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Abstract 

The nose is a complex and important organ with a multitude of functions. Computational fluid 

dynamics (CFD) has been shown to be a valuable tool to obtain a better understanding of the 

functioning of the nose. CFD simulations require a surface geometry, which is constructed from 20 

tomographic data. This can be a very time-consuming task when one chooses to exclude the sinuses 

from the simulation domain, which in general keeps the size of the CFD model more manageable. In 

this work, an approach for the semi-automatic construction of the human nasal cavity is presented. 

In the first part, limited manual interaction is needed to create a coarse surface model. In the next 

part, this result is further refined based on the combination of active shape modeling with elastic 25 

surface deformation. The different steps are bundled in a Matlab toolbox with a graphical interface 

which guides the user. This interface allows easy manipulation of the data during intermediate steps, 

and also allows manual adjustments of the reconstructed nasal surface at the end. Two results are 

shown, and the approach and its precision are discussed. These results demonstrated that the 
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followed approach can be used for the semi-automatic segmentation of a human nasal cavity from 30 

tomographic data, substantially reducing the amount of operator time. 

Keywords 

nose, statistical shape model, cylindrical parametrization, active shape model, elastic surface, 

graphical user interface 

1. Introduction 35 

The nose is an important organ which has multiple functions including olfaction, filtering, heating and 

humidifying the inhaled air. People who suffer from nasal function impairment can have a reduced 

quality of life (Rhee et al., 2003). Computational fluid dynamics (CFD) has been shown to be a 

valuable tool to study the functioning of the nose. Over the last 25 years, this technique has been 

increasingly used in several studies to predict airflow throughout the nasal cavity based on three-40 

dimensional models derived from computed tomography (CT) or magnetic resonance imaging (MRI) 

data (Keyhani et al., 1995, 1997; Subramaniam et al., 1998; Grant et al., 2004; Wexler et al., 2005; 

Garcia et al., 2007; Doorly et al., 2008; Leong et al., 2010, Rhee et al., 2011, Lindemann et al., 2013; 

Frank-Ito et al., 2014; Inthavong et al., 2017). CFD was used to understand the normal and 

pathological airflow physiology (Garcia et al., 2007; Wen et al., 2008; Di et al., 2013) by determining 45 

nasal resistance and local airflow effects of inferior turbinate reduction (Wexler et al., 2005)  septal 

perforation (Grant et al., 2004; Lindemann et al., 2013), septal deviation (Ozlugedik et al., 2008; 

Garcia et al., 2009), and radical sinus surgery (Lindemann et al., 2005). CFD can also be coupled to 

different physical laws, such as particle deposition and heating loss. Particle deposition in the nose 

depends on the airflow and is important for understanding the cleansing function of the nose and for 50 

drug delivery (Inthavong et al., 2006; Schroeter et al., 2006; Kimbell et al., 2007; Karakosta et al., 

2015).  

CFD could also add value as an objective tool for pre-operative assessment in the ear-nose-throat 

(ENT) department. A major obstacle for this field of application is the time needed to manually 
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construct a surface geometry of the nose from tomographic data (Tingelhoff et al., 2007). During 55 

stable respiration, the flow rate through the sinuses is only a fraction of that through the nose (Xiong 

et al., 2008), while the simulation domain is considerably larger and more complex when the sinuses 

are included. Both complexity and size of the domain have a major effect on the simulation time. 

When investigating non-sinus related pathologies, one could therefore choose to exclude the sinuses 

from the nasal cavity to simplify the computational models. 60 

Methods exist which are capable of producing adequate segmentations of the upper respiratory 

tract. Last et al. (2010) presented a model-driven approach based on parametric level set for the 

segmentation of the nasal cavity and paranasal sinus boundaries. Their aim was to extract the border 

between these regions of interest and the rest of the head, and they evaluated their method on 2D 

slices. The borders indicating the region of interest are however not suited for CFD calculations. In 65 

Bui et al. (2015), a multi-step level set segmentation procedure was created to construct the nasal 

cavity with paranasal sinuses from cone-beam computed tomography (CBCT) scans of the head. 

Other existing methods are based on thresholding (Dastidar et al., 1999; Shi et al., 2006; El et al., 

2011; Iwasaki et al., 2011) and region growing (Tingelhoff et al., 2007; Seo et al., 2010). An algorithm 

for the segmentation of the nasal cavity and pharyngeal airway in CBCT images has been presented 70 

in Alsufyani et al. (2016). In that work, localized threshold decomposition gradient segmentation 

(LEDGES) was used to locally select the threshold that indicates the region of interest. A free upper 

respiratory tract 3D model reconstruction software, called NASAL-Geom, was described in Cercos-

Pita et al. (2018). This software was optimized for producing 3D nasal geometries from CT scans. 

Burgos et al. (2017) developed a novel algorithm to build the 3D geometry from segmentation 75 

images, as an alternative to the Marching cubes algorithm (Lorensen and Cline, 1987). Based on their 

method they presented a model of the nose including the sinuses. 

The majority of the above methods are either restricted to a single image modality (cone-beam CT) 

or they are not designed to separate the nasal cavity from the sinuses, which can be desirable for 



4 
 

CFD calculations. In this paper another approach is followed that is not restricted by the image 80 

modality and that can separate the sinuses from the nasal cavity. This approach was also followed by 

Huang et al. (2016). However, in their work the statistical shape model (SSM) was constructed using 

level sets, which have some known weaknesses. 

In this work, the statistical shape model was built using point correspondences. The manual step, 

that is, the total segmentation process or only a refinement step, is replaced by a step based on 85 

active shape modeling (ASM). Replacing the manual step substantially reduces the amount of user 

interaction. A toolbox is created in Matlab (MathWorks, Natick, MA, USA) to guide the user through 

the whole segmentation process. 

2. Methods 

Our proposed Matlab toolbox is interface-oriented and divided in three parts. In the first part, the 90 

tomographic data is preprocessed by creating a binary 3D matrix, which is the coarse segmentation. 

In what follows, this step will be referred to as the ‘masking’ step. In the second step, the coarse 

result is further refined using a high quality SSM of the nasal cavity in combination with the ASM 

algorithm (Cootes et al., 1995) and an elastic surface deformation step (Amberg et al., 2007). This will 

be referred to as the ‘geometry’ step. As a final operation, the result is transformed back into a 95 

binary matrix, and the user has the opportunity to make some manual adjustments if needed. This 

step is called the ‘inspector’ step. Figures 1 and 2 show a general overview of the user interface and 

the different tabs that constitute the toolbox. 

2.1 Defining the region of interest 

After the CT data is loaded into the toolbox, the first step is to construct a region of interest by 100 

defining interval limits for the grayscales (figure 3). Grayscales within the interval are set to one – in 

this case the air cavities – and the other regions like soft tissue and bone are set to zero. Before 

applying these limits, a transversal closing operation has to be defined anteriorly on the nostrils and 

posteriorly on the floor of the turbinates, where the nasopharynx (NP) starts. During this closing 
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step, the voxels of one CT slice in a user defined region are set to a value higher than the maximum 105 

grayscale value in the CT scan. Those voxels form a boundary when the grayscale limits are applied, 

making this a simple but effective method to close a 3D region of interest. The closing operation is 

used for two reasons. Closing the nostrils makes it possible to separate air surrounding the head 

from the air filled cavities inside the head; as the interest goes out to the latter, only voxels 

corresponding to those cavities should be set to one. The second closing operation is related to the 110 

shape of the SSM used for the segmentation refinement. How exactly the SSM is defined and the 

purpose of the closing operation will be explained in detail in section 2.3.1. For the first closing 

operation there is the option to let an automated process close the nostrils. This process consists of a 

combination of morphological operations and was tested on a set of CT scans. For most scans the 

automated process gave good results, but because of considerable variation in the nostrils' shape 115 

and orientation, it is not fully robust, so a manual user intervention can be used as a second option. 

After the procedure, the voxels’ indices of the NP and throat are saved by clicking on one of the 

voxels belonging to those regions. These voxels will be added to the segmentation result when the 

coarse and fine segmentation steps are done ( section 2.4). The closing operation together with the 

limits for the grayscales defines the region of interest. The voxels within the region of interest are set 120 

to one and those outside of it (including the boundaries used for closing) to zero. 

2.2 Coarse segmentation: excluding the sinuses 

2.2.1 Watershed procedure 

Next, a watershed operation is applied on this binary matrix. More precisely, an Euclidean distance 

transform is carried out on the complement of the binary matrix. Next, an H-minima transformation 125 

is applied on the negative of this distance transform. This transformation suppresses all minima 

smaller than a defined value. Otherwise, the procedure would produce a large amount of sheds 

basins. The result forms the input for the watershed algorithm. This operation separates already 
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large parts of the sinuses from the real region of interest, i.e., the nasal cavity. Subsequently, the 

user can click on the parts that have to be deleted (figure 4).  130 

2.2.2 Morphological operations 

The basins resulting from the watershed algorithm are a fraction smaller in volume than the original 

region, because of the definition of the watersheds. Therefore, the user has the possibility to grow or 

shrink the indicated regions (sinuses) before subtracting them from the region of interest, and to 

remove any small clusters of voxels (called islands) that are formed by this operation (figure 5). In 135 

figure 6 an example is shown of a surface model obtained after applying this procedure. This surface 

was calculated from the binary data. The latter is the format in which it is used in the segmentation 

refinement (section 2.3). It is clear that almost all sinuses are removed, but the current geometry still 

contains some unwanted parts. These have to be removed when the geometry is going to be used as 

the simulation domain in CFD calculations. The further refinement of this result is explained in the 140 

following section. 

2.3 Segmentation refinement using ASM and elastic surface deformations 

2.3.1 Statistical shape model of the nasal cavity 

In the following, a brief explanation is given on the construction of the SSM. The morphological 

information contained in this nasal SSM is used by the ASM during the fitting process, as described 145 

later on. 

Data were obtained from 46 patients with different nasal or sinus related complaints, where the 

treating ENT physician requested a CT scan. The spatial resolution of the scans ranges from 250 µm 

to 430 µm perpendicular to the axial direction, and from 250 µm to 600 µm in the axial direction. 

From each CT scan a geometrical surface model was built by segmentation using Amira 6.0.1 (FEI, 150 

Hillsboro, OR, USA). Grayscale thresholding was applied to determine the nasal passages. The nasal 

cavity and sinuses were manually separated by a single operator for all CT data to avoid inter-
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operator generated variations between segmentations. From now on, these manual segmentation 

results will be called labels. 

To be able to create a SSM, all training meshes have to contain the same amount of vertices, which 155 

have to be located at the same anatomical position. Surface meshes for which this condition holds 

are said to ‘correspond’. The algorithm used for this correspondence step is discussed further on, and 

demands that all training surfaces have topology genus-0. Holes in the labels were therefore filled. 

The end of the post-nasal region is different for all nasal shapes, because the field of view varies 

between scans. When not corrected for, a large non-anatomical variation would be introduced in the 160 

shape model, as the extent over which the scan was taken affects the length of the post-nasal region. 

For this reason the labels cannot be used as is. To create matching post-nasal regions, the labels 

were cut perpendicular to the axial direction at the floor of the inferior turbinates.  

Next, a triangulated surface geometry is built from the generated labels using the Marching Cubes 

Algorithm (Lorensen and Cline, 1987), which is smoothed in a following step. With smoothing one 165 

should always try to minimize potential surface shrinkage. In Amira 6.0.1 a surface smoothing 

algorithm is implemented based on Taubin (1995), called “Curve and surface smoothing without 

shrinkage”. For all shapes a tiny hole was cut in both nostrils at the same anatomical position, hereby 

fulfilling the final condition of the correspondence algorithm. Using Paraview 5.4.0 (Kitware Inc., NY, 

USA), mirrored versions of the nasal cavity shapes were created. Because the number of shapes is 170 

doubled, the amount of variation present in the shape model will be larger.  

The next step in building the SSM is the surface correspondence, which results in a dense one-to-one 

map between the training surfaces. To guarantee a uniform surface sampling, the correspondence 

method of Huysmans et al. (2010) was modified. The method consists of four main steps. Each 

surface was cylindrically parameterized in the first step, using the method of Huysmans et al. (2004), 175 

supplying the vertices of each surface with coordinates that define a low-distortion one-to-one 

mapping between each surface and the cylinder. The small holes in the nostrils made earlier, 
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correspond to the two boundary ends of the cylinder. Between any two nasal cavities in the training 

set, a correspondence can be derived by composition of these maps. In the second step, a rigid 

transformation of the surfaces is done and the parameterizations were rotated for optimal alignment 180 

following the minimum description length (MDL) objective of Davies et al. (2002). MDL, a measure 

based on the minimum description length principle, encodes the training surfaces in a message using 

the PCA model obtained with the correspondence. The combined length of the message with the 

encoded model gives the quality of the correspondence. There is a trade-off between goodness-of-fit 

and the complexity of the model. The MDL measure introduced by Thodberg (2003) was used in this 185 

work, which is a function of the shape mode variances. The correspondences were further fine-tuned 

in the third step, by non-rigid deformations in the parametric domain for each of the surfaces. 

Optimality was again measured with the MDL objective. The optimal parameterizations were used in 

the final step to generate a vertex correspondence for the training set, such that each shape is 

represented with a fixed number of landmarks. Across the training set, these landmarks are at 190 

corresponding anatomical locations. 

As a result, each nasal shape is represented by a set of points distributed over the boundary. Each of 

them is located at the same anatomical location on all shapes. From the 92 corresponded nasal 

shapes a SSM was built by applying principal component analysis (PCA) on the vertices of the 

surfaces. A nasal shape was considered to be independent of position and orientation, but not of 195 

scale. Procrustes analysis was used to determine the optimal poses. During Procrustes analysis, the 

entire training set is aligned with a reference shape. In the first iteration, a shape from the set is 

chosen as reference shape. From then on, the average shape calculated in the previous iteration is 

used as reference. During the analysis, translational differences were removed by aligning the 

centroid of each training shape, and the rotation matrix between each training shape and the 200 

reference shape was calculated using quaternions. The PCA delivered an average nasal shape 𝑥̅ and 

an orthogonal set of eigenvectors 𝜙𝑘 representing the shape variations. The average nasal shape is 

symmetrical because both the original and mirrored versions are included in the dataset. New and 
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existing nasal shapes can be described as the sum of the average nasal cavity and a linear 

combination of those shape variations, also called shape modes (figure 7). Some of the eigenvectors 205 

will only explain a small fraction of the total variation captured by the shape model, and they 

potentially describe variation caused by noise in the training data. The dimensionality of the shape 

space can therefore be further reduced, for example by defining a cut-off value for the cumulative 

variance. 

2.3.2 Active shape model 210 

The active shape modeling algorithm uses these shape modes to deform the average nasal shape,  in 

combination with an appearance model which steers these deformations. For more information, the 

reader is referred to Cootes et al. (1995). In that work the appearance model was built from binary 

data obtained from the manual segmentations. The so called profiles 𝑔𝑠𝑖  (where 𝑖 denotes a 

landmark) with length 2𝑙 + 1 are sampled perpendicular to the boundary of the nasal shape (𝑙 in 215 

both directions plus the vertex position). Doing this for the whole training data set leads to a set of 

samples {𝑔𝑠𝑖} for every model point. An average sample line 𝑔𝑎𝑖 and covariance matrix 𝑆𝑖 can then 

be calculated for each landmark. During the fitting process, the inverse of 𝑆𝑖 is used to calculate the 

so called Mahalanobis distance D, defined as: 𝐷𝑖 = √(𝑔𝑠𝑖 − 𝑔𝑎𝑖)′𝑆𝑖
−1(𝑔𝑠𝑖 − 𝑔𝑎𝑖)     (eq. 1) 

Minimizing 𝐷𝑖 maximizes the probability that 𝑔𝑠𝑖  is drawn from the distribution with average 𝑔𝑎𝑖 and 220 

covariance matrix 𝑆𝑖. To ensure non-singularity of the covariance matrices, random noise with a 

range 1000 times smaller the range of the covariance matrices is added to the sampled training data. 

This is done only for the calculation of 𝑆𝑖
−1. The average sample lines 𝑔𝑎𝑖 and inverse covariance 

matrices 𝑆𝑖
−1 form the appearance model. Appearance models with different profile lengths can be 

calculated in advance of the fitting procedure, creating a database. During the fitting procedure the 225 

user can choose from this database of models. 
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The procedure starts by initializing the average shape 𝑥̅ of the statistical shape model. For active 

shape modeling, this initialization of the symmetrical average nasal shape is an important condition 

to ensure a qualitative outcome. It becomes extremely difficult to ensure a good fit when the 

initialization of a complex model like the human nose is far from the optimum at the beginning, 230 

especially within a reasonable time frame. From the binary result obtained in the coarse 

segmentation, a centroid is calculated and 𝑥̅ is translated from the origin to this centroid. The user 

interface allows manual adjustments, that is, translations 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 and rotations 𝜃𝑥, 𝜃𝑦, 𝜃𝑧, to 

optimize this initial pose with direct visual feedback. 

In a next step, the appearance model can be loaded into the toolbox. At his point, fit parameters 235 

have to be set. More information on these settings can be found in section 2.3.4. While fitting, the 

appearance model steers the deformations because it is used in combination with the profiles 

sampled perpendicular to the surface. This is done in the following way: for every vertex of the nasal 

shape, a sample line of length 2𝐿 + 1 is defined perpendicular to the nasal shape. At each position of 

this sample line, a profile of length 2𝑙 + 1 is sampled.  240 

The goodness of fit can be tested using 𝐷𝑖 for the different positions, and the one with the lowest 

value indicates the new optimal position for the vertex at that iteration. This process is done for 

every landmark at each iteration step 𝑗. The vertices are translated to their best match, which 

deforms the nasal shape 𝑥. The shape parameters 𝑏𝑘 describing 𝑥 are calculated, and in a next step 

this shape is projected back to the known shape space by limiting the parameters 𝑏𝑘 to plus or minus 245 

n (with 𝑛 ≤ 3) times the standard deviation 𝜎𝑘. 𝑏 and 𝜎 are both vectors with size equal to the 

number of shape modes. Repeating these steps represents the basic active shape modeling 

algorithm, and can be mathematically expressed as: 

𝑥𝑗
𝑖
min𝐷𝑖
→     𝑥𝑗

𝑖′ 

(eq. 2) 
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𝑏𝑗
𝑘 = 𝜙𝑘

−1
(𝑥̃𝑗
𝑖′ − 𝑥 𝑖̅) 

(eq.3) 250 

−𝑛𝜎𝑘 ≤ 𝑏𝑗
𝑘 ≤ 𝑛𝜎𝑘

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑏𝑗+1

𝑘  

(eq. 4) 

𝑥̃𝑗+1
𝑖 = 𝑥 𝑖̅ + 𝜙𝑘𝑏𝑗+1

𝑘  

(eq. 5) 

𝑥̃𝑗+1
𝑖

𝑎𝑑𝑑 𝑝𝑜𝑠𝑒
→       𝑥𝑗+1

𝑖  

(eq. 6) 

 

where 𝑥̃ denotes the shape without pose (so after the Procrustes alignment of 𝑥 with 𝑥̅). When the 255 

projection to the shape space is done and 𝑏𝑗
𝑘 is calculated, pose is added back to the nasal shape, 

giving 𝑥𝑗+1
𝑖 , which forms the start of a new iteration. The choice for the value of n depends on 

whether the projection to the known shape space produces realistic shapes (shapes with no 

intersecting faces). It can also be set to a value lower than 3. 

The procedure explained above is extremely sensitive to bad matches based on the Mahalanobis 260 

distance. A landmark that is shifted to a bad location, and hence becomes an outlier, will have a 

considerable impact on the value of the b-parameters, because 𝑏𝑗
𝑘 is calculated using all landmarks. 

One outlier can have a big impact on the projected shape, causing it to diverge away from the shape 

of interest. For example, when all positions along the sample line have high Mahalanobis distances, 

the algorithm would just take the one with the least high value. As a consequence, the matching 265 

point can be way off. To avoid this, two criteria were added to the algorithm: 𝐷𝑖 < 𝐷𝑐 (eq. 7) and 

𝐷𝑎𝑙𝑜𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑖𝑛𝑒  ≠ 𝑐𝑠𝑡 (eq. 8). Equation 7 expresses that landmarks with a Mahalanobis distance 
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higher than a chosen critical value are not used in the projection step. Equation 8 states that 

landmarks with a constant Mahalanobis distance along the entire sample line are also excluded from 

the projection step. For these landmarks no true optimal position was found because only voxels 270 

corresponding to air are sampled. Only the landmarks that meet these two conditions are used 

during the projection. In the beginning this can be a small fraction of the total number of landmarks. 

The number of landmark vertices that contribute changes during the fitting process, as shape 

deformations will cause a vertex to have a new sample line. Another way is to alter the critical value 

𝐷𝑐 during subsequent iterations. In the current setup, this is done indirectly by using a user defined 275 

percentage of points that should contribute, and by calculating 𝐷𝑐 by ranking the vertices by their 

value of 𝐷.  

Resampling the appearance data allows bigger landmark translations and can therefore accelerate 

the fitting. However, in the current implementation this was deemed unnecessary because of the 

thorough initialization step executed at the start of the fitting process. 280 

2.3.3 The nasal cavity as an elastic surface 

It is impossible for a shape model based on 46 training shapes and their 46 mirrored counterparts to 

already capture the full scale of nasal shape variation that exists. On the other hand, variation that is 

already captured should be exploited as good as possible during fitting. This can only be done when 

the correspondence between the shape model and the new, to be fitted, nose is optimal. Only then 285 

the shape model will fully be able to determine if the shape falls within the known shape space. If 

during fitting the model gets stuck in a local minimum and the projection step is not able solve this, 

the model will not fit optimally to the new nasal shape. A mechanism is needed to correct this. 

Otherwise, the fitted shape has a high probability to wrongly fall outside of the known shape space. 

The method used in this work models the nose as an elastic surface, and is based on Amberg et al. 290 

(2007). Between two consecutive iterations, the elastic surface is allowed to stretch. The amount of 

stretch depends on the stiffness of the surface, which lowers with increasing number of iterations. In 
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the beginning the surface is quite stiff, such that the surface can only undergo a global scaling. 

Further on in the fitting process, the surface becomes less stiff and each landmark can move more 

and more independently. A landmark position is represented using homogeneous coordinates 295 

𝑣𝑖 = [𝑥 𝑦 𝑧 1]
𝑇, and with each of them an affine 3 x 4 transformation matrix 𝑋𝑖  is associated. Each 

landmark is aiming for the optimal position with coordinate 𝑢𝑖  as determined by the appearance 

model. This leads to a 4n x 3 matrix 𝑋 for the whole nasal shape, with n the number of landmarks. 

From a mathematical standpoint, the minimum of the energy function 𝐸𝑡𝑜𝑡𝑎𝑙(𝑋) = 𝐸𝑑(𝑋) + 𝛼𝐸𝑠(𝑋) 

(eq. 9) has to be found. 𝐸𝑑  and 𝐸𝑠 are respectively the distance and stiffness term, and 𝛼 the stiffness 300 

factor. 𝐸𝑑 is minimized by minimizing the distance between the current position of the landmarks 

and their optimal positions. This means that during the elastic step, the deformation of the surface is, 

just like during the ASM step, based on vertex translations along the surface normals. Using the 

Frobenius norm ‖. ‖𝐹, the distance term can be written as (Amberg et al., 2007): 

𝐸𝑑(𝑋) =∑𝑤𝑖||𝑋𝑖𝑣𝑖 − 𝑢𝑖||²

𝑣𝑖

 

= ‖𝑊(𝐷𝑋 − 𝑈)‖𝐹
2  

(eq. 10) 305 

𝑊, 𝐷 and 𝑈 are defined by: 

        𝑊 =

[
 
 
 
𝑤1

𝑤2
⋱

𝑤𝑛]
 
 
 
, 𝐷 =

[
 
 
 
𝑣1
𝑇

𝑣2
𝑇

⋱
𝑣𝑛
𝑇]
 
 
 

 ,       𝑈 =  [

𝑢1
𝑢2
⋮
𝑢𝑛

] 

(eq. 11) 

 

The diagonal entries 𝑤𝑖 of the matrix 𝑊 are weights associated with each vertex pair (𝑣𝑖, 𝑢𝑖). In this 

work binary weights were used, meaning that the vertex pair either contributes or does not 310 

contribute to the energy term. The value of these weights is directly linked to the outlier detection in 
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the active shape modeling step. Landmarks were seen as outliers when no new optimal position that 

satisfies equation 7 and 8 could be found. Likewise, the weight 𝑤𝑖 of these outliers is set to zero 

during the elastic step. 

The stiffness term 𝐸𝑠 penalizes differences between the transformation matrices of neighboring 315 

landmarks. This term is minimized when all landmarks undergo the same transformation 𝑋𝑖. The 

stiffness term can be expressed as (Amberg et al., 2007): 𝐸𝑠(𝑋) = ‖(𝑀 ⨂ 𝐺)𝑋‖𝐹
2
 (eq. 12). Where ⊗ 

denotes the Kronecker product and 𝐺 is a diagonal matrix given by: 

 

𝐺 = [

1
1

1
𝛾

] 

(eq. 13) 320 

𝛾 is a weighting factor for differences in the skew and rotational part of the deformation versus 

differences in the translational part of the deformation. The value of 𝛾 in this work is set to 1 for all 

executed fitting procedures (in the following also called runs). 𝑀 is the so called node-arc incidence 

matrix, for more information the reader is referred to Jeter (1986). A row in 𝑀 corresponds to one 

edge of the nasal shape, and a column to one vertex. M is constructed by numbering all edges and 325 

vertices of the surface model and directing the edges from the lower numbered to the higher 

numbered vertex. Matrix 𝑀 is a sparse matrix, where an entry 𝑀𝑒𝑑𝑔𝑒,𝑣𝑒𝑟𝑡𝑒𝑥 is only nonzero if that 

specific edge connects the vertex to another neighboring vertex. The entry will be plus or minus 1 

depending on whether the edge leaves from or arrives at the vertex, respectively. 

The factor 𝛼 gives a weight to this stiffness term, and in this way acts as virtual stiffness factor. In the 330 

beginning when 𝛼 is high, the first term of equation 9 becomes negligible. The determination of the 

lower boundary for 𝛼 requires trial and error, and is specific to each problem. In case of the nasal 
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cavity, a very unsmooth surface (with possible local peaks) is unwanted, therefore 𝛼𝑛 always remains 

larger than 1. In practice, a value of 4 seemed suited. 

Using equation 10 and 12, the total energy term can be written as: 335 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑋) = ‖[
𝛼𝑀⨂𝐺
𝑊𝐷

]𝑋 − [
0
𝑊𝑈

] ‖
𝐹

2

  

𝐸𝑡𝑜𝑡𝑎𝑙(𝑋) = ‖𝐴𝑋 − 𝐵 ‖𝐹
2  

(eq. 14) 

 

𝐸(𝑋) is a quadratic function and can be minimized directly. It reaches its minimum for 𝑋 =

 (𝐴𝑇𝐴)−1𝐴𝑇𝐵. When 𝑋 is known, 𝐷𝑋 deforms the shape obtained from the active shape modeling 

step, exactly minimizing 𝐸𝑡𝑜𝑡𝑎𝑙. The resulting shape is the input for the next ASM iteration. 340 

2.3.4 Geometry tab settings 

Figure 2 includes a detailed view of the ‘geometry’ tab. At the top, there are two lines right below 

the option to manually change the centroid. One contains the directory of the shape model, and the 

other contains the database directory of the appearance model. The appearance models are named 

in a specific way, such that when one is loaded the number of appearance scales and the length of 345 

the profile lines used to generate the ASM are automatically known and set. At this moment, the 

half-length 𝐿 of the sample line, the percentages of initial points, and the number of iterations for 

every percentage level have to be defined. 

Two final inputs concerning the elastic surface step need to be entered: the weight 𝛾 and the 

boundaries (𝛼𝑛, 𝛼1) of the stiffness factor 𝛼𝑗. With each iteration 𝑗, the stiffness factor decreases 350 

from the maximum value 𝛼1 to the minimum value 𝛼𝑛 following: 
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𝛼𝑗 = 𝛼1 − [(
(𝑗 − 1). √𝛼1 − 𝛼𝑛

𝑛 − 1
)

2

]  

(eq. 15) 

Where 𝑛 denotes the total number of iterations. Equation 15 describes a quadratically decreasing 

function and was found suitable by trial and error. 355 

During fitting, three parameters are calculated and shown (the two latter also plotted): the current 

iteration number, the percentage of points used (POPU) and the percentage of points satisfying the 

sampling criterion (POPSSC). The POPU graph will converge more and more to the POPSSC graph 

during fitting, where the POPSCC always forms the upper limit for the POPU. At the end though, they 

do not have to coincide. 360 

2.4 Voxelizing the geometry 

As described in the section above, the active shape modeling is alternated with an elastic 

deformation step. When the amount of iterations defined by the user is reached, the algorithm stops 

and delivers the nasal shape in the form of a surface mesh (vertices, faces). As a next step, the user 

should be able to compare the segmentation result with the original tomographic data, allowing a 365 

visual estimate of the goodness of fit (just like this is the case when manually segmenting a nose). 

When a region is segmented suboptimally, it should also be straightforward to make changes to the 

existing segmentation. A surface mesh is not appropriate for these steps. The mesh was therefore 

voxelized, making use of the Matlab file exchange package called “Mesh voxelization” (Mesh 

voxelization, 2013). Voxelization sets all voxels inside the surface to one and the ones outside of it to 370 

zero. The details of the applied technique do not fall in the scope of this work, and in the following 

the underlying idea is only briefly discussed. 

Using the vertices of the surface mesh, the bounding box dimensions can be calculated, and this box 

can be subdivided into voxels. One defines rays starting at the bottom face of the bounding box, 
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which propagate perpendicular to the face. For each ray, the coordinates (𝑥𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡) of the 375 

intersections with the surface mesh can be listed. In a next step, the z-coordinate of these 

intersections can be calculated using the equation for a plane in 3D-space: 𝐴𝑥𝑖𝑛𝑡 + 𝐵𝑦𝑖𝑛𝑡 + 𝐶𝑧𝑖𝑛𝑡 +

𝐷 = 0 (eq. 16). When all intersections (𝑥𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡 , 𝑧𝑖𝑛𝑡) for each ray are known, the voxels in between 

are set to one, while the others remain zero, and a binary matrix is obtained from the nasal surface 

mesh. 380 

2.4.1 Inspecting the result 

It is also at this moment that the voxels of the NP and throat are added to this binary matrix. These 

voxels were removed in the very beginning using the closing operation. In the following, the 

voxelized nasal surface mesh together with the voxels of the NP and throat will be called the 

segmentation matrix. 385 

The inspection of the segmentation result is made possible by combining it with the original CT data 

and the original binary matrix. A first way is to impose the segmentation result on the original CT 

data. Another possibility is to check which voxel has a higher or lower value in the segmentation 

matrix compared to the corresponding voxel in the binary mask. This allows making a visual map of 

the goodness of fit (figure 8), and changes can be made accordingly (section 2.4.2). The map is 390 

defined as follows: 

𝑉𝑜𝑥𝑒𝑙𝑆𝑒𝑔𝑚 > 𝑉𝑜𝑥𝑒𝑙𝐶𝑇   →  𝑏𝑙𝑢𝑒 

𝑉𝑜𝑥𝑒𝑙𝑠𝑒𝑔𝑚 > 𝑉𝑜𝑥𝑒𝑙𝑏𝑖𝑛𝑎𝑟𝑦    →  𝑟𝑒𝑑 

𝑉𝑜𝑥𝑒𝑙𝑠𝑒𝑔𝑚 < 𝑉𝑜𝑥𝑒𝑙𝑏𝑖𝑛𝑎𝑟𝑦    →  𝑔𝑟𝑒𝑒𝑛 

 

The blue color indicates voxels belonging to the segmentation result which are potentially correct. 

No distinction is made between a voxel positioned at a sinus or in the nasal cavity. Green indicates 
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voxels with a value of one in the original binary matrix and zero in the segmentation result. Ideally, 395 

all voxels and only the voxels of the sinuses are green, meaning that the fitting procedure would have 

completely excluded the sinuses. Voxels which have a value of one in the segmentation result and 

zero in the binary matrix are colored in red. Ideally, no voxel should be red, because this indicates 

that the active shape model segmented a voxel that does not belong to the nasal cavity. However, 

there are two exceptions. The surface correspondence step placed a restriction on the topology of 400 

the shapes. Because of this, it is expected that the active shape model will for example ignore a nasal 

septum perforation. This can easily be manually adjusted. The second exception concerns the voxels 

of the NP and throat that were removed during the closing step. As a logical consequence, these 

voxels will be colored in red. During inspection it can also be that loose red voxels are visible, which 

correspond to minor differences between the segmentation matrix and the binary matrix. In this 405 

case, it should be estimate if changes are needed. 

2.4.2 Modifying the result 

The way modifications are applied is very similar to the methods used in commercial 3D analysis 

software like for example Amira. A resizable brush is controlled via the mouse and used to add or 

delete voxels to the segmentation. For the modifications a split screen is used. Both screens are 410 

locked by slice number, thereby always showing corresponding slices. Adjustments are made on the 

right screen and the color codes are shown on the left screen, allowing immediate feedback. Voxels 

that have a value of zero in the original binary matrix, indicating soft tissue and bone, should have no 

voxels with a value of one in the eventual segmentation results. This comes down to adding new red 

voxels. Such voxels added during the manual adjustment step will automatically be removed. 415 

3. Results 

The results of two runs are given below. For both runs the settings were as follows: a total of 24 

iterations were applied; the half-length 𝐿 of the sample line was 30; 𝛾 was set to 1; and the stiffness 

𝛼 ranged from 40 to 4. The b-parameters were limited to 3 standard deviations. Using the ‘parallel 
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pool’ feature of Matlab, the calculations were done on 16 cores of an Intel Xeon CPU (E5 2630 v3 2.4 420 

GHz). The color map of the active shape modeling step was created by using the values of the 

minimal Mahalanobis value along the sample line, as calculated for each landmark. The logarithm of 

these values was taken and an interpolation was done across the nasal surface. Red and blue indicate 

a high and low value, respectively. Small light blue squares are superimposed on this color map. 

These squares indicate the landmarks that contribute to the calculation of the b-parameters. In the 425 

beginning only a small percentage of landmarks (those with the lowest Mahalanobis distance) will 

contribute. With each iteration, this number will steadily increase (as can been seen on the figures 

below) up until 95 percent in the final iteration. 

3.1 Segmentation of a training nose 

Figure 9 shows the intermediate results that were obtained during the fitting process of a CT scan 430 

corresponding to one of the training shapes of the shape model. On top, the initialization of the 

shape model (in blue) in the binary matrix (gray) is depicted. At that moment, no iterations of the 

ASM algorithm have been applied. Subsequently, an ASM step was alternated with an elastic surface 

deformation, and both results are shown for the 6th, 12th, 18th and 24th (final) iteration. 

Because a manual segmentation result is available for this nose, it is possible to have an objective 435 

quantification of the segmentation accuracy. In this work, the Dice coefficient (Taha and Hanbury, 

2015) was used. The Dice coefficient is defined as: 

𝐷𝐼𝐶𝐸 =
2|𝑋⋂𝑌|

|𝑋| + |𝑌|
 

(eq. 17) 

with 𝑋 and 𝑌 two sets of binary data, and |𝑋| and |𝑌| the number of elements in each set. The 

coefficient can take any value from 0 to 1. A value of 1 indicates a complete overlap, and 0 indicates 440 

no overlap. The value for the Dice coefficient of this fit was 0.869.  
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3.2 Segmentation of a new nose 

The result shown in figure 10 is obtained by applying the fitting procedure on an unseen nose. This is 

done by leaving one shape out of the shape model training data. The nose that was left out was the 

same nose used in section 4.1. In this way, both results can be compared in the discussion section. 445 

The value obtained for the Dice coefficient was again 0.869. 

4. Discussion 

4.1 Statistical shape model 

Clinical tomographic data is used to calculate the average morphology of the nasal cavity and their 

variation with a high precision. It is beyond the scope of the present work to analyze in depth how 450 

the airway statistical shape model is created. Here, we focus on how this how this model, combined 

with the active shape modeling algorithm, can be applied for the semi-automatic segmentation of a 

nasal cavity from CT data. The reader is referred to Huysmans et al. (2010) for further information on 

the correspondence algorithm. 

Geometrical surface models are needed to create a SSM. These models are created by segmentation, 455 

which depends to some degree on the operator's subjective input. To avoid inter-operator generated 

variation in the shape model, all segmentations in this study were done by the same operator. 

In this work, the choice was made to cut the training shapes at the floor of the inferior turbinates, in 

the postnasal region. From these shapes the average shape and the shape modes were calculated, 

such as shown in figure 7. This choice leads to an extra step in the segmentation process. First the NP 460 

needs to be excluded, but later on it has to be included again to obtain the full nasal cavity, with NP. 

However, this extra step adds only a fractional amount of time to the total process, and defining the 

shape model like this also has some advantages. The principal components obtained from these 

training shapes contain more detail about the morphological variation of this part because the 

considered shape is smaller. Also, because of this choice for the shape of the SSM, an extra surface 465 

part at the bottom of the postnasal region is created. This extra part is like a cap that seals the 
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bottom of the back-end of the nasal cavity. When the NP would be included in the shape model, this 

cap would be positioned much lower. Landmarks on this cap will, just like the other landmarks, 

contribute during the ASM algorithm. In the beginning of the algorithm, when the shape model is 

initialized, its shape is still very different from the shape that has to be reconstructed. Only a small 470 

part of the landmarks at the back-end will at this time find an appropriate match. Because of this, 

only a fraction will contribute to the deformation of the shape model. The contribution of these extra 

landmarks is therefore useful. They pull the shape model towards the cap at the inferior side, while 

at the same time the landmarks on the superior side pull towards the other side. This combined 

action causes a stable grow of the back-end, increasing the probability that the other landmarks will 475 

also find an appropriate match.  

A major advantage of SSM is the small amount of parameters needed to describe the shape 

variation. Because higher principal components represent small variations, most of the variation can 

be represented with a limited number of parameters. For the nasal shape model, PC 47 to 95 have a 

combined contribution of around 5 percent. The active shape modeling algorithm makes optimal use 480 

of this parameter reduction during the shape projection step. 

The SSM technique used in this work has as disadvantage that all shapes need to have the same 

topology (genus-0). This is not always the case for every nose (e.g. nasal septum perforation) and is 

not demanded by every SSM approach, for example level-set based SSMs. However, segmentation 

differences caused by this can easily be detected and subsequently be manually dealt with. 485 

4.2 Active shape modeling 

Another technique comparable to ASM is active appearance modeling (AAM). This algorithm uses a 

model that represents both variations in shape and in voxel intensity. The model is also trained using 

labelled images, with landmarks marked on each training object. For more information, the reader is 

referred to Cootes et al. (1998). In contrast to ASM, updating the current position of a model vertex 490 

for an AAM does not use sample lines to search locally around that vertex. Instead it uses the full 
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image data under the current shape instance and looks at the difference between the image sample 

and a manufactured model sample to update model parameters. In Cootes et al. (1999) the ASM 

algorithm was compared with the AAM algorithm. They used two data sets: a set of faces and a set of 

MR brain sections. They report that AAM gives a better match to the image intensity, and that  AAMs 495 

allow building a convincing model with a relatively small number of landmarks. They also found that 

ASMs have a larger capture range because they sample around the current position of the vertices. 

ASM is faster than AAM and achieves more accurate feature point location. The choice was therefore 

made to use active shape modeling. 

In this work, binary appearance was used. This means that a new CT scan first needed to be 500 

transformed into a binary matrix. At that point, a watershed transformation was applied as a 

preprocessing step to already remove a large part of the sinuses. This allowed a better estimate of 

the centroid for the initialization of the shape model, which also significantly lowers the probability 

that during fitting the shape model tries to fit to a wrong structure. This binary approach has a major 

benefit: all the subsequent steps in the toolbox (coarse and fine segmentation) are independent of 505 

data modality. This means that in principle CT, CBCT and MRI should make no difference and the 

toolbox should be able to process data coming from the different imaging techniques. However, 

further testing on all data modalities has to be done and evaluated to confirm this statement. With 

respect to MRI data, this will largely depend on the quality of the delineation of the boundaries of 

the nasal cavity and sinuses, such that it is possible to define a region of interest. For MRI scans, this 510 

delineation can be poor.  

The fine segmentation allowed excluding those parts of the sinuses that remained after the coarse 

segmentation. In this way, the paranasal sinuses are totally excluded from the nasal cavity. 

4.3 Voxelization 

After the fine segmentation step, the resulting mesh is voxelized. This allows making changes to the 515 

segmentation result on the basis of prior knowledge. For example, when a septal perforation is 
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present in the original data or an occlusion is not fitted well by the ASM, it can easily be adjusted on 

the basis of anatomic insight. Comparing the result with the original tomographic data is also 

straightforward. However, the voxelization step itself can have an influence on the segmentation 

result. An objective estimate to quantify this influence is not that trivial when one wants to start 520 

from an instance of the shape model (triangular surface mesh). For example, starting from the 

average nasal cavity, a voxelization step can be applied. Without any editing, the reverse step is 

taken and one again ends up with a triangular surface mesh of the nasal cavity. However, the 

generated triangular surface does not need to have the same amount of vertices and those vertices 

do not have to be on the same anatomical position. Using a sum of squares as a measure for the 525 

difference between the vertices of the initial average nose and the one obtained after the two steps 

is not possible without first applying a correspondence step. This correspondence step can have its 

own influence, hereby having a confounding effect on the value obtained for the influence. The 

choice was therefore made to make an estimate using the Dice coefficient. A surface mesh is 

generated, and subsequently voxelization is applied. Results were obtained for a simple sphere at 530 

different grid resolutions (40³, 80³, 160³). This gave an almost constant Dice coefficient 0.924, which 

is a rather low value given the simplicity of the considered object. Improving this algorithm in the 

future may yield a significant increase in the accuracy of the segmentation matrix. 

When the segmentation is part of a CFD analysis, the final format is often a 3D surface mesh of the 

nose. In this case, after the manual step, a surface generation step is needed. The process of surface 535 

generation can also have an effect on the result, but this is non-specific to the approach of this work 

and is exactly the same in the case of a complete manual segmentation. 

 4.4 Other work 

As was mentioned in the introduction, other methods exist to perform segmentation of the upper 

respiratory tract. In the following, those which relate the most to the presented work are discussed.  540 



24 
 

Last et al. (2010) applied a data-based shape model based on a parametric level set. They aimed to 

segment the combination of the nasal cavity and paranasal sinus boundaries, because these are the 

critical structures in robot assisted functional endoscopic sinus surgery (RAFESS). They report great 

performance in the segmentation of the overall shape of nasal cavity, maxillary and ethmoidal 

sinuses. For the construction of their deformable shape model they also used hand-segmented 3D CT 545 

data. However, their method concentrates on segmenting the nasal structures one 2D slice at a time. 

Such an approach inherently has a higher probability of sharp local jumps in the combined 3D result. 

For RAFESS this will probably not pose an issue, but the result of the same slice-wise approach for 

sole segmentation of the nasal cavity would be less appropriate for e.g. CFD calculations. 

Bui et al. (2015) also used level set segmentation. A coarse-to-fine multilevel procedure was created 550 

to construct the nasal cavity together with paranasal sinuses from CBCT data. In comparison to the 

semi-automatic approach presented in the current paper (where user interaction is required during 

the coarse steps and shape initialization), the approach of Bui et al., does not require manual 

interaction. Gaussian mixture model thresholding and morphological operators are used to 

automatically locate the region of interest and to initialize the active contour. This fully automatic 555 

approach has some advantages and should be taken into consideration for further developments. 

In Huang et al. (2016) it is put forward that methods using prior knowledge, for example a shape or 

appearance model, perform better because they are able to detect the narrower airway passages 

within the nasal cavity. They also made use of a shape model, but in combination with a locally 

constrained random walk algorithm. However, in their work the shape model was constructed using 560 

level sets. Level sets have some known weaknesses. For example, gaps in a boundary can cause the 

evolving contour to leak through these gaps. Objects with incomplete contours therefore have the 

chance to be identified only partially and/or incorrectly. Other common problems in level sets are so 

called shocks, which can arise in level sets and cause problems like orientation discontinuity (Suri et 
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al., 2002). A CPU implemented level set method can also be very slow when working with big 3D data 565 

volumes. 

A free upper respiratory tract 3D model reconstruction software, called NASAL-Geom, was described 

in Cercos-Pita et al. (2018), which was optimized for producing 3D nasal geometries from CT scans. In 

NASAL-geom, the reconstruction process is a combination of morphological operations; no prior 

knowledge of for example shape is used. The software consists of three stages: preprocessing the 570 

images, nasal cavity segmentation and constructing the 3D geometry. A sequence of filter operations 

and transformations is applied on the image data before these are used to extract the voxels 

representing the air.  A combination of a 3D and 2D watershed algorithm is used for this, followed by 

a nostril refinement step. The final stage is based on the Marching Cubes Algorithm (Lorensen and 

Cline, 1987), polygon decimation and smoothing. The software is open source. In the longer term, it 575 

is also the intention to make the current Matlab toolbox open source, which will expedite further 

development. 

In contrast, “Mecomland”, discussed in Burgos et al. (2017), is a paid product of ServiMeCom 

(Computational Medical Services). In their work, they report as a main contribution the development 

of a novel interpolation algorithm to build a 3D model from the label files. They report that this is 580 

better suited for the complex nasal geometry than the Marching Cubes Algorithm. 

 4.5 Future directions 

In the near future it is intended to increase the amount of nasal training shapes. This will have a 

positive effect on the nasal variation captured by the statistical shape model, which will further 

increase the probability that an unseen nose falls within the known shape space. It will increase the 585 

robustness and accuracy of the algorithm. Because of this, the manual intervention time that is 

needed at post processing will shorten, until eventually a point is reached where (almost) no post-

processing is needed. A situation in which a newly segmented nasal cavity automatically becomes a 

new training shape for the SSM is preferable. An online portal providing access to the tool would be 
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an optimal method for this, as it would allow centralized data gathering and supervision. Periodical 590 

updates of the SSM can then be made for everyone to benefit from. Before such a portal can be 

achieved, a robustness and accuracy baseline has to be reached. 

Different approaches for the shape models have to be tested in the future, i.e. if segmentation using 

a multi-SSM approach (e.g. one SSM for each sex or age group) gives better results than  one SSM  

trained on all shapes. The former demands that all collected shape data is divided into classes in 595 

function of demographics. 

A first good future addition to the toolbox would be the option to include a part of the outer face to 

the segmentation domain. This makes it possible to define a highly realistic boundary condition at 

the nostrils during the CFD calculations. A second improvement to the current version would be the 

option for the user to exclude/include the sinuses to the domain after the segmentation refinement 600 

step. 

Another point of work is the voxelization algorithm, as observed by applying it on a simple shape. 

Improving this will contribute to an increase in segmentation accuracy. 

Adding quality measures to the toolbox would also be an upgrade. For example, measures that 

quantitatively describe how good the boundary of the chosen mask is fitted by the shape model at 605 

each iteration. Currently, the exact amount of fitting iterations at which the algorithm is stopped is 

determined by the user. Developments towards a more automatic manner based on user defined 

conditions, like for example the quality of fit or the maximum number of iterations/maximum fitting 

time would be an improvement. 

5. Conclusion 610 

The obtained results demonstrated that the approach presented in this work can be used for the 

semi-automatic segmentation of a human nasal cavity from tomographic data, which substantially 

reduces the amount of operator time. The value for the Dice coefficient (0.869) indicates that for 
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now, some small manual changes at the end are preferable. One set of nasal data was left out of the 

training data and the fitting procedure was applied to the corresponding CT scan. Comparing the Dice 615 

coefficient to the one with the nose included in the training data (both were equal), showed that the 

technique looks promising in terms of generalization (how well the shape model fits new unseen 

noses). There is however still room for improvement. 
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Figure 1: general view of the user interface. On the top left, by clicking on the tab names, the tabs belonging to 

the three different steps become visible. When CT data is loaded into the toolbox, a grayscale histogram is 

shown and information appears in the ‘properties’ tab. The first three view tabs (located on top of the main 740 
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window) in combination with the slider allow choosing a transversal, sagittal or coronal slice respectively. 

Clicking on one of the last three tabs shows the different intermediate results (if already obtained). In the 

bottom tab, short information or error messages are displayed. 

 

 745 

 

Figure 2: detailed view of the three main tabs used during the fitting process. From left to right, the ‘mask’, 

‘geometry’ and ‘inspector’ tab are shown, respectively. The first two tabs constitute the steps that have to be 

taken to go from the original CT data to a segmented result. The last tab allows the inspection of the 

segmentation result and manual adjustments. 750 

 

Figure 3: example of a coronal slice of the human head. A user can determine the grayscales of interest by 

choosing the lower and upper limit. During this step, the voxels belonging to the region of interest are indicated 

in blue, providing an immediate visual feedback while changing the limits. 
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 755 

Figure 4: coronal slices after the watershed procedure at different scan positions. The user can click on the 

(visually separated) parts to remove them. When a region is clicked in one coronal slice, the complete 3D part is 

removed from the matrix. 
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Figure 5: coronal slices for two scan positions at different steps in the coarse segmentation procedure. The top 760 

images show the original binary matrix overlain with the watershed parts that were indicated by the user in the 

previous step. These parts were then grown in size and subtracted from the binary matrix. As a final step, small 

clusters of voxels created by the subtraction, called islands, were removed. 

 

 765 

Figure 6: example of a surface model created from binary data in the coarse segmentation step. It is clear that 

almost all sinuses are removed, but that the current geometry still contains some unwanted parts. This 

geometry will become the simulation domain in a later step, so these have to be removed. 

 

Figure 7: first four shape modes of the SSM. They are obtained by applying the principal components to the 770 

average shape for different multiples of the standard deviation [-2.5 – 2.5]. The color map represents the 

magnitude (in mm) of variation for the i
th

 principal component. 



36 
 

 

Figure 8: example of a visual map of the goodness of fit. The nasal cavity is blue and the sinuses are green. 

Scattered around the nasal cavity some red voxels can be found, which correspond to minor differences 775 

between the segmentation matrix and the binary matrix. A map such as the one shown here corresponds to a 

quasi-perfect segmentation (for this slice). 

 

Figure 9: intermediate results when fitting to a training shape of the shape model. On top, the initialization of 

the shape model (in blue) in the binary matrix (gray) is depicted. Intermediate results are shown for the ASM 780 
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and the elastic step at four moments in the fitting process. The color map of the ASM step represents the 

minimal Mahalanobis value. The logarithm of the value at each landmark was taken and an interpolation was 

done across the nasal surface. Red and blue indicate a high and low value, respectively. Light blue squares 

superimposed onto this color map indicate the landmarks that contribute to the calculation of the b-

parameters.  785 

 

Figure 10: intermediate results when fitting to an unknown shape (leave-one-out). On top, the initialization of 

the shape model (in blue) in the binary matrix (gray) is depicted. Intermediate results are shown for the ASM 

and the elastic step at four moments in the fitting process. The color map of the ASM step represents the 

minimal Mahalanobis value. The logarithm of the value at each landmark was taken and an interpolation was 790 

done across the nasal surface. Red and blue indicate a high and low value, respectively. Light blue squares 

superimposed onto this color map indicate the landmarks that contribute to the calculation of the b-

parameters. 


