480 ±
112.5770 

33.57 ± 6.23 g/L 

LDH 565 / 424.86 ± 239.26 
U/L 

CRP / 79.5920 ±
93.2775 

69.11 ± 93.55 mg/ 
L  
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tissues and its elevated serum levels could be caused by systemic hyp
oxemia [35]. It was found that high serum activity of LDH in earlier 
stages of the disease is a good predictor of a lung injury and poor risk 
outcomes [6]. Beside LDH, which was shown to be by far the most 
important biomarker in predicting severity of clinical condition, other 
parameters which mostly influence the model are urea (2nd most 
important), creatinine (3rd most important), C-reactive protein (CRP) 
(4th most important), white blood cell (WBC) (5th most important), etc. 
(Fig. 5). The explanation for importance of biomarkers urea and creat
inine could be found in the fact that both biomarkers are related to 
kidney function - one research that included the analysis of 701 
COVID-19 patients’ conditions, the conclusions were that incidence of 
acute kidney injury and death was significantly higher in patients which 
had elevated baseline serum creatinine levels in comparison to the pa
tients with normal baseline values [36]. Further, CRP is used as a 
biomarker for different inflammatory and infectious conditions for 
clinical purposes. Elevated CRP is directly correlated with the level of 
inflammation and therefore could be correlated with severity of clinical 
condition. Generally, several studies have found that serious or lethal 
effects of COVID-19 disease are linked to liver and kidney function 
markers, C reactive protein (CRP), interleukin-6 (IL-6), lower lympho
cytes and albumin blood levels relative to milder form of the disease in 
the survivors [10]. 

We can determine the importantance of certain biomarkers, if we 
exclude some of them with the greatest importance from the classifi
cation. For example, if we exclude biomarker of the greatest importance 
– LDH, classification metrics would be significantly affected. The values 
of statistical measures were sensitivity = 0.34, specificity = 0.57, ac
curacy = 0.5, precision = 0.3, F1-score = 0.31. This feature selection 
method reduces the amount of blood tests that need to be assessed. 
Values of all ten selected blood biomarkers are assessed for 34 patients 
on day 14 after the admission day. Due to the small number of patients’ 
data available in time, we decided to select these 34 patients with a full 
blood analysis for all days, according to the described methodology in 
the previous section. Table 2 shows the root mean square error between 
predicted and actual values of blood analysis, using several algorithms – 
SVM, Decision Tree, KNN, Extra Tree and Gradient Boost. 

As can be seen in the table, the best results (the lowest RMSE) can be 
observed with the Gradient boost and Extra tree methods. Although 
Gradient boost gives smaller RMSE for multiple biomarkers, we have 
examined both methods in order to see their influence on classification. 
It should be emphasized that the classification is performed on the 
estimated values of biomarkers. For this reason, it is very important to 
notice how the regression model affects classification process. If we take 
into account the classification metrics, after predicting the value by the 
Extra tree method, the classification algorithm reaches an accuracy of 
0.91 and an F1-score of 0.91. It can be concluded that the change of the 
regression method downgrades the performances of the classification 

method, so we will adopt Gradient Boost regressor as the final method 
for the regression task (accuracy of 0.94 and F1-score of 0.94). This 
model was trained to obtain optimal hyperparameters settings using grid 
search method and the final setting included number of boosting stages 
set to 500, max depth equals to 4, min samples split equals to 5 and 
learning rate to 0.05. 

It can be seen that values of biomarkers such as white blood cell 
(WBC), % lymphocytes, MCHC, RDW, urea and albumins fall under the 
narrower range (also seen from Table 1), so we can expect smaller 
RMSE. On the other hand, Hgb, creatinine, LDH and CRP have more 
deviation between real and predicted values. Results for each of these 
four biomarkers will be discussed individually. 

In Fig. 6, comparison between actual and predicted values of Hgb is 
shown. RMSE is 10.12, which may be due to the fact that this biomarker 
had a wider range in patients in our study (from around 80 to around 
150). Although RMSE for Hgb is larger in comparison to other bio
markers’ RMSE, greater deviation from the actual value is expected, as 
the range of actual values (80–150) is wider compared to the ranges of 
other biomarkers (i.e. range of actual values of RDW is 11–18). For this 
reason, the value of RMSE does not affect the model’s decision in 
assessment of clinical condition of COVID-19 patients. 

In Fig. 7 comparison between actual and predicted values of CRP is 
given. RMSE for this analysis is 41.68, explanation of this RMSE values is 
similar to the RMSE value of Hgb, where CRP has even wider range of 
values (0–400) than Hgb. 

Fig. 8 shows comparison between actual and predicted values of 
creatinine. This blood biomarker has the highest value of RMSE, and the 
cause may be the existence of some values that are drastically higher 
compared to the rest of the analyzes, meaning some outliers could be 

Fig. 5. Importance scores of ten best features.  

Table 2 
Root mean squared error between predicted and actual values of blood 
biomarkers.  

Metric RMSE 

Blood biomarker SVM Decision 
tree 

KNN Extra 
tree 

Gradient 
Boost 

White blood cell 
(WBC) 

6.79 3.06 4.61 3.12 3.03 

% Lymphocytes 8.97 2.83 4.51 2.25 1.57 
MCHC 9.65 3.57 5.52 3.55 2.77 
RDW 1.07 0.45 1.12 0.36 0.35 
Hgb 16.87 12.35 8.9 8.50 10.12 
Urea 9.79 2.61 5.8 2.87 2.54 
Creatinine 140.36 97.84 103.65 47.73 55.23 
Albumins 7.84 1.96 5.48 1.56 1.63 
LDH 165.6 49.36 40.91 31.71 35.51 
CRP 116.13 46.61 34.09 42.47 41.68  

Fig. 6. Comparison between actual and predicted values of Hgb.  
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present in the dataset. 
The same explanation could be given for greater RMSE for LDH 

analysis where comparison between predicted and actual values is 
shown in Fig. 9. 

After evaluation of the results of patient’s hematology and clinical 
biochemistry analyses, it is possible to predict the patient’s clinical 
condition in advance. For the purposes of the classification task, several 

classification methods have been considered. In order to obtain the most 
accurate and precise classification model, five algorithms have been 
trained and their performances were evaluated on test set. Table 3 shows 
the metrics for each considered method. 

In order to get better insight in validation of performances of the 
proposed models, receiver operating characteristic (ROC) curve with 
area under the curve (AUC) and precision-recall (PR) with area under 
precision-recall (AUPR) were generated. Fig. 10(a) suggested that the 
classification performance of the XGBoost model is comparable with the 
SVM model. Although the AUC for XGBoost and SVM models is the 
same, AUPR (Fig. 10(b)) revealed differences between these two models 
(AUPR for XGBoost is 0.98 and AUPR for the SVM is 92). It can be 
concluded that XGBoost model has better performance in case of class 
imbalance. 

In order to validate the effectiveness of XGBoost model, we have 
performed 10-fold cross-validation on the training set and the results are 
presented in Table 4. 

XGBoost was trained to obtain optimal hyperparameters using grid 
search method and the final setting included number of tree estimators 
set to 100, max depth equals to 5, learning rate equal to 0.3, gamma 
equals to 1, ‘subsample’ and ‘colsample bytree’ both set to 1.Model was 
tested on 34 patients and achieved an accuracy of 94% in predicting the 
patient’s condition on day 14 after the hospital admission. We computed 
confusion matrix for this test set which is shown in Fig. 11 both for 
normalized and regular number of patients. 

Since the dataset is unbalanced, we considered other metrics such as 
precision, sensitivity, specificity and F1-score in addition to accuracy. In 
Table 5 all of these metrics for each class individually are shown. Despite 
the fact that dataset was rather are unbalanced, in terms of both tasks - 
regression and classification, we have achieved excellent results. In case 
that our model will not be able to recognize a class that is in the mi
nority, we would consider one of the methods such as SMOTE and 
random undersampling. 

Our validated XGboost model is a decision tree-based model, con
sisting of hundreds of trees whose rules are known and stand as a reason 
behind the final decision. Data scientists utilize XGBoost to tackle a 
variety of machine learning difficulties. Most deep learning algorithms 
are difficult to explain to medical professionals, both in terms of the 
process and the results they produce. In our study, interpretability is 
considered as a fundamental requirement for selecting machine learning 
model. Fig. 12 shows one such tree that is part of the XGBoost classifier, 
whose rules are understandable and based on if-then-else. This type of 
model is suitable for application in clinical practice due to its compre
hensibility. In this example of a tree, it can be seen that decisions about 
determination of a class of patient, indicating severity of clinical deci
sion, are based on a single tree. Although one tree is not enough for final 
decision, when several trees (i.e. hundreds) are investigated and 
analyzed, high accuracy will be achieved for the problem of classifica
tion. It should be emphasized that this analysis is automated and from a 
clinical point of view and final decision is met within seconds. 

4. Discussion 

Although there may seem that there are many studies on COVID- 
2019 disease prediction based on machine learning, most of these 
studies perform binary classification (positive-negative for COVID-19 or 

Fig. 7. Comparison between actual and predicted values of CRP.  

Fig. 8. Comparison between actual and predicted values of creatinine.  

Fig. 9. Comparison between actual and predicted values of LDH.  

Table 3 
Overview for the classification metrics for each algorithm.  

Algorithm Accuracy Specificity Sensitivity Precision F1-score 

XGBoost 0.94 0.98 0.97 0.95 0.96 
KNN 0.88 0.94 0.89 0.92 0.90 
SVM 0.82 0.93 0.88 0.80 0.83 
ANN 0.76 0.91 0.85 0.73 0.77 
RNN 0.56 0.77 0.37 0.51 0.37  
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severe-not severe disease). Yao et al. (2020) performed the study that 
mentions the detection of disease severeness, however, in reality, the 
study performs binary classification of severely ill (positive) samples 
against the patients with mild symptoms [28]. Secondly, the number of 
patients with COVID-19 used in this paper is relatively small, which may 
limit the accuracy of detection model. Banerjee (2020) used a public 
database with 598 patients, only 39 of whom were positive for 
SARS-CoV-2, to create an ML system to predict COVID-19 diagnosis. The 
authors produced a model with high specificity (91%) but low sensi
tivity (43%), which may preclude the model from being used in practice 
for early illness detection [37]. Joshi et al. (2020) applied a logistic 
regression model previously trained with 390 samples, out of which only 
33 were positive for COVID-19, achieving sensitivity and specificity 
values of 93% and 43%, respectively [38]. Furthermore, precise bio
markers linked with illness severity and patients’ hospitalization in 
critical care units are yet unclear, which may impede the development of 
future tailored therapies [39]. 

All the previous studies, even those that mention severity determi
nation, use binary classification (positive-negative samples, sever-not 
severe). The main advancement in our proposed methodology is that 

it is the only that uses multiclass classification – mild, moderate, severe, 
critical, as well as disease prerecession tracking in terms of change of the 
class (worsening or bettering of the condition). However, in order to 
compare the results of our study with other binary classification studies, 
Table 6 shows achieved metrics as reported in literature with our ach
ieved results. We have used only the papers with high sensitivity/ 
specificity and accuracy to compare with our proposed method. 

Cobre et al. [31] in its prediction use besides the complete blood 
count test, data from biochemical, urinary, bacteriological, and viro
logical tests aiming at identifying additional predictive biomarkers. 
However, in our study, we use only standard blood biomarkers as input, 
which adds to the daily praxis, especially in the times of pandemic, 
where there is no time for additional test and only standard tests can be 
used for high accuracy predication. 

Added value of our study is also connected to the interpretability, as 
the best results in our study are achieved by XGBoost, which is an al
gorithm based on decision trees. Other prediction models such as ANNs 
do not provide clinically useful interpretable rules that could explain the 
reasoning process behind their predictions. They just produce the ac
curacy score, precision score, and recall score, which represent the 
likelihood that a patient would get ill. This is especially true for data sets 
that are unbalanced or biased [40]. Beside achieving the best results, a 
good prediction model should clearly show the decision processes to 
medical workers. Therefore, we adopt XGBoost as a final model to make 
a trade-off between predictive power and interpretability. 

Fig. 10. a) Receiver operating characteristic curve (ROC) and b) Area under the precision-recall curve (AUPR).  

Table 4 
Classification metrics for each fold of training set.  

10-fold cross- 
validation 

Accuracy Specificity Sensitivity Precision F1- 
score 

1st fold 0.98 0.99 0.99 0.99 0.99 
2nd fold 1.00 1.00 1.00 1.00 1.00 
3rd fold 0.94 0.97 0.91 0.96 0.93 
4th fold 0.98 0.99 0.88 0.99 0.91 
5th fold 0.72 0.74 0.73 0.70 0.71 
6th fold 0.96 0.98 0.87 0.98 0.90 
7th fold 0.94 0.97 0.96 0.97 0.96 
8th fold 0.70 0.72 0.72 0.68 0.70 
9th fold 0.75 0.75 0.75 0.75 0.75 
10th fold 0.94 0.98 0.95 0.89 0.91 
Overall 0.89 0.91 0.88 0.89 0.88  

Fig. 11. Confusion matrix with normalized (left) and regular (right) values of patients.  

Table 5 
Overview of classification metrics for each class on test data.  

Class Sensitivity Specificity Accuracy Precision F1-score 

Mild 1.00 0.92 1.00 0.80 0.89 
Moderate 0.89 1.00 0.89 1.00 0.94 
Severe 1.00 1.00 1.00 1.00 1.00 
Critical 1.00 1.00 1.00 1.00 1.00 
Overall 0.97 0.98 0.94 0.95 0.96  
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5. Conclusion 

This paper deals with automatic ML methods for classification of 
patients with COVID-19 into several categories, namely severity of 
clinical condition. Our research further analyses the possibility for 
prediction of the change of category in advance, which means that the 
model predicts the patient’s clinical course during hospital stay until 
discharge or death. This research represents a proof of concept that a ML 
model is an efficient and informative method to gain insight into the 
COVID-19 disease process. From extensively implemented algorithms 
and hyper-parameter optimization, the following conclusions can be 
drawn:  

• Ten most important variables (features), strongly associated with 
patient conditions, are extracted from blood biomarkers using 
ANOVA F-test feature selection method.  

• Gradient boost regressor proved to be the best in predicting blood 
biomarkers, achieving root mean square error for WBC, lympho
cytes, MCHC, RDW, urea, albumins less than 3, and some larger 
RMSE for Hgb, creatinine, LDH and CRP, which can be explained 
with wider ranges of those biomarkers.  

• proposed methodology using XGBoost classifier is the most adequate 
for classification of patients into 4 distinct categories of clinical 
conditions (mild, moderate, severe, critical) with 94% of accuracy.  

• since the proposed methodology is rule-based (XGBoost can be 
described using IF-then rules) rather than black box, it is more 
suitable for implementation in real clinical practice.  

• coupled unsupervised and supervised algorithms are able to predict 
disease progression (mild to moderate, moderate to severe, severe to 
critical clinical condition) in advance. 

The main limitation of our study the fact that the dataset included 
105 patients. However, we have implemented different methods to 
overcome the drawbacks of small datasets and draw solid conclusions. 
Further research would be focused on collecting larger database of pa
tients as well as investigation other ML models that can be coupled with 
existing in order to create hybrid model which would achieve even 
larger accuracy. We would also like to include patients from other 
countries as then, geographical position of the country could be taken 
into account as additional feature. In such a way, we could investigate 
how geographical area influences the disease development in patients 
and possible reaction to COVID-19 as a function of geographical 
location. 
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Fig. 12. An example of tree which is a part of XGBoost classification model.  

Table 6 
Comparison with existing literature.  

Metrics Yao et al. [28] Pulgar-Sánchez et al. [29] Mahdavi et al. [30] Cobre et al. [31] Proposed method 

Best algorithm SVM MLP SVM Diagnostic 
ANN 

Severity 
ANN 

XGBoost 

Accuracy 0.8148 96.5 0.92 0.94 0.98 0.94 
Specificity 1.0 0.964 0.91 0.94 0.97 0.98 
Sensitivity 0.833 0.965 0.81 0.93 0.99 0.97  
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