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Resumo 

 

 

Um breve exame do atual tráfego Internet mostra uma mistura de serviços conhecidos e 

desconhecidos, novas e antigas aplicações, tráfego legítimo e ilegítimo, dados 

solicitados e não solicitados, tráfego altamente relevante ou simplesmente indesejado. 

Entre esses, o tráfego Internet não desejado tem se tornado cada vez mais prejudicial 

para o desempenho e a disponibilidade de serviços, tornando escasso os recursos das 

redes. Tipicamente, este tipo de tráfego é representado por spam, phishing, ataques de 

negação de serviço (DoS e DDoS), vírus e worms, má configuração de recursos e 

serviços, entre outras fontes. 

Apesar dos diferentes esforços, isolados e/ou coordenados, o tráfego Internet não 

desejado continua a crescer. Primeiramente, porque representa uma vasta gama de 

aplicações de usuários, dados e informações com diferentes objetivos. Segundo, devido 

a ineficácia das atuais soluções em identificar e reduzir este tipo de tráfego. Por último, 

uma definição clara do que é não desejado tráfego precisa ser feita. 

A fim de solucionar estes problemas e motivado pelo nível atingido pelo tráfego 

não desejado, esta tese apresenta: 

1. Um estudo sobre o universo do tráfego Internet não desejado, apresentado 

definições, discussões sobre contexto e classificação e uma série de 

existentes e potencias soluções.  

2. Uma metodologia para identificar tráfego não desejado baseada em 

orquestração. OADS (Orchestration Anomaly Detection System) é uma 

plataforma única para a identificação de tráfego não desejado que permite 

um gerenciamento cooperativa e integrado de métodos, ferramentas e 

soluções voltadas a identificação de tráfego não desejado. 

3. O projeto e implementação de soluções modulares integráveis a 

metodologia proposta. A primeira delas é um sistema de suporte a 

recuperação de informações na Web (WIRSS), chamado OADS Miner ou 

simplesmente ARAPONGA, cuja função é reunir informações de segurança 

sobre vulnerabilidades, ataques, intrusões e anomalias de tráfego 

disponíveis na Web, indexá-las eficientemente e fornecer uma máquina de 

busca focada neste tipo de informação. A segunda, chamada Alert Pre-

Processor, é um esquema que utilize uma técnica de cluster para receber 

múltiplas fontes de alertas, agregá-los e extrair aqueles mais relevantes, 

permitindo correlações e possivelmente a percepção das estratégias usadas 

em ataques. A terceira e última é um mecanismo de correlação e fusão de 

alertas, FER Analyzer, que utilize a técnica de descoberta de episódios 

frequentes (FED) para encontrar sequências de alertas usadas  para 

confirmar ataques e possivelmente predizer futuros eventos.  

De modo a avaliar a proposta e suas implementações, uma série de experimentos 

foram conduzidos com o objetivo de comprovar a eficácia e precisão das soluções. 

 

Palavras-Chave: Tráfego Internet não Desejado, Orquestração, Correlação de Alertas, 

Descoberta de Episódios Frequentes, WIRSS.   
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Abstract 

 

 

A brief examination of the current Internet traffic shows a varying mix of known and 

unknown services, legacy and new applications, legitimate and illegitimate traffic, 

solicited and unsolicited data, highly relevant and unwanted traffic. Among these, 

unwanted Internet traffic is increasingly becoming harmful to network performance and 

service availability, often taking up processing and scarce network resources. Typically, 

unwanted traffic is represented, in general, by spoofing activities, spam, phishing, DoS 

and DDoS, virus and worms, misconfiguration, or among other sources.  

Nonetheless, there are many isolated and coordinated efforts to deal with this 

issue, unwanted Internet traffic continues to grow. First, because basically unwanted 

traffic represents a wide range of user applications, network data and harmful 

information with different objectives for its existence. Secondly, the inefficiency of the 

current solutions to identify, reduce, and stop unwanted traffic is notorious. The 

increase in Internet link bandwidth and service mix makes the timely detection of 

unwanted traffic an interminable task that does not scale easily as such links increase in 

capacity. Lastly, a clear definition of what is unwanted traffic remains to be elaborated.  

In order to address these problems and motivated by the current alarming 

situation that unwanted traffic has reached, this thesis presents: 

4. A study of unwanted Internet traffic universe, presenting definitions, discussing 

about context and classifications, and a series of existing and potential solutions. 

5. An approach to identify unwanted traffic based on orchestration defined as 

OADS. OADS (Orchestration Anomaly Detection System) is a single-platform 

for unwanted traffic identification management to allow an integrated 

management of all cooperative methods, tools and events for unwanted traffic 

identification. 

6. The design and implementation of three tools. The first one is a Web 

Information Retrieval Support System (WIRSS), called OADS Miner or 

ARAPONGA, gathering security information about vulnerabilities, attacks, 

intrusions and traffic anomalies available on the Web, indexing them efficiently, 

and providing a focused search engine. The second one is an Alert Pre-Processor 

tool, which employs a cluster approach to receive multi-source alerts, aggregates 

them and extracts the most relevant, allowing their correlation and possibly 

perception of their attack strategy. The third and last one is an alert correlation 

and fusion tool, OADS FER Analyzer, which employs a Frequent Episodes 

Discovery (FED) technique to discover sequences of alerts applied to confirm 

attacks and predict future events. 

In order to evaluate this proposal and its implementations, a set of 

experimentation were conducted, aiming to prove the efficacy and accuracy of tools.  

 

Keywords: Unwanted Internet Traffic, Orchestration, Alert Correlation, Frequent 

Episodes Discovery, WIRSS 
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Chapter 1  

Introduction 

 

 

A brief examination of current Internet traffic shows a varying mix of known and 

unknown services, legacy and new applications, legitimate and illegitimate traffic, 

solicited and unsolicited data, highly relevant and unwanted traffic. Among these, 

unwanted Internet traffic is increasingly becoming harmful to network performance and 

service availability, often taking up scarce precious network and processing resources. 

Typically, unwanted traffic is generated by backscatter
1
 from spoofing activities, 

unsolicited electronic messages (spam), phishing
2
 and pharming

3
 attempts, denial of 

service attacks (DoS and its distributed form - DDoS), virus and worms spreading, 

misconfiguration, among other sources.  

Unwanted Internet traffic can be considered an Internet plague, which 

consequences are reflected in financial losses around the world. Statistics provided by 

the Computer Security Institute (CSI) [1] and public security agencies such as the 

American FBI indicate that the financial losses occasioned by network attacks, 

intrusions and anomalies reached approximately US$ 252 million in last three years [2] 

[3][4]. The Gartner Inc. [5] reveals that financial fraud hit 7.5% of Americans in 2008. 

The Radicati Group [6] estimated global losses equivalent to US$ 198 billion related to 

spam messages in 2007. In addition, they predicted that the number of spam messages 

would reach 79% of the volume of global e-mail messages in 2010. Recent studies 

prove that the proliferation of this traffic is so fast that 3G networks [7] are beginning to 

feel its negative effects. 

In Brazil, despite the lack of an accurate figure showing the level of financial 

loses, the statistics provided by the CSIRT (Computer Security Incident Response 

Team) reveal an alarming increase of the number of incidents. The CERT.br (Computer 

Emergency Response Team Brazil) [8] reported 222,528 security incidents in 2008, an 

increase of 39% in relation to 2007, where almost 62.3% were fraud attempts. It also 

recorded 108,242 notifications of breach of copyright via distribution on P2P networks. 

The CAIS (Centro de Atendimento a Incidentes de Segurança) [9] recorded more than 

35.000 security incidents.  

In spite of the old presence of unwanted traffic in the Internet, only recently 

some serious isolated and coordinated efforts are being taken to deal with this problem 

and the losses it has been causing. This is witnessed, among other things, by the large 

number of workshops and conferences dedicated to the exchange of experience and 

tools in the combat of this phenomenon. Examples of such meetings include SRUTI
4
 

(Steps to Reducing Unwanted Traffic on the Internet) and the setup of an Internet 

                                                           
1
 Backscatter is the traffic received from victims that are responding to denial of service attacks.  

2
 Phishing is a form of electronic fraud, characterized by attempts to acquire sensitive information, such 

as passwords and credit card numbers, to be getting as a trustworthy person or a company sending a 

communication electronics officer as a mail or an instant message. 
3
 Pharming is a technique that uses kidnapping or "contamination" of the DNS (Domain Name Service) to 

redirect users to a fake domain. It can also redirect users to sites not authentic through proxies controlled 

by phishers, which can be used to track and intercept the typing. 
4
 http://www.usenix.org/events/sruti05/ 
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Architecture Board (IAB) working group on unwanted traffic that resulted in the RFC 

4849 [10], in addition to flagship communication and networking conferences such as 

the ACM SIGCOMM
5
.  

Despite these separate efforts, this type of traffic continues to grow. First, 

because basically unwanted traffic represents a wide range of user applications, network 

data and harmful information with different objectives for its existence. Some of it may 

be pure nuisance such as spam messages, other consists of bulky multimedia content 

result from technological trends in applications, networks and users‟ habits, including 

P2P file sharing (e.g., Emule, Bit torrents), video sharing (e.g., Justin.tv
6
, Joost

7
, 

YouTube
8
), and recreational traffic (e.g., MP3 downloads, instant messaging, Skype, 

MSN), and finally one finds specially designed intrusive traffic targeting networking 

resources and service availability such as worms, viruses, and denial of service attacks. 

Secondly, the inefficiency of the current solutions to identify, reduce, and stop 

unwanted traffic is notorious as well described in recent works [10][11][12]. The 

increase in Internet link bandwidth and service mix makes the timely detection of 

unwanted traffic a boring task that does not scale easily as such links increase in 

capacity. Typically, the existing solutions trigger alarms often after some damage was 

already caused. More active strategies need to be put in place to speed the detection and 

response up. Nowadays, while some users are recovering from given problems from 

unwanted traffic, others are next to be subjected to it. 

Lastly, a clear definition of what is unwanted traffic remains to be made. 

Someone‟s unnecessary or even harmful traffic may be seen as someone else‟s normal 

service. Recreational applications such as online games, instant messages, P2P 

applications, VoIP and video services, and emerging social networks can be considered 

normal activities by given ISPs, while being inappropriate in most enterprise networks. 

Since it is hard to get consensus over this, a single and flexible solution capable to 

accommodate all concerns becomes more and more difficult.  

To sum up, this thesis is motivated by the current alarming situation that 

unwanted traffic has reached. It becomes clear that this type of traffic stands as one of 

the key security problems and one that needs urgent identification and mitigation 

although it is still not trivial how to do so. Issues as types, sources and goals need to be 

carefully studied and answered so that effective actions can be undertaken to mitigate 

the effect of the unwanted traffic.  

This thesis shares the view that:  

 Limiting the line of defense to peripheral mechanisms provides a small 

picture of a wide scenario. 

 The use of highly specialized systems to combat specific problems can 

achieve little benefit and these are inefficient in handling other types of 

unwanted traffic including new ones. 

 The distributed and collaborative solutions are primordial to get an early 

interception and filtering out of suspicious traffic and to ensure a limited 

damage by such type of traffic. 

                                                           
5
 http://www.sigcomm.org/ 

6
 http://www.justin.tv 

7
 http://www.joost.com 

8
 http://www.youtube.com 
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1.1. Objectives and Contributions 

Actually, strategies for dealing with unwanted traffic are based on three steps: (i) to first 

gain knowledge of the different types and sources of unwanted traffic, (ii) to assess their 

impact and the effectiveness of existing solutions against these, and (iii) to develop and 

test effective new countermeasures against unwanted traffic.  

The main goal of this thesis is to achieve these steps focusing on the study, 

definition and description of the problem of unwanted Internet traffic identification and 

consequently putting forward a solution that is able to accurately identify this traffic.  

Overall, there are five contributions on this thesis: 

1. The study of unwanted Internet traffic universe. The work begins by 

introducing the reader into the world of unwanted Internet traffic. 

Definitions, classifications and gives some examples designed to explain the 

growth of this traffic (Chapter 2). Next, many solutions to deal with 

unwanted traffic are also presented (Chapter 3). 

2. An approach to identify unwanted traffic based on orchestration 

(Chapter 4). The proposal of a single-platform for unwanted traffic 

identification management to allow an integrated management of all 

cooperative methods, tools and events for unwanted traffic identification is 

detailed next. Denominated OADS (Orchestration-oriented Anomaly 

Detection System), it specifies a framework capable to receive multiples 

inputs (alerts) from different anomaly detectors, evaluates them and decides 

of any likely existence of some type of traffic anomaly.  

3. The design and implementation of the Alert Pre-Processor tool (Chapter 

5). This tool employs a cluster approach to receive multi-source alerts, 

aggregates them and extracts the most relevant, allowing their correlation 

and possibly perception of their attack strategy. To sum up, this tool has the 

potential to reduce the bandwidth and computational load at the 

(centralized) server(s), decreasing the false negative rate and prioritizing the 

most relevant alerts.  

4. The design and implementation of an alert correlation and fusion tool, 

OADS FER Analyzer (Chapter 6). More specifically, this tool relies on the 

gathering and correlation of incoming alerts, aiming to discover sequences 

(or frequent episodes) and predict future alerts and consequently possible 

targets of anomalies. To achieve this, it adopts episode frequency analysis, 

an adaptive technique that observes and develops knowledge, in the form of 

probabilistic rules, to generate relationships among events (alerts) that 

anticipate and make up a given attack. 

5. The design and implementation of a Web Information Retrieval 

Support System (WIRSS) tool, OADS Miner (Chapter 7). This tool 

gathers security information about vulnerabilities, attacks, intrusions, and 

traffic anomalies available on the Web. It has two main applications. The 

former collects data from distinct and reliable Internet sources and indexes 

them efficiently, excluding irrelevant information. The latter provides a 

focused search engine that allows ISP network operators, IT managers and 

researchers to better understand of the causes, effects and trends involving 

attacks and anomalies on the Internet. 
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In order to evaluate the ideas behind this Thesis and its implementations, a series 

of experimentation were conducted, aiming to prove the efficacy and accuracy of the 

adopted solutions. The obtained results can be used to give insights and ideas towards 

building future robust network architectures that may avoid some of the pitfalls and 

unpredicted shortcomings of protocol design leading to unwanted traffic domination of 

the Internet.  

1.2. Road map 

This Thesis is organized in three parts. The first part provides the background required 

to understanding this work. It consists of two surveys: one on unwanted Internet traffic 

universe and other one relates to solutions suggested in dealing with it. Readers who are 

familiar with unwanted Internet traffic definitions and known solutions against it can 

skip this part. The second part describes the design aspects of the proposed approach for 

unwanted traffic identification. The implementation of each component is showed in 

individual chapters, describing some related works and the artifacts employed for their 

deployment. The third part shows the evaluation results of the current unified proposal. 

The implemented tools are tested in different scenarios and using both controlled and 

injected real Internet traffic.  

Part I - Background 

In Chapter 2, background notions required to understand the Thesis are provided. First, 

an overview of unwanted Internet traffic is introduced. Some formal definitions are 

presented and a new one is provided. Next, existing classifications of unwanted traffic 

are presented and a new one, related to legitimate traffic, is formalized. Furthermore, 

the most relevant points, aspects and shortcomings on the Internet architecture design 

are discussed to establish a relationship with the current level of unwanted Internet 

traffic found today. The existence of an underground economy, commonly related with 

attacks and the proliferation of this traffic, is also discussed. Last, the most recent 

unwanted traffic types are presented, including Internet infrastructure attacks, popular 

“social activities” like spam, phishing, and P2P applications; malicious codes, and 

uncommon traffic as encapsulated traffic.  

Chapter 3 discusses unwanted traffic solutions and the combat to do away with 

it. First, some current mechanisms and solutions are presented and their failures with 

regard to unwanted traffic are discussed. Second, some promising and relevant solutions 

are described. In this section, a survey of approaches to traffic analysis, together with 

special emphasis on traffic behavior analysis and its applicability to identify, 

characterize, and detect unwanted Internet traffic, are presented. Last, collaborative 

solutions are described, including requirements to develop this type of solution and 

many related works.  

Part II – OADS Approach and Tools 

Chapter 4 explains the Thesis vision for what is the next step in direction of the 

automatic and quick detection and limitation of unwanted Internet traffic. The proposal 

of the Orchestration oriented Anomaly Detection System (OADS) is presented. The 

idea behind this approach is to harmonize a range of components (anomaly detectors, 

information bases, alert handlers, analyzers, and decision service) via an orchestration 

engine, emulating the interaction among different and distinct elements and increasing 

the accuracy of a diagnosis towards an event. The OADS approach facilitates the 

management of unwanted traffic identification, by providing means to integrate 
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(collaboration) different anomaly detectors and consequently increasing the network 

security level. 

 

In Chapter 5, the design and implementation of OADS Alert Pre-Processor tool 

is presented. It focuses on solving the problem of the large number of overwhelming 

alerts generated by intrusion and anomaly detectors whenever abnormal or suspicious 

activities are detected. Since inspecting and investigating all reported alerts manually is 

a difficult, error-prone, and time-consuming task, the concepts of entropy and relative 

uncertainty are applied to developed a simple tool capable to automatically aggregate 

large volume of multi-sources alerts (without specific prior knowledge about them) and 

next extracting only the most significant ones. This module is able to deduce simple 

scenario attacks and take immediate actions.  

In Chapter 6, the design and implementation of OADS FER Analyzer tool is 

presented. This chapter evaluates the benefits of the use of frequent episodes analysis to 

correlate and predict alerts with a high confidence level. Therefore, the implementation 

of this tool is presented and some tests are made to confirm its efficiency in the presence 

of anomalous traffic. Making use of a more representative input (only relevant alerts 

from OADS Alert Pre-Processor), it is proved that the tool is capable to correlate these 

alerts, allowing a better representation of attack scenarios and taking more effective 

countermeasures. 

In Chapter 7, the design and implementation of an OADS Internet Miner tool is 

presented. The focus of interest is to help ISP network operators and IT managers in 

enlisting the help specialized Web sites containing vulnerabilities reports and Internet 

traffic statistics in an attempt to keep up to date with current security threats and 

incidents, minimize their impacts and speed up both detection and mitigation phases. 

While making use of information retrieval concepts such Web-based Information 

Retrieval Support System (WIRSS) and Search Support Engine (SSE), a module 

focused on gathering information about Internet security events (OADS Miner) is built 

into the unified solution.  

Part III – Results 

Chapter 8 describes the implantation and evaluation of the OADS approach. First, the 

orchestration heuristic is presented and explained. Next, relevant points of the 

implementation (and not previously discussed) are described to provide a better 

knowledge of the adopted OADS approach. Therefore, five experiments, representing 

and emulating different but real scenarios, are conducted in order to test the OADS 

prototype.  

Chapter 9 presents the Thesis conclusion. It reviews and summarizes the Thesis 

contributions, discusses some lessons learned and points towards interesting future 

works. 

1.3. Bibliographic Notes 

Most of the work presented in this Thesis appears in previously published or currently 

submitted conference proceedings and journals. The list of related publications is shown 

hereafter: 

 L. E. Oliveira, R. Aschoff, B. Lins, E. L. Feitosa, D. Sadok. Avaliação de 

Proteção contra Ataques de Negação de Serviço Distribuídos (DDoS) 
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Chapter 2  

Unwanted Internet Traffic 

 

 

Not all unwanted Internet traffic should be seen as harmful. All involved parties 

(Internet Service Providers - ISP, Telecoms, enterprises, end users, for example) have 

different views about what is unwanted traffic or not, and, consequently, the way that 

they react to it is also similarly different.  

This chapter defines unwanted Internet traffic according to some works and 

presents a new definition that includes both legitimate and illegitimate traffic. The 

problem involving the context is also discussed and illustrated using some examples. 

Then, a formal classification and a new one based on common traffic and application 

features is presented. Next, some possible reasons that could explain the recent increase 

of this type of traffic are enumerated. Architectural Internet design and choices are 

analyzed and a relationship with unwanted traffic generation is established. Finally, a 

discussion of the main types or sources of this traffic is made. The main or more known 

types are explained and examples of results are described. 

2.1. Definition 

Initially introduced in the beginning of the 80‟s, the term “unwanted traffic” was always 

associated with some incidents like viruses, worms, intrusions and attacks. Some of 

those became famous such as the Internet worm [13] and DDoS attack to eBay, 

Amazon, and CNN.com [14].  

Only recently unwanted traffic has been used to define any Internet unsolicited, 

non-productive, not desirable, and illegitimate traffic. Pang et al. [15] define unwanted 

traffic as a non-productive traffic composed by malicious (flooding backscatter, scans 

for vulnerabilities, worms) or benign (misconfiguration) traffic. They term this as 

background radiation traffic and include backscatter traffic related with DoS and DDoS 

attacks response, scan activities, spam, and exploits traffic. They also refer to unwanted 

traffic as “up to no good” traffic. Soto [16] adds that unwanted traffic also can be 

generated by traffic corrupted by noise or interference on network transmission lines. 

Indeed there were many occasions where misconfigured routers or faulty networking 

equipment would send huge amounts of traffic towards networks where it was not 

needed. Xu et al. [17] characterize unwanted traffic as malicious or unproductive traffic 

that attempts to compromise vulnerable hosts, propagate malware, spread spam or deny 

the use of valuable services. Other existing nomenclatures are: background traffic [10], 

abnormal traffic [15] and “junk” traffic [18]. 

Despite the previous definitions comprehend almost all aspects related to the 

generation and impact of unwanted traffic, a recent and important factor is not 

considered: financial gains. For this reason, this thesis defines unwanted traffic as: any 

not requested and unwanted network traffic, which its unique purpose or outcome is 

consuming network and computing resources, wasting communication, processing and 

storage time and money of the users or the owner of the resources while often 

generating profitability for hackers in some form [19].  
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2.1.1. Context problem 

In spite of these definitions, there is no consensus about what is unwanted traffic. 

Commonly, such “concept” is relative and dependent of the context in which it is 

located or applied, and of the used application. For example, China treats the traffic 

generated by SkypeOut application [20], a service that allows Skype voice over IP users 

to access the worldwide public switched telephone (PSTN) lines, as illegal because it 

affects the profit of the government owned Telecommunication Company. 

Following the same logic, ISPs, Telecoms, and public and private enterprises 

began to limit the use of Peer-to-Peer (P2P) file sharing and video sharing (YouTube, 

for example). They argue that the generated traffic of these applications is potentially a 

breach for distributing malicious code such as spreading viruses, worms, spywares, and 

bots to their customers. In addition, it breaches copyright protection, consumes 

unnecessary bandwidth, and wastes work-time of employees.  

This same view has been given to recreational applications (online games) and 

activities such as emerging social networks (Orkut
9
, MySpace

10
, Facebook

11
, for 

example) and relationship applications such as IRC (Internet Relay Chat), instant 

messages (MSN
12

 and Google Talk
13

, for example). The most recent case involves the 

Comcast Company, which in October 2007 was secretly discovered degrading several 

popular peer-to-peer applications, including BitTorrent [21]. 

2.2. Classification 

Typically, the strategy for dealing with unwanted traffic is to gain knowledge about it 

and then establish deterministic ways for detecting it in the traffic mix. For this reason, 

it is necessary to categorize and classify unwanted traffic in terms of its nature (root 

causes, common types, targets and effects).  

The first formal unwanted traffic taxonomy was specified at an IAB (Internet 

Architecture Board) workshop [10]. It proposes a classification of the deliberately 

created unwanted traffic in enterprise networks into three categories: Nuisance, 

Malicious, and Unknown. 

 Nuisance, as the name says, covers the background traffic that clogs 

bandwidth and resources like computing power and storage. Typical 

examples include Spam and P2P file sharing since this kind of traffic 

normally carries malware or lures the user to access unreliable links. 

Regarding to P2P traffic, there is the cumbersome issue of the infringement 

of copyright. Beyond Spam and P2P, this category can also include DoS and 

DDoS attacks. Denial of Service attacks, as their name suggests, remove 

temporarily access to a service by bombarding this with service requests. 

Although one of the most used forms of attacks, they are often quickly 

detected and cause only loss of service time which may sometimes reflect 

on enterprise revenues. Often the loss is limited to service unavailability, 

seen as a nuisance at best. DDoS attacks usually generate an unusual traffic 

                                                           
9
 http://www.orkut.com 

10
 http://www.myspace.com 

11
 http://www.facebook.com 

12
 http://www.msn.com 

13
 http://www.google.com/talk 
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profile where many hosts target a single server in a very short duration by 

sending a very high number of service requests. This traffic profile is used 

in the detection and identification of such attacks. 

 Malicious represents the traffic responsible for spreading malware 

including viruses, worms, spywares, and others. An important fact is that 

after incidents caused by malicious traffic are detected, the solution 

demands specific tools, skills and time. The high level of losses that this 

class of unwanted traffic requires a fast and efficient response and costly 

constant software updating. In addition, it is normally specific to targeting 

operating systems, router and other software vulnerabilities. To complicate 

matters, there are even kits available in the Internet to teach any user how to 

create new versions of viruses and worms. 

 Unknown involves all traffic that even when belonging to the above 

categories it could not be identified as such (malicious traffic encrypted or 

merged with legitimate traffic, for example) or those that nobody knows 

anything about their intentions or sources. Quiet worms like Storm [22] are 

another example. They open backdoors on hosts and stay dormant for a long 

time. Generally, this kind of bad traffic results in the greatest financial 

losses.  

Another classification was proposed by Soto [16] where the unwanted traffic is 

categorized according to its primary or secondary sources. A primary source 

corresponds to the initiator of a communication such as when using a request like TCP 

SYN (TCP request with SYN flag set used to open a new connection), UDP, and ICMP 

Echo Request packets. Primary sources hence may include P2P services, spam email, 

viruses and worm propagation, intrusions, and massive attacks. Secondary sources 

correspond to traffic responses like TCP SYN/ACKs, TCP RST/ACKs, and ICMP. This 

class of unwanted traffic includes all traffic originated by backscatter and benign traffic. 

In spite of important, the classifications of unwanted traffic seen so far do not 

consider one aspect: legitimate traffic. As previously mentioned, the discussion about 

what actually is unwanted traffic or not depends of where this occurs and the business 

model used. Considering this assertive, any traffic, even legitimate, that infringes one‟s 

business model is not welcome and labeled as unwanted. Based on this fact, this chapter 

presents another classification that also includes the legitimate unwanted type of traffic.  

Unwanted traffic is therefore split into the following four categories:  

 Malicious codes represent the kind of unwanted traffic employed purposely 

to damage initially hosts and consequently networks, without the user 

consent. Normally, these malicious codes steal data, allow unauthorized 

access to resources, exploit systems, and utilize the compromised hosts and 

networks to proliferate more unwanted traffic. This category is composed by 

viruses, worms, trojan horses (and variants such as remote access trojans 

and “gimme
14

”), and spywares. Among all of them, worms and trojan horses 

are considered the most “contagious” because of their capability of 

including unhealthy hosts in botnets (networks of invaded and controlled 

hosts), generate a massive spam, execute host service scans, and probe the 

IP address space. Malicious codes often exploit operating system and 

networking software design pitfalls and bugs. Like an epidemic, they 

                                                           
14

 Actually, trojan horses are known as gimme, a slang for “give me”, in reference to spam messages that 

promise some gain or hot content.  
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propagate through networks at considerable speeds. The complexity of 

today‟s system software has opened the way for the increasing presence of 

this class of damaging traffic. To combat their spread, a number of fast 

response structures have been put into place to identify and provide network 

administrators with information on the recovery patches needed to cure their 

software. These sites should be consulted continuously to help 

administrators keep their system sane and stay a step ahead of attackers.  

 Unsolicited messages represent a class of unwanted traffic used to send 

undesired and unsolicited bulk electronic messages. Email spam takes the 

biggest share. This is currently seen as the most cost-effective online 

advertising method available. This is very similar to the postal junk mail 

people are used to receive at home. A number of companies engage into 

aggressive email marketing campaign. A mail shot (or direct mail) is a form 

of advertising and apparently among the most successful ways of selling a 

product or service. Although they claim raising awareness among selected 

potential customers about their products, for most people it is nothing but 

junk mail. This is even worse in the case of the Internet as email addresses 

are very easy to collect from the Web using specialized crawlers and the 

cost of blind direct e-mail is minimal in addition to annoying the receivers 

and wasting network resources. Spam‟s bad reputation is due to the fact that 

email messages are often related to dozens of unwanted and illicit activities. 

Regarding illegitimate activities, spam scan type can be used for phishing 

techniques, social engineering attempts, “letter-bombs”, denial of service 

attacks, mail storms, server overloads, and so on. With regard to unwanted 

activities, hoaxes, chain letters, and publicity are typical examples of how 

spam can be very unproductive. Another type of unsolicited messages is 

pop-up spam. Not discussed thus far, pop-up spam is a typical nuisance 

application since it exhibits windows messages like “error occurred” and 

“machine compromised”. According to Krishnamurthy [11], this type of 

unsolicited message started at least 4 years ago and hundreds of millions of 

these messages are sent by hour. Spam variations include SPIT (Spam via 

Internet Telephony) and SPIM (Spam via Instant Messages). Spam 

creativity does not stop growing and there could certainly be more spam 

forms in the future using bulky objects such as video information. 

 Internet vulnerabilities represent the kind of unwanted traffic generated or 

explored due to the design and building of the proper Internet or protocols 

that compose it. Denial of service attacks (DoS and DDoS) and its variants, 

attacks to the Internet infrastructure involving BGP (Border Gateway 

Protocol) and DNS (Domain Name Service), backscatter, low rate attacks, 

misconfigurations, and benign failures (outages and flash crowds) are 

examples of Internet vulnerabilities regarding unwanted traffic. The section 

2.4 gives more information on Internet vulnerabilities. Architectural Internet 

services such as DNS and BGP were built with little concern with security 

and based on cooperation. In today‟s scenario even Internet state terrorism 

is not a fear-fetched possibility. 

 Recreational applications represent the natural reason for the traffic 

growth seen on the Internet. The natural convergence among data 

(especially multimedia) associated with the user demands lead to an 

explosion of recreational traffic. Examples of such traffic include Internet 

radio, MP3 downloads, instant messages, interactive online games, and 
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specially streaming abundant multimedia traffic resultant from new 

applications such as Skype, MSN, Joost, Justin.TV, eMule, and Bit torrents. 

At first sight, the relationship between recreational applications and 

unwanted traffic is not perceived, but another deeper look changes that. 

Although typically this type of traffic is not related with the generation of 

gains for hackers, it is easily associated with the network resource waste like 

bandwidth and storage space, and the spent time of end-users in 

unproductive activities. For instance, online games, IPTV, and radio via 

Internet are not related with malicious activities, but are responsible for 

many bandwidth problems, especially at the edge and access networks. A 

recent Ipoque Internet study [23] reveals a considerable growth on web 

traffic. This fact is attributed to the popularity of file hosting, social 

networking sites and the growing media richness of Web pages. According 

to this study, file hosting has increased to up to 45% of all web traffic. 

Social networks
15

 are considered not productive traffic, chiefly in work 

environments, and can be used to spread malwares among users (SAMY
16

 

virus, for example). The exception of the rule is P2P applications. 

Confessedly a large source of unwanted traffic, they carry malware codes, 

are responsible for high bandwidth-consumption, and are the main 

encourager for piracy because it breaches the copyright protection.  

2.3. Unwanted Traffic: Who is guilty? 

In today‟s Internet architecture, the presence of both malicious and unintentional 

unwanted traffic by some may be seen as a design weakness while others think that such 

phenomenon reflects human activities and behavior. There is truth in both statements. 

This section discusses the possible causes of unwanted Internet traffic about two 

different angles: Internet design principles and underground economy. 

2.3.1. Internet Design Principles 

At least 40 years ago, a set of desirable features was established to define the goals of an 

experimental network known as the ARPAnet, which major mission was to develop a 

robust military computer network using packet switching, a recent technological 

breakthrough invention of that time, capable to employ different link technologies 

(leased phone lines, satellite, radio, etc.) inside the same communication infrastructure, 

i.e., with internetworking support [25]. This network arises the Internet and these 

features were known as the Internet Design Principles and recorded in some important 

and fundamental papers and formal documents [25][26][27].  

Although many years have passed, these design principles have withstood time 

by remaining remarkably stable, successfully resisting to a great number of new and 

emerging requirements from the different user communities. However, it is easy today 

to establish a relationship between them (as well as their existing implementations) and 

unwanted traffic. Basically, there was a total lack of concern with issues such as 

privacy, control, and security. The requirements were centered on the robustness of the 

                                                           
15

 Social networks represent the interaction between human beings through the formation of groups or 

relationships. MySpace, Facebook, and Orkut are great exponents of social networks. Despite being 

ranked as the virtual world, the Second Life can also be seen in this category. 
16

 Samy virus is a worm, also known as JS. Spacehero, especially develop to attack MySpace social-

network site [24]  
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routing relay network and its fundamental services were based on the assumptions that 

network members are going to cooperate in forwarding to the best of their capabilities 

information.  

The first example is layering principle [26]. Especially created to insert 

simplicity and modularity in the Internet architecture development, the idea is that each 

layer, arranged in a vertical stack, relies on the next lower layer to execute more 

primitive functions and provides services to the next higher layer. This principle is 

known as hourglass model, where the IP protocol works as a universal data packet 

delivery mechanism (“IP over everything, and everything over IP”). However, this 

apparent simplicity has caused some problems. According to this model, all complexity 

was delegated to the network edges (end-points) while the IP layer (the thin waist of the 

hourglass) remained or tried to remain as simple as possible. Since the responsibility to 

implement all additional and necessary functions was “delegated” to the end-points, it is 

easy to understand the great number of vulnerabilities in protocols, software, and 

applications founded today. This is the price that one pays for giving user end systems 

more control over the network. 

Specifically when speaking about unwanted traffic, the same idea has been used 

in P2P and multimedia applications to bypass traffic shaping policies. The Hyper Text 

Transfer Protocol (HTTP) has been used as generic transport protocol for applications 

that have little or no relation to the Web and its actual intended usage (Figure 2.1). 

Almost all P2P applications do take a ride over this protocol. The explanation is simple. 

HTTP is normally released in almost all firewalls, ACL (Access Control List), and 

filters. In addition, it is versatile and simple. Thus, it is easier to use and forge the HTTP 

communication with new applications instead of trying to surpass these security 

systems. As a result, the Internet infrastructure is also used to disseminate unwanted 

traffic. 

VoIP, TV, Rádio

Web

P2P

HTTP

T
h
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FIGURE 2.1: HTTP “hourglass model” 

The simplicity principle [26][28] is the second example. The idea is that in order 

to be successful, the Internet needed to be as simple as possible. This philosophy is 

often referred to under the message: “Keep it Simple Stupid” or KISS for short. 

However, this choice also has influenced in unwanted traffic. In non-linear system 

theory there is the amplification principle. It states that there are nonlinearities that 

happens at large scales but which do not occur at small to medium scales [28]. In other 

words, small fluctuations in a dynamic system like the Internet may accumulate and 

produce major dangerously uncontrollable changes. The classic Internet example is the 



14 
 

 
 

BGP traffic. A recent case occurs involving the youtube.com and the Pakistan Telecom 

[29]. The Pakistan Telecom (AS 17557) accidently started broadcasting internally an 

unauthorized announcement of the network prefix 208.65.153.0/24 as being that of 

youtube.com. However, one of Pakistan Telecom‟s upstream providers, PCCW Global 

(AS3491), forwarded this announcement to the rest of the Internet. It then took only few 

minutes to result in the hijacking of YouTube traffic on a global scale.  

The last example is the end-to-end argument [26][28][30]. Basically, it suggests 

that communications protocol operations (functions) should occur at the end-points of a 

communications system or as close as possible to the resource being controlled. This 

reduces the subnet responsibility to packet relaying, or switching more accurately. The 

design of any new service does not suffer from any form of network processing and 

should be straight forward as the actual experience over recent years has indeed shown. 

However, there is ample evidence of the set of factors involving the end-to-end 

argument that directly corroborated with the unwanted traffic dissemination.  

Firstly, this principle was planned to work in a small group of mutually trusting, 

trusted, collaborative, and technically knowledgeable and skilled users (end-points) 

attached to a transparent network [26]. Nowadays, this scenario is totally different and 

is practically impossible to guarantee that the original commandments of cooperation 

and willingness would be enforced. The statistics provided by different CSIRT 

(Computer Security Incident Response Team) teams ratify that the number of security 

events including attacks, inappropriate interactions (spam e-mail, for example), 

misconfigurations, and annoyances, increases day after day and practically always 

involves unsecure, uncompromised and badly used end-points. It is safe to assume that 

the Internet operates in an untrustworthy world when designing new services and 

protocols.  

Secondly, instead of relying on dumb and limited terminals hooked onto reliable 

and often proprietary super and mini computers, today‟s users are computing consumers 

equipped with powerful personal devices and computers with embedded processors, 

portable user-interface devices, Web-enabled televisions and accessories, cell-phones, 

and so on. These users are not expected to understand the inner working of such 

powerful devices in order to use over networks. Consequently, configuration, 

protection, and control problems are trite and making these end-points easy targets to 

many types of security attacks, privacy invasion and other similar anomalies.  

Lastly, the current business model of the Internet is not seen as being adequate to 

emergent applications. Actually, many ISPs view the massive use of streaming media 

and other types of new applications as a service to be offered only within some bounds 

(competitive differentiator) rather than a sort of capability to be provided, end-to-end, 

across multiple ISPs. The result is that while great investments have been made to keep 

the isolated networks, especially at the network core, reliable safe and trustworthy, the 

end-points are abandoned to their own faith. In addition, there is a trend of third-party 

involvement. Organizations, companies, and governments have demonstrated a growing 

interest in imposing in the communicating among end-points, to provide and enforce 

service accounting and taxation, law enforcement, and public safety. These 

interferences in the end-to-end argument can purposely insert unwanted and unsolicited 

communication between end-points.  

To summarize, the IAB [10] enumerates some facts that prove how the 

purposely chosen natural Internet design principles have facilitated the rapid 

proliferation of unwanted Internet traffic:  
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 Open nature: The Internet is one of few operational platforms without 

control centers and surprisingly this feature is still contributing to its success. 

However, just like everything else, such open architecture comes at a cost. 

This design feature inflicts a series of technical limitations and problems as 

for example when identifying the whereabouts and identity of an attacker. 

The Internet architecture offers full and free communication between hosts 

and its main engine, the Internet Protocol (IP), does not provide any 

mechanism for auditing or taking a “tomography” of an attack. As a result, 

there is potentially no limit on what a host can do and there is also no record 

kept on the activities of a host by the network. This memoryless model has 

been purposely chosen for its simplicity and quick adaptability to network 

changes and traffic loads. In addition, the end-to-end argument [27] gave to 

the users a powerful mean to easily design and deploy new applications 

without the need for any network changes. Of course, harmful applications 

and unwanted ones have also taken advantage of this ride. 

 Versatility: The same Internet infrastructure employed to access web pages, 

read e-mails, and chat is available for miscreants trying to get other types of 

benefits, often illegal ones, or simply cause harm to others. Protecting 

network resources and information has become a big business. A number of 

international and small players are offering their expertise and services to 

both enterprise level and home users. Think that any IT professional 

specialized in giving support and maintaining a network or a service (IRC, 

for example) is also potentially capable of eluding and skinning uninformed 

users and sometimes stealing and collecting privileged information or 

compromising the security of their hosts and systems.  

 Lack of meaningful deterrence: There is no existing simple way to 

attribute responsibility when something goes wrong, be it unintentionally or 

maliciously. There is a limit to what existing solutions can achieve and 

continuous efforts are needed to seek and identify new threats and develop 

cures to these. 

2.3.2. The root of all evil 

In spite of the existence of many reasons to explain the real “boom” that unwanted 

traffic underwent in the last ten years, there is some consensus of the fact that there 

exists an infamous industry gaining lots of money with the generation and proliferation 

of unwanted traffic. This outlaw economy is responsible for stimulating and generating 

the most varied malicious activities such as stolen credit cards or bank accounts, 

malware and root kits design and spreading, phishing attacks, sale of logins and 

passwords, and so on, on the Internet.  

This “black market” weighs heavily with the building and execution of 

malicious codes. Famous specialized security companies such as Kaspersky Lab [31] 

have perceived that current malwares and its variants exclusively aiming to obtain 

financial gains, and that “nonprofit” malwares are in extinction. Davies [12] asserts that 

this black market is strongly deep rooted into the Internet as a culture capable to dispose 

of billions of dollars around the world and that its eradication is almost impossible. The 

IAB workshop [10] considers this outlaw economy as “the root of all evil of the 

Internet”.  
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The foundation of this black market lays partially in the use of IRC servers. 

These are widely used to manage and execute illicit activities such as theft of bank 

accounts and credit cards numbers, login and passwords, and the proliferation of 

malicious code. In addition, IRC servers can be seen as big virtual multi-floor mall 

where stolen belongings and properties as well as private codes and tools are sold. For 

instance, in the first floor, equipments and tools (bots and botnets) for beginners are 

sold freely. On the second floor can be found more elaborated tools and hosts and 

routers access passwords. The third floor corresponds to retail sales. Bank accounts, 

credit cards numbers, and personal logins and passwords for ISPs and Internet services 

are negotiated directly or sometimes via auction sale. The last floor sold access to 

respectable servers of big companies and governments businesses. 

Part of the profits is reinvested to diversify the illegal activities including the 

recruitment of professional writers to compose more elaborated spam messages, 

specialized programmers to develop new and robust malware codes (virus, worms, and 

spyware), Web experts (programmers and designers) to create more sophisticated Web 

sites for phishing activities. To complicate this ugly and dark scenario, the people 

behind this black market take advantage of the lack of punishment for most malicious 

activities and the lack for adequate legislation on the Internet. For instance, a DDoS 

attack usually makes use of a large number of hosts previously “corrupted”, spread 

across different backbones possibly in different countries. Since there is a large number 

of involved elements (hosts, access networks, backbones, routers, victims), it is not 

clear who should take the responsibility for the problem. Furthermore, the absence of a 

legal system in most countries, including Brazil, which criminalize some kinds of user 

conducts also, has contributed to the increase of malicious, non-productive, and 

unwanted traffic on the Internet. Even in countries where there is some jurisdiction over 

Internet crimes in place such as United States and England, the laws seek to penalize the 

violators only once the crimes have occurred and commonly much time after. 

2.4. Recent Examples of Unwanted Traffic 

In order to improve the understanding of the subject, this section splits the most 

notorious types of unwanted traffic in five subsections and presents for each one of 

them examples of attacks and related applications that are capable to generate 

unsolicited and unproductive traffic.  

2.4.1. Internet infrastructure attacks 

2.4.1.1. DNS 

The Domain Name System (DNS) [32][33] is a hierarchical and distributed database 

that provides an essential service for the applications and Internet services: the 

translation of domain names to IP addresses. Due to its importance in the Internet 

infrastructure, any failure has potential to affect a large number of users and domains. 

This is behind the constant DDoS attacks made against DNS root servers. The most 

recent one was registered in February 2007 [34], when a significant Distributed Denial 

of Service (DDoS) attack, from the Asia-Pacific region, affected 6 of the 13 Internet 

DNS root servers that form the foundation of the Internet name service. Similar attacks 

have been occurring since 2002 [35][36][37][38].  

Currently, there has been a considerable advance in the fight against DNS denial 

of service attacks. It has almost been mitigated due to efforts in developing and 
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implementing new solutions such as the anycast
17

 technology, for example. On the other 

hand, more specific and located DNS attacks gained more widespread. Among then, 

DNS spoofing attacks has been highlighted by many studies. The basic idea behind such 

attack is trying to corrupt the DNS information base, changing domain name data or 

adding new unreal domain addresses, aiming to redirect legitimate connections to fake 

servers (false addresses and websites) on the domains controlled by attackers. Actually, 

this type of attack is called pharming and its main target includes web sites for financial 

institutions.  

There are two main techniques to perform DNS spoofing. In the first, known as 

DNS ID spoofing, the attackers run sniffers to intercept (Man in the Middle) DNS 

requests and get their request ID number. Next, a fake reply is sent with the correct ID 

number, but with the IP address of the corrupted DNS server. Recently, Dan Kaminsky 

[39] reported and publicly demonstrated a previously known BIND vulnerability 

implementation that permits attackers to “guess” the DNS ID and consequently to 

personify the DNS domain. DNS incidents occurred at the U.S. National Security 

Agency in May 2008 [40] and at the China Netcom (CNC) in August 2008 [41]. These 

were attributed to this spoofing vulnerability, but nothing was proved so far. The second 

technique is referred to as DNS cache poisoning. It is achieved through the invasion of a 

DNS server and replacing its DNS original information and data by other completely 

fake or modified data. The DNS zone transfer process is also used to spread the cache 

poisoning.  

Another recent type of DNS attack is called Fast-Flux Domains. Typically, Fast-

Flux Domains [42] presents quick changes of Resource Record (RR) data and therefore 

has a low TTL (Time to Live). Commonly, Fast-Flux Domains are composed by 

hundreds or even thousands of compromised hosts and are used to generate a Fast-Flux 

Service Network (FFSN). The attackers employ the services from such networks to send 

large volumes of spam via malware codes such as the Warezov/Stration [43] and Storm 

[22] (and its variation including Nuwar/Zhelatin/Peacomm/Peed), to steal (phishing 

scheme) logins and passwords (in social networks like Myspace, for example). It is 

rather difficult to identify, track, and neutralize domains and hosts utilized for this type 

of illegal purpose. 

Lastly, typo-squatter domains [44][45] and DNS rebind [46] are also used to 

spread unwanted traffic. Typo-squatting, also called URL hijacking, is a phishing 

technique where the attacker takes advantage of URL mistakes or typo errors. Attackers 

record and host unallocated domains with similar spelling to great access Web sites, 

changing only one letter or a sub-domain (from .com to .net or .org, for example). This 

type of action is known as domain parking and normally is used to spread virus, worms, 

adware and spyware. Recently, the work of Zdrnja et al. [47] identifies that many typo 

squatting domain are hosted in a same IP address to divulge advertisements and 

publicity. 

DNS rebind tries to elude web browser to execute arbitrary malicious scripts on 

other machines of the same network [46]. Basically, this attack makes use of the DNS 

name resolution to forward request for a corrupted DNS server, configured to response 

with a TTL very low. The first response contains the server IP address that is hosting 

malicious code. Subsequent responses contain spoofing IP addresses to the attack target.  

                                                           
17

IP Anycast is a load balancing and routing technology that enables multiple hosts to provide a service or 

function to a single IP address normally assigned to one host on the Internet. Servers that use IP Anycast 

share a single IP address, and user requests are routed to the nearest server on the network. 



18 
 

 
 

2.4.1.2. BGP 

The Internet routing is based on a distributed system composed by several routers, 

aggregated in management domains known as Autonomous Systems (AS). These were 

introduced in the year of 1991 exactly when the Internet was moving from being a U.S 

government run project to embrace a new backbone that also interconnects to private 

and corporate networks. The main new change needed was to do with routing among 

these different networks. Hence, the Internet was split into politically and economically 

driven networks and there was a need to review how routing should be made between 

these new players. This leads to the birth of the Border Gateway Protocol (BGP) [48] as 

a solution for constantly advertising new reachability information among such ASs. 

These would then use the number of hops and other policies to decide on what external 

routes to use. Thus, Internet routing may be divided according to two distinct scopes: 

intra or inter domains. Attacks and anomalies concerned with intra-domain routing, 

though also relevant, do not produce chaotic effects, since the number of elements 

involved is often normally small. The management of intra-domain routing attacks is 

relatively easier to contain. On the other hand, routing attacks between different 

domains (inter-domains) are more worrisome because as they are likely to quickly affect 

all Internet traffic and clog expensive transatlantic links. Further, loosing information or 

connectivity within one‟s domain is hardly the same as having one‟s traffic being 

wrongly forwarded or one‟s domain being unreachable.  

Considered the main target of attacks and unwanted traffic, BGP [48], an inter-

domain routing protocol was designed and implemented in the 80s and is seen as an 

Internet “de facto” standard today. However, according to the domain view at that time 

and similarly to what was deployed and operational on the Internet, security aspects 

were “minimized” in the BGP protocol design. Consequently, it is considered one of the 

five most vulnerable points of the Internet [49].  

According to Kuhn et al. [50], BGP can suffer from many anomalies such as 

denial-of-service attacks, starvation, blackholing, delay, route looping, network 

partition, high churn, route instability, and router resource exhaustion. This is a part of 

the long list of BGP´s vulnerabilities. Others include peers spoofing via TCP resets and 

ICMP, session hijacking, route flapping, routing disaggregation, malicious route 

injection, and so on. The consequences can be summarized in four results according to 

Nordström and Dovrolis [51]:  

 Blackholing, where a prefix remains unreachable from a large portion of the 

Internet;  

 Traffic redirection, where the traffic addressed to a specific domain is 

forced to take a different path towards a spoofed destination; 

 Subversion, a special case of redirection, where the attacker forces the 

traffic to pass through some links in order to listen, spy or modify the data;  

 Instability, resulting from successive advertisements (potentially with 

different attributes) and withdrawals for the same network.  

In practice, the most notorious incidents involving BGP were caused by 

misconfiguration. What happened at AS7007 [52], AS3561 and AS15412 [53], and 

more recently to AS17557 [29] (Pakistan Telecom vs. YouTube) are examples. In 

addition, Anton Kapela and Alex Pilosov deployed a technique that simply exploits the 

natural way BGP works [54][55]. They make use of the naive trust BGP router put into 

each other when finding what they consider as best path and assert this with their 
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trusting neighbors. The technique uses IP hijacking to intercept data and advertise a 

range of IP addresses. The announcement would take just minutes to propagate 

worldwide, often before data heading to those addresses would even begin to arrive.  

Unlike old IP hijack attacks where outages were created, this technique 

intercepts data silently to the actual destination, so here no outage occurs. This method 

is called AS Path Prepending that causes a select number of BGP routers to reject their 

deceptive advertisement. They then use these ASes to forward the stolen data initially 

destined to its rightful recipients. 

2.4.2. SPAM  

Spam (often defined as unsolicited commercial email or unsolicited bulk email) has 

grown dramatically in volume and in malefic results. Formerly, spam was synonymous 

to chain letters and its effect was time and resource wasting. Now, spam messages affect 

business productivity, inflate network traffic, and wastes storage space. This may 

sometimes lead to ISPs ignoring or the wrongful removal by users of useful electronic 

mail. Those who would find a definitive solution for spam email would make huge 

amounts of profit as almost everyone is affected by spam. 

Spam messages can be classified according to their content. Hoaxes try to 

impress through fake histories and similar artifacts to guarantee their propagation (using 

urban legends, for example). Scam messages sometime lure recipients into offering 

them financial opportunities (such as huge lottery winnings and lucky winning draws). 

Phishing, typically uses commercial messages, and tries to obtain personal information 

(bank account details, credit card numbers and their passwords, for example) to be used 

in future frauds or shopping over Internet sites. Virus/Malware permits the installation 

of virus, worms, and trojan horses also to allow different types of fraud attempts or 

denial-of-service attacks. Pharmaceutical products, education, and adult content are also 

typical spam content.  

Figure 2.2 illustrates a fairy spam offering an unusual service.  

Date: Sat, 03 Mar 2007 10:54:33 -0400 (EDT) 

From: ddos@safe-mail.net <DDoS Services> 

To: XXXXXXXXXXXXXXXXXX 

Subject: I offer the DDoS attack service! 

Hi, I offer the DDoS attack service. 10 minutes of free demonstration. The price is based on the 
difficulty to pull down the target website. For free demonstration of information please contact:  

 

DDoS attack service: ddos@safe-mail.net 

FIGURE 2.2: Spam email offering a DDoS attack service.  

Despite that spam is hardly a novelty; it seems that current solutions have 

miserably failed in mitigating and removing this practice. Current statistics show that 

2006, the Messaging Anti-Abuse Working Group (MAAWG) estimated that 80% of all 

email, based on an evaluation of approximately 390 million mailboxes, was spam [56] 

while the European Network and Information Security Agency (ENISA) asserted that 

almost two thirds of all emails that European providers received were nothing but 

useless spam [57]. To add to this wave of concern and complicate further this scenario, 

the Anti-Phishing Working Group (APWG), also in 2006, affirmed that at the time there 

were more than one hundred hijacked brands, several hundred unique password stealing 
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malicious code applications, more than one thousand passwords stealing malicious code 

URLs and up to ten thousand new phishing sites born every month [58].  

2.4.2.1. SPIT and SPIM 

Despite spam being the most famous type of unsolicited messaging, there are other 

types of nuisance unknown until recently and that began to cause considerable damage, 

namely, SPIT and SPIM.  

Spam via Internet Telephony (SPIT) is characterized as unsolicited messages 

sent to VoIP users quickly and cheaply. Even spam traffic is also benefiting from recent 

cheap VoIP services. Among the first VoIP spam incidents are some that took place 

recently in Japan where VoIP usage is more common than elsewhere. In one of these 

incidents, spam announcements of an adult site where sent to unsuspecting SoftbankBB 

users, a major Japanese VoIP service provider. In a second effort, illegitimate requests 

for personal information were made [59]. Recently, similar incidents were reported in 

Australia and Columbia University [60]. Some Australian users reported that their 

mobile phones rang once and when they called back, they found themselves paying to 

listen to advertising material. 

Unlike traditional spam email messages, which average only 10–20 kilobytes in 

file size, unwanted VoIP voicemails can require up to few megabytes of storage [61]. 

Although SPIT not having really taken root worldwide yet, an increasing number of 

incidents have already been registered. Recall that the level of spam was as little as 17% 

only in 2002. SPIT can be many times as annoying as spam. VoIP calls may be 

programmed to disturb the peace of people at home or while sleeping at night. Both the 

lawful intercept and tracing of VoIP calls is not trivial knowing Internet topology and 

privacy design concepts. Further, the presence of SPIT may lead to a huge drop in the 

quality of VoIP calls and consequently huge possible revenue losses. There is a 

justifiable fear of clogging phone lines with unlawful advertising and spam messages. 

Spam via Instant Messages (SPIM) represents the delivery of unsolicited 

messages sent by instant messaging applications. Generally, this type of spam is based 

on the creation of fake profiles in instant message systems to send unsolicited messages, 

which could include commercial scam-ware, viruses, and links to paid links for the 

purpose of click fraud. SPIM is usually sent in the form of request messages that cause 

content to automatically appear on the user‟s display. The typical request messages in 

SIP (Session Initiation Protocol) [62] are as follows: 

 SIP MESSAGE request (most common) 

 INVITE request with large Subject headers (since the Subject is sometimes 

rendered to the user) 

 INVITE request with text or HTML bodies 

Figure 2.3 shows examples with SIP INVITE and MESSAGE. 

INVITE sip:Bob1@192.168.10.10:5060 SIP/2.0 

Via: SIP/2.0/UDP 10.10.10.10:5060;branch=z9hG4bK00002000005 

From: Spammer <sip:spammer1@10.10.10.10:5060>;tag=2345 

To: Bob <sip:Bob1@192.168.10.10> 

Call-Id: 9252226543-0001 

CSeq: 1 INVITE 

Subject: Hi there, buy a cool stuff in our website www.spam-example.com 

Contact: <sip:spammer1@10.10.10.10> 
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Expires: 1200 

Max-Forwards: 70 

Content-Type: application/sdp 

Content-Length: 143 

MESSAGE sip:Bob1@192.168.10.10:5060 SIP/2.0 

Via: SIP/2.0/UDP 10.10.10.10:5060;branch=z9hG4bK00002000005 

From: Spammer <sip:spammer1@10.10.10.10:5060>;tag=2345 

To: Bob <sip:Bob1@192.168.10.10> 

Call-Id: 9252226543-0001 

CSeq: 1 MESSAGE 

Max-Forwards: 70 

Content-Type: test/plain 

Content-Length: 25 

FIGURE 2.3: SPIM example. 

2.4.3. Malicious code 

Malicious code represents the unwanted traffic used to cause damage to computers, 

systems, and networks. Typically, it steals data, allows unauthorized access, exploits 

systems, and the use of compromised computers and networks to proliferate further 

unwanted traffic.  

The main examples of malicious code are:  

 Virus: a program that can copy itself and infect a computer without 

permission. 

 Worm: a self-propagating piece of malicious software that spreads across a 

network. 

 Trojan: a destructive program that masquerades as a benign application. 

 Bot: a program used for the co-ordination and operation of an automated 

attack on networked computers. 

 Rootkit: a set of programs that work to subvert control of an operating 

system from its legitimate operators by making changes to the underlying 

operating system itself. 

 Spyware: a program installed surreptitiously to intercept or take partial 

control over the user‟s interaction with the computer. 

 Backdoor: a method of bypassing normal authentication obtaining covert 

access to a computer, while attempting to remain undetected. 

 Downloader: a program that downloads and installs malicious software. 

 Adware: a package that automatically displays or downloads advertising 

material to a computer. 

 Ransomware: a type of malicious code that encrypts the data belonging to 

an individual on a computer, demanding a ransom for its restoration. 

2.4.3.1. Botnets 

Among all malicious code related with unwanted traffic, bots are the more alarming 

ones due to their capacity to cause disastrous effects on the worldwide network 

infrastructures. According to some estimates, there are nowadays between 500 and 2550 

different botnet Command & Control (C&C) servers running every day [63][64]. This is 
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actually a growing business as some are offered for rent to attackers interested in 

disturbing company sites and even official overseas government institutions. However, 

due to the development of countermeasures, botnets have been changing to adapt to new 

technologies and contexts. For example, instead of using the IRC protocol, HTTP 

became the preferred protocol to create these new plagues. Another example is the 

Storm botnet. It uses a similar protocol to P2P (and UDP over port 4000) to establish 

communication with other peers.  

Unlike other malwares, botnets can be used in the most diverse malicious 

activities like DDoS, spam, and frauds. For example, assuming that a botnet has an 

average of 20.000 hosts (bots or zombies) and that a single DDoS attack session can 

consume 40Kb/s of upload bandwidth from each bot, the consequences of this attack 

can be enormous if one does the mathematics. Online frauds can also be performed by 

botnets. Once installed in a host, a bot sends personal information (login credentials, 

bank accounts, intranet applications, webmail, online services, social web pages, and so 

on) and exploitable information (installed programs‟ serial numbers and online gaming 

credentials, for example) to its C&C server that should use them in different unlawful 

activities.  

Also taking advantage of thousands of controlled bots, botnets are especially 

used to send spam. A spam bot can send up to three spam e-mails per second (259.200 

e-mails per day). In addition to making it difficult to track down the spam sources, spam 

e-mail can contain scam, illegal pharmacy sites or the fraud known as „pump-and-

dump‟ (or „stock spam‟), involving the use of false or misleading statements to hype 

stocks, which are „dumped‟ on the public at inflated prices. 

Lastly, botnets can distribute malicious code to infect new bots and permit the 

use of malicious software (Internet banners or advertisements, for example). 

2.4.4. Social networks 

Social networks
18

 (Bebo
19

, Facebook, MySpace, Orkut, and Hi5
20

 are famous examples) 

can be considered the new Internet phenomenon. The growing number of users of these 

services at a drastic rate in the last few years is proof of that. For example, in June 2010, 

Facebook announced had 500 million users around the world achieves [65]. 

In general, such large number of users is attracted by a set of functionalities 

focused in the social relationships such as posting personal data into profiles and the 

creation of a “circle of friends” sharing common interests and life styles. Furthermore, 

social networks are used as a forum for collaboration, education, experience-sharing, 

and trusted information exchange. 

Despite their apparent harmless face, social networks may present innumerous 

risks to their users. In [66], the authors describe many of these. Among the most 

relevant to unwanted traffic there are:  

 Spam: due to the exponential growth of social networks, spammers begin to 

invest in these networks to spread unsolicited messages to their users. In 

general, they use specific spamming software such as FriendBot [67] to 
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Social networks are often called as online social network sites or social networking sites. 
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automatically send friend invitations and note/comment posting. Typically, 

these messages can include links to product sites, adult content or phishing.  

 Cross site scripting, viruses and worms: the use of HTML to create 

profiles and/or post messages leaves the door open for new attack 

possibilities. Cross-site scripting
21

 (XSS) attacks and viruses like SAMY 

recently infected one million MySpace user profiles in less than 20 hours 

[69]. 

 Spear phishing: since there are millions of user profiles (and “circles of 

friends”) completely and easily available in social networks, phishers have 

developed highly targeted phishing attacks known as spear phishing. For 

instance, the worm JS/Quickspace.A [70] infected MySpace profile pages 

with links to a phishing site to steal their profiles. 

To sum up, the benefits offered by social networks is visible and fundamental 

for the development of society, but if it fell into the wrong hands (spammers, attackers, 

and phishers) these powerful tools can produce catastrophic results and huge amounts of 

unwanted traffic. In addition, social networks affect the productivity, since the 

employers involved in social networks waste part of their time checking these circles to 

keep updated.  

2.4.5. Recreational traffic 

Unwanted traffic generated by recreational applications is a consequence of real Internet 

progress. It represents the natural convergence between the different types of data, 

especially multimedia, associated with the growing number of users and their interest 

and focus on the news. Examples of recreation traffic include radio and television via 

Internet, P2P file sharing, video sharing (YouTube, for example), instant messages, and 

online games. Social networks are also responsible for generating recreational traffic, 

but they will not be discussed again in this section.  

Regarding to unwanted traffic, recreational traffic is responsible for a large 

chunk of bandwidth consumption, especially at the edge network. In other words, this 

type of traffic steals bandwidth that should otherwise be used for business and what 

some may refer to as “useful” applications. Recreational applications are very 

aggressive and may quickly start consuming large amounts of WAN and Internet 

bandwidth. To download quickly, a stream of “live” video or swap files efficiently, 

recreational applications may initiate a large number of simultaneous connections and 

start suddenly consuming large amounts of bandwidth resources during sustained 

periods of time [71].  

For example, the YouTube, currently considered as the most famous video 

sharing website, needs to convert upload videos into .FLV (Adobe Flash Video) format 

after uploading these. According to Michael Dell of Dell Inc. [71], YouTube traffic in 

2007 consumed as much bandwidth as the entire Internet utilized just seven years ago. 

In spite not using a P2P system, YouTube video files are located all around the world. 

In addition, they are not streamed. Contrariwise, they are downloaded and buffered. 

Another example is represented by P2P file sharing applications. Basically, these 

applications portray some natural features that confirm their tight relationship with 
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Cross-Site Scripting (XSS) is a type of computer security vulnerability typically found in web 

applications which allow code injection by malicious web users into the web pages viewed by other users 

[68]. 



24 
 

 
 

unwanted traffic. File transfer, may consume as much bandwidth as there is available. 

Bidirectional traffic and aggressive behavior (sharing different contents in the same 

bandwidth) are some of the features that clearly explain the “power” of P2P file sharing. 

In addition, they are confessedly source of main malicious code spreading mechanisms. 

They have been responsible for spreading viruses, Trojan horses, and bots. Moreover, 

there is a major problem with the use of current P2P file sharing: that of copyrighted 

content (music, video, books, and so on.). The main reasons for this concern stem from 

the natural distributed feature of P2P networks and the lack of laws to govern and 

enforce policies for their worldwide content exchange. Consequently the volume of 

unlawfully used copyrighted material across P2P networks continuous to increase on a 

yearly basis. 

2.4.5.1. Encapsulated and obfuscated traffic 

Newer versions of P2P protocols can flexibly use any port number, even port 80. This 

technique is called port hopping. The cat and mouse race does not stop here with regard 

to P2P file exchange. A surprising recent Internet development caught by surprise the 

community. Many P2P applications are now giving their users the optional luxury of 

allowing them to intentionally hide or camouflage their traffic.  

In order to avoid recent payload string matching and signature based detection 

methods, P2P applications have been working on the fast track to use encryption and 

SSL. This way such encrypted traffic would be missed (unrecognizable) as P2P content. 

This counter-technique is called protocol obfuscation
22

 [72]. It is employed to surpass 

traffic shaping limitations that found their application in many Internet providers. It 

permits the hiding of the protocol structure (data and control messages through their 

encryption). For example, in the case of the eMule P2P application, the use of this 

technique changes all communication data to appear just like a random data, hence 

complicating its identification and consequent mitigation. Recent examples of protocol 

obfuscation in P2P applications have also been seen with both the BitTorrent and Skype 

P2P applications.  

2.5. Chapter Summary 

In this chapter, the universe of unsolicited, non-productive, irrelevant, and illegitimate 

traffic that crosses the Internet on daily was introduced. First, a more detailed view of 

the unwanted Internet traffic was presented through some definitions. Due to the 

presence of a number of sometimes limited definitions that were adopted in both 

academia and the industry, a generic one embracing varying relevant characteristics for 

unwanted traffic was given. Moreover, context problems are also presented. After, a 

formal classification that was proposed during the IAB workshop on unwanted traffic 

and others based on its traffic sources were discussed. The failures of such 

classifications were shown and a new and more general classification was made. It 

includes most known types of unwanted traffic as well as considers even legitimate 

traffic that can be considered unwanted in some contexts.  

Next, the possible causes of unwanted Internet traffic were discussed. First, 

some Internet design principles and how they have been exploited to create and spread 

attacks and traffic anomalies have been discussed. Three of the most important Internet 
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principles: layering, end-to-end argument, and simplicity have also been described. 

Examples showing their limitations and the way they have been explored have been 

presented as a proof. To finish, some disturbing reports on the existence of an 

underground economy behind unwanted traffic were put forward. Many services taken 

for granted by Internet users today, such as IRC, have their servers being utilized as 

marketing platforms for where everything related to fraud, stolen information, and 

security invasion can be traded.  

Towards the end of this chapter, the main types of unwanted traffic were 

presented. First, many Internet infrastructure attacks, including denial of services (DoS 

and DDoS), DNS, and BGP anomalies were described. In order to provide the reader 

with a more complete view, recent incidents, events, anomalies, and attacks witnessed 

across the Internet community were presented. Secondly, spam, unsolicited messages, 

and its variants SPIM and SPIT were shown. The alarm has been raised for taking steps 

before SPIT simply dominates VoIP traffic, as was the case with spam dominating 

email traffic. Thirdly, malicious codes were presented and a special section was 

dedicated for botnets. Some of its relevant features and examples were showed. 

Fourthly, the unwanted traffic generated in association with social networks was 

discussed. The main issues and risks this new phenomenon faces have also been 

presented. Lastly, recreational traffic was discussed including encrypted and obfuscated 

traffic. 
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Chapter 3  

Approaches against Unwanted Traffic 

 

 

In the search for the Aladdin‟s lamp to deal with unwanted traffic, a considerable 

number of solutions have been employed to identify and mitigate its effects on the 

Internet traffic.  

This chapter reviews some of these solutions. First, traditional and well-known 

tools, including firewall, IDS, anti-something software, and honeypots, are presented 

and its pros and cons are discussed. After, promising solutions are explained. These 

solutions are not really utilized to stop unwanted traffic, but can help substantially on 

the process of identification. Next, collaborative solutions, those capable to mix 

different approaches and tools, are presented. In this section, the interest is on the 

necessary requirements and features to project and develop an effective collaborative 

solution. Finally, recent traffic analysis approaches and strategies are reviewed to show 

its applicability on unwanted traffic detection.  

It is not the aim of this chapter to claim that all of the existing strategies are 

reviewed here but it should give a good idea on current work and argue for the need to 

continue such efforts as a solution remains a further undertaking. 

3.1. Traditional Solutions 

3.1.1. Filtering 

Undoubtedly, filtering mechanisms are among the most widely deployed security 

solutions in the world and can be considered the first line of defense.  

Traditionally, filtering mechanisms are represented by firewall, Access Control 

List (ACL), proxies, and application-level gateways. BGP null routing, a DDoS 

mitigation technique very popular for ISPs, consists in the changing of every edge 

router to configure null-route and consequently to stop a victim host attack [73], also 

can be considered a traditional filtering mechanism. The main function of these 

mechanisms is to approve or deny the traffic exchange between networks. Basically, 

they employ rules that define what to do. This way, all ingress or egress network traffic 

match with rules and, as result an action is taken.  

However, their effectiveness has not been sufficient against undesired traffic. 

Some aspects prove that. First, although practicable, they are inevitably imperfect 

because it mainly relies on “heuristics” and manual configuration to identify unwanted 

traffic. Consequently, they can harm both unwanted and legitimate packets. Second, 

they require application-specific support. Filtering mechanisms like proxies or 

application-level gateways are developed to evaluate the traffic (encrypted or not) of 

specific application. This way, for each new service or application a new specific 

solution needs be build. 
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3.1.2. Intrusion Detection System 

Intrusion Detection Systems (IDS) are hardware and/or software designed to detect 

unwanted attempts at accessing systems or networks [19]. Basically, IDS solutions are 

composed by sensors that generate and send events and security alerts to management 

stations.  

Traditionally, signature-based (or misuse-detection) and anomaly detection are 

the two most used approaches to build IDS. Signature-based strategies identify patterns 

matching network traffic or application data using an attack signature, often in the form 

of a known bitstring, from a previously compiled database. Known attacks are detected 

fairly quickly with a low false positive rate, while unknown ones often slip through. 

Nonetheless, anomaly detection is a more generic approach. It works based on building 

a behavior profile for what is considered as normal activity which is then matched to the 

actual traffic in order to find out anomalous events. Hence, this class of approaches is 

capable of adapting to new classes of anomalies as well as “zero day” attacks. This is 

seen as powerful advantage over other techniques. 

Although mostly capable of discovering a wide range of malicious activities, by 

definition, IDS are passive, that is, only detect and record events. No action is taken. 

Moreover, they suffer from accuracy problems: false positives and false negatives. In 

addition, IDS are focused mainly only on internal security.  

3.1.3. Anti-something software 

The closest solution to end users can be referenced as the anti-something software. It 

represents all programs designed to detect and remove potential threats to systems and 

networks such as anti-virus, anti-spyware, anti-phishing, and anti-spam.  

Antivirus are software that detect and remove computer virus. However, its 

usefulness depends on constant update, since daily new virus and/or variant of know 

virus are spread. Other issue regarding antivirus is what to use. There are a great 

number of available antivirus solutions, differentiated by features like detection method, 

offer functionalities, and price. 

Anti-spyware software is used to fight against software and spy codes such as 

spyware, adware, and keylogger. Similar to antivirus, there is dozens of solutions split 

in commercial and free. However, as aggravating, some anti-spyware solutions are 

famous to spread spyware [19]. Anti-phishing software aims to block possible fraud 

attempts in web sites or e-mail. Typically, this type of solution is embedded on web 

browsers, email clients, and toolbars. In spite of to help the end users, there are some 

issues about the current versions. According to Wu et al. [74], the location of toolbars 

and information display does not favor end users, and there is not any suggestion about 

to do when a phishing attempt is detected.  

Lastly, anti-spam solutions try to detect spam based on filtering unsolicited 

messages through the header fields or message content. Header fields filtering checks 

source address, name of the sender, and subject of a message to validate it or not. This 

type of anti-spam solution is simpler, but is more prone to setup errors, since it is 

necessary to define rules that whether or not to receive, or which addresses, senders and 

subjects are unwanted. Blacklists (blacklists) are examples of filtering header. On the 

other hand, filtering based on message content is the most used. Usually this technique 

performs searches for keywords in the content of messages. When configured correctly, 
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the content-based filtering is very efficient, but also can make mistakes. Furthermore, 

the content inspection does not check the origin of the message.  

3.1.4. Honeypot 

The term honeypot refers to a security tool whose main function is to collect 

information about attacks and attackers, i.e., a software or system that has real or virtual 

security failures intentionally implemented and with the purpose of being invaded and 

attacked so that the used invasion mechanisms can be observed and studied. 

Honeypot have been used against unwanted traffic to characterize traffic and 

advise network managers and operators (beyond network devices such as firewall and 

IDS) about attacks and anomalies (bots and worms using IP address space not allocated 

or not allowed, for example). In addition, they offer traffic trends that can be used to 

take decisions about the network security. Currently, honeyd is most famous open 

source honeypot available [75]. However, it is important emphasize that honeypots do 

not provide any kind of prevention, but offer invaluable information for use to build a 

cure to the attack being observed.  

3.2. Promising Solutions 

Although traditional solutions are being employed against the unwanted traffic with a 

certain level of efficiency, currently, some newly developed solutions such advanced 

filtering and IP space investigation can be used to improve the effectiveness of 

traditional solutions. 

3.2.1. Advanced Filtering 

As previously mentioned, the typical filtering is not sufficient for dealing with the 

current unwanted traffic level. In order to address this problem, researches have 

proposed advanced filtering schemes and mechanisms. Currently, the IETF (Internet 

Engineering Task Force) best current practices on network ingress filtering BCP 38 

(RFC 2827 [76]) and BCP 84 (RFC 3704 [77]) are pointed out as the effective solution 

to block DDoS attacks using spoofed source IP addresses.  

BCP 38 is a filtering method that prohibits attackers from using forged source 

addresses which do not reside within a range of legitimately advertised prefixes [76]. In 

other words, if an ISP is aggregating routing announcements for multiple downstream 

networks, strict traffic filtering should be used to prohibit traffic which claims to have 

originated from outside of these aggregated announcements [10]. 

BCP 84 is focused for multihomed networks and presents other ingress filtering 

implementations such as Strict Reverse Path Forwarding (SRPF), Feasible Path Reverse 

Path Forwarding (Feasible RPF), Loose Reverse Path Forwarding (Loose RPF), and 

Loose Reverse Path Forwarding Ignoring Default Routes, which offer automatic and 

dynamic configuration of advanced ingress filters mechanism in core and transit 

networks. Nowadays, the joint of these practices with Remotely Triggered Black Hole 

(RTBH
23

) filtering technique is being proposed by IETF draft [78] to drop unwanted 

traffic before it enters a protected network.  
                                                           
23

 RTBH filtering is a technique that uses routing protocol updates to manipulate route tables at the 

network edge or anywhere else in the network to specifically drop undesirable traffic before it enters the 

ISP network [79]. 
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In [10], researches and specialists argue that a global deployment of BCP 38 and 

BCP 84 will permit effectively to block DDoS attacks using spoofed source IP 

addresses. However, the lack of incentive, infrastructure changes, and mainly the 

possible blocking of legitimate traffic due to accidental errors are some of reasons for a 

lack of a wider deployment. 

3.2.2. IP address space investigation 

The investigation of the traffic coming from unassigned, unused, and unannounced IP 

address spaces is another potential solution, since these addresses are used in unwanted 

activities such as scanning, DDoS attacks, and worm and virus infection.  

Currently, Internet Motion Sensor (IMS) [80][81] and Network Telescopes 

[82][83] are the most important implementations. Internet Motion Sensor (IMS) is a 

globally distributed monitoring system which goal is to identify and track traffic native 

of or from those types of address spaces and non-routable networks. According to [10] 

the IMS monitors approximately 17 million prefixes, about 1.2% of the IPv4 address 

space spread around the world in ISPs, organizations, enterprises, and universities. 

Network Telescopes are composed by monitors keeping an eye on traffic routed to 

unused IP address space and observe Internet events like viruses and worms 

propagation. The idea behind a network telescope is to maintain active hosts to listen all 

traffic sent to these address spaces. This way, it permits to see exactly all events in their 

“brute state”, i.e., without any traffic interferences.  

So far, IP address space investigation is not an unwanted traffic tool or solution. 

Its results have been used to gain knowledge about the actual propagation and effects 

caused by attacks and malware. Hereafter, it will be used to help in the fight against 

unwanted traffic. 

3.3. Collaborative Solutions 

The term collaboration is defined as “mutual engagement of participants in a 

coordinated effort to solve the problem together” [84]. Applied on network security 

area, collaboration is the process of detecting abnormal behaviors or events by a group 

of security solutions and devices that share information with each other. More 

specifically, collaboration permits employ different approaches, solutions, and tools to 

deal with the most vary types of anomalies and attacks.  

The use of collaborative solutions has a more effective due to the arising of more 

and more elaborated and coordinated attacks and anomalies such as worm infections 

such as SQL-Slammer [85] and Storm [22][86] worms and distributed attacks as the 

DDoS attacks occurred from September 2007 to March 2008 [87].  

Typically, collaborative solutions are composed by misuse and anomaly based 

Intrusion Detection Systems (IDS). The misuse normally checks for intrusions at packet 

level over single connection and are capable to detect known attacks fairly quickly with 

a low false positive rate. The latter, anomaly, is a more generic approach, which is 

based on building a behavior profile for what is considered as normal activity and later 

on matched to the actual traffic in order to find out anomalous events. The last one is 

also recongnized as Anomaly Detection Systems (ADS) and are capable of adapting to 

new classes of anomalies, as well as “zero day” attacks and are mostly observed at the 

network level involving multiple connections.  
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Based on this features and advantages, its integration in collaborative solutions 

can permit not only the detection of known attacks but also unknown anomalies. These 

approaches are known as Collaborative Anomaly and Intrusion Detection Systems 

(CAIDSs) or as CIDS (Collaborative IDS) and DIDS (Distributed IDS). 

The goal of a CAIDS solution is to permit that distinct detection systems work 

jointly and cooperatively, allowing traffic anomalies identification quickly and 

accurately through the reduction of the numbers of alerts, the discard of false alerts, and 

a global view of the anomaly. Normally, CAIDSs are composed by detection units, 

formed by multiple detection sensors, where each sensor monitors its own sub-network 

or hosts separately and then generates low-level intrusion alerts; and at least one 

correlation unit to transform the low-level intrusion alerts into a high level intrusion 

report of confirmed anomalies. 

In spite of its advantages, CAIDS solutions introduce new challenges or 

requirements for detection activity such as normalization, aggregation, and correlation 

of alerts, false alert reduction, prioritization, and prediction. The subsequent sections 

discuss each one of these issues and present some solutions for them.  

3.3.1. Alert Normalization 

Since collaboration involves different detection systems and typically alerts encoded in 

distinct and proprietary formats, the use of standard message formats and/or protocols to 

information exchanges (data and control) among them is a key aspect with important 

impact on the collaboration scheme.  

Recent efforts resulted in three standards for information exchanges among 

detection systems. The first is the Intrusion Detection Message Exchange Format 

(IDMEF) [88], an XML based specification for an intrusion alert format, which defines 

data format and exchange procedures used to exchange information between detection 

systems and management centers, independently of the communication protocol. The 

second is the Intrusion Object Description and Exchange Format (IODEF) [89], which 

defines a data representation (format) and a framework for CSIRTs to exchange 

operational and statistical security incidents information among themselves. In addition, 

IODEF was designed to be heavily based on IDMEF and provides upward compatibility 

with it. The last of recent standards is the Intrusion Detection Exchange Protocol 

(IDXP) [90], an application-level protocol for exchanging data between detection 

systems and focused in to provide exchange of IDMEF messages, unstructured text, and 

binary data, beyond to support mutual-authentication, integrity, and confidentiality over 

a connection-oriented protocol.  

The use of these standards provides a series of benefits, including representation 

of alerts in an unambiguous fashion, interoperability among different tools and systems, 

facility to aggregate alerts, and capability to establish correlations among them, 

improving the accuracy of detection process.  

Currently, IDMEF language has been adopted as standard in great part of works 

such as [91][92]. However, according to Sadoddin and Ghorbani [93], IDMEF standard 

presents still some issues to be addressed for true inter-operability among detection 

systems. First, IDS normally use different nomenclatures in order to fill the 

classification fields of alerts. In other works, there is a lack of common convention to 

fill alert information. Second, there is no accepted taxonomy to describe attacks. 
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Typically, each detector have its own definition mapped locally, what limit or difficult 

the interoperability with other detectors.  

3.3.2. Alert Aggregation 

Regardless of the use or not of some kind of alert normalization, the activity of alert 

aggregation must be essential in any proposed CAIDS solution. According to Sadoddin 

and Ghorbani [93], the use of alert aggregation is justified by two reasons. First, similar 

alerts tend to have similar root causes or similar effects. Second, due to large number of 

alerts produced by low-level sensors for a single malicious activity, alert aggregation 

has proven to be highly effective in reducing alert volume.  

Normally, alert aggregation is made matching the similarity between determined 

numbers of attributes (alert fields) except with little time difference. A good example is 

the work of Valdes and Skiner [94], which utilizes IP addresses (source and 

destination), port (source and destination), time, and attack class attributes to extract 

similarities among alerts. However, recent works have been extended this concept 

employing the use of cluster to group alerts that share the same root causes, due to the 

fact that this type of organization permits to easily detect causality or false positives on 

the analysis. The works of Julish [95] and Cuppens [96] are interesting examples. The 

former aggregates all alerts, which share the same root, causes what is intuitively the 

reason for which alerts occur. For this, hierarchy structures, called generalization 

hierarchy, are used to separate the attributes of alerts from the most general values to the 

most specific ones. This way, dissimilarities of two alerts can be measured comparing 

the longest path between values of that attribute in the corresponding structure. The 

latter employs a relational database to store alerts and evaluate them using a set of 

expert similarity rules to group them according to the occurrence in a same attack. Other 

works as Morin et al. [97] and Xie et al. [98] are also based on clustering techniques. 

Other works consider that alert aggregation is a function of alert correlation. 

Zhou et al. [99] and Yusof et al [100] classify aggregation (similarity and clustering) 

activity as similarity based approaches for alert correlation due to the fact that these 

techniques are intrinsically related with design and implementation of alert correlation 

function. 

3.3.3. Alert Correlation 

Alert correlation has the function of to detect attacks and anomalies, in different stages, 

and produces a high-level description of the abnormality on the network. According to 

Sadoddin and Ghorbani [93], the goal is to find causal relationships between alerts in 

order to reconstruct attack scenarios from the individual alerts.  

In spite of there is a discordance whether alert correlation include aggregation 

activity, this thesis shares the view presented in other works [99][100] and divide alert 

correlation into the following categories: similarity based, attack scenario based, rule 

based, and statistical based. 

Similarity based techniques 

Similarity techniques are typically based on the similarity between alert attributes. 

Basically, they compare an alert to all alerts that have similar attributes or features (e.g. 

source IP address, destination IP address, ports, time, attack class, and so on). Similar 
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alerts tend to have similar root causes or similar effects on network resources. For this 

purpose, techniques like similarity and clustering are employed.  

Valdes and Skiner [94] have developed a probabilistic alert correlation approach 

for EMERALD [101] project. They implement three phases of correlation: synthetic 

attack threads, where the alerts are clustered if some similarity is found; security 

incidents, used to fuse the same attack reported by multiple detectors; correlated attack 

reports, which merge alerts representing different stages of a complex attack. In [102], 

Debar and Wespi proposed an aggregation and correlation algorithm for intrusion alerts. 

In this approach, three steps are necessary to perform alert aggregation and correlation: 

alert processing, where the alerts are translated to a data model (the authors used the 

first discussion about IDMEF as data model); relationship correlation, that extracts 

correlation between alerts; relationship aggregation, where the output of second step 

(alerts) are aggregated into seven different scenarios (situations) according to its 

attributes. 

Regarding clustering approaches, the works of Julish [95] and Cuppens [96] are 

considered very representatives. Already the work of Zhu and Ghorbani [103] employs 

two neural networks approaches (Multilayer Perceptron and Support Vector Machine) 

to determine correlation between alerts and consequently establish causal relationships. 

For this, they introduce the idea of Alert Correlation Matrix (ACM) to store the average 

correlation between alert classes, which is computed adaptively based on statistical 

analysis of consecutive input alerts. The adaptation characteristic of this method makes 

it possible to start with initial (and maybe immature) correlation probability values and 

learns more from the environment as the operation proceeds, and help to extract high 

level attack strategies.  

Attack scenario based techniques 

Attack scenario techniques use the fact that attacks often require several actions or steps 

to take place in order to succeed [99]. The idea is that every attack scenario has 

corresponding steps required for the successfulness of the attack. This way, low-level 

alerts can be compared against attack scenarios before the alerts can be correlated.  

Typically, approaches using this technique have used formal models defined by 

expert users for specifying attack scenarios or employing machine learning to create 

attack scenarios. In [104], Morin and Debar propose a multi-alarm misuse correlation 

component based on the chronicles formalism able to model attack scenarios. The 

chronicle formalism proposed by Dousson [105] is used to build correlation blocks and 

represents a set of patterns (attack scenarios), whether new alerts are received; they are 

compared with chronicles. Chronicles are update always a matching occurs or otherwise 

are constructed.  

In addition, researches have proposed several formal correlation and definition 

languages to generate attack scenarios. Among the most known are LAMBDA [106], 

STATL [107], ASL [108], JIGSAW [109] and ADeLe [110]. In [111], Dain and R. 

Cunningham propose a scheme to fuse alerts into predefined attack scenarios. The idea 

is to use a fusion system to determine for that attack scenario the alert belongs. Thus, 

always that a new alert is received it is compared to determine for what attack scenario 

the alert must be a member. The scenarios are generated using two approaches, one 

based on heuristic and one based on data mining.  
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Rule-based correlation techniques 

Since attacks and its variants should be generating a large number of scenarios, the use 

of rules (pre-condition and post-conditions) has been employed to address this problem, 

reducing the number of possible attacks scenarios. This approach is known as rule-

based correlation techniques and some authors to classify it as subclass of attack 

scenario based technique.  

The paper of Debar and Wespi [102], previously described and classified in 

similarity techniques, uses consequence rules to define attack scenarios. Consequence 

rules specify that one event (alert) should be followed by another type of event, 

allowing thus that alerts be correlated. In [112], the authors proposed an approach to 

map causal relationships between alerts using rules. They introduced the concept of 

hyper alerts to encode the pre-condition and post-condition of an alert in its prerequisite 

and consequence fields, respectively [93]. This way is possible to extract prerequisites 

and consequences of hyper alerts, generate graph, which is useful in determining the 

attacker‟s goal. 

Statistical techniques 

Despite effectives, similarity and attack scenario techniques are only focused to 

correlate know attacks and anomalies. In order to complete this deprivation, statistical 

techniques have been proposed to detect unknown attacks and anomalies. 

Qui and Le [113] use Granger Causality Test (time series analysis method) to 

correlate alerts which emphasis on attack scenario analysis. The idea behind this 

approach is to use the causality analysis to correlate alerts and generates attack 

scenarios without any pre-defined knowledge. For this, it assumes that each multi-step 

attack will generate alert that have statistical similarities in their attributes, and this 

attack steps have causal relationship [100].  

In other work, Qui [114] employs a Bayesian network to model the causality 

relationship between alerts, where the alerts are node and its causality relationships are 

edges. In this model, continues alerts are divides along equal time slots and the state of 

each node corresponding to an alert is a binary value representing the presence of the 

alert in the time slot [93]. The central idea of this work is to discover which alert types 

may cause an alert of type X and how the conditional probability of X is related to its 

causes (parents). Almgren et al. [115] also use a similar approach. 

3.3.4. False Alert Reduction 

The recent detection systems have faced a serious problem caused by the large number 

of alerts. However, the problem is not only limited to huge in quantity, but also in 

quality with the presence of a high rate of false alerts. Basically, this occurs because the 

detectors employ different approaches (algorithms, information bases, and rules) to find 

a determined type of attack or anomalies. This way, to reduce the false alerts aiming to 

identify real alerts becomes an essential requirement for the deployment of any CAIDS.  

Several methodologies have been applied to solve the problem of false positives. 

Alharby and Imai [116] proposed to mine historical alerts aiming to discover how future 

alerts can be more efficiently handled. The proposal consists in, firstly, to characterize 

the “normal” flow of alerts and, lastly, an algorithm for detecting anomalies based on 

continuous and discontinuous sequential patterns. Viinikka and Debar [117] make use 
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of Exponentially Weighted Moving Average (EWMA) control chart for extracting 

trends and highlighting abnormalities on the alerts flows.  

In [118], Manganaris et al. use Frequent Episode Rules (FER) [119][120] to 

create profiles from non-intrusion periods. The use of FER allows discovering real 

alerts in the future, since sequence of alerts matching a frequent episode rule is 

considered as false positives. Clifton and Gengo [121] also use the frequent episodes to 

discover usual sequences of alarms through time and characterize them as false alarms. 

Yu and Frincke [122] propose the use of Weighted Dempster-Shafer, an 

extension from the basic Dempster-Shafer theory, to combine beliefs in certain 

hypotheses (e.g. alerts reported by a signature-based sensor and an anomaly-based 

sensor). The goal is to resolve contradictory information in different analyzers. 

Similarly, in [123] Svensson and Josang use subjective logic to reduce false alerts in the 

presence of uncertainty.  

Data mining techniques are used in the works of Pietraszek [124][125] and Tian 

et al. [126] train classifiers. However, the necessity of human intervention to help on 

training becomes a complex factor to implement these approaches. Similarly, neural 

networks and fuzzy logic are used in Alshammari et al. [127]. This method also requires 

some training in order to be able to reduce false positives. 

In Hooper [128], checking back hosts produces extra information about the 

probability that an alert is true or false. Host checking produces interesting information 

about the nature of alerts; on the other hand it introduces an additional level of 

complexity. It is not always the case that host checking is permitted by default, and if 

not the security policy of an organization may have to be significantly altered. 

3.3.5. Alert Prioritization 

Alert prioritization requirement is important in collaborative solutions because permit to 

prioritize the most critical alerts or class of alerts according to predefined metrics and 

severity and take appropriate actions for dealing with each one of them. Moreover, alert 

prioritization permit to enhance the alerts quality.  

Normally, alert prioritization is focused on the detector‟s output and takes into 

account various domain information in addition to alert types or classes such as security 

policy, network topology, vulnerability analysis of the network services and installed 

software, and asset profiles. 

The work of Yu et al. [91] focuses on the alert prioritization in two aspects: the 

not correspondence of the alert to any known attack (and consequently must be 

prioritized for further investigation) and the applicability of the attack against the 

protected network. Qui and Lee [113] propose an alert priority score calculated 

according to the severity and relevance of the attack. Porras et al. [129] propose an alert 

ranking based on the likelihood of the attack to succeed, the importance of the targeted 

asset, and the amount of interest in the type of attack. It is capable to evaluate alerts and 

clusters and is known as M-Correlator. The work of Alsubhi et al. [130] proposes a 

technique based on fuzzy logic for scoring and prioritization of alerts. In addition, a 

rescoring technique is also proposed to reduce the number of alerts.  

Although these techniques have been show efficient in to evaluate alerts 

generated by IDS, they are not able to deal with ADS outputs due to the fact that a 

knowledge base is not exist. 
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3.3.6. Alert Prediction 

Alert prediction is the ability to obtain a specific knowledge about determinate 

anomalies and attacks in order to anticipate and stop them before causing damage. The 

knowledge of previous anomalies and attack patterns is core to their prediction. One 

learns from history to avoid falling again in those traps previously encountered. By 

storing sequences that determine an attack signature, this may be identified and 

removed before taking place. Typically, alert prediction occurs in two phases. The first 

one is a training stage to enable the software to learn what characterizes an anomaly or 

an attack. The second phase is the comparison of partial patterns stored locally with the 

current alerts.  

Over the years various approaches have been used to make alert prediction. Ye 

et al. [131] make use of EWMA (exponentially weighted moving average) forecasting 

method for intrusion detection, using a Markov chain model to learn and predict normal 

activities. A forecast of normal activities is used to detect a large deviation of the 

observed activities from the forecast as a possible intrusion into computer systems. A 

Chi-square distance metric is used to measure the standard deviation of a given activity 

from those considered normal ones.  

Hu and Heywood [132] developed a two-stage attack prediction system 

(classification and prediction) aiming to investigate whether it is possible to predict 

attacks before they are initiated. This two-stage system employs Support Vector 

Machine (SVM) algorithm for classification and Self-Organizing Maps (SOM), a 

special unsupervised neural network technique, as predictor. Although interesting, the 

training and test results conducted using TCP connection feature from the DARPA 

KDD data set produced rates of 23.8% and 7.1% for false positive and false negative, 

respectively.  

Wang et al. [133] introduced an alert correlation and prediction technique for 

multistage attacks. Based on the fact that the existing correlation methods use an in-

memory index for fast searches and that finite memory is a limiting factor, they propose 

the use of a novel queue graph (QG) approach to represent an implicit correlation 

between new alerts and other alerts according to temporal order, allowing that alerts 

arbitrarily far away can be correlated. Moreover, a unified method based on QG 

approach was proposed to hypothesize missing alerts and consequently to predict future 

alerts at same time. Empirical results showed that this technique can process alerts faster 

than an IDS can report them, making of it a promising solution for an administrator to 

monitor the progress of intrusions. 

Using the victim-end concept, Kannadiga and Zulkernine [134] developed an 

IPS called Event-based Network Intrusion Prediction System (E-NIPS). The idea of this 

work is to split an attack scenario into several stages depending on the actions taken 

during such incident. This way, attacks with similar or related goals are clustered in 

classes to reduce the processing of the prediction module. When the first stages of an 

attack is detected, i.e., when the initial stages of an attack corresponds to a class of 

attacks, alerts are released. The sequences of attack events are represented by rules, 

which are used to correlate detected attack classes in the attack scenarios.  
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3.4. Traffic Analysis 

One of the shortcomings resulting from existing and traditional unwanted traffic 

solutions is the need of prior analysis, manually, to correctly detect unknown and 

undesirable traffic. This is not always feasible if it is considered the fast growing 

number of new applications and services. In addition, high-speed networks introduce 

non-trivial issues for these solutions including detection, characterization, and 

mitigation. 

In this context, traffic analysis approaches have attracted special interest of 

researches in recent years and presented promissory results against non-requested and 

undesirable traffic. Techniques to characterize the Internet traffic, methods to discover 

the traffic generated by applications, approaches to develop more accurate anomaly 

detection systems, and specific solutions to deal with specific types of unsolicited traffic 

(e.g., SPAM and P2P) have emerged in an attempt to facilitate the automatic, quick, and 

accurate identification and reduction of unwanted traffic.  

This section describes some the most relevant works that have been proposed 

including its new methodologies, approaches, techniques, and algorithms for traffic 

analysis and that can be directly or indirectly applicable for unwanted traffic 

identification. 

3.4.1. Non-Gaussian and Long Memory Statistical Characterizations 

for Internet Traffic with Anomalies 

Scherrer et al. [135] propose a statistical model based on modeling aggregate traffic 

using time series and, as a consequence, offer an anomaly detection procedure based on 

such modeling. The authors argue that network traffic consists of IP packets arrival 

processes, which could be modeled using non stationary point processes or stationary 

Markov modulated point process but, due to the high volume of packets, these models 

would generate huge data sets. This way, they propose a model using marginal 

distributions and covariance functions, called the Gamma Auto-Regressive Fractionally 

Integrated Moving Average (ARFIMA) model. 

The Gamma ARFIMA model [136] is defined as a stochastic stationary non-

Gaussian long-range dependent process where the Gamma distribution solves the 

marginal problems and the ARFIMA covariance function deals with long-range 

dependence (LRD) processes. This model is assumed to be 2
nd

 order stationary. The 

Gamma distribution (first order stationary) satisfactorily models traffic marginal 

distributions for both small and large range scales of aggregated traffic (at byte, packet 

or flow), as opposed to a Gaussian distribution like log-normal and Weibull. The 

ARFIMA covariance function (defined as being second order stationary) is a natural 

choice because it allows dealing with both short and long-range dependence. The 

Gamma ARFIMA model uses only five parameters (α and β from the Gamma 

distribution; , d, and  for ARFIMA), adjusted according to each aggregation level. 

The preliminary results indicate a good adequacy in both small and long aggregation 

levels. Moreover, the use of these parameters provides a simple, highly flexible and 

practical solution. 

In addition to the Gamma ARFIMA model, the authors also describe a scheme 

to detect anomalous traffic including legitimate (Flash Crowds) and illegitimate (DDoS 

attacks) traffic. The adopted behavior pattern is generated through the analysis of the 
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statistical profile at various time-scales of the series, which has been shown to be 

sensitive to changes caused by anomalies. Hence, what is needed is to explore the multi-

resolution nature of the problem. Consequently, the scheme works by splitting each 

time series during analysis into adjacent non overlapping time windows (one minute, 

initially) and computing, for each time window, a distance (Mean Quadratic Distance - 

MQD) between a statistical characteristic measured during the window and the same 

one measured on an a priori chosen reference window. In order to detect anomalies, 

thresholds are applicable for the calculated distance where an unexpectedly large 

deviation is assumed to signal anomalous traffic behavior. The initial results of this 

procedure detection are encouraging indeed when taking into account the high hit ratio 

for both large and even low rate illegitimate traffic. The authors also explain the 

necessity to explore the analysis over several minutes as a mean to increase the degree 

of detection. 

In order to evaluate the proposed analysis, the authors conducted some 

experiments using standard data from major available Internet trace repositories such as 

PAUG and LBL-TCP-3 [137], AUCK-IV [138], CAIDA [139], and UNC/FORTH 

[140] and time series collected from the RENATER [141] network. 

 Advantages: generally speaking, the idea presented in this work, despite not 

being a new one, could give anomaly detection a great step forward for many 

reasons. First, unlike other works, this is a simple model that is capable of 

representing Internet traffic using only five parameters. Second, its 

versatility in that it can portray traffic behavior at different aggregation 

levels could be used to create more efficient and realistic traffic generators. 

Third, the results of procedure detection are encouraging indeed when taking 

into account the high hit ratio for both large, and more importantly, low rate 

illegitimate traffic (denial-of-service attacks). 

 Limitations: the hit ratio of the detection procedure for flash crowds can 

sometimes be very small and remained below 15% in most evaluated 

scenarios. Moreover, the estimation of ARFIMA covariance and model 

parameters is hardly trivial but nonetheless feasible. 

3.4.2. Extracting Hidden Anomalies using Sketch and Non Gaussian 

Multiresolution Statistical Detection Procedures 

Dewaele et al. [142] introduce a procedure especially tailored for detecting hidden low-

intensity anomalies in Internet traffic. This technique combines sketches and a non-

Gaussian statistical model to discover anomalies in traffic data. Sketches permit to 

reduce the data dimensionality and measure the reference traffic behavior, whereas the 

Gamma distribution extracts the shape parameter of the marginal distributions of the 

traffic for each individual sketch and each aggregation level, and accurately captures 

short-time correlation structures of traffic [136]. The detection procedure makes use of 

the Mahalanobis distance [143], a statistical measure used to determine similarity of an 

unknown sample set to a known one, to perform comparisons among sketches, and is 

thus to determine anomalous behavior.  

This detection procedure consists of the following main steps: sketches 

generation, multi-resolution aggregation, non-Gaussian modeling, reference, statistical 

distances, and anomaly detection by sketches combination.  
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1. Sketches generation: sketches or random projections are used to divide the 

traffic packets into sub-groups according to sliding time-windows. For each 

one of these time slots, only the arrival timestamp, source and destination IP 

address information and port numbers are analyzed. As a result, hash tables 

are then generated, representing sub-traces of the original trace, while using 

IP source or destination addresses as their hash keys. Figure 3.1 exemplifies 

this process. 

{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}
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FIGURE 3.1: Sketches generation process 

2. Multiresolution aggregation: the sub-traces are next put together to form 

aggregated time series for a specific scale.  

3. Non Gaussian modeling: the Gamma distribution is used to describe the 

marginal distributions of aggregated traffic time series. In other words, for 

each aggregated hashed time series of an aggregate time scale, the Gamma 

parameters (α an β) are estimated for use to calculate reference and statistical 

distance. The Gamma distribution choice and adequacy are explained in 

[135][136][144]. 

4. Reference: the average behaviors and typical variability are estimated for 

each hash using mean and variance estimator. In spite of simplicity, the 

joining of sketches and reference permits the definition of normal and 

anomalous behavior patterns (anomalies can be found observing changes in 

statistical patterns comparing sketches with others at the same time). 

5. Statistical distance: the Mahalanobis distance is used to measure anomalous 

behaviors of references. Each calculated distance is matched against a 

threshold. If the distance of reference is less or equal to a threshold, it is 

considered normal, otherwise it is classified as anomalous. 

6. Anomaly detection by sketches combination: the anomaly detection is 

realized comparing sketches (hash keys) with attributes (source and 

destination IP address, and port numbers) registered in a list during the 

detection process.  

All the process is illustrated by Figure 3.2. 
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FIGURE 3.2: Anomaly detection stage 

The authors deployed and validated this strategy using data from the MAWI 

traffic repository [145] through two case studies: one with low-intensive long-lasting 

spoofed flooding and another one with a short-lived port-scan. The results demonstrate 

that the procedure is able to discover elephant (large) packets, flash crowds, DDoS 

attacks (SYN and ICMP flooding), scan activities, P2P traffic, and worms, among other 

anomalies. 

 Advantages: in spite of this strategy being a work in progress, the initial 

results are very promising. First, no prior knowledge of the traffic and its 

characteristics is necessary. Second, the procedure seems to be capable of 

detecting short-lived anomalies as well as longer ones. Third, it requires very 

low computational power and can therefore be implemented in real-time. 

Lastly, its “detection window” can work at less than one minute as well as 

over longer than a minute period.  

 Limitations: as raised by the authors, sometimes, the legitimate traffic 

(DNS, for instance) could be recognized as illegitimate if it presents a unique 

traffic pattern. Hence the authors suggest the addition of filters to exclude 

known patterns during the analysis phase. Note that attackers knowing the 

use of such filters may use them to hide their attacks. 

3.4.3. A Novel Approach for Anomaly Detection over High-Speed 

Networks 

Salem et al. [146] propose a new framework for anomaly detection for use over high-

speed links. It provides an early and efficient detection as well as the appropriate and 

corrective countermeasures. Unlike others, the proposed approach does not depend on 

any traffic distribution parameters and their variations, and does not suffer from a 

possible lack of capability for handling large state space generated by traffic 

information at high-speed links. To achieve this, it uses a new variation of sketches to 

aggregate multiple data streams and a parametric version of the multi-channel 

cumulative sum (M-CUSUM) algorithm to detect anomalies in each sketch. 

The methodology is organized in two steps. Firstly, Count-Min Sketch (CMS), 

which permits random aggregation of flows without any significant disruptions from 

their variations, is employed to store large traffic volumes in flows. This is achieved 

with a small amount of memory and with a little complexity degree, for a fixed time 

interval T. Secondly, M-CUSUM is applied to each sketch. As a result, it is then 
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possible to identify the keys of the sketches that are mapped with a raised alarm by 

CUSUM. However, before being in a position to identify any anomalies yet, the authors 

needed to solve some relevant issues. First, they argue that sketches, in general, are not 

reversible, i.e., they do not preserve the key (e.g., source IP address) of the flows, and 

when anomalies are detected, it is difficult to infer the culprit flows. The only solution is 

to test all possible entries, by hashing these for the second time, to match that consist 

anomalous flows. As this solution is neither scalable nor desirable, they propose a new 

variant for the sketch by adding an inversion procedure to it.  

The idea is based on exploring a new index in an additional sketch named Multi-

Layer Reversible Sketch (MLRS), where such index is used to store keys. MLRS is 

used in the same way as the initial CMS sketch, where the arrival of any key increments 

its associated counter. However, each key has l counters (one for each layer), and the 

key of N bits is split into l x w0 bit, with w0 = 2
P
, and l = [N/P]. P is the number of bits 

used to split the key, and w0 is used as layer width (number of columns) in MLRS 

[146]. Since anomalous flows must have one alarmed bucket in each layer and this 

methodology executes hierarchical searching, if a search does not find at least one 

bucket raised alarm by CUSUM in each of i
th

 (i ≤ 1 – i) first layers of MLRS, there is no 

need to continue searching in other deep layers.  

On the other hand, if there is at most one anomalous flow in each layer, the 

suspect key is obtained by the concatenation of the l indices in MLRS. However, it is 

necessary to ensure the validity of the candidate key. At this stage a new challenge is 

raised: that of collision with other IP prefixes. Due to the large amount of traffic 

information, many buckets in different layers may be subject to possible collisions, 

which in some cases will generate a bigger set of keys to verify than the originally 

determined. The suggested solution was in using an IP mangling technique [147]. This 

is a reversible procedure that randomizes the input data in an attempt to reduce and 

destroy correlation between keys. It is based on an optimized version of RC4 (Ron‟s 

Code) [148] ciphering algorithm. The confirmation makes use of a query of CUSUM 

functionality in CMS.  

The authors evaluated the proposed framework using many public traces 

including LBL-TCP-3, Abilene, Auckland, and within OSCAR RNRT French Research 

project. The implementation used Endace DAG 3.6ET Gigabit network interface [149] 

sniffers.  

 Advantages: this proposed framework combines sketches with M-CUSUM 

to develop a powerful tool for detecting traffic anomalies. One that 

especially considers DoS and DDoS attacks even when exhibiting low rates 

over high-speed links. This approach is flexible and could be easily 

decentralized. The timescale of detection can be reduced to as little as a 

minute or even less. 

 Limitations: M-CUSUM raises alarms only at the starting phase, expected 

to take few minutes when subjected to constant rate attacks. In addition, the 

proposed methodology needs to be adjusted to work with other strategies 

such as those that deal with anomalies detected through the examination of 

TCP flags and other protocols. 
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3.4.4. Anomaly Detection of Network Traffic based on Wavelet Packet  

Gao et al. [150] describe a new network anomaly detection method based on wavelet 

packet transforms. The authors argue that there are four problems seen in current 

methods based on wavelet transforms when used to detect anomalies. First, almost all of 

these use multi-resolution analysis, considered only adequate for detecting low 

frequency anomalies. Second, their results can be incorrect or misleading when only a 

single scale is analyzed. Third, wavelet transforms demand relatively high 

computational power and, consequently, can be considered inappropriate for real time 

operation. Lastly, choosing the adequate time-windows and calibrating their respective 

thresholds remains a challenging exercise.  

As a workaround these limitations, they propose the use of wavelet packet 

analysis, which is capable of decomposing a signal, hence offering a diverse range of 

possibilities for analysis. Overall, wavelet packet analysis permits that a signal can be 

split into an approximation and details parts. In turn, the approximation is then itself 

split into a second-level approximation and details, and the process is repeated many 

times over again. For n-level decomposition, there are n+1 possible ways to decompose 

or encode the signal.  

The proposed detection method is able to adjust the decomposition process 

adaptively, and exhibit the same detection ability across low, middle, and high 

frequency anomalies. In order to achieve this objective, the authors use one fast wavelet 

packet algorithm based on sliding window aiming to decrease the nature of computation 

complexity reminiscent from wavelet packet transforms, and a statistical detection 

algorithm based on scores together with a thresholds based mechanism to discover 

anomalies. The detection process employs an initial anomaly detection stage, to verify 

at each scale by means of a statistical detection algorithm whether there are anomalies. 

This is achieved by analyzing wavelet packet coefficients (representations of signals 

present in the wavelet transform). In the case that an anomaly has been perceived, a new 

decomposition of wavelet packet coefficients is made and this step is executed again. 

The decomposition levels are self-adaptive. In the event that there is an anomaly, the 

reconstruction of wavelet packet and confirmation of anomaly stages are used to 

reconstruct the signals from the initial scales and check whether the reconstructed signal 

is anomalous, respectively. The main goal here is to reduce the number of false alarms. 

To validate their approach, the authors simulated a number of scenarios using 

LBL trace as background traffic and the public domain Network Simulator software 

(NS-2) to generate anomalous traffic (DDoS attacks). 

 Advantages: the simulation results have demonstrated that the wavelet 

packet analysis is a promissory technology for anomaly detection.  

 Limitations: this procedure only was tested to discover DDoS attacks. 

Moreover, the time spent in the detection process increases with the number 

of signal decompositions. Last, the representativeness of the generated DDoS 

attacks remains to be proven. An alternative would be to include other 

independently generated DDoS traces into the simulated scenarios. 
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3.4.5. Profiling Internet backbone Traffic: Behavior Models and 

Applications 

The methodology proposed by Xu et al. [151] and aims to identify traffic anomalies by 

profiling Internet backbone traffic. The profiling method uses data-mining and 

information-theoretic techniques to extract and classify flows. It automatically discovers 

significant behavior patterns from link-level traffic data, and to provide plausible 

interpretation for the observed behaviors. In particular, this approach places great 

emphasis on the entropy concept. Entropy can be seen as the measurement of 

information of a given dataset, which essentially quantifies “the amount of uncertainty” 

contained in that dataset [152]. 

This methodology uses different metrics to calculate the entropy such as the 

quantities of flows and bytes. The profiling methodology implements an identification 

technique, which consist of four related basic stages:  

1. Preprocessing: deals with the definition of the domain data that will be 

processed. In other words, in this stage the packets are captured and 

aggregated into flows.  

2. Extracting significant clusters: determines the clusters for four features or 

dimensions. This procedure aims to reduce and facilitate dataset behavior 

inspection through the identification of its most significant or principal 

elements. The extraction of significant clusters deals with a four dimensional 

feature space composed by the four attributes srcIP, dstIP, srcPrt and dstPrt. 

Considering these elements, it is possible to identify two relevant types of 

network communication behavior. Firstly, there is a relationship between IP 

addresses (srcIP and dstIP), one that determines the communication pattern 

between hosts. Secondly, there is also the behavior built from port/service 

(srcPrt and dstPrt) usage patterns. 

3. Clusters classification: classifies each cluster‟s element into behavior 

classes based on similarities and dissimilarities of communication patterns 

(ports and IP addresses). 

4. Communication patterns interpretation: defines a set of behavior classes 

capable of better describing given applications and services. 

Figure 3.3 shows the interconnection among the four stages and how they are 

fed and interact. This process allows an automated or supervised adaptation of 

parameters. For instance, the iterations allow that information coming from 

communication patterns interpretation to affect the decisions taken on preprocess stage. 

In the profiling methodology, entropy is used to measure the amount of relative 

uncertainty (RU) contained in the significant clusters extracted from a fixed dimension 

(e.g. source IP). Next, behavior classification based on communication patterns of end-

hosts and services are made. Therefore, for every cluster, an RU is computed and used 

as a metric to create behavior classes (BC). Among these classes, it should then be 

possible to identify which one represents anomalous traffic. As result, the study 

presented in [17] have proven their ability to detect a wide variety of massive anomalies 

such as port and IP scans, DoS and DDoS attacks, among others.  
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FIGURE 3.3: Profiling Methodology 

The profiling approach was implemented and validated using datasets composed 

by packet headers (only the first 44 bytes for legal and privacy reasons) collected from 

different links of a large undisclosed ISP. These traces varied in their duration between 

3 to 24 hours whereas the capacity of the monitored links ranged between 155Mbps to 

10Gbps. 

 Advantages: traffic profiling is seen as a powerful tool for network 

operators and security analysts with applications to critical problems such as 

detecting anomalies or the spread of hitherto unknown security exploits, 

profiling unwanted traffic, tracking the growth of new services or 

applications. Moreover, this approach is flexible and capable of 

automatically discovering others significant behavior patterns.  

 Limitations: the profiling methodology is appropriate to a single backbone 

link, not network-wide traffic. Moreover, flow analysis is not adequate to 

detect low-intensity attacks. Lastly, the process of packet header collection 

and posterior aggregation in flows in real-time is time and CPU expensive, 

especially when considering emerging multi-gigabit broadband interfaces. 

The authors in [17] draw the attention to the fact that the minimum time 

needed to transform collected packets into flow-level statistics is five 

minutes. This cannot be acceptable in the context of real-time network and 

service security. A further limitation of traffic profiling is that it is useful for 

identifying traffic profile classes only and fails to distinguish between 

different applications that exhibit similar profiles. Profiling may therefore 

need some other complementing strategies to work effectively. 

3.4.6. Mining Anomalies Using Traffic Feature Distributions 

Lahkina et al. [153] propose an anomaly detection methodology based on the 

distributions of packet features capable of identifying low and high volume anomalies. 
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The authors argue that Origin-Destination (OD) flow analysis can reveal a diverse and 

general set of anomalies, especially the malicious ones. The proposed method uses 

entropy to make observations and extract very useful information with regard to 

dispersions in traffic distribution. The mining methodology is organized in two main 

phases: traffic feature distributions and diagnosing methodology. 

During the former, traffic feature distribution, extracts fields from packet 

headers to look for anomalies possibly caused by changes (dispersions) in the 

distribution addresses or ports being observed. For example, during a port scan event, 

the distribution of destination ports will be more dispersed than during normal 

operations. Four IP header fields were examined: source and destination IP addresses 

and source and destination ports (srcIP, dstIP, srcPort, and dstPort). The authors claim 

that it is possible to capture the degree of dispersal or concentration of a distribution 

using entropy, since common anomalies, for example port scans, can viewed clearly in 

terms of entropy in comparison with traffic volume. 

Next, the results of the entropy application phase are then fed to a second phase 

where a distribution is used to reach a diagnosis and classify anomalies. Consequently, 

the multiway subspace method is used to detect anomalies and offers an unsupervised 

classification strategy to classify them. This method is a derivate of the subspace 

method proposed in [154], and which results in traffic analysis study in [155]. The idea 

behind this method is to identify correlated variations on multiple traffic features (srcIP, 

dstIP, srcPort, and dstPort). Such correlations should point to possible anomalies. The 

unsupervised classification uses a clustering approach to form clusters, where the data is 

then analyzed to discover anomalies. It also occurs in two phases. First, known 

anomalies are clustered in order to gain knowledge of how anomalies emerge. Thus, the 

clusters are labeled based on their types. Next, the classification is performed by 

clustering unknown anomalies. 

Datasets collected from both the Abilene [156] and Géant [157] research 

backbone networks were used. The results show that the prototype was able to identify a 

wide range of anomalies including alpha flows, DoS and DDoS attacks, flash crowds, 

varied scans (port, IP, network, worm), outages, and some unknown anomalies. 

 Advantages: the use of entropy helps detecting variations on network traffic 

caused by the most diverse anomalies. The results obtained in the traces from 

high-speed backbone prove that entropy could be more efficient than 

volume-based techniques. Moreover, the proposed multiway subspace 

method also demonstrates its superior handling of huge volumes of OD 

flows and, consequently, to discover anomalies.  

 Limitations: the implementation complexity and the necessary 

computational power are pointed out as limitations of this methodology. 

Moreover, the time necessary to build OD flow time series is large as it is in 

the order of few minutes. Similarly, the method has been validated using 

academic research networks. Commercial traffic tends to exhibit different 

profiles as the applications and speed of their adoption differ between the 

two scenarios. 

 

ChkModel 

Aschoff [158] proposes an anomaly detection methodology based on statistical analysis 

of TCP connections behavior capable to identifying low and high volume of TCP 
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attacks. ChkModel is designed to distinguish between well and badly intentioned traffic, 

and also to identify possible service resource problems. It observes the total traffic 

between clients and servers, at connection and socks granularity. A connection is 

represented by the combination of the following elements: IP addresses and port 

numbers of the clients and servers. A sock is defined as a collection of connections that 

have the same IP address and port number of the server [159]. Connection classification 

is used to create the good client list, and socks classification is used to detect attacks or 

resource problems. Figure 3.4 illustrates the concepts of a connection and a sock. 
Sock

Server

Client

Client

Client
Port

Connection

 

FIGURE 3.4: ChkModel Sock and Flow Schema 

Figure 3.5 depicts a ChkModel deployment at the network edge. Rather than 

establishing the legitimacy of individual packets, ChkModel observes connection and 

sock behavior and classifies them as being legitimate or attacks. As shown in Figure 

3.4, the ChkModel is basically composed of the traffic observation and classification 

components. The traffic observation component is responsible for capturing and 

aggregating packets based on connections and socks. These are then fed into the 

classification component responsible for identifying any anomalous behavior based on 

known legitimate connection and socks models.  

ChkModel

Network Traffic

Packet
Observation

Component

Conn

Sock

Classification 

Component

Network 

State

 

FIGURE 3.5: ChkModel Architecture 

The traffic observation component is responsible for collecting real traffic at one 

or more points on a target network and for gathering traffic statistics at connection and 

sock granularity which are then stored in the Conn-Hash and the Sock-Hash tables 

respectively. These statistics are continuously read by the classification component that 

compares them with existing legitimate connection and sock models. The current 
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implementation of the ChkModel verifies only the legitimacy of TCP traffic, which 

currently reaches as much as 90% of traffic in the Internet [158]. Judging a TCP 

connection as legitimate is based on the two-way communication paradigm of the TCP 

protocol. A TCP connection is modeled by the ratio of the number of packets sent to 

and received from a specific destination [159]. This relationship will be used as a 

baseline for the implementation of legitimate connection and sock models, as described 

in more details next. 

Legitimate TCP Connection Model 

Data flows from the source to destination during a TCP session are controlled by the 

constant flow of acknowledgments in the reverse direction. Congestion can be perceived 

if the flows of acknowledgments decrease. In this situation, TCP reduces the sending 

rate. This explains why normal TCP communication can be modeled by the ratio of the 

number of packets sent to and received from a specific destination. A legitimate TCP 

connection model defines two thresholds, ConnThr1 and ConnThr2 as the maximum 

ratio (number of packets sent to or received from) for a healthy TCP connection and the 

maximum ratio for a suspicious connection respectively. ChkModel classifies a 

connection as good if its ratio is below ConnThr1, as suspicious if its ratio is between 

ConnThr1 and ConnThr2 otherwise it is classified as being definitely bad. Because of 

the dynamic nature of network behavior, some normal traffic may sometimes be miss-

classified as bad. In order to deal with this problem, a second threshold which provides 

a new classification, called suspicious, for borderline cases for use in the sensor was 

created. 

Legitimate TCP Sock Model 

ChkModel‟s legitimate TCP sock model is similar to the previous one. The main 

difference is that it defines only one threshold namely SockThr, seen as the maximum 

ratio for a normal sock. Recall that sock is defined as a collection of connections that 

have the same IP address and port number of the server. A sock is classified as normal 

if its ratio is below SockThr and as an attack otherwise.  

When a TCP sock is low, it is an indication that a determined server is 

overloaded, possibly by an attack, and through the TCP connection model, the presence 

of an aggressive sending host in the Conn-Hash Table signals the possibility that a host 

can be participating in an attack. 

The ChkModel methodology was written in C++ and validated using a GPRT 

testbed.  

 Advantages: the use of a statistical function to model TCP connection 

permits to detect the most diverse anomalies TCP related. The results 

obtained on initial tests prove that it can be used in both on-line and off-line 

traffic monitoring. Moreover, the use of adaptive thresholds helps to adjust 

to the real network state. Last, this is appropriate both for a single backbone 

link and for network-wide traffic.  
 Limitations: this methodology was designed to discover only TCP attacks. 

Moreover, as raised by the authors, sometimes, illegitimate traffic (SPAM, 

for instance) could be recognized as legitimate if the target (server) was 

capable to respond great part of connection requests.  
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3.4.7. Discussion of evaluated traffic analysis approaches 

In spite of the advances in unwanted traffic detection, especially over challenging high-

speed links, these approaches either present a costly price of computational complexity 

and infrastructure changes or some type of inadequacy related with some features such 

as timescale of detection and detection range.  

For instance, the behavior-based techniques Profiling [151] and Mining [153] 

are very similar but diverge over some aspects. In terms of computational complexity, 

the first one is simpler. On the other hand, whereas Mining perceives both low and high 

intensity anomalies, Profiling is only adequate to massive anomaly detection. Other 

good examples are statistical approaches [136] and [142]. Both are conceptually similar, 

but they differ in their ability to detect a great number of anomalies and the timescale. 

Whereas [136] has a poor performance in detecting two types of anomalies, [142] 

reaches a varied scale of anomalies. On the other hand, the timescale of detection in 

[142] can be more than fifteen minutes whereas in [136] it is less than one minute. 

Finally, while by no means comprehensive, this work is of the opinion that this 

chapter captures the essence of the discussion and analysis about anomaly detection 

techniques. Table 3.1 summarizes the comparisons of anomaly detection techniques 

presented. 

TABLE 3.1: A subjective comparison of various anomaly detection techniques 

Approach 

Metrics 

Analysis 

Technique 

Data 

Format 

Time of 

Detection 

Anomalies 

Identified 
 

Non-Gaussian 

Multiresolution 

Statistical 

analysis 

Aggregated 

traffic 

At least one 

minute 

DoS and Flash 

crowds 

Sketches and 

Multiresolution 

Statistical 

references 
Sketches For low-rate, less 

than one minute. 

For high-rate, 

until 15 minutes 

Flash crowds, 

DDoS, Scan, and 

unwanted traffic like 

P2P and worms 

Sketches and 

CUSUM 

Parametric 

M-CUSUM 
Sketches At least one 

minute 

DoS and DDoS 

attacks 

Wavelet Wavelet 

Packet 

Analysis 

Not 

applicable 

Not defined Massive and 

unknown attacks 

Profiling Data mining 

and Entropy 

Flows At least five 

minutes 

Port and IP scans, 

DDoS and unknown 

attacks 

Mining Statistical 

multiway 

subspace 

OD flow At least five 

minutes 

Alpha flows, Flash 

crowds, scans, 

DDoS and unknown 

attacks 

ChkModel Statistical 

analysis 

Connections 

and Socks 

Instantly TCP attacks 
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3.5. Chapter Summary 

This chapter introduced an overview of solutions against unwanted Internet traffic. 

First, a brief discussion about traditional and promissory approaches was presented. 

Common filtering mechanisms (including firewalls, ACLs, proxies, and BGP null 

routing), IDS, anti-something software, and honeypot were showed and its usefulness 

and shortcomings in to deal with unwanted traffic were pointed out. After, the recent 

and promissory solutions (advanced filtering mechanisms and IP space investigation) 

have also been presented in this section and examples of how they can be used to deal 

with unwanted traffic were showed.  

Next, collaborative solutions (CIDS and CAIDS) were presented and discussed. 

Overall, the most important researches and contributions in this area were shown as 

soon as the essential requirements for building such solutions were contextualized.  

Lastly, an overview of relevant research in traffic analysis to detect unwanted 

traffic was provided. The state of art in techniques used for detecting unwanted traffic 

was surveyed. The review was organized with the goal of achieve a great spectrum of 

anomalies. Solutions based on statistical distributions, mathematical models, and, 

mainly, behavior analysis of hosts and network were studied and, then their advantages 

and coverage and also their limitations were discussed.  

To sum up, the aim of this chapter is not claim that all of the existing strategies 

are reviewed here but it should give the reader ideas and argue for the need to continue 

such efforts as a solution remains a further undertaking. As practical result, this chapter 

demonstrated the fact that no single or isolated strategy is sufficient to deal with 

unwanted traffic. The main reason is because it is a very complex and dynamic. Despite 

initiatives like the IETF to provide some general guidelines (BCP 38 and BCP 84) for 

operators and providers to put in place common procedures and efforts to root out 

unwanted traffic and save on the resources, new attack forms keep popping all the time, 

for different purposes and targeting different services. A solution that may achieve some 

reasonable results would only be the result of cooperating processes, administrators, 

security alert sites and any other mean that could contribute to this endeavor. This thesis 

considers collaborative and cooperative solutions as its focus and a significant step in 

the direction self-defending networks. In the next chapters, the proposed approaches for 

analyzing and diagnosing unwanted traffic and anomalous will be introduced.  
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OADS Approach and Tools 
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Chapter 4  

Orchestration Anomaly Detection System (OADS) 

 

 

Internet services relied for a long time on the informal agreements and goodwill of 

member sites in protecting and correctly forwarding each other‟s traffic. Although 

lacking a centralized control or ownership, the Internet is one of the few, if not the only, 

self-governing infrastructure that manages to operate reasonably well under such a 

paradigm. 

Today, that trust model is coming under intense attacks as a result of the 

diversified communities that joined the Internet bandwagon. Figure 4.1 illustrates an 

example (an email received in nanog.org list) of the almost routine discomfort and 

trouble caused by unwanted traffic.  

Date: Mon, 15 Sep 2008 08:14:06 -0400 (EDT) 

From: Tom Obama <tb@dyndns.com> 

To: nanog@nanog.org 

Subject: Paging Level(3) Security Operations 

Hello NANOG list, 

I'm trying to reach out to Level(3) Security Operations for assistance with a Denial of Service attack. 

So far, the normal means to contact Level(3) have failed. 

 

I can be reached directly at 679-798-1248. 

 

Thanks, 

Tom Obama 

FIGURE 4.1: E-mail example of the fight against unwanted traffic 

Can the Internet way of life be maintained? For how long and at what price? 

What can be done to make a network administrator‟s work easier to handle such 

problems? Would not be nice to have some automatic, quicker and highly efficient 

response to similar unwanted traffic? One cannot simply blacklist the domains where 

unwanted traffic comes from, as this would only benefit those who are exploiting 

existing Internet weaknesses or preferably the choice of a simple design. 

In an attempt to answer to such concerns this chapter presents the specification 

of a new orchestration-based approach to detect, and as far as possible, to limit 

anomalous (unwanted) traffic. Core to the proposal, is a framework that coordinates the 

receiving of a multitude of alerts and events from detectors, evaluates this input to 

detect or prove the existence of anomalies, and last choose the best action to be taken, 

named Orchestration-oriented Anomaly Detection System (OADS).  

In order to explain how this proposed approach could be useful in improving the 

anomaly detection process, firstly, an overview will be made aiming to explain the 

orchestration concept and how it is applied in this proposal. Next, all OADS 
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architectural components will be individually detailed. Lastly and foremost, the benefits 

of the proposed approach will be explained, detailing how it will deal with special 

services and comparing it with some existing specialized architectures.  

4.1. OADS Overview 

The research in the field of collaborative anomaly and intrusion detection systems is 

extensive and currently, but yet only very few systems have been simulated or 

implemented. In addition, due to the technological trends and evolution of strategies and 

mechanisms to generate unwanted Internet traffic (anomalous traffic), the typical 

collaboration solutions can be considered deficient to deal with the current level of 

Internet traffic, especially for high-speed links. Aiming to address these issues, a new 

approach based on the concept of orchestration services is proposed called 

Orchestration oriented Anomaly Detection System (OADS).  

Orchestration is nothing but a modern metaphor that describes an already well-

known security network administrator activity. Analogously to a musical concert 

maestro responsible for keeping the rhythm, cuing the different players, security 

managers organize the harmony and rhythm of various detection instruments (IDS, 

ADS, remediation systems, firewall, walled gardens, traffic analysis appliances, and so 

on) to achieve a desired effect, turn the network as more secure as possible.  

The idea behind OADS approach is to automatically manage the execution of 

different anomaly detectors traditionally unaware of each other‟s. In other words, the 

proposed approach permits and explores the added benefits obtained from the 

collaboration and harmonization among different techniques against malicious 

activities. Collaboration enables two or more processes to work together towards a 

common goal without the need for a pre-established leadership. In the music world, this 

occurs when musicians work on the same musical album or individual song. In the 

information security context, this thesis sees collaboration as a facilitator of 

relationships between different anomaly detectors. For instance, two or more detectors 

can share the same traffic base (traces) to perform analysis or the final result from one 

that may be taken as input for another detector to help reach a better decision. Harmony, 

also seen as an interesting concept, means that two or more different sound notes fit 

well together. Extending such concept to the network security area, one can say that 

harmonization is enabling a service from any source, exposed through any technology, 

to work well with an orchestration.  

4.2. OADS architecture 

To better clarify the orchestration approach, Figure 4.2 illustrates its organization and 

shows its components. 

The OADS architecture consists of four basic elements: Alert Pre-Processer, 

OADS Analyzer, Decision Service, and OADS Miner. In addition, OADS approach 

uses anomaly detectors as external elements. This section explains in details each one of 

them.  
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FIGURE 4.2: OADS architecture view 

4.2.1. Anomaly Detectors  

Anomaly detectors implement the intelligence necessary to analyze traffic information 

from its sensors looking for potential attacks or abnormal events. They extract data 

related to suspicious and anomalous traffic and supply the orchestration core of OADS 

approach with alerts. In other words, the main goal of an anomaly detector is to identify 

and notify the likely existence of any anomalous, unwanted or harmful traffic behavior 

to the orchestration core.  

In practical terms, anomaly detectors are logical devices that may be 

implemented in hardware or software. In hardware, they are commonly aggregated with 

sensors that implement a variety of techniques such as sampling and filtering, packet 

level capture, flow aggregation, and DPI. Currently, there are a great number of 

hardware-based products to capture and inspect network traffic in real time that has 

been developed. P-Series (Force 10 networks) [160], Orca-flow (Cetacea networks) 

[161], and Cloudshield technologies [162] are some examples. Regarding software-

based, a plurality of solutions, tools, techniques, and systems to process the traffic may 

be used, including IDSs (Snort [163], Bro [164] and Prelude IDS [165]), honeypots 

(Honeyd [75] and Nepenthes [166]), and academic prototype software or solutions 

[151][167].  

4.2.2. Alert Pre-Processer 

Alert Pre-Processer component can be seen as the front door of the OADS approach. It 

plays a role that consists of receiving information (raw alerts) from anomaly detectors 

and preparing them to be analyzed. Basically, it performs two activities.  

The first one is the adequacy of alerts. Although OADS approach adopts 

IDMEF standard as alert message format, is necessary a content adequacy since some 

anomaly detectors present distortions in relation to IDMEF output, as previously 

presented in Section 3.3.1. A good example involves two famous free IDS software: 
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Snort [163] and Prelude IDS [165]. Basically, they have different nomenclatures for 

alert identification field. Figure 4.3 highlights this divergence.  

<?xml version="1.0"?> 
<IDMEF-Message version="1.0"> 
     <Alert messageid="3004"> 

<?xml version="1.0"?> 
<IDMEF-Message version="1.0"> 
     <Alert ident="abc123456789"> 

(a) Snort IDS (b) Prelude IDS 

FIGURE 4.3: Snort and Prelude nomenclature problem. 

While Snort employs the standard nomenclature (Alert messageid), Prelude 

names this field as Alert ident.  

The second is aggregation. Since attacks and anomalies might consist of one or 

multiple steps and the anomaly detectors are capable to create alerts for each of these 

steps, aggregation activity makes easy to build hypothesis about the anomalies and 

possible defense strategies, and to reduce the volume of data.  

Alert Pre-Processer component may employ two aggregation schemes: similarity 

and cluster. The first and most used scheme explores the distance in time between alerts 

with some similarity between determined alert fields. The idea behind it is to aggregate 

“near” alerts, that is, to fuse alerts if they are both close in time and typical attributes 

such as Source IP, Source Port, Destination IP, Destination Port, Attack Class, and 

source detector are similar. This thesis does not make use of Port fields since source 

ports can be easily changed to hide the attack and destination ports are normally related 

to attack class field. This aggregation approach is very simple and must be utilized to 

evaluate a reduced alert number, i.e., it is adequate for simple attack scenarios.  

The second is based on clustering, where alerts set are divided into different 

groups. The goal is to group alerts that have the same attack scenario. Since the majority 

of attacks are against the same target machine (or other network devices), so the attacks 

with the same target IP, for example, often have greater similarity. Consequently, it is 

easier to find similar alerts. The choice for this aggregation approach is justified by the 

need of working with massive alerts, especially when checking high-speed links.  

In addition, in order to provide security requirements, the Alert Pre-Processer 

component can implement two security measures: session control and cryptography. 

The former is to register all participants and consequently enhance the general security 

of the OADS approach. Universal Description, Discovering, and Integration (UDDI) 

specification [168] has been used for this purpose in a solution involving Web Service 

as in [92]. The latter is to guarantee that all communication among all OADS 

components will be encrypted.  

4.2.3. Alert Analyzer 

Alert Analyzer is a tool that correlates incoming reports, trying to confirm the existence 

or not of attacks and anomalies. Moreover, it is also capable to predict future threats and 

targets. This OADS component has the function of receiving the aggregated alerts built 

by Alert Pre-Processor component, correlate them to increase their accuracy and 

consequently to validate the assumptions contained in each one of them, and possible 

predicting their occurrence in the future with some level of confidence.  

The idea behind this correlation is to build an anomaly traffic patterns base. In 

other words, all confirmed positive diagnosis (true abnormal traffic) would generate 
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rules that can and must be stored, to be consulted on future. Although this may seem a 

bit controversial, there is a good reason for it. The following example presents to the 

reader a more detailed view. Assuming the existence of a network scenario where a host 

is infected by a botnet injecting a low-rate TCP SYN attack on the network. This attack 

occurs constantly at intervals of 10 minutes in a network where there are two detectors. 

The first detector (ADS1) was deployed to evaluate the TCP message exchange 

behavior pattern while the second one (ADS2) is specialized in massive traffic 

anomalies. When both are put together to evaluate this anomalous traffic, only ADS1 

detects the abnormality because it recognizes a progressive growth in TCP connections 

as illustrated in Figure 4.4. As result, a generic rule will be created by OADS AC-

Analyzer to identify this anomalous behavior clearly perceived on the picture.  

 

FIGURE 4.4: Example of attack evaluation by two anomaly detectors. 

To achieve this objective, OADS Analyzer makes use of an adaptive technique, 

namely, episode frequency analysis [119][120]. It observes and develops knowledge, in 

the form of probabilistic rules, of the relationships among events that anticipate and 

make up a given attack. Not only is it capable of building adaptive event basis 

signatures, but can also be used to predict the buildup and preparation towards a 

possible attack before it is carried out, hence giving networks managers a kind of early 

warning system. 

4.2.4. Decision Service 

Decision Service (OADS-DS) implements the software responsible for the decision 

process related to analyzed network traffic. According to received information (or even 

collected), it decides whether there is any abnormality.  

To implement the OADS-DS, a number of mechanisms, methodologies, and 

techniques can be used. Voting methods (simple voting, priority-base, weight levels, 

and decision tree), neural networks (supervised or unsupervised [169]), fuzzy logic 

[170], Dempster-Shafer‟s Theory of Evidence [171][172], Markov Chains (normal or 

hidden), finite state machines [173] and other knowledge fusion approaches are only 

some examples. The ability to tailor this service, making it context-aware, to different 

scenarios, network traffic, network status, available detectors, or other conditions is a 

great advantage of this service.  
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Since it has access and knowledge about the past and the current network status, 

OADS-DS uses predefined policies (heuristic rules) to choose the best decision 

mechanism to make at any determined moment. In OADS approach, Decision Service 

employs the concept of Policy-Based Management (PBM), defined by IETF [174], to 

take decisions according to defined network policies. Policy definitions are an answer to 

relatively high level questions such as: What to do when such event happens? The PBM 

approach is governed by a set of rules that determines the action course to be taken 

based on some conditions [175]. The evaluation of a policy is triggered by an event, 

which results in a policy decision being enforced on specific network device(s) or 

service(s). Policies are declarative, i.e., they can be adapted at run-time to flexibly 

control system behavior and are therefore becoming increasingly popular in adaptive, 

run-time configurable networks and information systems.  

4.2.5. OADS Miner  

OADS Miner is a specialized tool able to receive queries and to answer with 

summarized and specific content based on obtained information from the Internet and 

stored on anomaly and vulnerability base.  

Basically, OADS Miner is divided in two distinct modules (Figure 4.5). The first 

one, named OADS Crawler, is responsible to gather on the Internet new information 

sources about traffic anomalies, vulnerabilities, and attacks. This module acts like a 

crawler collecting and concentrating the maximum possible information available on the 

Internet (technical and alert reports, summary traffic, black and white lists, and 

vulnerabilities databases) and stores them in a unique repository. It is important to 

emphasize that operation control like activation, deactivation, and parameters change 

(number of pages searched, initial URLs, specific content, for example) of OADS 

Crawler can and must be made by the Decision Service component. To achieve such 

goal, it is desirable that these actions are made using a predefined configuration file 

using a description language like XML.  
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FIGURE 4.5: OADS Miner overview. 

The second module works providing a differentiated search engine, focus on the 

support of the decision-making. It is capable to receive general or specific queries 

elaborated from end-users (typically network and IT managers) or other systems and 

tools, and return specific summarized information. This functionality is better explained 
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by the following example. Assuming that many anomaly detectors are reporting 

suspicious behavior in a determined set of IP address and that Alert Handler 

summarizes them in a same cluster, the Analyzer decides to search thoroughly what the 

possible causes are. For this, it consults the OADS Miner about information related with 

this case. So, OADS Miner executes queries in its anomaly and vulnerability base 

looking for any data which characteristics are similar or peculiar to the behavior. Hence, 

all available information matched with the original query is retrieved, summarized to 

eliminate duplications or inconsistencies, and forwarded to the Analyzer in order to 

decide whether the suspicious behavior is or not anomalous one.  

4.3. OADS Contributions 

The possibility of collaboration between anomaly detectors in the attempt to identify 

traffic anomalies quickly and accurately seems to be the major benefit of the OADS 

approach. Although, this modular framework may grow to embrace other detectors and 

technologies, it is seen as a good and significant step in the direction of self-defending 

networks.  

Another benefit offered by the OADS approach is freeing the network operators 

and administrators of the routines and cumbersome repetitive tasks of evaluating 

security events, alerts, and incidents provided by the numerous network security 

software and services. Today, network security can no longer be achieved by 

individually setup of each network security element and the manual configuration of 

devices and services remains prone to human errors and does not scale well. For this 

reason, OADS approach may use security policies to especially describe or define what 

is considered as unwanted traffic and to support actions that deal with it (domain 

policies). In a recent work Erro! Fonte de referência não encontrada., security policies 

were employed for this goal, although they are not very scalable.  

The flexibility to update or add new detection techniques is another offered 

benefit. OADS approach permits that any detectors may participate into the framework 

since it makes use of a predefined pattern for communication exchanges (in this case 

IDMEF). 

Lastly, OADS is a generic and open approach to deal with unwanted traffic. It is 

generic as its components may be assembled to detect a large number of different types 

of anomalies, spanning from a traditional LAN access control service to large high-

speed ISPs and backbones. The approach is also open as it uses open source languages, 

defines and uses existing standard protocols, and tools. The possible number of anomaly 

detectors and their invocation sequence offers a wide and flexible range of effective 

cooperative work in order to defeat unwanted traffic. The external domain 

communication capability is no doubt a significant step in the direction of zeroing in on 

current cyber-attacks by rapid online cooperation with external security alert sites and 

colleagues. 

4.4. Chapter Summary 

Around two decades after the seminal work by Denning [176], anomaly detection 

remains a relatively less studied field when compared to intrusion detection for 

example. It is only now that the potential benefits of anomaly detection are being looked 

at under a high-speed network magnifying glass. This perspective culminates from the 
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increasing number of high-speed networks, the emergence of new services, and the 

increasing convergence of the two.  

In this thesis, the collaboration and harmonization of different anomaly detectors 

is a step towards to achieve a desired effect in security area, i.e. turn the network more 

and more secure. In this context, this chapter presented a holistic view of the proposed 

architecture to deal with unwanted Internet traffic identification, called the 

Orchestration oriented Anomaly Detection System (OADS). This novel architecture 

employs collaboration and harmonization of different anomaly detectors to achieve a 

desired effect in the security area, i.e., turns the network more and more secure. In 

general lines, it facilitates the management of unwanted traffic identification, by 

providing means to integrate (collaboration) different anomaly detection techniques 

(detectors) and consequently increasing the network security level. 

Although this thesis acknowledges that anomaly detection is still far from being 

solved, it believes that the most promising results will still be achieved and this thesis 

contributes with a new effective approach for anomaly detection. Moreover, as main 

benefit, it releases the network operators and administrators of the routines and 

cumbersome repetitive tasks of evaluating security events, alerts, and incidents provided 

by the numerous current network security software and sites. 
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Chapter 5  

OADS Alert Pre-Processor 

 

 

The growth of coordinated network attacks such as scans, worms and distributed denial-

of-service (DDoS) is undoubtedly real. Although collaborative solutions have the 

potential to detect these attacks due to enabling all their sub-detection systems and 

sharing valuable intelligence with each other, some fundamental issues remain to be 

solved. 

Sadoddin and Ghorbani [93] pointed out three reasons to justify the need for 

alert aggregation based solutions. First, it is not always easy to locate the source or 

target of attacks or faults in a network by examining merely low-level alerts. Secondly, 

current “low-level” data collection components consider raw alerts in isolation and raise 

alarms for each of them, without considering rich logical connections and relationship 

between these. Thirdly, automatic responses tend to be inefficient when solely based on 

such raw alerts as their input for decision taking. 

The huge number of alerts triggered by numerous security and traffic analysis 

tools limits the ability to detect coordinated attacks in a scalable and accurate manner. 

Hence, the question is: how to aggregate and reduce duplicated alerts from different 

detectors inasmuch time as possible to permit their joint summarized interpretation?  

This problem is addressed through the design and development of a component 

(tool) based on multi-source alert aggregation to deal with the generated huge volumes 

of raw alerts. Among the adopted techniques, there is one proposed by Xu et al. [151], 

focused as profiling Internet backbone traffic for discovering significant behavior 

patterns of interest. It provides their plausible interpretation, by aggregating raw alerts 

and extracting significant clusters along the three dimensions: source IP address, 

destination IP address and class of attack. An information-theoretic approach is taken to 

classify traffic into meaningful clusters.  

The goal is to obtain the most relevant alerts grouped in clusters of interest, 

allowing that a correlation algorithm can be used to discover the attack strategy, helping 

network operators and IT managers to see the real attack intentions and take the most 

adequate decision. This solution has the potential to reduce the bandwidth and 

computational load at the (centralized) server, decreasing the false negative rate and 

prioritizing the most relevant alerts.  

In order to explain how the proposed solution can be useful in the context of 

alert aggregation, the remainder of this chapter is structured as follows. First, the 

background behind entropy and relative uncertainty is explained, followed by the 

process of extracting significant clusters. Next, an overview design of the Alert Pre-

Processor is presented, including complete details of each architectural component. 

Then, the implementation of each component is described. After, performance 

evaluation and stress tests are presented to validate the solution. Last, some conclusions 

are discussed.  
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5.1. Background 

5.1.1. Entropy and Relative Uncertainty  

The work of Xu et al. [151] proposed the use of an information-theoretical measure, 

named relative uncertainty (RU), to extract significant data based on the mathematical 

concept of entropy, proposed by Shannon and Weaver [152]. 

Entropy essentially measures “the amount of uncertainty” contained in 

determined information. Let   be a random variable that may take    discrete values 

         . Suppose we randomly sample or observe   for   times, which induces an 

empirical probability distribution on  ,       
  

 
     , where    is the frequency 

or number of times that   was observed taking the value    [151]. The Shannon entropy 

of random variable   is defined as: 

                     

 

   

 (1) 

where by convention        . 

Since entropy measures the “observational variety” in the observed values of  , 

it is correct to affirm that                               , where         

is defined as the maximum entropy of   when          . 

So, assuming that there is an “observational variety”     and     , Xu et 

al. [151] introduced a standardized entropy, named relative uncertainty (RU), to 

provide an index of variety or uniformity regardless of the support or sample size 

defines as: 

      
    

       
                   (2) 

Since relative uncertainty provides an index of variety or uniformity in the 

observed values of  , if        , then all observations of   are of the same kind, 

i.e.,          for some    , meaning that the observational variety is completely 

absent. On the other hand, when      ,         if and only if       and 

           for each     , where   denotes a subset of the observed values of  . 

Thus all observed values of   are different or unique and the observations have the 

highest degree of variety or uncertainty. If      ,         if and only if    
    , thus             for       , i.e., the observed values are uniformly 

distributed over  . In this case,       measures the degree of uniformity in the 

observed values of  . 

As described in their original work, the authors considered the conditional 

entropy        and conditional relative uncertainty         by conditioning   based 

on  , where            ,                  and                    . 
Hence           if and only if              for every     . In general, 

          means that the observed values of   are closer to being uniformly 

distributed, thus less distinguishable from each other, whereas           indicates 

that the distribution is more skewed, with a few values more frequently observed. This 

measure of uniformity is used for defining “significant clusters of interest” 
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5.1.2. Extracting Significant Clusters 

Before explaining the process used to extract significant clusters, it is necessary to 

clarify that the original focus has been changed. Instead of extracting clusters needed to 

identify attacks and anomalies, significant clusters are used to reduce the number of 

alerts and avoid the cognitive overloading of system managers. 

In addition, for the above reason, unlike the original work that uses the four-

feature space (source IP address, destination IP address, source Port, and destination 

Port) to determine the communication patterns of the end hosts and services, this work 

adopts a feature-space composed by the three elements, source IP address (srcIP), 

destination IP address (dstIP) and class of attack (class)
24

. The extracted srcIP and dstIP 

clusters are used in a similar role to the one in the original work as they represent a set 

of “interesting” host behaviors (communication patterns), while the class cluster yields 

a set of “interesting” class/impact information of the attack alerts. No use is made of 

source Port and destination Port information in cluster identification due to the fact that 

source port can be easily changed to hide an attack and destination port is normally 

related with attack class field. 

Regarding the process to extract “significant clusters of interest” proposed by Xu 

et al. [151], considering:  

  , a random variable. For example, representing a one feature dimension like 

srcIP, 

  , a time interval, 

  , the total number of alerts observed during the time interval  , and 

                 , the set of distinct values in  , 

the probability distribution    on   is given by           , where    is the 

number of alerts that take the value    and the (conditional) relative 

uncertainty,               , measures the degree of uniformity in the observed 

features  . If        is close to 1, say,        , then the observed values are close 

to being uniformly distributed, and thus nearly indistinguishable. Otherwise, there are 

likely feature values in   that “stand out” from the rest. 

Consequently, it is possible to define a subset   of   that contains the most 

significant (thus “interesting”) values of   if   is the smallest subset of   such that: i) 

the probability of any value in   is larger than those of the remaining values; and ii) the 

(conditional) probability distribution on the set of the remaining values,       , is 

close to being uniformly distributed. Intuitively,   contains the most significant feature 

values in  , while the remaining values are nearly indistinguishable from each other. 

Algorithm 5.1 Simplified significant cluster extraction algorithm 

Input:                    ; 
 

01:                

02: compute probability distribution    and its            ; 

03: while      do 

04:                   
05:       for each       do 

06:            if          then 

07:                                     

                                                           
24

 Class of attack is obtained from the IDMEF alerts. 
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08:             endif 

09:       end for 

10:       compute (conditional) probability distribution    and          ; 

11: end while 

Algorithm 5.1 presents a general draft of the used algorithm (in pseudo-code) for 

extracting the significant clusters in   from  . Initializing with      , the algorithm 

searches for the optimal cut-off threshold    from above via “exponential 

approximation” (reducing the threshold   by an exponentially decreasing factor 1/2
k
 

with k constant). As long as the relative uncertainty of the (conditional) probability 

distribution    on the (remaining) feature set   is less than  , the algorithm examines 

each feature value in   and includes those whose probabilities exceed the threshold   

into the set   of significant feature values. The algorithm stops when the probability 

distribution of the remaining feature values is close to being uniformly distributed 

(       ).  

The algorithm results are in the form of vectors, one for each cluster, containing 

the key of interest (IPsrc, for example), its frequency and the pointer for all elements 

this key.  

It is important to explain that the Alert Pre-Processor component only employs 

the clustering technique from the proposed approach by Xu et al. [151]. 

5.2. Alert Pre-Processor Architecture 

In order to achieve high detection accuracy without introducing an excessive 

computational overhead, an efficient mechanism of multi-source (multi-dimensional) 

alert aggregation is necessary.  

The proposal addresses this issue through the design and implementation of an 

alert aggregation module (or component). This module receives alerts from different 

detectors, converts them to the IDMEF-based alert format, and then aggregates these 

using an adapted algorithm based on cluster similarity. Figure 5.1 depicts a functional 

diagram of the architectural components in accordance with their roles. 

The main entities that compose Alert Pre-Processor are: 

1. Alert Handler Module - plays a role that consists in receiving information 

(raw alerts) from different detectors and preparing these for analysis. It is 

seen as the front-end of the Alert Pre-Processor component since it 

represents the unique access gate to the offered functionalities. More 

specifically, it performs three activities: 

o Translation – performs translation of alert messages from different 

formats to the IDMEF standard format. This activity is optional.  

o Validation – performs the validation of the alerts to guarantee that they 

are in conformance with the IDMEF standard format. 

o Ordering – performs the ordering and synchronization of alerts according 

to their timestamps. It is important to emphasize the need of all detectors 

to have their clocks synchronized in order to ensure the correct ordering 

of alerts. 

Architecturally speaking, the Alert Handler module is divided into two parts: 

Alert Handler agent (AHa) and Alert Handler server (AHs). The former runs 

continually when the detector is active, i.e., it is implemented as a daemon or 
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service. It is responsible for collecting the generated alerts, translate and 

validate them when necessary, and finally sending them to AHs. The second 

handler also acts as a daemon or service and is responsible for receiving the 

alerts from the AHa, ordering them according to their timestamps, and 

ultimately forwarding them to the Aggregation module.  

2. Aggregation Module – is the core of the Alert Pre-Processor. It has as main 

task for aggregating alerts from multiples sources (detectors) that have some 

common feature values. It receives ordered alerts and executes a cluster-

based algorithm in order to extract only significant alerts. The results 

(summarized alert information) are then forwarded for possible correlation to 

check or confirm the likelihood of attack or anomaly.  

Ordered 

alerts

Multi-source 

Alerts

Alert Handler 

Module DS1

...

Detectors

DS2

 DSn

Alert Pre-Processor

Vector of 

significant

clusters

Aggregation 

Module

srcIP dstIP

class

AHa

AHa

AHa

 

FIGURE 5.1: Functional diagram of OADS Alert Pre-Processor. 

5.3. Implementation 

This section describes the implementation process of the OADS Alert Pre-Processor 

while focusing on its data structure.  

5.3.1. Alert Handler Module 

In order to receive multi-source alerts, this handler employs a client/server approach, 

where the clients are called Alert Handler Agents (AHA) and the server is known as the 

Alert Handler Server (AHS). 

Alert Handler Agent (AHA) 

Developed using Java 1.6, AHAs are deployed together with anomaly and intrusion 

detectors (Snort, for example), in the form of a daemon processes. Their operation is 

divided in four tasks. The first one verifies the existence of alert files generated by 

detectors. To achieve this, an AHA checks periodically (typically between 1 and 5 

minutes, usually configured according to the type of the detector used) if there are new 

alert logs. When it is the case, it copies these alerts and starts the processes of 

translation and validation.  

The second task is that of translation. It converts the original alerts to the 

IDMEF format. For example, a typical output of the ChkModel [158] detector, 

composed by source IP address and port numbers, destination IP address and port 

numbers, the rate of sent and received packets and the state (see Figure 5.2a), needs to 

be translated for further manipulation. The result of the conversion to the IDMEF 

standard is shown in Figure 5.2b.  
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<?xml version="1.0"?>

<!DOCTYPE IDMEF-Message>

<IDMEF-Message version="1.0">

    <Alert messageid="57">

        <Analyzer analyzerid="ChkModel">

            <Node category="unknown"></Node>

        </Analyzer>

        <Source>

           <Node category="unknown">

                <Address category="ipv4-addr">

                    <address>58.33.126.229</address>

                </Address>

           </Node>

           <Service ip_version="4">

                <portlist>5576</portlist>

           </Service>

        </Source>

        <Target>

           <Node category="unknown">

                <Address category="ipv4-addr">

                    <address>192.168.0.163</address>

                </Address>

           </Node>

           <Service ip_version="4">

                <portlist>0</portlist>

           </Service>

        </Target>

        <Assessment>

           <Impact severity="high">BAD</Impact>

        </Assessment>

    </Alert>

</IDMEF-Message>

58.33.126.229:5576 è 192.168.0.163:0

Pkt Send: 92         PktRec: 0

 State: BAD

 (b)                

(a)

 

FIGURE 5.2: Translation example of ChkModel output to IDMEF format 

In practice, AHAs have implemented translation support for three detectors: 

Prelude IDS (as previously explained in Chapter 4, section 4.3.2), Profiling [151] and 

ChkModel [158].  

The third task is the validation of alerts. Its goal is to discard those alerts that are 

malformed. Basically, this task compares each alert with the IDMEF DTD
25

 (Document 

Type Definition) to check whether or not it correctly formatted. The validation task is 

implemented using DocumentBuilderFactory class from the javax.xml package. 

The fourth and last task consists of sending the alerts, via socket communication, 

to Alert Handler Server (AHS). 

Alert Handler Server (AHS) 

Also developed using Java 1.6 and designed to act as a service, AHS has the role of 

receiving, via socket communication, alerts from different detectors. All received alerts 

are buffered, ordered according to their timestamps, and then forward to the 

Aggregation module.  

                                                           
25

 DTD defines a structure of a document, where are specified what elements and attributes can be used in 

the document.  
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It is important to emphasize that this work considers that all detectors employ 

some kind of time synchronization like NTP (Network Time Protocol) to ensure the 

success of the overall approach.  

5.3.2. Aggregation Module 

The Aggregation module receives ordered alerts from the Alert Handler module and 

then processes them to extract the most significant ones. Since all received alerts are 

considered “important”, two data structures using Java, named ATable and CTable, 

were implemented to store some values of interest for further evaluation. Figure 5.3 

illustrates the structures of ATable and CTables. 
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FIGURE 5.3: Data structure of ATable and CTable 

ATable is an array data structure that stores source IP address information 

(srcIP), source port, destination IP address (dstIP), destination port, class of attack 

(class), timestamp and alert severity. In addition, it also has three alert pointers (next 

srcIP, next dstIP, and next class) to link alerts sharing the same feature value in the 

given dimension. This idea removes the need to duplicate the alerts and then to group 

each alert into three clusters along each dimension, not to mention that is both more 

scalable and efficient regarding memory cost especially when dealing with hundreds of 

millions of alerts. For example, in Figure 5.3, the next srcIP pointer of Alert 1 links to 
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Alert 4 since they share the same source IP 192.168.0.51. Similarly, the next dstIP 

pointer of Alert 2 links to Alert 3 since they share the same destination IP 

150.161.192.11, and the next class pointer of Alert 3 links to Alert 4 since they share the 

same class Portscan. 

Once all the received alerts are correctly stored in ATable, CTables are put in 

operation to reference the first occurrence of an alert, providing an easy and simple way 

to quickly find the “old” alerts of the same clusters. Since there are three types of 

clusters, three instances of CTable were created for managing clusters along three 

dimensions.  

In spite of their simple design, CTables are essential to the computation and 

extraction of the significant clusters. Each CTable stores an alert counter, for recording 

the number of occurrences of a given value, and an alert pointer, for referencing the its 

first time. For example, when evaluating alert 1 in Figure 5.3, the given source IP 

address (150.161.192.51) is compared with srcIP cluster and as it is the first time that 

this IP address occur it is therefore inserted into CTable. The alert count field is 

incremented by 1 and an alert pointer is linked to this alert at ATable. The same occurs 

with the other dimensions dstIP and class. However, when evaluating alert 3´s dstIP 

value (150.161.192.11), one finds the first alert (alert 2) of the cluster dstIP (index 1), 

and updates the next dstIP pointer of alert 2 to alert 3. Next, alert count is finally 

incremented by 1. 

When the CTables are filled (with the insertion of all ATable elements), the 

process of cluster extraction is triggered. According to algorithm 5.1, it results in three 

lists (one for each cluster) composed by key (srcIP, dstIP or class of attack), frequency 

and the pointer for the first occurrence in its respective CTable.  

As a final result of Aggregation module, each list is used to create a vector (one 

for each dimension) containing only significant elements (alerts). Each vector is 

composed by the following attributes: source IP address, source port, destination IP 

address, destination port, class of attack, timestamp and alert severity.  

5.4. Performance Evaluation 

5.4.1. Benchmarking 

CPU load and memory usage of the Aggregation module are measured using jProfiler 

[177], an all-purpose java profiling suite targeted at Java applications. Its features 

include CPU, memory and thread profiling telemetry.  

In order to collect the CPU load, the code has been divided in two parts: ATable 

construction and significant cluster extraction, which also includes CTable construction. 

Similarly, the same division is applied to measure memory usage. Next, a number of 

breakpoints before and after each part are inserted. The output difference points out the 

CPU load and memory consumption of each part whereas the sum of these parts 

indicates the total CPU load and memory usage of the Aggregation module. 

To test the Aggregation module two alert files (AF1 and AF2) inject anomalous 

traffic (port scans and traffic with the same source and destination address) in the used 

test-bed consisting of real machines within the GPRT research laboratory. Table 5.1 

summarizes the characteristics of these alert files. 
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TABLE 5.1: Characteristic of alert files AF1 and AF2 

File Date Duration No. Alerts Size Detector 

AF1 November, 30 2009 01h 45min 5.224 12.6 Mb Snort 2.8.3 

AF2 December, 1 2009 06 h 04 min 24.824 36.5 Mb Snort 2.8.3 

Table 5.2 shows CPU load and memory usage results for these two alert files 

(AF1 and AF2). Figures 5.4 and 5.5 show the CPU load and memory cost of the 

Aggregation module for AF2 (the largest alert file), respectively. Interestingly, it is 

possible to clearly observe that the greater the number of alerts to be processed the 

smaller is the CPU load and memory usage of the module. Such fact could be due to the 

reading of alerts fields to build the ATable.  

TABLE 5.2: CPU load and memory usage of the Aggregation module 

File 
CPU Load (%) Memory (MB) 

min avg max min avg max 
AF1 22,47 34,51 64,43 1,4 29,13 84,72 

AF2 24,75 28,33 61,81 0,83 26,62 74,37 

 

FIGURE 5.4: CPU load of the Aggregation module from alert file 2 (AF2) 
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FIGURE 5.5: Memory usage of the Aggregation module from alert file 2 (AF2) 
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In summary, the CPU load tends to be constant and is largely determined by the 

number of alerts to record in ATable and consequently in CTables as well as that of the 

size of significant clusters. On the other hand, memory usage is determined by the 

number of alerts to be evaluated and recorded in ATable, as represented by the time 

interval between 1 and 69 seconds in Figure 5.5. The oscillation perceived is a 

consequence of the process of the alerts reading and evaluation process and their 

insertion in ATable. The time interval between 69 and 75 in both pictures correspond to 

CTables building, significant cluster extraction and the generation of the resulting 

vectors. 

5.5. Stress Test 

The performed performance benchmarking of CPU load and memory usage 

demonstrated the operational feasibility of the aggregation module. However, one needs 

to show that it is efficient when extracting significant clusters. In order to fulfill this 

requirement, two experiments were conducted: the first using the alert files of 

performance benchmarking and the second using a DARPA 2000 dataset [179]. The 

latter is a known publically available trace of security attacks and has been used in 

many works [103][130][132]. It is important to emphasize that in both tests, the IDS 

Snort (version 2.8.3.2) [163] is running to capture anomalies and the Snort-IDMEF 

plugin [178] is used to translate Snort logs into IDMEF alerts.  

5.5.1. Alert files AF1 and AF2 

Table 5.3 summarizes the results obtained by the implemented Aggregation module 

from AF1 and AF2. Note that both use the IDMEF format.  

TABLE 5.3: Characteristic of alert files AF1 and AF2 

File 
Src IP Dst IP Class 

Unique Extracted Unique Extracted Unique Extracted 

AF1 2 1 467 13 8 4 

AF2 35 20 22 7 16 7 

From alert file 1 (AF1), consisting of 1399 alerts, 4 significant clusters of attack 

classes from a total of 8, 13 significant clusters of destination IP addresses from a total 

of 467 and 1 significant cluster of source IP address from a total of 2 distinct IP 

addresses have been extracted. When processing alert file 2 (AF2), made of 24.824 

alerts, 7 significant clusters of class of attack from a total of 16, 7 significant clusters of 

destination IP address from a total of 22 and 20 significant clusters of source IP address 

from a total of 35 distinct elements were also extracted. Figure 5.6 and Table 5.4 

illustrate the class of significant attack clusters extracted from AF2.  
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FIGURE 5.6: Significant clusters extracted from class of attack dimension in AF2 

TABLE 5.4: Class of Attack relative uncertainty in AF2 

Class of Attack RU 
Probability 

[      ] 
α 

Bad Traffic same src/dst IP 0.387171712517231 0.450451176281018 0.02 

Bad Traffic Loopback IP 0.396398827192577 0.449685787947147 0.02 

Misc UPnP Malformed Advertisement 0.406761881088819 0.056235900741218 0.02 

SQL Probe Response Overflow Attempt 0.418514276148485 0.018329036416371 0.01 

ICMP Destination Unreachable Port 0.519671597203675 0.017603931679020 0.01 

Storm Worm Phone Home Address 0.602436402138431 0.004028359651950 0.0025 

Policy Outbound Teredo Traffic detected 0.627372862460001 0.002054463422494 0.00125 

Final RU 0.925323538573275   

Table 5.4 represents the extraction of significant clusters based on relative 

uncertainty (RU) according to the previously described Algorithm 5.1. Before initiating 

the extraction process, the first RU is calculated while considering all elements inside 

the set, where                        . When the first cluster (bad traffic 

loopback ip) begins to be evaluated, its probability is calculated by dividing their 

frequency by the total number of alerts (522/1109), resulting in 

                         . After that, its probability is compared with the α 

parameter (line 6 of the Algorithm 5.1). If its probability is greater than or equal to α, 

then this cluster is significant and is therefore added to the set   and removed from set 

 . This process is repeated until all elements of   have been compared to α. In Table 

5.4, the three first clusters were extracted in the first interaction (α = 0.02), whereas the 

fourth, fifth, sixth and seventh clusters are extracted in the second (α = 0.01), third (α = 

0.0025) and fourth (α = 0.00125) iterations respectively. Note that in each interaction, α 

is reduced by half, to improve the approximation. The extraction of significant clusters 

stops when the RU value is greater than β, in this case 0.925323538573275 > 0.9. 

Figures 5.7 and 5.8 illustrate the destination and source IP address significant 

clusters extracted from AF2.  
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FIGURE 5.7: Significant clusters extracted from destination IP address dimension in AF2 

 

FIGURE 5.8: Significant clusters extracted from source IP address dimension in AF2 

5.5.2. DARPA 2000 Dataset 

The DARPA 2000 dataset [179] is a known trace offered as an IDS baseline evaluation. 

Created by the MIT Lincoln Laboratory, it contains two scenarios (LLDOS 1.0 and 

LLDOS 2.0.2), where both present traffic from external and internal networks. 

LLDOS 1.0 is divided in 5 phases. In phase 1, the attacker sends ICMP to 

discover which hosts are active in the targeted network. The packets are sent to sub-

networks 172.16.115.0/24, 172.16.114.0/24, 172.16.113.0/24 and 172.16.112.0/24. 

Once with a list of active hosts as a result of the previous scanning phase, the attacker 

begins phase 2 launching an exploit type tool to determine if the sadmind service is 

executing at one of these hosts in the active list. Phase 3 consists in a set of attempts to 

gain privileged root mostly using known buffer-overflow attacks over hosts executing 

the sadmind daemon service. If root access to a host is obtained, the attacker initiates 

phase 4 using remote access commands such as telnet and remote procedure calls (RPC) 

to launch DDoS attacks from the newly invaded hosts. A new file named “.rhosts" 
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finalize (phase 5), the attacker, controlling the three hosts (172.16.115.20, 

172.16.112.10 and 172.16.112.50), uses the command “mstream 131.84.1.31 5” to 

unleash large numbers of packets to the target 131.84.1.31 during 5 seconds while using 

random IP source addresses to avoid detection in what is known as IP spoofing.  

Similarly to LLDOS 1.0, the LLDOS 2.0.2 DDoS dataset consists of 5 phases. 

In phase 1, the attacker made HINFO DNS queries from the DNS server 

(172.16.1145.20) trying to obtain information about possible future victims. The 

knowledge of the hardware and software environment of a possible victim allows the 

attacker to better narrow down the techniques and tools that are more likely to succeed. 

In phase 2, using the same sadmind vulnerability, the attacker invades the DNS server. 

Next, phase 3, through an FTP connection, the attacker installs remotely the mstream 

program in the DNS server. The attacker also tries to gain control of two other hosts, 

but in only one it succeeds (phase 4), where mstream program is installed. Lastly (phase 

5), using both controlled hosts, DDoS packets are sent towards the same host 

LLDOS1.0 (131.84.1.310) for the duration of 5 seconds while using fake random source 

addresses.  

Results 

In LLDOS 1.0 scenario, 1109 internal alerts (inside-tcpdump file) and 2.465 external 

alerts (dmz-tcpdump file) were evaluated. It is important to emphasize that Snort was 

not able to detect phase 1 and part of phase 4 of this scenario. The explanation is simple. 

Snort does not consider (and has no rules for) ICMP requests and telnet connections as 

malicious activities. All other phases are detected. 

Specifically, using internal alerts, from a total of 29 distinct classes of attack (class), 37 

distinct destination IP address (dstIP) and 294 distinct source IP address (srcIP), the 

Aggregation module extracted 9 significant clusters of class of attacks, 12 significant 

clusters of destination IP address and no significant cluster of source IP address. Figures 

5.9 and 5.10 illustrate the frequency distribution of the extracted clusters of class of 

attack and destination IP address respectively, and Tables 5.5 and 5.6 summarize the 

relative uncertainty (RU) for these two dimensions (class and dstIP).  

 

FIGURE 5.9: Class of attack frequency distribution in LLDOS 1.0 inside scenario  
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FIGURE 5.10: Destination IP frequency distribution in LLDOS 1.0 inside scenario  

TABLE 5.5: Class of attack relative uncertainty in LLDOS 1.0 inside scenario 

TABLE 5.6: Destination IP relative uncertainty in LLDOS 1.0 inside scenario 

Destination IP RU (dstIP) Probability [      ] α 

131.84.1.31 0.349490430592109 0.7556357078449053 0.02 

172.16.112.100 0.352162574775310 0.05049594229035167 0.02 

172.16.112.105 0.354952942524035 0.026149684400360685 0.02 

172.16.115.20 0.357870741608349 0.018034265103697024 0.01 

194.7.248.153 0.860696355068559 0.015329125338142471 0.01 

172.16.113.148 0.868338326412219 0.013525698827772768 0.01 

172.16.112.194 0.876366490152678 0.013525698827772768 0.01 

172.16.112.10 0.884815250608347 0.012623985572587917 0.01 

172.16.116.20 0.893723469979750 0.012623985572587917 0.01 

172.16.112.50 0.903135238078656 0.012623985572587917 0.01 

172.16.115.87 0.913100810499855 0.010820559062218215 0.01 

172.16.113.105 0.923677760466658 0.010820559062218215 0.01 
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Class of Attack RU(class) Probability [      ] α 

bad traffic loopback ip 0.488631524175470 0.5157799819657349 0.02 

bad-traffic loopback traffic 0.493777284296841 0.23624887285843102 0.02 

rpc portmap sadmind request udp  0.499225829629953 0.0811541929666366 0.02 

netbios nt null session  0.505008637575596 0.027051397655545536 0.02 

community sip dns no such name threshold  0.511161965629217 0.023444544634806132 0.02 

attack-responses directory listing 0.517727823878885 0.018034265103697024 0.01 

rpc sadmind query with root credentials 

attempt udp 
0.886411053116980 0.012623985572587917 0.01 

rpc sadmind udp overflow attempt 0.899158381707709 0.012623985572587917 0.01 

attack-responses 403 forbidden 0.912897436954964 0.010820559062218215 0.01 

Final RU 0.9277653930176893   
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Final RU 0.934932404156025   

Regarding source IP address information, no significant cluster could be 

extracted since the initial RU of the set is 0.922710283397728, that is,          . 

This happens because although there are 294 clusters their frequency distributions have 

low variation. Figure 5.11 shows the dispersion of source IP address clusters.  

For external alerts observed in the LLDOS1.0 scenario, from a total of 24 

distinct classes of attack (class), 42 distinct destination IP address (dstIP) and 29 

distinct source IP address (srcIP), the Aggregation module extracted 9 significant 

cluster of class of attack, 10 significant clusters of destination IP address and 4 

significant cluster of source IP address. Figures 5.12, 5.13 and 5.14 illustrate the 

frequency distribution of the extracted clusters  

 

FIGURE 5.11: Source IP clusters dispersion in LLDOS 1.0 inside scenario  

 

FIGURE 5.12: Class of attack frequency distribution in LLDOS 1.0 outside scenario 
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FIGURE 5.13: Destination IP frequency distribution in LLDOS 1.0. outside scenario 

 

FIGURE 5.14: Source IP frequency distribution in LLDOS 1.0 outside scenario 

In the LLDOS 2.0.2 scenario, 935 internal and 1.108 external alerts were 

evaluated. Similarly to the first scenario, phase 1 was not detected, whereas phase 3 did 

not generate any alert. All other phases are detected. Using internal alerts, from a total 

of 29 distinct classes of attack (class), 26 distinct destinations IP address (dstIP) and 

434 distinct sources IP address (srcIP), the Aggregation module extracted 6 significant 

cluster of class type attack, 2 significant clusters of destination IP address. No 

significant cluster of source IP address was detected as the initial RU of the set is 

0.9803433665539428, that is,       . Figures 5.15 and 5.16 illustrate the frequency 

distribution of the extracted clusters of class and destination IP address types of attacks 

respectively.  

2119

43

40

24

20

17

15

14

14

14

0 500 1000 1500 2000 2500

172.16.114.50

172.16.114.30

172.16.114.10

172.16.114.20

172.16.115.20

194.7.248.153

172.16.113.148

172.16.112.10

172.16.112.50

172.16.112.100

Frequency

d
st

IP
 c

lu
st

e
rs

2158

230

17

8

0 500 1000 1500 2000 2500

172.16.114.1 

202.77.162.213 

172.16.112.100 

137.245.85.134 

Frequency

sr
cI

P
 c

lu
st

e
rs



74 
 

 
 

 

FIGURE 5.15: Class of attack frequency distribution in LLDOS 2.0.2 inside scenario 

 

FIGURE 5.16: Destination IP frequency distribution in LLDOS 2.0.2 inside scenario 

For external alerts in the LLDOS2.0.2 scenario, from a total of 23 distinct 

classes of attack (of type class), 28 distinct destination IP address (dstIP) and 20 distinct 

source IP address (srcIP), the Aggregation module extracted 5 significant clusters of 

class type attacks, 8 significant clusters of destination IP address type and 1 significant 

cluster of source IP address (IP address 172.16.114.1 had as many as 1047 occurrences 

and RU=0.120516348873754). Figures 5.17 and 5.18 illustrate the frequency 

distribution of the extracted clusters  

 

FIGURE 5.17: Class of attack frequency distribution in LLDOS 2.0.2 outside scenario 
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FIGURE 5.18: Destination IP frequency distribution in LLDOS 2.0.2 outside scenario 

5.6. Chapter Summary 

As discussed previously, collaborative solutions are characterized by a huge amount of 

generated alerts. To deal with this issue, the availability of efficient storage and search 

schema is necessary.  

This chapter discussed the design and implementation of a solution, named Alert 

Pre-Processor, capable of convert original alerts into uniform IDMEF-based alerts and 

summarizing or aggregating these using a clustering algorithm. It therefore allows a 

more efficient alert correlation and consequently improves the potential usage within a 

collaborative framework. The cluster-based approach proposed by Xu et al. [151] to 

extract clusters of interest from raw intrusion alerts has been adopted. 

To evaluate the proposed solution, some real-world intrusion data sets were 

collected from the GPRT research laboratory in addition to the DARPA 2000 dataset. 

As demonstrated, the proposed solution reduces alert messages significantly.  
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Chapter 6  

OADS FER Analyzer 

 

 

Although there are many available solutions for detecting anomalous traffic, including 

IDS (Intrusion Detection Systems), IPS (Intrusion Prevention Systems) and APS 

(Anomaly Prevention Systems), their effectiveness depends mostly on a higher level of 

management and coordinated usage. 

Currently, different efforts have been made to develop collaborative solutions, 

called CIDSs (Collaborative Intrusion Detection Systems) and CAIDSs (Collaborative 

Anomaly and Intrusion Detection Systems) composed by a set of individual IDSs, IPSs 

and APSs coming from different network administrative domains or organizations, 

which cooperate to detect coordinated attacks. A key component of the proposed 

solution in this work is the alert correlation mechanism it uses. This clusters similar 

incidents observed by different IDSs, prioritizes these incidents, and identifies false 

alerts generated by individual IDSs. As result, a global and condensed high-level view 

of network attacks resulting from analyzing raw alerts is then produced. 

However, one of the issues involving alert correlation work (also known as event 

correlation) lies in the need to improve the scalability of alert correlation while still 

maintaining the expressiveness of the patterns that can be found. According to [180], 

solutions based on single-dimensional correlation have been widely used due to their 

simplicity, but they fail to characterize a wide scope of types of attack behaviors. Multi-

dimensional correlation schemas that are capable of identifying more patterns in events 

provide better solutions. Although multi-dimensional correlation has a clear advantage 

in terms of their expressiveness, its computational complexity limits its use in 

collaborative IDSs, especially when operating online. 

In this thesis, the alert correlation problems were addressed through the design 

and development of a system based on data mining. The present solution uses the 

concept of Frequent Episodes Rules (FER) to perform sequence analysis and 

consequently detect anomalies, including also unknown attack patterns. Proposed 

originally by Mannila et al. [120] for monitoring alarms in telecommunication networks 

and finding relationships among them, FER is based on the fact that the data subject to 

analysis consists of a sequence of events. So, the question is to find into collections of 

events those that occur frequently together. FER is employed to observe and develop a 

specific knowledge, in the form of probabilistic rules, of the relationships among events 

(alerts) that anticipate and make up a given attack or anomaly. Moreover, it is capable 

of building adaptive event basis signatures, but it also can be used to predict the buildup 

and preparation towards a possible attack before it is actually carried out, hence giving 

networks managers a kind of early warning system. 

In order to explain how the following solution can be useful in anomaly and 

attack detection and their early intercept, the remainder of this chapter is structured as 

follows. Firstly, the theory behind frequent episodes analysis is introduced and some 

examples of its applicability are discussed. Next, an overview design of the proposed 

solution is presented, including a complete detail of each architectural component and 
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its accomplished implementation. Then, an initial evaluation is presented to validate the 

solution. Lastly, some conclusions are discussed to summarize this chapter results.  

6.1. Frequent Episodes Rules (FER) 

Mannila et al. [120] proposed and designed a popular framework for spatial and 

temporal data mining, named frequent episodes rules. The framework is applicable on 

data as a single long sequence of ordered pairs, which are called events. Two key 

concepts are adopted in frequent episodes analysis: event sequence and episode. The 

first one refers to user/system actions and behavior collected over many domains or 

places when the second one is seen as a set of events occurring relatively within small 

distances following some partial order.  

Next, the basic concepts of frequent episodes discovery employed in anomaly 

detection and their prediction, including event sequence, time window, episodes and 

sub-episodes, and calculations of frequency are presented. 

6.1.1. Basic Concepts 

Event Sequence 

According to Mannila et al. [120], given the set   of event      , where     is its 

type (which takes values from a finite alphabet, A) and   an integer representing its 

occurrence instant.  

An event sequence s over   is the set          , where 

                               

is an ordered event sequence such that      for all        , and         

for all          . Furthermore,    and    are two integers that represent the 

starting and terminating times, respectively, and          for all        . 

Figure 6.1 illustrates the sequence of events             where: 

60 65 70 75 80

 C   C   C  B B BM MGK

 

FIGURE 6.1: A Graphical Representation of the Sequence of Events s 

An examination of the event sequence in Figure 6.1 shows that it started at time 

59 and terminated at 83. The sequence   has 10 events that all occurred in the time 

interval [59; 83].  

Time Window 

Since the reason behind using the event sequence abstraction is to identify and calculate 

episode frequency for each given class of episodes, one needs to establish a time 

interval over which such frequency is defined. Mannila et al. [120] define a time 

window as a slice of an event sequence as exemplified in Figure 6.2 (time window 

between 26 and 31 events). As a result, it is clear to see that the event sequence is made 

up of a number of consecutive time windows. As far as is concerned to the size of such 

time window, it is up to the user to establish it sufficiently large enough for events to 
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occur within it. Note that the choice of an appropriate window is important as it impacts 

directly on the value for such frequencies.  

20 25 30 35 40

R AY JP TRVT

 

FIGURE 6.2: Time Window within Sequence s 

Formally, a time window within an event sequence              is seen as a 

sequence of events             , with       and       , and   consist of the pair 
      from   where        . The time difference        is defined as the window 

size of   and is represented by width    . As a result, given the event sequence   and 

the integer    , the set of all Windows   of size     in this sequence   are denoted as 

        . Further, the first and last windows reach out of the sequence timeline, in 

that the first one only contains the first time sequence element whereas the last one 

contains only the last point in time. 

Episodes 

Episodes are defined as partially ordered events according to their occurrence in time. 

On a more formal tone, an episode is seen as        , where   is the set of all nodes 

in the episode, the notation ≤ symbolizes the events order in time within an episode, and 

  maps (m : V → Seq) the nodes   to their respective events within the sequence. 

Episodes fall into the following three classes: parallel, serial e and non-parallel 

and non-serial, as illustrated in Figure 6.3.  

A

B

A

B

CA B

X Y Z
 

FIGURE 6.3: X, Y and Z represent serial, parallel and non-serial non-parallel episodes  

Episode X is said to be serial if subsequently all events of types A and B happen 

in a given order, in other words, their order is important within a sequence of events. 

Formally, A and B  V, A ≤ B ≠ B ≤ A if A ≠ B for all A and B within the episode X. 

Episode Y is described as parallel when it does not enforce a strict restriction in the 

order of its events, turning their temporal order irrelevant. Formally, Y is such that for A 

and B  V, with A ≠ B. The third episode Z, from the figure, is called non-parallel and 

non-serial at the same time. This is the case when events A and B are both part the same 

episode and have no temporal relationship between them whatsoever.  

Sub-episodes 

Sub-episodes are based on the idea of that one episode may contain others embedded 

within it. For example, a look at Figure 6.3 shows that Y is sub-episode of Z, as there is 
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mapping m that connects nodes A and B with others. To put it more simply, both nodes 

of Y have corresponding ones in Z.  

Formally,              is a sub-episode of          , written as    , 

as there exists a mapping          such that               for all       and for 

all         with      and also           .  

Episode Occurrence  

An episode is said to occur within a sequence if and only if all its events happen in such 

sequence while all partial order is maintained.  

Formally, an episode            happens within an event sequence     
                           is there exists a mapping represented by the function 

                    for all the nodes from X to events in s such that           for 

any     , and       with     and    , hence one must also verify that 

           . 

Episode Frequency Calculation 

The frequency of an episode is defined by Mannila et al. [120] as the fraction of 

windows in which a given episode takes place. Hence for an event sequence s and an 

episode window of size win, the frequency of an episode E within s is given by the 

formula: 

             
                            

          
 

To establish whether an episode E is considered frequent or not a threshold 

(min_fr) is used. As a result, E is said to be frequent is when its frequency 

                  . The set of all frequent episodes for a sequence s is given by 

               . An important observation to be made here is that whenever an 

episode is considered as frequent, then also all its sub-episodes are. This is an important 

result, as seen later, used for the reduction of candidate generation for frequent episodes. 

Discovering Episode Rules 

Once frequent episodes are determined, these are then used in the study of event 

correlations. Such relationships are known as episode rules. A rule between two 

episodes X and Y is formally defined as    , called    , if X is a sub-episode of Y. 

For example, the episodes       and         are frequent, with the frequencies 

   and    respectively. A resulting rule is               if the expectation 

for  
  

  
  is higher than an established threshold. 

The confidence of a rule is the ratio of its sub-episode expectation by that of the 

episode. In other words, it represents the conditional probability for Y taking place 

within a window, given that the episode X did happen in the same window. 

Mannila et al. [120] suggest two approaches for calculating episode frequencies: 

the first one is based on the number of windows whereas the other is based on minimal 

occurrences. In this work, the first one is used for simplicity. 
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6.1.2. Related Work 

Many data mining approaches have been recently applied to design of 

collaborative IDSs, and frequent episode is one of these. First proposed by Mannila et 

al. [120], there has been several studies devoted to applying frequent episodes in the 

designs of NIDSs [181][182][183][184][185]. Lee et al. [181] developed a data-mining 

framework as core to an IDS based on the use of the association rules and frequent 

episodes. They modified Mannila et al.’s algorithms to use axis attribute(s) and 

reference attribute(s) as forms of item constraints, intended to compute only the relevant 

episodes (thus, ignore non-relevant one). In addition, Lee et al. used an iterative level-

wise approximate mining procedure to uncover low frequency, but important, episodes. 

Luo and Bridges [182] imposed fuzzy logic to frequent episodes mining. This way, 

flexible episodes could be mined, thereby enhancing the detection performance of the 

proposed NIDSs. Luo et al. [183] modified the method of Luo and Bridges [182] in 

order that the proposed system could be applied in “near” real-time detection. However, 

like Luo et al. [183], the actual response time on an attack was not explicitly reported, 

and only a single attack, named mscan, was experimented.  

Qin and Hwang [184] proposed a new Internet trace technique for generating 

frequent episode rules to characterize Internet traffic events. These episode rules were 

used to distinguish anomalous sequences of TCP, UDP, or ICMP connections from 

normal traffic episodes. In addition, fundamental pruning techniques were introduced to 

reduce the rule search space by 70% when analyzing the DARPA 1999 traffic Dataset. 

Hwang et al. [185] proposed a hybrid system, which combined the advantages of the 

low false-positive rate of a signature-based intrusion detection system with the ability of 

anomaly detection system (ADS) to detect novel unknown attacks. By mining 

anomalous traffic episodes from Internet connections, Hwang et al. [185] built an ADS 

that detects anomalies beyond the capabilities of the signature-based Snort system. A 

weighted signature generation scheme was developed to integrate ADS with Snort by 

extracting signatures from detected anomalies. That is, the hybrid system extracts 

signatures from the output of ADS and adds them into the Snort signature database for 

almost immediate and accurate intrusion detection. Experiments on real-world audit 

data showed that the rate detection of HIDS is equal to 60%, when the results using 

Snort and BRO system are 30% and 22% respectively.  

Soleimani and Ghorbani [186] introduced changes in Mannila et al.’s algorithms 

to manipulate the large quantity of alerts issues by IDSs. The main focus of this work 

was given to the discovery of all possible alert sequences and their combinations. The 

most critical among these were then identified. When applying the strategy to the 

DataSet LLDDoS 1.0 from DARPA collected in 2000, good results were obtained as far 

as the detection of critical intrusions, memory usage and execution time. The gain 

shows as much as 90% reductions in alerts, even though critical attacks were still 

identified and those occurring in more than one place were maintaining.  

6.2. FER Analyzer: Design and Implementation 

Core to this important module is to correlate alerts and increases the detection accuracy. 

For this reason, its architectural design is modular to allow ease future modification and 

the seamless addition of new components. Figure 6.4 depicts a functional diagram of the 

architectural components in accordance with their roles. 
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FIGURE 6.4: Functional diagram of FER Analyzer 

6.2.1. Alert Handler module 

The alert handler module performs alert translation into internal format (values from a 

finite alphabet starting with A) supported for analysis. 

All received alerts are correlated (translated) to an event type in preparation for 

establishing frequent episode discovery. The selected and extracted attributes of each 

alert are: class or type of attack, IP address and port number of source system or host, 

and IP address and port number of target system or host. A correspondence table 

between events and alerts attributes is built as shown in Table 6.1
26

.  

TABLE 6.1: Example of event types, event names and their attributes 

Event Type Event Name Source IP Destination IP 

A Community SIP DNS no such 

name treshold 

172.16.112.100 172.16.115.20 

B NETBIOS NT NULL session 172.16.112.100 172.16.112.20 

C ATTACK-RESPONSE directory 

listing 
172.16.112.194 172.16.112.100 

D NETBIOS NT NULL session 172.16.112.20 172.16.112.100 

E ATTACK-RESPONSE Invalid URL 172.16.113.148 207.200.75.201 

F WEB-MISC RBS ISP /newuser access 134.205.131.13 172.16.117.52 

G WEB-MISC /doc/access 172.16.112.100 135.13.216.191 

H ATTACK-RESPONSE 403 Forbidden 172.16.113.204 137.245.85.134 

Other attribute selected and extracted of each alert is Timestamp. It is used in 

association with Table 6.1 to build a list of formatted events time ordered (in seconds), 

as shown in Figure 6.5.  

 

 

 

 

 

                                                           
26

 The events (alerts) presented in Table 6.1 are extracted from DARPA 2000 dataset, LLDOS 1.0 inside 

scenario. 
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1 A I 

2 C T F C 

3 B O 

7 A X K M 

8 A O 

9 B 

10 C K P D 

11 B O 

13 C M O V 

14 A Y U 

15 A L P J 

19 A S H U L R J I 

25 B 

27 A 

FIGURE 6.5: Event sequence representation 

Once completed, this list may then be sent to frequent episodes analysis. 

6.2.2. Frequent Episode Analysis module 

The present Frequent Episode Analysis (FEA) module is used to generate much rules 

needed to indicate the eminent occurrence of attacks as a result of observing some 

known sequences of alerts.  

Recall that the parameters window size and threshold are important for the 

precision of the results. The processing overhead is not a concern as this processing may 

be performed offline and periodically to retrain the FEA module. The analysis made by 

Frequent Episode Analysis module can be divided in four activities: event collector, 

candidate generator, generator of frequent episodes and rules generator.  

Event Collector 

Event collector scans the list with the event types (Figure 6.5) and identifies those that 

are more frequent. This process is described in Algorithm 6.1 [120]. Basically, it 

receives a list of episodes of the same size as input and checks which among these are 

frequent. It verifies if each episode is contained in the global event sequence as shown 

by the code in line 5. As a result, all frequent episodes are returned.  

Algorithm 6.1 Simplified algorithm for checking frequent episodes in the list of events  

Input: episodesVector with size tam 

 

01: frequents = [] 

02: for all episode in episodesVector do 

03:        eventList = getEventSequence(E) 

04:        if episodio.hasIn(eventList) then 

05:           frequents += episode 

06:        end if 

07: end for 

08: return frequents            

In the algorithm, an episode             is represented as a lexicographically 

sorted array of event types. 
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Candidate Generator 

Candidate generator receives a list of frequent episodes of size X and generates a new 

list with possible frequent episodes of size X+1. The Algorithm 6.2 [120] describes the 

candidates generation for serial episodes. This calculation demands a careful design 

since is crucial to turn efficient the search for frequent episodes considering that the 

number of possible frequent episodes grows exponentially with the increase of the 

window size.  

Algorithm 6.2 Simplified algorithm for candidate generation 

Input: frequent episodies FrequentEpisodes 

 

01: candidatesWithSizePlus1 = [] 

02: for all episode in FrequentEpisodes do 

03:       possibleCandidates = episodio.getChilds( ) 

04:       for all candidate in possibleCandidates do 

05:             subsets = candidate.getAllSubSets() 

06:             if (FrequentEpisodes.isSubSet(subsets) == TRUE) then 

07:                 candidatesWithSizePlus1 += candidate 

08:             end if 

19:       end for 

10: end for 

11: return candidatesWithSizePlus1 

The algorithm receives as input a ordered list of frequent episodes of size X. For 

any given input frequent episode, all possible frequent episode candidates are 

calculated. However, it is important to emphasize that if an episode is frequent in an 

event sequence, then all subepisodes are also frequents (FER lemma 1 [120]). In order 

to attend this rule, each episode of frequent episodes list (line 2) must have its possible 

childs with size plus 1 verified (line 3). Consequently, each one of these possbile 

candidates (line 4) is used to generate all possible subsets with size equal to the episode 

(line 5). To qualify as a new frequency episode of size X+1, it must frequent, i.e., all its 

sub-episodes of size X must be present in the input frequency list as enforced in line 6. 

If the result is true, then the candidate is add to the list of candidates with size plus 1 

(line 7). The algorithm finishes by returning an ordered list of candidate serial episodes 

of size + l. 

In order to provide a better understanding of this algorithm, a simple example is 

explained. Given a frequent episodes list composed by four elements {AA, AB, AC, 

AD}, the possible candidates of the episode AB will be (ABA, ABB, ABC, ABD, …, 

ABZ) and each one of them will be tested to generate possible candidates. Evaluating 

the first candidate, ABA, the subsets originated from it are AB, BA and AA. So, to prove 

that the candidate ABA is frequent, its subsets (AB, BA and AA) are matched with the 

frequent episodes list. As result, ABA is a possible candidate since AB, BA and AA are 

represented in frequent episodes list by the episodes AA and AB. On the other hand, the 

candidate ABZ is not since the subsets AZ and BZ not have representation of the 

frequent episodes list.  

Generator of Frequent Episodes 

A generator of frequent episodes can be seen as the driver for the previous two modules. 

It calculates all frequent episodes of all sizes using the output from the candidate 

generator and event collector. Algorithm 6.3 [120] describes how to calculate a 

collection of frequent episodes from an event sequence E of episodes. 
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Algorithm 6.3 Simplified algorithm for calculating frequent episodes 

Input: event sequence E, window size win and frequency fr 

 

01: C1 = {all elements in E with size equal to 1} 

02: candidateSize = 1 

03: candidateVector= {all element  C1 and |element| == 1} 

05: for candidateSize to win do 

06:       /* Checking for frequent episodes (Algorithm 6.1) */ 

06:       FrequentEpisodes=checkFrequentEpisodesInEvent List (candidateVector, win, fr) 

07:       AllFrequentEpisodes += FrequentEpisodes 

08:       candidateSize++ 

09:       /* Candidate generation (Algorithm 6.2) */ 

10:       candidateVector= generateCandidates(FrequentEpisodes) 

11: end for 

12: return AllFrequentEpisodes 

It starts with the definition of a set (C1) contaning all elements from event 

sequence E with size equal to 1 (line 1), a control variable candidateSize to permit 

computing frequent episodes according to the window size win (line 2) and a structure 

candicateVector to receive all generated candidates to be frequent episodes (line 3). To 

calcule the frequent episodes, the algorithm 6.3 keeps running until it achieves the window 

size limit (line 5). On each iteraction, the algorithm first verifies the frequency of the 

candidate episodes from the event sequence (line 6) calling the algorithm 6.1. As result, 

the returned frequent episodes are store in a general list AllFrequetEpisodes (line 7) and 

the candidateSize variable is incremented by one. Secondly, it calls the algorithm 6.2 to 

generate the candidates for frequent episodes, returning all possible candidates episodes 

with size incremented by one (line 10). The algorithm finishes when returning all 

frequent episodes. 

Rule Generator 

A rule generator extracts the rules one is seeking. It notifies an application such as an 

IDS, how likely an attack or an anomaly is underway. Three main advantages are 

important to mention here: considerable reduction of alert messages; higher precision 

and confidence in alerts; and the prediction of attacks and anomalies. The pseudo-code 

presented in Algorithm 6.4 [120] is responsible for rule calculation.  

Algorithm 6.4 Simplified algorithm for rule calculation 

Input: event sequence E, window size win, frequency fr and confidence conf 

 

01: rules = [] 

02: /* Find frequent episodes (Algorithm 6.3) */ 

03: FrequentEpisodes = calculateFrequentEpisodes (E, win, fr) 

04: /* Generate rules */ 

05: for all episode in FrequentEpisodes do 

06:       for all subepisode in episode do 

07:             if frequency(episode)/frequency(subepisode)  conf then 

08:                 rules += [episode, subepisode, confidence(episode/ subepisode)] 

09:             end if 

10:       end for 

11: end for 

12: return rules 

 



85 
 

 
 

This simple algorithm first starts calling the algorithm 6.3 

(calculateFrequentEpisodes) to calculate frequent episodes (line 3) for a given event 

sequence E, when using a window of size win and a frequency fr. As result, a list of all 

frequent episodes is returned (FrequentEpisodes). Secondly, the algorithm performs the 

rule calculation process trhough a series of iterations. The first one extracts episodes 

that composes a list of frequent episodes (line 5). The second one extracts subepisodes 

relatively to the parent episode (line 6). The extraction of subepisodes is based on the 

FER lemma 1 [120] that says that if an episode is frequent in an event sequence, then all 

subepisodes are also frequents. Next, with the episode and its subepisodes at hand, the 

algorithm 6.4 tests if the relation (proportion) between an episode and its subepisode is 

greather than or equal to a defined confidence threshold (line 7). If the result is true, 

then a new rule is generated as shown at line 8. The algorithm finishes returning all 

generated rules. 

Rule Reduction 

Although functional and essential to frequent episodes analysis, the calculation and 

generation of rules typically results in a huge number of FER and consequently a high 

number of redundant or repeated rules. In order to solve this inefficiency, algorithm 6.5 

employs two pruning techniques, proposed by Qin and Hwang [184], to reduce the rule 

space and to provide a simplified view of data patterns. The idea is to establish if an 

FER is effective (more frequently used) or ineffective (rarely used). 

Algorithm 6.5 Simplified algorithm for rule calculation 

Input: rules r 

 

01: reducedRules = []; newRules = []; 

02: for all rule in r do 

03: /* Application of Transposition Law */ 

04:       newRules += TranspositionReduction(rule); 

05: end for 

06: for all rule in newRules do 

07: /* Application of Elimination of Redundant Law */ 

08:       reducedRules += EliminationRedundant(rule); 

09: end for 

10: return reducedRules 

The first law, transposition, asserts that given these two FERs     
                , which describes behaviors for event A, the first one is seen as 

being more effective than the second one. This is because of its satisfaction of the transposition 

law, that is, the second rule can be induced by the first one. Therefore, the first rule is 

kept (effective) and the second one is removed. In general lines, the goal is to make the 

left hand side (LHS) as short as possible due to the fact that shorter rules are often easier to 

apply or to compare. 

The elimination of redundant law also assumes that rules with shorter LHSs are 

more effective than rules with longer LHSs. This way, if there are two FERs     
            in the rule set and there is a very frequent rule         , it corrects to 

assume that the rule          is redundant, since it can be reconstructed from the two 

previous rules. Therefore, the two rules are kept (effective) and the last one is removed  

The result of algorithm 6.5 are rules without redundant elements. Figure 6.6 

illustrates an example of rules reduction process. 
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Rule 136: M1 ----------> M1AAAAAAAAAAAA with confidence 0,81 

Rule 137: M1A ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 138: M1AA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 139: M1AAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 140: M1AAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 141: M1AAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 142: M1AAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 143: M1AAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 144: M1AAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 145: M1AAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 146: M1AAAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

Rule 147: M1AAAAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91 

FIGURE 6.6: Normal rules and reduced rule for a sadmind request in LLDOS 1.0 Outside  

In Figure 6.6, the event A indicates a port scan over the network and M1 an 

attempt to obtain root privileges through sadmind. Since the probability of the 

occurrence of sadmind attacks be followed by port scans is constant (same confidence 

threshold), applying the transposition law, one generate a single rule to express these 

attack situation (Rule 39), containing the lower LHS possible and the higher confidence. 

In this example, 12 rules are reduced in one.  

6.2.3. Implementation 

The FER Analyzer module was entirely developed in Java (Version 1.6.0), using 

Eclipse (version 3.3.2) as IDE.  

6.3. Evaluation 

This section describes a series of experiments in order to evaluate the performance and 

results of FER Analyzer.  

All experiments were conducted using a computer AMD Athlon 64 3000+ 

processor, with 4 GB main memory and 500 GB of hard disk, under the Ubuntu 10.4 

Linux operating system. 

6.3.1. Performance overview 

In order to test the performance of the present implementation, the DARPA 2000 

dataset [179] (LLDOS 1.0 and LLDOS 2.0.2 scenarios) was first used to measure the 

influence of window size and frequency threshold in the frequent episodes generation.  

DARPA 2000 

The LLDOS 1.0 scenario consists of a sequence of 1109 alerts (inside) and 2465 alerts 

(outside) covering a time period of almost 3 hours. Considering that each alert is 

composed by the following five-tuple (source IP address, source port, destination IP 

address, destination port and class of attack), there are 602 and 90 different types of 

events, respectively, with very diverse frequencies and distributions. On average, there 

is an alert every minute. However, since the scenarios illustrate attacks, the alerts tend 

to occur in bursts. For example, 169 alerts occurred in a period of one second.  
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Tables 6.2 and 6.3 represent performance statistic for finding frequent episodes 

in LLDOS 1.0 inside and outside scenarios with different window sizes and frequency 

threshold of 0.005. The time required, the number of episodes found, the number of 

possible candidates and the level of participation (frequent episodes/candidates rate) are 

also presented.  

TABLE 6.2: Performance for LLDOS 1.0 inside scenario 

Window 

Size (s) 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

Time 

(s) 

2 0 0 --- 4.8 

3 1 1 100.00% 5.3 

4 9 3 33.33% 5.9 

5 100 10 10.00% 6.5 

6 100 10 10.00% 7.3 

7 100 11 11.00% 7.6 

8 100 11 11.00% 8.0 

9 100 11 11.00% 8.4 

10 144 13 9.03% 8.8 

11 144 13 9.03% 9.2 

12 146 15 10.27% 9.5 

13 152 21 13.82% 9.9 

14 152 21 13.82% 9.9 

15 152 21 13.82% 10.5 

16 152 21 13.82% 11.0 

17 152 21 13.82% 11.3 

18 152 21 13.82% 11.7 

19 152 21 13.82% 12.0 

20 181 24 13.26% 12.5 

TABLE 6.3: Performance for LLDOS 1.0 outside scenario 

Window 

Size (s) 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

Time 

(s) 

2 2 2 100.00% 1.0 

3 9 5 55.56% 1.3 

4 18 7 38.89% 1.7 

5 199 18 9.05% 4.5 

6 200 19 9.50% 5.0 

7 201 20 9.95% 5.2 

8 202 21 10.40% 5.7 

9 203 22 10.84% 6.0 

10 204 23 11.27% 6.2 

11 199 24 12.06% 6.7 
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12 205 25 12.20% 7.0 

13 206 26 12.62% 7.2 

14 218 37 16.97% 7.8 

15 248 39 15.73% 8.8 

16 280 57 20.36% 9.7 

17 286 59 20.63% 10.4 

18 288 61 21.18% 10.7 

19 291 64 21.99% 11.5 

20 394 69 17.51% 14.5 

In Tables 6.2 and 6.3, it is possible to see clearly the window size influence over 

the number of frequent episodes obtained. Since the discovery of frequent episodes is 

related with the existence of possible candidates, it is correct to assert that as more the 

window size increases, the greater will be the number of candidates and consequently 

the number of frequent episodes discovered. The processing time and the level of 

participation also increases the same way. Regarding the stagnation on the number of 

candidates and the frequent episodes (Table 6.2, window sizes 13 to 19), such fact 

happens because it is not possible to generate new candidates for these window sizes. In 

this specific case, all possible candidates are totally composed by episode candidates 

with size 2 (145 candidates) and 3 (8 candidates).  

Figure 6.7 represents the effect of the window size on the number of frequent 

episodes for both scenarios.  

 

FIGURE 6.7: Number of frequent episodes as a function of window size, with frequency 

threshold of 0.002, for LLDOS 1.0 scenarios 

The difference among the number of frequent episodes into inside and outside 

scenarios is explained by the fact that the DDoS attack generated in these scenarios 

originated a large amount of packets with random originating addresses. Hence, the 

thousands of triggered alerts, with different source addresses, did not correlate with each 

other‟s. Consequently, they were not potentially repeated which limited frequent 

episodes. An examination of the correspondence table (Alert Handler module) revealed 
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that more than 98% of the alerts taking place with the outside case were not repeated 

within the internal scenario. 

Within the LLDOS 2.0.2 scenario, there are 935 alerts (inside) and 1108 alerts 

(outside) covering a time period of almost 1 hour and 30 minutes, where there are 867 

and 41 different types of events, respectively, with very diverse frequencies and 

distributions. Performance statistics of LLDOS 2.0.2 for the inside and outside 

scenarios are available in Tables 6.4 and 6.5.  

TABLE 6.4: Performance for LLDOS 2.0.2 inside scenario 

Window 

Size (s) 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

Time 

(s) 

2 2 2 100.00% 4.3 

3 2 2 100.00% 4.8 

4 15 7 46.67% 5.7 

5 40 14 35.00% 6.5 

6 40 14 35.00% 7.0 

7 41 15 36.59% 7.5 

8 43 17 39.53% 7.8 

9 43 17 39.53% 8.3 

10 56 20 35.71% 8.8 

11 56 20 35.71% 9.2 

12 56 20 35.71% 9.7 

13 56 20 35.71% 10.1 

14 56 20 35.71% 10.5 

15 128 30 23.44% 11.0 

16 128 30 23.44% 11.0 

17 128 30 23.44% 11.3 

18 128 30 23.44% 11.7 

19 128 30 23.44% 12.8 

20 130 32 24.62% 13.3 

TABLE 6.5: Performance for LLDOS 2.0.2 outside scenario 

Window 

Size (s) 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

Time 

(s) 

2 3 3 100.00% 0.4 

3 4 4 100.00% 0.5 

4 6 5 83.33% 0.5 

5 12 7 58.33% 0.7 

6 20 9 45.00% 0.7 

7 21 10 47.62% 0.8 

8 22 11 50.00% 1.1 

9 23 12 52.17% 1.2 
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10 24 13 54.17% 1.3 

11 34 15 44.12% 1.5 

12 35 16 45.71% 1.6 

13 36 17 47.22% 1.6 

14 37 18 48.65% 1.8 

15 39 20 51.28% 2.0 

16 116 27 23.28% 3.6 

17 118 29 23.28% 3.6 

18 121 32 24.58% 4.1 

19 128 39 30.47% 4.3 

20 157 52 33.12% 4.6 

Figure 6.8 illustrates the effect of the window size on the number of frequent 

episodes for both LLDOS 2.0.2 scenarios.  

 

FIGURE 6.8: Number of frequent episodes as a function of window size, with frequency 

threshold 0.002, for LLDOS 2.0.2 scenarios 

Before showing the results of episodes rules, it is important and necessary to 

clarify the importance and use of the frequency threshold parameter in any FER 

analysis. The concept of frequency, represented by the picture of frequency threshold, is 

essential to discover all frequent episodes of a sequence and consequently to obtain 

rules that describes connections between events. This way, typical values of frequency 

threshold for analysis are: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1 [120].  

In fact, most works using FER employ frequency threshold values equal or 

superior to 0.01. The explanation is simple. Small values of frequency threshold such as 

0.001 and 0.002 allow the generation of a huge amount of candidates and frequent 

episodes, with relevant impacts on processing time. For example, in LLDOS2.0.2 

inside, the use of frequency threshold value of 0.001, with window size equal to 12, 

generates 753.424 possible candidates of size 2, during a period of 25 minutes of 

processing. In LLDOS 1.0 outside, window size superior to 8 generates 857.000 

possible candidates of size 2.  
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Nonetheless, values above 0.02 practically inhibit the generation of candidates 

since only massive events (like massive DDoS attacks) can be recognized as frequent. 

In the present four scenarios, no frequent episode was detected with this value.  

6.3.2. Episode Rules 

In order to test episode rules generation (the main goal of FER analysis), the current 

implementation establishes two FER parameters: window size and confidence level. 

The first one has influence over the number of frequent episodes generated and 

consequently in the number of rules. The second one impacts the quality of such rules. 

The higher the confidence level, the better is the quality and reliability of the obtained 

rules.  

Figures 6.9, 6.10, 6.11 and 6.12 plot the rule set growth against different window 

size parameters four DARPA 2000 dataset scenarios. For clarity, the confidence level of 

0.6 and the frequency threshold of 0.005 are assumed in all analysis.  

 

FIGURE 6.9: Rule space generated from LLDOS 1.0 Inside 

 

FIGURE 6.10: Rule space generated from LLDOS 1.0 Outside 
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FIGURE 6.11: Rule space generated from LLDOS 2.0.2 Inside 

 

FIGURE 6.12: Rule space generated from LLDOS 2.0.2 Outside 

A relationship between rules and window size is shown where the difference 

between normal and reduced rules generated increases as the window size also 

increases, although this reduction had been minimal in both inside scenarios. LLDOS 

1.0 inside had a reduction of 8% (Figure 6.9) whereas LLDOS 2.0.2 inside had a 

reduction varying between 24 and 29% (Figure 6.11). Such fact is explained by the 

features of the traces, which generate many events. Consequently, this huge diversity 

(602 events of 1109 alerts in LLDOS 1.0 and 867 events of 935 alerts in LLDOS 2.0.2) 

is reflected in a low discovery of frequent episodes and the consequent generation of 

rules. On the other hand, outside scenarios present consistent and relevant reductions. In 

LLDOS 1.0 outside, the variation among rules achieved a range between 33 to 73% 

(Figure 6.10) when in LLDOS 2.0.2 this variation stayed between 33 and 81% of rules 

(Figure 6.12).  

Figures 6.13, 6.14, 6.15 and 6.16 plot the rule set reduction against different 

confidence level parameter under four DARPA 2000 dataset scenarios. For clarity of the 

results, the maximum window size of 20 and frequency threshold of 0.005 were 

assumed in all analysis.  
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FIGURE 6.13: The effects of pruning for LLDOS 1.0 Inside, with various confidence 

thresholds, with frequency threshold 0.005 and window size 20 

 

FIGURE 6.14: The effects of pruning for LLDOS 1.0 Outside, with various confidence 

thresholds, with frequency threshold 0.005 and window size 20 
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FIGURE 6.15: The effects of pruning for LLDOS 2.0.2 Inside, with various confidence 

thresholds, with frequency threshold 0.005 and window size 20 

 

FIGURE 6.16: The effects of pruning for LLDOS 2.0.2 Outside, with various confidence 

thresholds, with frequency threshold 0.005 and window size 20 

Since the rules with a high confidence are often the most interesting and useful 

ones, especially if they are used for prediction, all Figures show how the number of 

distinct rules varies as a function of the confidence threshold. From almost 900 rules 

generated by the four scenarios, 108 have a confidence of exactly 1, for normal rules. 

For reduced rules, this number is of 37. For many applications it is reasonable to use a 

fairly low confidence threshold in order to point out the interesting connections, as is 

discussed in the following subsection. 
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Applicability of Episode Rules 

In order to put in practice the applicability of episode rules, an enforcement agent is 

built. It translates the episode rules generated by FER Analyzer to firewall rules, 

specifically for IPTables.  

Taking some episodes rules generated for LLDOS1.0 inside scenario as example 

(Figure 6.17), the idea is to translate right hand side of each one in IPTables rules, 

according to some predefined actions.  

…  

Rule 6: G ----------> GH with confidence 1,00 

…  

Rule 10: QR ----------> QRTU with confidence 1,00 

Rule 11: TU ----------> QRTU with confidence 1,00 

…  

FIGURE 6.17: Sample of the episode rules generated for LLDOS 1.0 Inside (confidence 

thresholds 0.8, frequency threshold 0.002 and window size 20) 

The rule 6 represents the relationship between the events G and H. The first is an 

WEB-MISC /doc/ access alert, with source address 172.16.112.50, source port 44482, 

destination IP address 172.16.113.204, destination port 80, and severity 2 (medium risk) 

and the second one is an WEB-MISC finger access alert, with source address 

172.16.112.50, source port 33378, destination IP address 172.16.114.50, destination 

port 80, and severity 2 (medium risk). According to the generated rule, the probability 

of let event G to be followed by an event H has confidence equal to 1 (100%). This 

way, the IPTable rules compatible with the episode rule is shown in Figure 6.18. 

Rule 6: G ----------> GH with confidence 1,00 
 

IPTABLES -A INPUT -i $INTERFACE -s 172.16.112.50 --dport 80 -p tcp -m limit  

--limit 300/second -j ACCEPT 

IPTABLES -A INPUT -i $INTERFACE -s 172.16.112.50 --dport 80 -p tcp -m limit  

--limit 300/second -j ACCEPT 

FIGURE 6.18: Translation of an episode rule to IPTable rules 

Note that in this example, the action was to limit the malicious source IP 

address. Such decision can be based on the value of severity parameter. Possible values 

to the action are: Limit, during 60 seconds for low risk alerts; Extreme-Limit, during 

300 seconds for medium risk alerts; and Block (DROP), for high risk alerts. 

The rules 10 and 11 represent the relationship between the events Q, R, T and U. 

All four events have the same class of attack, RPC portmap sadmind request UDP alert, 

present the same source address 207.77.162.213, same destination port 111 and same 

severity 2 (medium risk). Q event has source port 54790 and destination IP address 

172.16.115.87. R event has source port 54793 and destination IP address 172.16.115.20. 

T event has source port 55484 and destination IP address 172.16.115.50. U event has 

source port 55485 and destination IP address 172.16.115.105.  

According to the generated rules, the probability of the events Q and R to be 

followed by the events T and U has confidence equal to 1 (100%). Moreover, the 

probability of the events T and U to be preceded by the events Q and R has confidence 
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equal to 1 (100%). This way, the IPTable rules compatible with the episode rules is as 

follow:  

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j ACCEPT 

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j ACCEPT 

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j ACCEPT 

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j ACCEPT 

From LLDOS 2.0.2 inside scenario, also using confidence thresholds 0.8, 

frequency threshold 0.002 and window size 20, the episodes rules generated are showed 

in Figure 6.19, where H event is an Bad Traffic Loopback IP alert, with source address 

127.201.162.238, source port 39965, destination IP address 131.84.1.31, destination 

port 30906, and severity 3 (high risk) and I event is a Bad Traffic Loopback IP alert, 

with source address 127.201.162.238, source port 39965, destination IP address 

131.84.1.32, destination port 30906, and severity 3 (high risk): 

Rule 1: H ----------> HI with confidence 1,00 

Rule 2: I  ----------> HI with confidence 1,00 

FIGURE 6.19: Episode rules generated for LLDOS 2.0.2 Inside (confidence thresholds 0.8, 

frequency threshold 0.002 and window size 20) 

According to the generated rules, the IPTable rules compatible with the episode 

rules is as follow:  

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j DROP 

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m 

limit  --limit 30/second -j DROP 

In LLDOS 1.0 outside and LLDOS 2.0.2 outside scenarios, none episode rules 

were generated. 

6.3.3. Real Traffic Analysis 

This section presents an evaluation of the present module when submitted to real traffic 

within a real environment. A LAN segment of the Laboratory GPRT, composed by 

around 60 computers with two egress links: the first connects the GPRT to the local 

Internet PoP-PE and the other one to the University Campus network via the IT Nucleus 

(NTI).  

To collect network traffic, Snort version 2.8.3.2 was setup at two gateways, one 

per external link, and configured with the same IDS rules. Traffic was observed during 

the days 17 and 19 of November 2009 during 14 hours on the 17
th

 and 18 hours on the 

19
th

.  

Frequent Episodes 

Unlike the previous scenarios, there is no a priori knowledge of traffic at the laboratory 

network. Nonetheless, during these two days, around 40.185 alerts were generated. 

Clearly, a network administrator stands no chance in analyzing these notifications 
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without the auxiliary use of new tools. Using FER analysis, 348 event types were 

registered. Table 6.6 contains more data on the GPRT evaluation scenario for frequency 

threshold equal to 0.001. 

TABLE 6.6: GPRT Laboratory Frequency Episode Results.  

Window 

Size (s) 

Possible 

Episodes 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

1 348 348 11 3.1% 

2 82369 121 4 3.3% 

3 2.10
7
 8 5 62.5% 

4 7.10
9
 7 6 85.7% 

5 2.10
12 

8 6 75% 

6 6.10
14 

8 7 85.7% 

7 2.10
17 

9 6 66.6% 

8 5.10
19 

8 4 50% 

9 1.10
22 

4 2 50% 

10 4.10
24 

2 1 50% 

Overall, the results reinforce the fact that the candidate generation technique 

lowers substantially the cost of calculating frequent episodes.  

Episode Rules  

Regarding episode rules, none effective rule was generated. The reason is simple. 

Although GPRT alerts have produced different frequent episodes, as presented in Table 

6.6, the relevance of these frequent episodes is not sufficient to show the connections 

between events. 

For example, employing window size equal to 1 (the greatest number of 

episodes discovered), only three rules was generated, but all of them with confidence 

threshold inferior to 0.6. Moreover, as smaller the number of frequent episodes, lower is 

the number of generated rules.  

6.4. Chapter Summary 

This chapter presented the design and development of a new module responsible for the 

increase network security. Based on frequent episodes discovery technique, an Alert 

Analyzer evaluates multi-source alerts and generates rules, helping on the identification 

of network attacks and anomalies, increasing the accuracy and decreasing the 

uncertainty.  

In order to generate the frequent episodes rules effectively, the original 

algorithms proposed by Mannila et al. [120] is combined with two episode rules 

pruning techniques proposed by Qin and Hwang [184]. To evaluate this module, two 

intrusion data sets were used: DARPA 2000 and one collected from the GPRT research 

laboratory. As demonstrated, this solution is capable of handling multi-source alert 

messages, generates effective frequent episodes rules and consequently produce 

applicable firewall rules.  

To sum up, the application of FED analysis to anomaly and attack detections has 

shown to be useful. The role of the different parameters of such algorithm such as 
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window size and frequency threshold has been shown through experimentation. The 

automatic interaction between this module and other security solutions like Firewall to 

mitigate the identified will certainly increase the effectiveness of this solution and 

provide the base for an autonomic security management solution.  
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Chapter 7  

OADS Miner: Codename ARAPONGA 

 

 

The last decade has seen a frightful increase of undesired, unsolicited, often illegitimate 

Internet traffic, or simply unwanted. Despite being related to spam and denial of service 

attacks, a great part of this problem directly involves security violations caused by 

vulnerabilities exploits in software systems and some user services.  

To security specialists and many businesses, this has been a welcomed 

opportunity for the development of tools to combat these threats. To software and 

hardware manufacturers, this phenomenon requires their constant monitoring of 

evolving security problems targeting their products. Most of them alert their customers 

as soon as they discover possible security problems and ask these to apply new patches 

or undertake complete upgrades. There is nonetheless no way for a software 

manufacturer to guarantee that its customers are acting comply with its advice. This is 

often due to many reasons. IT administrators may find themselves overwhelmed with 

the high number of requests to update their applications, suffering from a lack of human 

resources, or may simply fail to understand the gravity of a given received alert. The 

relevance of this kind of solution is witnessed by the existence of dozens of highly 

visited private and public databases as a well as Web sites about vulnerabilities, 

anomalies and attacks. 

Despite having innumerous Web sites with security information, these often do 

not coordinate their work, tend to use different report formats with emphasis on varying 

information, specialize in different types of vulnerabilities, use different severity 

classifications, lack statistical and event correlation data and may be difficult to search 

through and visualize. This way, network administrators and IT managers may need to 

spend precious resources and time browsing, filtering and locating reports on relevant 

vulnerabilities and security information of interest to them instead of performing other 

tasks.  

In order to address this problem, a Web search system capable to provide 

integration, into a single place, of security information and automated and advanced 

search functionality over such content is proposed. This solution is called ARAPONGA. 

The rest of this chapter explains how ARAPONGA can be useful in helping 

users and other systems. Firstly, some background information and related works are 

presented, aiming to differentiate out this solution from other proposals. Next, an 

overview design of ARAPONGA is presented, including a detailed description of 

architectural components and their implementation. An initial evaluation is then 

presented to validate the developed tool. Lastly, some conclusions are discussed.  

7.1. Background and Related Work 

The constant human quest for innovation and technological advances resulted in a 

wealth of data and information scattered, over the Internet, especially after the huge 

success of the World Wide Web. However, with the rapid growth of information and 

easy access of information, a question that may be raised is related on how to find 
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useful information and knowledge? After the entire semantic web remains a dream 

concept. The usual advice is to use an Information Retrieval System (IRS) [187]. 

IRS is a generic name given to a class of tools dedicated to given technologies, 

such as databases, for the selective manipulation and retrieval of large collections of 

information in different presentation formats. Typically, an IRS investigates different 

aspects of the information such as representation, storage, organization, and access. A 

core assumption of their retrieval/search centric techniques is that their users know 

exactly what information they seek. 

Authors such as Baeza-Yates and Ribeiro-Neto [187] and Yao [188] consider 

IRS as an extension (or evolution) of the basic search functionality of Data Retrieval 

Systems (DRS). The reason is simple. Both are focused on the retrieval functionality. 

However, they also have some differences. Yao [188] asserts that DRS deals with well 

defined, structured and simple problems while IRS deals with not-so-well defined, 

semi-structured or unstructured and not simple problems. In other words, DRS typically 

work with database system while IRS investigates different aspects of the information 

such as representation, storage, organization, and access. In addition, the core 

assumption of DRS is that the data items and user information needs can be precisely 

described while the core assumption of an IRS is that their users know exactly what 

information they seek.  

Despite being the natural evolution of the information retrieval area, coupled 

with the rapid growth of the Web, IRS began experiencing problems due to their design 

philosophy and principles. According to Yao [188], these problems are caused by the 

emphasis on the storage and search functionalities, since an IRS performs search at the 

raw data level, instead of the model level, and without user interaction. In other words, 

trying to find useful and relevant information part of a large collection of unstructured 

documents is undoubtedly a cumbersome task.  

In order to solve this problem, Yao and Yao [189][190] proposed to shift the 

focus of IRS from a system centric to a user centric and from a retrieval centric to a 

support centric design philosophy. This culminated in what is known as Information 

Retrieval Support Systems (IRSS). The main goal of any IRSS is to support users, 

providing the necessary means, tools and languages to facilitate the task of finding 

useful information to its users and managing it. In other words, IRSS set their focus on 

the supporting functionalities for the users rather than concerning themselves with the 

underlying retrieval related functionalities.  

In IRSS, the users play more active and important roles. They can, for example, 

take decisions at various stages of retrieval and find useful information process. With 

exploratory search and browsing, only users may determine the relevance of each 

information item. In addition, in some occasions, a user may not want details about 

particular data, but rather a general view before going to a more in-depth analysis. 

Unlike IRS that presents search results in the form of ranked list, an IRSS user would be 

able to use graphical and visualization outputs to view a result, increasing the level of 

inference and analysis.  

However, in the context of Web, the focus on user interests does raise certain 

issues. This is especially due to the fact that a user may not know exactly what is being 

searched for inasmuch as billions of Web pages daily updated. For this reason, IRSS 

applied to Web are known as Web Information Retrieval Support Systems (WIRSS). 

According to Hoeber [191], WIRSS apply intelligent methods and advanced Web-based 

technologies over the traditional focus on the automated search within digital 
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collections, to enable users to better specify their information needs, evaluating and 

exploring search results, and managing the recovered information.  

For example, what is the answer to the question: How many times have Brazil 

won the FIFA World Cup? Among the results returned there will those reflecting the 

fact that the Web knows, for instance, that Brazil will host the 2014 World Soccer Cup 

competition and that the 2010 World Soccer Cup takes place on South Africa, even in 

sites that do not consider the initial query terms. On the other hand, for a WIRSS with 

support for semantic search, the answer would be five.  

Two examples that illustrate such functionalities, taken from the Web, are 

Google maps [192] and AllinOneNews [193]. The former is a heterogeneous WIRSS, 

where the user queries by postal address information and receives topological map data, 

terrain and geospatial data, high-resolution satellite imagery data, real-time traffic flow 

stream data from sensors, and pictures of neighborhoods in the Web browser. The latter 

is a news meta-search engine that integrates homogeneous information sources, where 

the user queries are dispatched to a selected (based on the query) subset of 10-20 most 

promising sources from a list of 1800 online news sources. The results are merged and 

top ranked, before being presented [193]. 

However, the design and deployment of WIRSS introduce new challenges as 

precisely pointed by [191][194]. The main one is the evolution of traditional Search 

Engines (SE), based on classical IRS concepts, to Search Support Engines (SSE) 

focused on providing different supporting functionalities for end users. Authors such as 

Zeng et al. [194] and Marchionini and White [195] confirm SSE requirements, besides 

offering typical and traditional navigation, search and browser functions, to additionally 

implement important user oriented supporting functionalities such as knowledge 

organization, discovery, and visualization. To prove and evaluate such approach, they 

developed a layered SSE focused on the management of the DBLP dataset [196], 

known as DBLP-SSE. 

Another challenge is related to the representation of Web search results. The 

typical list-based representation of results is extremely effective when the information 

being sought is very specific. However, when the queries provided by the searchers are 

ill-defined, vague, or ambiguous, the list provides little support for the searcher to 

discover the few relevant documents from the many irrelevant ones. Tilsner et al. [197] 

implement a prototype to Web search based on fuzzy clustering and visualization, 

named CubanSea, capable to provide a novel method for representing search results, 

allowing that users have an active role in the search process, making high-level 

selections of fuzzy clusters of documents, thereby reducing the number of non-relevant 

documents within the search results list. 

Recently, a different approach proposed by Marchionini and White [195] 

introduced the concept of Information Seeking Support System (ISSS), which 

emphasizes the necessity of shifting from the study of Information Seeking towards 

Seeking Support. The authors argued that seeking information for learning, decision 

making, and similar complex mental activities that take place over repeating time 

periods, requires the development of new specially designed solutions and support 

services to help users managing, analyzing, and sharing the built up knowledge.  

Current ISSS works cover a wide range of functionalities. Shah [198] developed 

a framework, named ContextMiner, capable of executing automated crawls on various 

Web sources and collecting data as well as contextual information. The ContextMiner 

may analyze and add value to collected data and its context, and continuously monitors 
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digital objects of interest to its users over time. WolframAlpha [199] is seen as a famous 

computational knowledge (semantic) engine able to answer queries directly by 

computing the result from structured data, rather than providing large numbers of 

pointers to documents or Web pages as is typically the case with existing search data 

indexing engines. Relation Browser [200][201] provides a dynamic user interface that 

allows users to explore a data set through the use of faceted browsing and keyword 

search. Developed as a Java applet, it focuses the understanding of the relationships 

between items in a collection and the exploration of information spaces (e.g., a set of 

documents or Web pages). 

7.2. ARAPONGA Overview 

The adoption of web search technologies led people to expect immediate and easy 

access to information in all aspects of life. Web-based search services have become 

fundamental components of the cyber infrastructure that supports economic growth and 

social advance. Although there is a built base of solutions for search, human needs for 

information go beyond search to filtering, assessing, sense-making, synthesizing, and 

using information to even meeting the drive for the creation of new knowledge. 

A special and focused case is that of security information. Although there are a 

great number of given Web sites built to manage vulnerabilities reports, lists of 

malicious hosts (typically IP, DNS servers, domains and ASN), graphics and statistics, 

network administrators and IT managers are forced to painfully search thoroughly to 

found such information. 

To such end, the present work develops and evaluates a tool called ARAPONGA 

based on the basic principles of Web-based Information Retrieval Support Systems 

(WIRSS) and Information Seeking Support Systems (ISSS). It is capable to provide: (i) 

integration of Web crawled content into a single place; (ii) a powerful search support 

engine focused on security; (iii) a unified and simple access with support for logical 

expressions; and (iv) interfaces to deal with both human users as external system like 

search engines and decision making tools. 

ARAPONGA provides automated searches content on vulnerabilities and 

malicious activity statistics published on the Web, storing them, and, finally, allowing 

fast and easy access to this information directly for both users and other systems. More 

specifically, ARAPONGA offers two types of supporting functionalities: search 

refinement support and knowledge analysis support.  

Search refinement support describes a set of searches that can be performed by 

users and external system alike to found security information content. This functionality 

can be compared with the traditional and advanced searches available on the most vary 

Web search engines of the Internet. Although ARAPONGA also provides typical search 

features as query input text box and search results listing, it also distinguishes itself. 

ARAPONGA employs the concept of templates at indexing Web pages aiming to 

extract better and more specific contents. Consequently, search results become more 

consistent and relevant with users’ interests since there is a major diversity of 

complements to help the search such as specific tags, kind of pages and knowledge 

domain. Templates will be explained in next section.  

As far as is concerned to search refinement support functionality, ARAPONGA 

is able to answer some specific questions as the following: 
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 Is my IP address, server, domain or ASN related to some type of suspicious 

or malicious activity, intrusion or attack reported on the Internet? 

 Is there some new type of anomaly (attack, intrusion or similar) related to a 

specific type of service, port or protocol? 

 What is the last appearance of a particular anomaly or vulnerability? 

 What are the vulnerabilities related to a specific product (software or 

hardware) or given vendor? 

The second main ARAPONGA functionality is knowledge analysis support. It 

allows the elaboration (building) of various types of structures (knowledge and 

statistical graphics) to represent a specific knowledge domain. For example, 

ARAPONGA can model and present the frequency distribution of vulnerabilities or 

knowledge domains. Figure 7.1 illustrates a knowledge structure of the “vendor” search 

term, which products are related with vulnerabilities.  

 

FIGURE 7.1: A partial multi-level knowledge structure for vulnerability by vendor 

Based on all indexed documents, ARAPONGA may infer that if one needs very 

general information with respect to “vulnerability” by vendor, the seeker may just want 

the knowledge in the second level (the first level just has one node “vulnerability by 

vendor”). Furthermore, if the user requires more detailed knowledge concerning one 

branch of vendor, it can choose, for example, “Microsoft” and get a finer grained 

structure. This way, it is possible to produce a scalable knowledge structure which 

provides the knowledge source in different levels of details with an interactive manner 

concerning different user needs.  

It is important emphasize that knowledge analysis support functionality is 

mainly user centered since the system generates relevant analysis results to help these 

understand the security threats for a given context. 
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7.2.1. Templates 

Typically, Web crawling technologies assume content extraction directly from Web 

pages without relying on the actual keywords declared in the HTML source code. The 

key reason is that Web publishers usually define keywords different from the actual 

content. Consequently, indices generated by indexing process are common or generic 

since they are based on the main subject of the pages. 

Despite the adoption of RDF (Resource Description Framework) [202] as 

standard model for data interchange on the Web, the problems involving index 

generation continued because there is no guarantee for Web crawlers that the 

information included in a RDF file fully corresponds to actual content. Moreover, RDF 

description prepared for a specific Web page provides information about the content 

and does not include any information about content allocation on that same Web page. 

In order to solve this problem and also improve the results of the indexing 

process, ARAPONGA employs the concept of templates. The term template refers to a 

model to represent some content, while providing a kind of standard of visualization. 

ARAPONGA templates have keywords (tags, fields or regions) often found in relevant 

Web pages that follow some predefined standard. Templates can be created to represent 

a complete Web site or domain inasmuch as the contents and structures are oftentimes 

repeated. However, every time a Web site or domain introduces new different 

structures, several templates need to be re-generated to represent such differences.  

In ARAPONGA, templates try to establish a relationship between URLs and 

keywords. This way, after the index process, there is not a unique search space, but a 

multitude of search spaces are maintained for diversity, increasing the probability of a 

particular topic being relevant. Figure 7.2 exemplifies the difference between a normal 

search space and a search space with templates. 

Search Space with Templates

Keyword “A”

Keyword “B”

Doc1

Doc2

Doc3

Doc1
Doc2

Doc3

Normal Search Space

Doc1

Doc2

Doc3

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

 

FIGURE 7.2: Differences among search spaces 

In order to clarify the idea behind ARAPONGA templates, Figure 7.3 shows an 

example for Secunia’s Advisories Web site [203], a famous and reliable repository 

about vulnerabilities, where the black rectangles represent the fields identified as useful 

whereas the red round ones represent the content of each field. Table 7.1 describes each 

field and its contents.  
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FIGURE 7.3: Secunia Web site Template 

TABLE 7.1: Secunia Advisories template 

Template Fields Description 

Secunia Advisory Defines the unique identifier of the vulnerability by Secunia standard 

Release date Indicates the release date of the vulnerability 

Last update Indicates the last update of the vulnerability 

Popularity Indicates the popularity of the vulnerability according to the number 

of access of the Web page 

Critical Exposes the level of severity of the vulnerability 

Impact Describes how the vulnerability affect the targets 

Where Describes where the vulnerability is achieved 

Solution Status Describes what was done to solve the problem 

Software Describes the software or systems affected by vulnerability 

CVE-Reference Indicates the CVE identification of the vulnerability 

Description Describes in general lines the vulnerability 

Solution Describes how to solve the vulnerability 
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The use of templates offers the possibility to identify more specific content and 

indexing this as keyword. In comparison with a common index process, where the 

generated search space is composed by all content, the present indexing process using 

templates generates a more reduced search space composed by content indexed using 

keywords.  

As result, the use of templates allows a performance gain in terms of response 

time and processing. In ARAPONGA, this type of search is called an advanced search. 

It is important emphasize that the search process for both simple and advanced search 

remains the same (regarding searching, sorting and page ranking). What really changes 

is the search space and the number of returned pages. A simple search is likely to return 

much more results than the advanced one. 

7.2.2. Architecture 

The ARAPONGA architecture is modular, to ease future modification, and the seamless 

addition of new components. As shown in Figure 7.4, the architectural components 

were broken down in accordance with their role.  

The entities that compose the ARAPONGA system are: 

 Crawler – responsible for harvesting Web pages and associated metadata 

and contextual information, where the sources of interest are defined in an 

initial URL list (seeds). When a URL is accessed, the crawler downloads the 

page associated to it and analyzes all links it finds there in order to select and 

store these links into a list of new URLs to visit. This process is repeated 

until some stopping condition is achieved.  

 Indexer – responsible for indexing the collected content by the crawler. 

However, instead of the simple indexing based on the traditional content of 

pages (content, URL, timestamp and other identifiers), this component 

makes use of known templates to extract different and more specific field 

identifiers and, consequently, permits highly refined searches. The indexer is 

also responsible for the removal of Web pages that are indexed if they lack 

relevant content to the security context.  

 Search Engine – receives queries and returns the answers in an orderly 

manner. This component performs two distinct tasks: searching and ranking. 

The search module takes in queries in a natural language like form interface 

component. These are then translated into accepted queries and the base is 

looked up for documents. The results are then passed to the next module. 

The ranking module quantifies the relevance of received documents with 

regard to the initial query and returns these to the interface component.  

 Interface – offers a front-end between users (human operators and external 

systems) and ARAPONGA (search engine component, more specifically), 

providing different types of input and output interfaces for execution of 

queries and display of responses. This component performs two main 

functions: query handler and output viewing. The former is responsible to 

translate originals queries for the format accepted by the search engine 

component. The latter displays the queries’ results (typically a Web page, 

but also uses graphics and ordered XML list).  
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FIGURE 7.4: Architectural and workflow diagram of ARAPONGA 

7.2.3. Components Interaction  

The interaction between ARAPONGA components can be divided in two stages. First, 

there is the processing of collecting and indexing Web pages. It involves the crawler 

and indexer components (detailed on Steps 1, 2 and 3 in Figure 7.4). In Step 1, the 

crawler is fed with initial URLs (or domains) that had been listed as information source 

for vulnerabilities and Internet anomalies. Next, in Step 2, the crawled Web sites 

(candidate pages) are saved and the indexer component starts using the templates to 

index all these content. As a result, in Step 3, the relevant and useful files are saved in 

the indexed files base.  

The second stage involves querying (Steps 4, 5, 6, and 7). To help the reader 

gain familiarity with the ARAPONGA system, an example is used. Supposing that an 

IT manager desires to know if: there are TCP alerts on port 80 related to attacks, bots 

and spam in the period ranging from 01/01/2010 and 01/07/2010? 

Upon receiving this query, the interface component translates it and formulates a 

new one according to predefined parameters. If some part of question is not understood, 

that is, cannot be translated, the question is discarded and an error message is displayed 

to the user. Otherwise, in this example, the following is generated:  

TCP 80 -pageType “attack,botnet,spam” -date “01/01/2010 to 01/07/2010” 

Upon its receipt by the search engine component, the query goes through its own 

validation process, where insignificant or unimportant words are removed using an 

efficient stop-words removal technique. Next, the search engine initiates the search 

from the query on Web pages stored in its local database. The goal is to verify which 

pages contain the information relevant to the present query (in this example TCP 80) 

according to the specified parameters (-pageType “attack, botnet, spam” and date 

“01/01/2010-01/07/2010”). The pages that fit this profile (respond positively to these 

rules) are ranked and listed in an ordered in a decreasing way according to the ranking 

field. Finally, the search engine returns the query result to the interface component. 
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7.3. Implementation 

This section describes the implementation process of ARAPONGA while specifically 

focusing on its components and their integration.  

However, before describing ARAPONGA development, two important design 

aspects in this project need to be clarified: content selection and prerequisites supported 

by the crawler tool. 

7.3.1. Preliminary Questions 

Content Selection 

Content selection is decisively important as it defines what type of Web sites are more 

suitable for delivering relevant and updated information on Internet traffic anomalies 

and vulnerability reports. There are indeed scores of Web sites offering security and 

traffic anomaly reports. Some of these have an open access policy whereas others 

require some level of subscription and hence have an extra obstacle for crawlers.  

The question is: where to get reliable security information? The answer can be 

found in a great diversity of sources such as ATLAS [63], ShadowServer [64], Secunia 

[203], NVD [204], US-CERT [205], KB-CERT [206], OSVDB [207],ISS [208], 

DragonSoft [209], SecurityFocus [210], SenderBase [211], ThreatExpert [212] and 

Team Cymru [213]. 

In order to answer this question, two metrics to evaluate the general and relevant 

characteristics of this kind of Web sites are adopted. These metrics better portray some 

significant particularity of the content as well as the some features or aspects important 

for the crawler process. Similarly to other evaluation works, metrics in the form of 

simple discrete or continuous values to describe features such as the amount of recorded 

information and the update time. These metrics are the following: 

 Update time - indicates the frequency of the information updating. This 

metric is important because it allows measuring the time interval in which a 

search engine should visit the pages of a certain area. 

 Access content - indicates if the information is accessible with or without 

the need of authentication and if there is some type of restriction to access 

the content. These metrics permit to identify the information sources where 

the access is easier.  

After analyzing the sources according to the established selection criterion, the 

following Web sites have been chosen for ARAPONGA access:  

 Secunia [203], NVD [204], US-CERT [205] KB-CERT [206], DragonSoft 

[209] and SecurityFocus [210] for records and reports of vulnerabilities, and; 

 ATLAS [63], ShadowServer [64], ThreatExpert [212], and Team Cymru 

[213] for malware and Internet anomaly statistics. 

Table 7.2 summarizes the results of the comparisons among all previously listed 

using the defined metrics. 
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TABLE 7.2: Comparison among various Web sites  

 Update time Access content 

ATLAS Daily Part of the content needs of authentication 

DragonSoft Daily No 

ISS Unknown No 

KB-CERT Daily No 

NVD Daily No 

OSVDB Daily No 

Secunia  Daily No 

SecurityFocus  Daily No 

SenderBase  Daily Meta-tag limitation for crawlers 

ShadowServer Daily No 

Team Cymru  2 hours No 

ThreatExpert Daily No 

US-CERT Daily No 

The other Web sites could not be selected due to some issues. As far as is 

concerned vulnerabilities Web sites, OSVDB [207] can be considered among the best 

representatives due to its huge amount of recorded information, without the necessity of 

authentication, and access support of all content by different ways. However, it fails 

with regard to the completeness of its information. The work of Borba [214] shows that, 

as of June 05 2009, the OSVDB base had 54.004 records, where 41.597 records present 

some kind of unknown or simple null information. This problem was observed in both 

old and new records, which confirms a serious problem of completeness. ISS Web site 

[208] was also discarded due to the fact that its update time is unknown. There are times 

were more than two weeks passed without any change.  

Regarding malware and Internet statistic Web sites, SenderBase [211] was not 

chosen since its information is only available in the form of graphs or figures. The small 

amount of content gathered is not representative.  

Crawler tool 

The second design issue has to do with which crawler to use. After some studies and 

exchanges with experts in Web mining information, it was decided to evaluate WIRE 

[215][216], an open-source crawler. The choice by this tool was based on three features:  

 Scalability – WIRE was designed to work with large volumes of documents, 

and was positively tested with several million documents. The current 

implementation would require further work to scale to billions of documents 

(e.g.: process some data structures on disk instead of in memory). 

 Configuration - all its parameters for crawling and indexing can be 

configured, including several scheduling policies. 

 Performance – WIRE is entirely written in C/C++ for high performance. 

The downloader modules of the WIRE crawler (“harvesters”) can be 

executed over several machines in parallel. 
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However, after initial tests utilizing the previous selected content, the WIRE 

crawler revealed some issues with regards to ARAPONGA requirements. The main one 

was the lack of authentication support. For example, one of the chosen Web sites 

requires authentication when asked for further information on specific IP addresses 

involved in DDoS attacks. Although WIRE is open source, the deployment of a new 

module to support this requirement is difficult due to the limited available 

documentation and unclear code. For these reason, the use of WIRE as ARAPONGA 

crawler was abandoned.  

After further consultations and studies, two crawlers were tested: Heritrix [217] 

and Nutch [218]. Although both are developed in Java, they are very used both in 

academic as commercial environments.  

Developed by Internet Archive, Heritrix [217] is an open source and Web 

crawler. Heritrix is a generic crawling framework into which various interchangeable 

components can be plugged, enabling diverse collection and archival strategies, and 

supporting the incremental evolution of the crawler. Totally developed in Java, it 

employs text files to configure aspects such as initial URLs, environments, and Java 

options. In addition, Heritrix fetches a vast variety of contents. 

Nutch [218] is an open source Web-search tool capable of executing Web-

specific functions such as crawling and parsing HTML and other document formats. 

Developed by the Apache Foundation in Java, Nutch utilizes the Lucene library [219] to 

index the contents. Nutch has also been widely used to implement a fast and efficient 

mechanism for searching and indexing documents in several formats. Nutch employs 

XML files to configure aspects such as initial URLs, operation, and plugins (new or 

not). Although it fetches contents on different formats it not recognizes images.  

Since Heritrix and Nutch are very similar, both were evaluate in terms of 

features. Table 7.3 summarizes the comparisons among these crawler tools. 

TABLE 7.3: Heritrix and Nutch comparison 

Features Heritrix Nutch 

Source Code 

Changes 

The source code is documented, 

but there is little material to help a 

user to develop or maintain the 

Heritrix source code. 

All source code is very well 

documented. In addition, there are 

many examples and tutorials to 

create and handle plugins.  

MapReduce
27

 Available through an extension. Implemented as part of Nutch. 

Authentication 

Offers two types: Basic and 

Digest authentication and POST 

and GET of an HTML Form. 

Offer HTTPS, NTLM (NT LAN 

Manager), Basic and Digest 

authentication schemes. 

Clustering 

Utilizes Heritrix Cluster 

Controller (HCC), a set of 

packages that enable control of a 

cluster of Heritrix instances 

running across multiple machines. 

Available as a plugin (Carriot 

Project [220]) included in Nutch 

codebase. 

Plugins 
Provide several types of 

pluggable modules.  

Provide a large part of the 

functionality of Nutch. Writing or 

                                                           
27 MapReduce is a programming model and an associated implementation for processing and generating 

large data sets.  

http://crawler.archive.org/
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handling a Nutch plugin is easy. 

Parallel operation 

and Distributed File 

System 

Employs Hadoop
28

 Distributed 

File System (HDFS) to stores 

large files (multiples of 64 MB), 

across multiple machines. It 

achieves reliability by replicating 

the data across multiple hosts, and 

hence does not require RAID 

storage on hosts. 

Employs Nutch Distributed 

File System (NDFS), a set of 

software for storing very large 

stream-oriented files over a set 

of commodity computers. 

These two facilities are 

provided by Hadoop Project 

[221]. 

Parallel operation 

Supports multiple fetches and 

distributed search through diverse 

plugins. 

Supports multiple simultaneous 

fetches; parallel and distributed 

db update; and distributed search. 

Based on the features presented in Table 7.3 and considering installation and 

operation tests realized, the choice ultimately fell on the Nutch crawler.  

7.3.2. Components 

Crawler  

As previously mentioned, Nutch plays the role of a crawler component within 

ARAPONGA. In order to deal with issues related to the quantity and quality of crawled 

information, Nutch makes use of limiters and filters. For example, since the Web has a 

huge number of pages and the rapid update of content increases the likelihood of 

outdated content being downloaded, it employs depth limiters, to avoid huge deviations 

from the top level, and amplitude limiters, to restrict the number of links in pages that 

can be referenced. In addition, URL filters are also used to delimit specific URL for 

consultation.  

Indexer  

To implement the indexer of the collected content, Java (version 1.6), Lucene API [219] 

and Jericho HTML Parser [222] are used. 

 Lucene [219] is a high-performance search engine library written entirely in 

Java and open source. It is a technology suitable for nearly any application 

that requires full-text search, especially cross-platform software. In addition, 

Lucene offers through a simple API efficient search algorithms, including 

field oriented searching, many powerful query types, multiple index 

searching, and simultaneous update and searching operations. Furthermore, 

the Lucene ranking function, the core of any search engine applied to 

determine how relevant a document is to a given query, is built on a 

combination of the Vector Space Model (VSM) and the Boolean model of 

Information Retrieval. Lucene uses also the Boolean model to first narrow 

down the documents that need to be scored based on the use of Boolean 

logic in the query specification 

 Jericho HTML Parser [222] is an open source java library for the analysis 

and high-level manipulation of parts of an HTML document, including 

                                                           
28 Hadoop Map/Reduce is a software framework for easily writing applications which process vast 

amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity 

hardware in a reliable, fault-tolerant manner [221]. 

http://lucene.apache.org/hadoop/
http://lucene.apache.org/hadoop/
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/RAID
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server-side tags, while reproducing verbatim any unrecognized or invalid 

HTML. It also provides high-level HTML form manipulation functions.  

Table 5.4 presents other features of Lucene and Jericho.  

TABLE 7.4: Features of Lucene and Jericho 

Lucene Jericho 

Ranked searching: best results returned 

first 

The presence of badly formatted HTML 

does not interfere with the parsing of the 

rest of the document. 

Many powerful query types: phrase 

queries, wildcard queries, proximity 

queries, exact phrase queries, range 

queries for date/time and number values. 

ASP, JSP, PSP, PHP and Mason server 

tags are explicitly recognized by the 

parser.  

Fielded searching: all fields are searchable 

as a whole or each field separately. 

Compared to a tree based parser such as 

DOM, the memory and resource 

requirements can be far better if only 

small sections of the document need to be 

parsed or modified. 

Boolean operators: any combination 

between search terms (AND, OR, NOT). 

Compared to an event based parser such 

as SAX, the interface is on a much higher 

level and more intuitive, and a tree 

representation of the document element 

hierarchy is easily created if required 

Multiple index searching with merged 

results. 

Custom tag types can be easily defined 

and registered for recognition by the 

parser.  

Simultaneous searching and updates. Provides a simple but comprehensive 

interface for the analysis and manipulation 

of HTML form controls, including the 

extraction and population of initial values, 

and conversion to read-only or data 

display modes 

 Analysis of the form controls also allows 

data received from the form to be stored 

and presented in an appropriate manner. 

Back to the Indexed component (or Lucene), its operation can basically be 

divided in three steps:  

1. The Lucene API is used to acquire all downloaded Web pages. 

2. For each received page, the Jericho library is used to make a comparison 

between page titles and a set of predefined identifiers, aiming to identify 

templates that help reference this page. Once a template for this page is 

matched, the page has its context extracted and identified and each 

information block (part of content) has an associated keyword. On the other 

hand, if no template is found as a match for a given page, a generic common 

http://msdn.microsoft.com/asp/
http://java.sun.com/products/jsp/
http://www.modpython.org/
http://www.php.net/
http://www.masonhq.com/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Source.html#DocumentElementHierarchy
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Source.html#DocumentElementHierarchy
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/TagType.html#register%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Segment.html#findFormFields%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Segment.html#findFormFields%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormField.html#getValues%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormField.html#setValue%28java.lang.CharSequence%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setDisabled%28boolean%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setOutputStyle%28net.htmlparser.jericho.FormControlOutputStyle%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setOutputStyle%28net.htmlparser.jericho.FormControlOutputStyle%29
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indexing is made for such page as explained in section 7.3.3 (Interaction 

between components).  

3. Lastly, Lucene adds the timestamp, title, and URL identifiers, to the internal 

control system identifiers.  

After executing these steps, Lucene is invoked to index the page. 

Search Engine  

Similarly to the other ARAPONGA components, the search engine is implemented in 

Java. It is responsible for performing search and inference tasks and results analysis 

before their presentation at the interface component.  

To perform such activity, ARAPONGA’s search engine makes use of the 

Lucene API. Basically, upon receiving a query, it starts a comparison process with the 

documents already available in the local database. Next, the selected documents are 

ranked, sorted in descending order, and sent to interface component.  

Interface 

The last, but not least, ARAPONGA component is its interface. It intermediates the 

communication between users (both human and external systems) and the search 

engine, providing different types of input and output interfaces for execution of queries 

and the display of responses.  

To achieve such functionality, many types of queries are supported. Table 7.5 

describes and exemplifies each one of them. 

TABLE 7.5: Query types of ARAPONGA Interface 

Query Type Description 

Simple  Represent a common and generic query composed by a unique input, 

the term or terms of interest. In addition, this query also allows 

searches among time periods using the parameter date.  

The search is executed over all indexed content. As result, this query 

returns an ordered list.  

Examples of this query are: “botnet” or “Internet Explorer -date 

01/01/2009 to 12/31/2009”. 

Advanced Represent a detailed query, resulting of the use of templates. This 

query permits the union of different parameters (inputs), aiming to 

restrain the search space and provide a more correct answer. It works 

receiving the term or terms to be searched as input follow by the 

advanced parameters.  

Basically, there are three (3) advanced parameters: 

 field – indicates that the searched term(s) must be obligatorily 

founded along with the specified keyword(s). In the example 

(AS3462 –field ASN), the parameter –field ASN indicates that the 

term AS3462 only will be searched in Web pages where the 

keyword ASN is present.  

 pageType – indicates that the searched term(s) must be obligatorily 

founded in Web pages which type match with the specified as 



114 
 

 
 

input. The example (Storm Worm –pageType alerts,bulletin) 

represents the necessity to search the term Storm Worm in Web 

pages classified as alerts and bulletin. 

 domain – indicates that the searched term(s) must be obligatorily 

founded in Web pages which Web domain match with the 

specified as input. In the example (Microsoft –domain 

secunia.com,cert.org), the term Microsoft only will be searched in 

Web pages that belongs to the domains specified as input. 

In addition, this query also allows searches among time periods using 

the parameter date.  

The result of this advance query is an ordered list containing the 

contents where the term(s) are found. Note that the keywords are 

extracted from each page during the indexing process made according 

to specific templates. 

Other examples of advanced search are presented as following: 

 SQLInjection -pageType alert,bulleting,database -date 

01/01/2010 to 01/31/2010 

 ASN Brazil -field ASN -pageType report -domain 

atlas.arbor.net -date 10/20/2009 to 12/31/2009 

 Microsoft Internet Explorer -field system_affected,software -

date 01/20/2010 to 02/10/2010 

 AS3462 -domain atlas.arbor.net,teamcymru.com -date 

02/01/2010 to 02/08/2010 

Malicious Represent a refined query, as advanced search, resulting of the use of 

templates. The goal of this query is to identify (confirm) if a 

determined input is related to a malicious activity. It works by 

receiving two inputs: the term(s) to be searched and the parameter -

malicious. Typically, the search term represents an IP address, DNS 

server, domain or ASN while the parameter -malicious is followed by 

a list of keywords (attacks, spam, phishing, botnet, and so on) that 

must be searched.  

The result of this query is also an ordered list. However, the list is 

ordered alphabetically according to the malicious activity founded. 

This query is very useful to investigate specific situations such, for 

example, if an SMTP server is listed in blacklist or whitelist Web sites.  

An example of this query is the following: gprt.ufpe.br -malicious 

spam,fastflux,CC,attack. 

Beyond these queries, the interface component offers another distinct query. 

Vulnerability summary is a query intended to generate a list for a specific 

vulnerability. It takes three inputs: the term(s) (vulnerability, in this case) to be 

searched, the parameter -summary_vulnerability, and the time period parameter -date.  

This query goes through all contents looking for the searched term(s), returning 

an XML file containing a description and the following information: (i) the level of 

criticality or severity of the vulnerability, (ii) the number of times the vulnerability 

achieved this level, and (iii) where and how to explore the vulnerability.  
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Figure 7.5 shows the returned result from the following query: Microsoft –

summary_vulnerability -date 09/01/2009 to 04/30/2010 

<Summary_Vulnerability>

  <Vulnerability id="1">

    <Title name="Windows SMB2 Remote Denial of Service Test">

    <Description>

        Microsoft Windows Server 2008, Vista are exist array index error in the SMB2 protocol implementation        

        in srv2.sys,which could allow remote attacker to cause a denial of service (system crash).

    </Description>

    <Timeline>

       <Disclosure_Date>2009-09-17</Disclosure_Date>

       <Published_Date>2009-09-17</Published_Date>

       <Last_Update>2009-10-13</Last_Update>

       <Solution_Date>2009-10-13</Solution_Date>

    </Timeline>

    <Classification>

       <Attack_From>Remote</Attack_From>

       <Impact risk="high">Denial of Service</Impact>

       <CVSS>7.8</CVSS>

       <CVE_ID>CVE-2009-3103</CVE_ID>

    </Classification>

    <Affected>

       <product>Windows Vista</product>

       <product>Windows Server 2008</product>

    </Affected>

    <Solution>

       Install the patch to fix the problem.

    </Solution>

    <References>

       <name>Microsoft Security Bulletin MS09-050</name>

       <url>http://www.microsoft.com/technet/security/bulletin/ms09-050.mspx</url>

       <name>Microsoft Security Advisory (975497)</name>

       <url>http://www.microsoft.com/technet/security/advisory/975497.mspx</url>

       <name>Microsoft Fix it for 975497</name>

       <url>http://support.microsoft.com/kb/975497</url>

    </References>

  </Vulnerability>

  <Vulnerability id="2">

    <Title name="Microsoft IE Unspecified Uninitialized Memory Corruption">

    <Description>

        Microsoft Internet Explorer 6, 6 SP1, and 7 does not properly handle objects in memory, which allows 

        remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized 

        or (2) is deleted, leading to memory corruption, aka "Uninitialized Memory Corruption Vulnerability.

    </Description>

    ...

    <Classification>

       <Attack_From>Remote</Attack_From>

       <Impact risk="high">Loss of Integrity</Impact>

       <CVSS>9.3</CVSS>

       <CVE_ID>CVE-2010-0267</CVE_ID>

    </Classification>

    ...

  </Vulnerability>

  ...

</Summary_Vulnerability>  

FIGURE 7.5: Example of Vulnerability summary query by Microsoft term 

In practical terms, the interface component offers two types of interfaces. The 

first one is visual, Web-based, and is intended for human operators (Figure 7.6). The 

second is a command line-based application and it allows ARAPONGA to interact with 

external systems.  
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FIGURE 7.6: ARAPONGA’s GUI Interface 

7.4. Evaluation and Initial Results 

This section presents the evaluation and initial results of the ARAPONGA system.  

7.4.1. Performance Metrics 

In order to analyze the knowledge obtained by ARAPONGA, the performance 

evaluation metrics, initially proposed by Cleverdon [223] and very used in information 

retrieval area, based on relevance concept are adopted. In other words, a document is 

considered relevant when it has importance for the queried topic.  

The metrics are: 

 Precision – defined as the fraction of documents retrieved that are relevant 

in relation to all retrieved documents.  

          
                    

         
 , (1) 

 Recall – defined as the fraction of the documents that are relevant to the 

query that are successfully retrieved.  

        
                    

         
 , (2) 

In short, precision is the percentage of recovered items that are relevant. Recall 

is the percentage of relevant items that were recovered. For example, a query with a 

value of accuracy equal to 0.70 means that 70 percent of the recovered items are 

relevant, while a query with recall value equal to 0.70 has only 70 percent of the 

documents are or could be relevant. 
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7.4.2. Evaluation Methodology  

All stages of development, evaluation and tests of the ARAPONGA system were 

preformed in the GPRT
29

 laboratory (Network and Telecommunication Research 

Group) of the Federal University of Pernambuco (UFPE). The environment was 

composed by a PC (Intel Core2Duo T5300, 2 GB of RAM, and 250 GB of HDD, 

10/100 Mbps Ethernet interface), running Ubuntu 8.4 Linux distribution. The laboratory 

keeps a sustained rate of 1 Gbps with PoP-PE (RNP
30

 point of presence of the State of 

Pernambuco). 

Considering that the objective is to evaluate the performance and features of 

ARAPONGA, the base of collected content was divided in two. The first one was used 

to validate and ensure that the implementation was in accordance to the specifications. It 

was conducted in January 2010, from 4
th

 to 29
th

, where Crawler component of 

ARAPONGA was set to capture 10 references (links) per page and with depth of 2 

references using only ATLAS [63], Secunia [203] and US-CERT [205] Web sites as 

information source.  

To extract visible results, all collected Web pages were indexed during this 

period using both ARAPONGA and Lucene. The goal is to establish a comparison 

between them and thus to prove the relevance and efficiency of ARAPONGA‟s 

templates. Table 7.6 shows the index results of this experiment.  

TABLE 7.6: Base evaluation 

Day 
Visited 

URL 

Pages 

indexed with 

Lucene 

ARAPONGA 

Pages 

indexed with 

template 

Pages indexed 

without 

template 

Total of 

pages 

indexed 

4 2708 347 87 100 187 

7 2814 364 92 84 176 

8 4417 359 83 78 161 

9 3007 334 91 105 196 

13 4367 346 79 75 154 

15 2855 344 88 100 188 

16 2887 351 85 84 169 

17 2932 357 89 86 175 

19 2888 347 86 115 201 

20 2799 343 81 95 176 

21 2943 368 84 82 166 

22 2800 363 83 95 178 

23 2974 354 107 109 216 

                                                           
29

 http://www.gprt.ufpe.br 
30

 http://www.rnp.br 
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24 2904 350 85 78 163 

26 4416 360 84 80 164 

27 2779 339 85 93 178 

28 2820 355 93 99 192 

29 2732 346 86 87 173 

Total 57570 6327   3213 

The analysis of the table results reveals a striking difference between pages 

indexed by Lucene, from now on referred to as the general base, and the pages indexed 

by the ARAPONGA system. While the general base built 6327 pages, ARAPONGA 

managed 3213 pages (non indexed pages are not considered). Altogether, such 

difference is attributed to the use of templates, which permits a more detailed 

information extraction.  

Figure 7.7 clearly shows the difference among pages indexed by Lucene and 

ARAPONGA. 

 

FIGURE 7.7: Comparison ARAPONGA’s GUI Interface 

Note that there were configuration and operation failures with ARAPONGA‟s 

Crawler tool (Nutch) in the days 5, 6, 10 and 11. In addition, the days 12, 14, 18 and 25 

have no data due to scheduled power shutdowns.  

The second base was used to evaluate the support functionalities offered by 

ARAPONGA such as advanced searches and knowledge analysis through the use of 

graphics outputs. The evaluated information at this stage is composed by all collected 

content from the period of February 1, 2010 to March 31, 2010. The Crawler 

component of ARAPONGA was set to capture 150 references (links) per page and with 

depth of 20 references using all information source defined in Section 7.3.1.  

7.4.3. Experiment Results 
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In order to evaluate the ARAPONGA‟s performance, a simple query composed by three 

terms (Microsoft, vulnerability and high severity) was executed. The idea is to find 

vulnerabilities considered to have high level of severity involving Microsoft products.  

Table 7.7 provides a comparative study of search results from the query 

performed on the first base, indexed both Lucene (general) as ARAPONGA. 

TABLE 7.7: Comparative study of search results from the query 

Query Microsoft + vulnerability + high severity 

Results of 

general base 

Number of returned URLs: 3309 

List of main URLs: 

1. US-CERT Technical Alert - Microsoft Updates for Multiple 

Vulnerabilities (136 pages) 

2. US-CERT Security Alert - Microsoft Updates for Multiple 

Vulnerabilities (408 pages) 

3. Secunia Advisories - Vulnerability Information (747 pages) 

4. ATLAS Report (Global, Service, Summary, and Vulnerability) 

(349 pages) 

5. US-CERT Cyber Security Bulletin (826 pages) 

6. Other (843 pages) 

 

Results of 

ARAPONGA 

base 

Number of returned URLs: 25 

List of main URLs: 

1. US-CERT Cyber Security Bulletin SB10-025  

2. US-CERT Cyber Security Bulletin SB10-018  

3. US-CERT Cyber Security Bulletin SB09-355  

4. US-CERT Cyber Security Bulletin SB09-348  

5. US-CERT Cyber Security Bulletin SB09-327 

6. US-CERT Cyber Security Bulletin SB09-258 

… 

Quantitatively, the query applied into the general base returned 3309 pages 

containing references for Microsoft, where only 25 pages described vulnerabilities with 

high level of severity. Thus, the precision in this base was 0.75%, i.e., only 25 pages 

were relevant from a total of 3309 documents retrieved. 

          
                    

          
  

        

    
  

  

    
        

The recall was 0.39% due to the fact that only 25 pages were relevant from a 

total of 6327 documents. 

        
                    

         
 

       

    
 

  

    
        

Regarding the refined base, the query also returned 25 pages containing 

references for Microsoft, where all of them described vulnerabilities with high level of 

severity. Thus, the achieved precision in the refined base was 100%. The recall was 

0.77%, since 25 relevant pages were retrieved from 3213 available ones. 
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Support Functionalities 

Knowledge Analysis Support 

In order to evaluate the knowledge analysis support, three queries focused on topics 

based on user interest (ISP network operators and IT managers, for example) were 

made.  

The first query seeks to identify Brazilian ASes (Autonomous System) related to 

anomalous and malicious traffic and show the result by a domain structure graph (mind 

map). Figure 7.8 illustrates a domain structure of the term “ASN Brazil” in January 4th, 

2010 (query example: ASN Brazil –malicious ASN –date 01042010 to 01042010). 

 

FIGURE 7.8: Brazilian ASes related to malicious activities 

The second example query exemplifies an interest topic distribution of the Atlas 

[63] Web site, based on the identified page types during the indexing process. The goal 

is to provide an overview about the number of publications (referenced pages) involved 

attacks and malicious activity and consequently indicating the trend (increase or 

decrease) of determined type of content.  

Figure 7.9 illustrates a frequency distribution graphic generated by 

ARAPONGA based on the query -statistic -pageType atlas.  
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FIGURE 7.9: Frequency distribution in Atlas Web site 

The third and last example query depicts the evolution of collected information. 

Its goal is to show a timeline of the apparitions of determined topic, permitting that the 

security team stays informed or pays more attention about the level of published pages 

of a specific topic. In this example, the query identifies the advertized vulnerabilities of 

the Microsoft Internet Explorer. The formulated query is as follows:  

Microsoft Internet Explorer –field system_affected,software –date 01112010 

to 01152010. 

Figure 7.10 shows the graphic gerenerated by ARAPONGA referent to the 

Microsoft Internet Explorer vulnerabilities found among January 11
th

 to 17
th

, 2010.  

 

FIGURE 7.10: A timeline of Microsoft Internet Explorer vulnerabilities 

7.5. Chapter Summary 

This chapter presented a tool designed to obtain vulnerability information and Internet 

anomaly traffic statistics. It is a current proof of concept implementation that combines 

the use of data mining techniques and models (templates) to enhance the capacity of 
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indexing more accurately security information and consequently permitting differenced 

and more focused queries. The use of templates shows the advantages over blind search. 

Towards this end, ARAPONGA makes the following contributions. The 

concepts of WIRSS and IRSS are applied to provide more supporting functionalities 

that transcend traditional search and browsing. It concentrates security information 

available from many sites into a unique base, containing only relevant data. Dozens of 

Web vulnerability reporting sites were evaluated in terms of completeness and access to 

content. The most adequate ones were selected for consultation by ARAPONGA.  

ARAPONGA does not aim to provide a semantic search engine, but a small step 

is taken by this work towards the tailored retrieval, monitoring, management and user 

oriented visualization of Web information. 

Expandir!!! (Paulo Cunha) 
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Chapter 8  

OADS Implementation and Performance Evaluation 

 

 

This chapter describes a number of proofs of concept to progressive scenarios and the 

overall OADS-based implementation. More specifically, concrete performance 

examples are analyzed in terms of both their accuracy and response times. Firstly, the 

implementation of the architecture for anomaly detection, called OADS, is presented, 

including two new modules so far not formally described, namely: the Decision Service 

and the ADS-Fusion. Next, the adopted heuristic responsible for the orchestration and 

analysis of alerts is described. Then, some specially crafted testbed based scenarios are 

illustrated to emphasize OADS‟s role in the detection of unwanted traffic. Lastly, the 

results from such attack scenarios are shown and discussed.  

8.1. OADS Implementation 

As already explained in Chapter 4, the core of this thesis is based on making use the 

known concept of orchestration to explore the collaboration and harmonization among 

different anomaly detectors. In other words, the essence of the OADS framework lies in 

the power gained from the clever combination and coordinated orchestration of different 

attack detection modules. As a proof of that, the OADS prototype combines modules 

from a famous and proven reliable IDS tool (Snort [163]) with two previously 

introduced detection strategies (ChkModel [158] and Profiling [151]).  

Figure 8.1 illustrates the architectural organization of OADS and shows its 

components. 

Internet
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FIGURE 8.1: OADS implementation architecture 

The following sub-sections explain in details each of the component of the 

OADS architecture.  
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8.1.1. ADS-Fusion 

Another module used to support the OADS Analyzer component is referred to as ADS-

Fusion. The central idea is to employ data fusion techniques to deal with uncertainty or 

imprecision of anomaly detection results and consequently increase the degree of 

confidence about intrusive or malicious activities, allowing that more correct and 

accurate actions can be taken.  

ADS-Fusion [224][225] is based on Dempster-Shafer‟s Theory of Evidence 

(DST) [226][227][228]. DST is one of most known mathematical models to represent 

uncertainty in knowledge-based systems. It focuses on solving problems and modeling 

uncertainty when using purely probabilistic methods. Unlike other Bayesian 

probabilistic theory, DST does not need prior knowledge of the probabilistic 

distributions of the studied elements. This allows attributing belief values - Basic 

Probability Assignment or simply bpa in DST – for a subset of possibilities and not only 

for simple events.  

Another important feature is that the belief not assigned to any event in 

particular but attributed to the environment and not to the rest of the evidence. 

Moreover, it is possible to combine belief functions for generating new functions of 

belief in an independent manner of the order of appearance of new evidence requiring 

only that the original assumptions are mutually exclusive and exhaustive. 

ADS-Fusion architecture 

ADS-Fusion was designed to study anomaly detection techniques and develop a system 

capable of increasing the efficiency of detection through the data fusion. Practically 

speaking, it is a software module that receives the outputs generated by anomaly 

detectors as input, makes data fusion of these inputs, and produces an inference with a 

greater degree of certainty than the uncertainty generated by anomaly detectors 

individually. ADS-Fusion was originally implemented in C++, but currently it is 

deployed in Java.  

ADS-Fusion is composed by three elements: collector, sensors, and data fusion 

engine. Collector is responsible for capturing the network traffic and generating trace 

files in standard format. Sensors components are responsible for analyzing data 

generated by the collector and detecting possible anomalies. Another key role of these 

sensors, in the context of this additional mechanism, is assigning a belief for each 

generated inference. The Data Fusion Engine is responsible for decision making. It 

uses DST combination rules to associate and correlate the different analysis and results 

of distinct sensors to generate more accurate inferences with a greater degree of 

accuracy. 

In the current OADS implementation, there is no need for the two ADS-Fusion 

components collector and sensor. Instead, the ADS-Fusion module receives such 

information from OADS Alert Pre-Processor. It is important to explain its important 

role as a hypotheses generator about the possible real network state. Hence, in order to 

work with Profiling, ChkModel and Snort detectors, it is necessary to adjust the alerts 

generated by them, aiming to assign a well calibrated bpa value for each alert type. 

Details of how this is made are explained below. 

ChkModel 

The bpa generation in ChkModel [158] is based on the distance among obtained values 

from the Threshold Adaptive function. When the return of such function is equal to 1, 
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ChkModel considers the Network State as “Under Attack” and then calculates the bpa. 

The greater the distance between the values of obtained threshold and the established 

threshold, the greater is the belief in the existence of an attack.  

Considering the example with an output that contains the detection of an 

anomalous connection between 58.33.126.229 and 192.168.0.163 IP addresses, where 

the threshold of packets exchange was calculated in 6. Supposing that for this network 

the threshold for “Normal” state is equal to 5, any connection that is above this limit 

will be considered anomalous. By fixing the belief of the normal state at 0.5, it is 

possible to determine the belief of the attack as being the sum between belief and the 

normal rate of increase (6 / 5 = 1.2, which represents a percentage increase of 20%), 

obtaining thus a bpa = 0.6 

Profiling 

The bpa generation in Profiling is offered evaluating the BCs, the frequency of 

repetition between them and the quantity of flows associated with this classification. For 

example, considering dstIP as cluster key, at the first interaction (default time slot) the 

IP destination 10.108.40.X (150 flows) is classified as BC = 24 (DDoS attack for key 

group). On the second interaction, the BC for this IP remained the same and the number 

of flows increased to 450, then it is possible to increase the belief on this inference. 

Fixing the belief of the normal state at 0.5, it is possible to determine the belief of the 

attack as the sum between belief and the normal rate of increase (450 / 150 = 3, which 

represents a percentage increase of 200%), obtaining thus a bpa = 1.0, the maximum 

possible value. 

Snort 

The bpa generation in Snort is based on severity field present in its alerts. For this, 

initial beliefs for each possible value of this parameter are established as follows: Low 

corresponds to 0.5, Medium corresponds to 0.65 and High corresponds to 0.8. In 

addition, the frequency of repetition is also considered to increment these values. 

For example, in a sequence of alerts, the first five represent the same attack and 

have same features, including severity level equal to low. This way, the first alert to be 

evaluated will have an attribute bpa equal to 0.5. The second will increase the bpa in 

0.01. Now the bpa is 0.51. The next three alerts also will be increase the bpa. After the 

five alerts have been evaluated, their bpa is 0.55. For alerts with severity level equal to 

medium e high, the degree of increase is 0.05 and 0.1, respectively.  

Data Fusion Engine 

The Data Fusion Engine component was implemented using JDS [229], an API written 

in java that supports the basic function of DST such as belief function (bel) and 

plausibility (pl).  

Overall, this engine‟s operation can be summarized in three stages: 

 Synchronization: this process consists in establishing links (connections) 

among the related events to both sensors. It is an essential process because it 

is necessary to ensure that each of the events to be combined refers to the 

same time interval. For example, if at any one time t, the ChkModel detects a 

DDoS attack, it is important that this event is then combined with the 

Profiling analysis of the same time t so that the ADS-Fusion can generate a 

more accurate inference. This stage requires some small changes in the 

generation of results from the sensors. 
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 Combination: this stage is used as “clues” for the generation of inferences 

from the current network state. It combines (or transforms) the inputs into 

JDS elements, which basically contain the state identified (LOW, MEDIUM 

and HIGH) and the belief level in this state (bpa). 

 Inference Generation: this stage determines the severity level of the 

anomaly or anomalies affecting the network.  

8.1.2. Decision Service 

The Decision Service component is responsible for the decision process related to 

analyzed network traffic. According to received information (or even collected), it 

establishes what to do next.  

It receives two types of inputs. The first one is a set of reduced alerts, sent by 

Alert Pre-Processor, whereas the second one is rules, sent by the OADS analyzer (FER 

Analyzer and ADS-Fusion modules). Although ultimately both inputs have the same 

structure composed by a source IP address, source port, destination IP address, 

destination port, class of attack and its severity, the treatment given to each is different. 

This is because, unlike the rules, the reduced alerts are typically received first and 

contain more reliable information, due to the process of significant cluster extraction. 

This is in contrast with the rules that are the result of extensive analysis performed on 

apparently less relevant data.  

For such reason, the Decision Service adopts two different strategies: one to deal 

with reduced alerts and second one for rule processing. The former employs the same 

idea used in Chapter 6 to demonstrate the applicability of episode rules (see section 

6.3.2). It translates alerts to basic firewall rules for enforcement at other devices. Recall 

that enforcement actions are not the focus of this thesis.  

As far as is concerned the use of rules as input, a simple finite state machine is 

used. It correlates the information processed by different analyzers in possible states 

that the decision service could take.  

Table 8.1 shows the machine states that can be assigned according to the used 

detectors.  

TABLE 8.1: Representation of information sent by detectors to Decision Service 

Profiling ChkModel Snort State 

Good Good Good State-A 

Good Good Low State-B1 

Good  Good Medium State-C1 

Good Good High State-D 

Good Suspicious Good State-B1 

Good Suspicious Low State-B2 

Good Suspicious Medium State-C1 

Good Suspicious High State-D 

Good Bad Good State-C1 

Good Bad Low State-C1 

Good Bad Medium State-C2 

Good Bad High State-D 

Bad Good Good State-C1 

Bad Good Low State-C1 
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Bad Good Medium State-C2 

Bad Good High State-D 

Bad Suspicious Good State-C2 

Bad Suspicious Low State-C2 

Bad Suspicious Medium State-D 

Bad Suspicious High State-D 

Bad Bad Good State-D 

Bad Bad Low State-D 

Bad Bad Medium State-D 

Bad Bad High State-D 

Note that the information relative to the classification (good, bad, transient, low, 

medium and high) is transported by IDMEF messages into a severity field. Figure 8.2 

depicts the mapping between these information and the enforcement actions. 

 

FIGURE 8.2: Mapping classifications and enforcement actions 

As mentioned in section 6.3.2, possible values to the enforcement actions are: 

Limitation, during 60 seconds; Extreme Limitation, during 300 seconds; and Blocking 

of given traffic. 

8.1.3. Enforcement Actions 

In order to prove OADS functionalities, some enforcement component responsible for 

receiving decisions from the Decision Service and translating these into real network 

actions are defined. As previously described in Chapter 6 (see section 6.3.2), this is 

actually represented by an enforcement agent that translates the decisions to firewall 

rules, specifically for IPTables.  

8.2. Heuristic for Orchestration 

This work employs the concept of orchestration to automatically manage the inputs of 

different anomaly detectors, harmonize them and consequently be able to make a well 

informed, correct and efficient decision with regard to the existence of traffic anomalies. 

Throughout the text, there is mention of the likely solutions for stopping and mitigating 

unwanted traffic though this is not the object of this thesis. The present work 

concentrates its efforts on the detection phase of unwanted traffic and the mechanisms 

for that. Before going into the details of the OADS implementation, it is important to 

shed some light on the way the concept of orchestration is used in the context of this 

work.  
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Formally, orchestration refers to an executable business process that may 

interact with both internal and external complex computer systems, middleware, and 

services. Currently, orchestration is mainly related to connecting Web services in a 

collaborative fashion. Orchestration establishes the sequence of steps within a process, 

including conditions and exceptions, and creates a central controller to implement the 

sequence. (referencia) 

Though OADS may adopt Web Services as its underlying coordination engine to 

coordinate its actions within a Web environment, it also operates on a standalone 

manner. It is this second implementation mode that is emphasized throughout the rest of 

this document. Typically, the use of emerging Internet standard effort as the Business 

Process Execution Language for Web Services (BPEL4WS) [230] and the Service 

Oriented Architecture (SOA) [231] has the clear advantage of opening access to an 

unlimited number of services and security applications that adopts such technologies. At 

the time of this work, there is still limited adoption of Web Services and as such, one 

does not see the need for the added complexity toward OADS design.  

Despite the above, the orchestration concept itself remains of interest to OADS 

and as such it is present at its heart, managing all the interactions among its applications 

(preprocessors and analyzers) in a controlled way. A simple, parameterized and 

effective heuristic (represented as an algorithm) mimicking orchestration is used 

instead. Such heuristic is based on common rules and acquired knowledge that governs 

the way the received information (alerts and rules) should be treated by the OADS core. 

Despite its simplicity, this intelligent module obtains results as shown in latter sessions 

of this chapter.  

Next, details of the orchestration heuristic are described in Algorithm 8.1. 

Algorithm 8.1 Simplified algorithm for orchestration 

Step 0: Initialization 

Read alerts every x time 

While TRUE 

Step 1: Alert Pre-Processor receive all multi-source alerts 

All received alert are prepared for possible extraction of significant cluster process. 

Step 2: Significant cluster extraction 

Execute significant cluster extraction process. 

All alerts classified as significant are send to the Decision Service (Step 6). 

Step 3: If there are alerts to evaluate, go to step 3a, otherwise go to Step 6 

Step 3a:  
If number of remain alerts > fer_threshold, go to step 4;  

Otherwise go to step 5 

Step 4: FER Analyzer examines received alerts 

For all alerts 

Calculate Frequent Episodes. 

Generate Rule Episodes. 

End 

Send all rules to Decision Service (Step 6). 

Step 5: ADS-Fusion examines received alerts 

If alerts have two or more sources, go to step 5a, otherwise go to Step 6 

Step 5a:  
Execute Dempster-Shafer analysis in alerts. 

Send all inferences (rules) to Decision Service (Step 6) 

Step 6: Decision Service receives alerts or analysis results  

Evaluate the received information 

http://en.wikipedia.org/wiki/Middleware
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If necessary use OADS Miner to discover extra information 

Make decisions 

End 

The above six steps are explained. All received multi-source alerts are handled 

by the Alert Pre-Processor component which extracts all the required alert attributes for 

analysis (step 1). Next, the extraction of extraction of significant clusters is started (step 

2). As previously described in Chapter 6, the idea is to extract significant information 

from clusters of interest (srcIP, dstIP and class). The output of this process (in the form 

of classified alerts) is directly sent to the Decision Service component. It decides what to do 

next (step 6).  

Although the studies in Chapter 6 demonstrate that the automatic identification 

of relevant information is successful, it is also possible that some alerts, or even all of 

these in some cases, are not considered relevant enough to take any decision. However, 

instead of simply ignoring these, the adopted orchestration heuristic follows a series of 

selective procedures, in an attempt to make use of these and likely improve the current 

analysis. Such steps are:  

1. First, to verify if there are any alerts classified as not relevant subsequent to 

the significant cluster extraction process. If none are encountered, meaning 

that all alerts are significant, the algorithm proceeds directly to Step 6, where 

the Decision Service component must process all such information in order 

to reach one or more decisions. Otherwise, the current amount of alerts is 

compared with a pre-defined threshold (fer_threshold), used to evaluate the 

viability of performing a FER analysis over these alerts (Step 3). The studies 

about FER analysis from Chapter 6 show that the smaller is the number of 

events, the less is the probability of detecting any frequent episodes. 

Consequently, some important considerations are needed with regard to 

configuring FER analysis as shown in Table 8.2. 

TABLE 8.2: FER parameters for orchestration algorithm 

Number of Alerts 

(fer_threshold) 
Window Size 

Frequency 

Threshold 

Confidence 

Threshold 
>50 10 0.01 0.80 

>500 10 0.02 0.80 

>5000 20 0.05 0.80 

In the case where the number of alerts is greater than the threshold 

fer_threshold, the FER Analyzer component receives these alerts (Step 4). 

Otherwise, the remaining alerts are sent to the ADS-Fusion component (Step 

5).  

2. Under FER Analyzer (in Step 4), the alerts are processed to discover the 

existence of frequent episodes. These are calculated and episodes rules are 

possibly generated next. This process has been extensively explained in 

Chapter 7. Lastly, the episode rules are sent to Decision Service component 

according to Step 6. 

3. During the ADS-Fusion analysis (shown as Step 5), the alerts are evaluated 

using the known Dempster-Shafer evidence theory. This is used to reduce 

the uncertainty of these alerts and increase their degree of confidence. 

However, before undertaking this analysis, the received alerts are verified to 

determine if they are descendant of two or more distinct detectors, a 



131 
 

 
 

requirement of DST analysis. If this is not case, the alerts are forwarded to 

the Decision Service. Otherwise, they are processed and the obtained 

inferences (or rules) are then sent to the Decision Service. 

The last step in this important heuristic is performed by the Decision Service. To 

put it more simply, it is fed with a diversified set of inputs, including alerts, episodes 

rules and inferences which it must process before reaching any decision. The present 

proposal also includes an additional auxiliary mechanism. This is in the form of an 

OADS miner module, ARAPONGA. It is used to obtain more information about some 

alerts over the Internet. Finally, a decision is generated.  

It is important to emphasize that, as described in Chapter 4, OADS‟s approach 

allows a number of different types of reactions. Under the present implementation, two 

main decisions are supported. The first one consists of limiting or mitigating something 

considered malicious and bad by blocking its traffic. This decision is the most common 

one and usually is taken by the Decision Service component. The second one consists of 

simply not be taking any action. This lack of decision may be the case when there is 

insufficient certainty (evidence) to act upon.  

8.3. Testbed environment 

OADS testing was purposely confined to an isolated testbed consisting of real machines 

within GPRT laboratory. The idea was to create a controllable environment that 

resembles as much as possible a realistic network topology that can be subjected for 

example to DoS and DDoS attacks. As depicted by Figure 8.3, this testbed contains 

around 60 PCs, 3 Cisco switches with 24 and 48 10/100/1000 Mbps interfaces. The PCs 

are used as edge nodes running different user applications, to simulate routers, and 

application level traffic generators. They are running different operational systems, 

especially those from the Windows family (XP, Vista and 7) and Ubuntu Linux. The 

PCs attackers also run similar operating systems.  

The OADS server is an Intel Core 2 Quad CPU, with 4 processor Q6600 (2.40 

GHz), 4Gb of RAM, 500 GB of HDD and one network interface 10/100/1000. 

Although all OADS components (Alert preprocessor, FER Analysis, DST Analyzer and 

Decision Service) were designed and implemented to work in a distributed setup, they 

are collocated in the testbed server, except for the OADS Miner which requires 

important resources for crawling the Internet for updating its security information base.  

Regarding detectors, a range of these was used including: various Snort [163] 

version 2.8.6, ChkModel [158] and Profiling [151]. As depicted by Figure 8.3, these 

detectors are spread across specific interest points of the network. All servers run Linux 

distributions, including Ubuntu and Debian. Firewall/Router server is running the 

FreeBSD operational system. Table 8.3 describes the localization and type of employed 

detectors in the testbed. 
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FIGURE 8.3: Full OADS Testbed Topology 

TABLE 8.3: Distribution of detectors in OADS testbed 

Server Detector 

Firewall/Gateway Snort (default configuration)+ Profiling + ChkModel 

DNS server Snort (DNS configuration) + Profiling (1 minute configuration)  

SMTP server Snort (default configuration) + Profiling (1 minute configuration) 

Web server 1 Snort (default configuration) + ChkModel 

Web server 2 Snort (emergent configuration) + ChkModel 

Firewall/Router Snort (default configuration)+ Profiling + ChkModel 

It is important to emphasize some aspects of these detectors. Most Snort 

detectors were set up to execute only with default configuration, provided by Snort 

manufactures. Two different Snorts were set up to detect specific attacks. The first one, 

located on a DNS server, had a configuration adequate for detecting DNS attacks and 

anomalies provided by Emergent Threats [232]. The second one, located on a Web 

server 2, had a configuration adequate for the detection of Web attacks as well as 

anomalies also provided by Emergent Threats.  

Regarding the ChkModel [158], it was designed and used to evaluate only TCP 

packets and cannot be used to analyze UDP attacks. Finally, two different Profiling 

configurations were used. Though both followed the original specifications [151], the 

first one was set up to perform evaluations over a time interval of five minutes 

(according to the proposal) whereas the second one was set up to operate over time 

intervals of one minute. Obviously, this difference will reflect on the number of 

generated alerts during the analysis.  
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8.3.1. Malicious traffic generation 

In order to test different attacks and anomalies, two types of solutions were deployed: a 

tool for packet injection and a range of python scripts. The former, called Packet 

Analysis and Injection Tool or simply Packit [233], is a network tool designed to 

customize, inject, monitor, and manipulate IP traffic. It allows the spoofing of nearly all 

TCP, UDP, ICMP, IP, ARP, RARP, and Ethernet header options. Packit is useful for 

testing firewalls, intrusion detection/prevention systems, port scanning, simulating 

network traffic, and general TCP/IP auditing. Packit was used to create customizable 

DoS and DDoS attack scripts. 

The latter is a set of python scripts using Scapy [234], a powerful interactive 

packet manipulation python library. Scapy is able to forge or decode packets of a wide 

number of protocols, send them on the wire, capture them, match requests and replies, 

and much more. It can easily handle most classical tasks like scanning, tracerouting, 

probing, unit testing, attacks or network discovery. In addition to these solutions, 

Internet script to perform Slowloris HTTP DoS [235] attacks was also used. 

8.4. Orchestrating Analysis 

The essence of the OADS approach lies in the power gained from the clever 

combination and coordinated orchestration of different attack detection modules. In 

order to cover the variety of attacks and to fairly evaluate the robustness of this work, 

different attack scenarios are planned, aiming to illustrate the efficacy and more 

importantly attack detection of the AODS solution. 

It is important to emphasize that the analysis and evaluation process is based on 

the steps of the orchestration algorithm. Next some of the experiments are described. 

8.4.1. Scan UPnP  

The first experiment for analysis can and must be considered an unplanned event. It is a 

residual traffic collected by Snort detector, located on Firewall/Gateway computer, 

during the third initial minutes of monitoring while preparing for a DNS cache 

poisoning attack (second experiment).  

Overall, Snort (Firewall/Gateway) sends 61 alerts reporting “SCAN UPnP” 

service discovery from a GPRT laboratory computer (150.161.192.X) to the Internet 

(239.255.255.250), during thirty minutes. Figure 8.4 illustrates the time line of these 

alerts.  

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14 15:16 15:18 15:20 15:22 15:24 15:26 15:28
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FIGURE 8.4: UPnP alerts time line 
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Analysis 

As established in Algorithm 8.1, for each time interval the orchestration algorithm must 

evaluate the received alerts and make decisions about what course of action to take. At 

15:01, 7 alerts are received for the Alert Pre-Processor component for handling alerts 

(step 1) and are next forwarded for significant clusters extraction (step 2). As previously 

described in Chapter 5, the process begins with the calculation of RU considering all 

elements inside the set (in this case, 7 alerts). The results are 

                     for class, srcIP and dstIP cluster. Consequently, these 

alerts were considered significant, since the RU value is less than β (0.9). 

Thus, according to Algorithm 8.1, the next step consists of sending the alerts to 

the Decision Service (Step 6). This service receives all alerts and employs its state 

machine in order to evaluate them. As explained in Table 8.2, the states correspond to 

the combination of the alerts source detectors and the level of severity of each one. In 

this case, all alerts have the same origin and same severity (high). The result of the state 

machine analysis is the transition to state D, since it was assumed that it is case where 

Profiling is good, ChkModel is good and Snort is high. Ultimately, this decision can be 

translated to the following action: block any packet sent by IP address 150.161.192.X, 

source port 56134, destined to IP address 239.255.255.250 with destination port 1900. 

Figure 8.5 shows a simple example for IPTables. 

IPTABLES -A OUTPUT -s 150.161.192.52 --sport 56134 -d 239.255.255.250 --

dport 1900 –j DROP 

IPTABLES -A OUTPUT -d 239.255.255.250 --dport 1900 –j DROP 

FIGURE 8.5: Possible IPTables rules for UPnP alerts 

Since two additional identical alerts are received in the next times (15:02 and 

15:03), the same evaluation process is followed until the step 6. However, as described 

in Algorithm 8.1, Decision Service makes use of OADS Miner (ARAPONGA) to obtain 

more information about this type of alert.  

For this, it makes the following query: SCAN UPnP service discover attempt -

summary_vulnerability. This query goes through all indexed contents looking for the 

searched term(s). It then returns an XML file containing the following information 

according to Figure 8.6. The page states that this vulnerability allows an intruder to run 

code over an invaded machine and suggests the application of a patch for this type of 

known attack and disable UPnP. 
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<Summary_Vulnerability>

  <Vulnerability id="1">

    <Title name="SCAN UPnP Service Discovery Attempt">

    <Description>

        Universal Plug and Play (UPnP) is a system to allow network devices to operate together. A 

vulnerability in the Microsoft Windows XP and Windows ME implementation of UPnP may permit an intruder 

to execute arbitrary code with SYSTEM privileges. Additionally, Windows 98 and Windows 98SE may be 

affected if you have installed the Windows XP Internet Connection Sharing client. 

    </Description>

    <Timeline>

       <Disclosure_Date>2001-12-20</Disclosure_Date>

       <Published_Date>2001-12-20</Published_Date>

       <Last_Update>2001-12-20</Last_Update>

    </Timeline>

    <Classification>

       <Attack_From>Remote</Attack_From>

       <Impact risk="high">An intruder can run arbitrary code in the local SYSTEM security context</Impact>

       <CVSS>7.5</CVSS>

       <CVE_ID>CVE-2001-0876</CVE_ID>

    </Classification>

    <Affected>

       <product>Windows XP</product>

       <product>Windows ME</product>

       <product>Windows 98</product>

    </Affected>

    <Solution>

       To disable UPNP. 

       Apply a patch as described in MS01-059.

    </Solution>

    <References>

       <name>Microsoft Security Bulletin: MS01-059</name>

       <url>http://www.microsoft.com/technet/security/bulletin/ms01-059.asp</url>

       <name>CERT/CC vulnerability note: VU#951555</name>

       <url>http://www.kb.cert.org/vuls/id/951555</url>

       <name>Computer Incident Advisory Center Bulletin: M-030</name>

       <url>http://www.ciac.org/ciac/bulletins/m-030.shtml</url>

    </References>

  </Vulnerability>

</Summary_Vulnerability>
 

FIGURE 8.6: Summary_vulnerabilty for SCAN UPnP alert 

8.4.2. DNS cache poisoning 

DNS cache poisoning is an attack that consists of changing or adding records to the 

resolver caches, either on the client or the server. The objective is so that a DNS query 

for a domain returns an IP address for an attacker‟s domain instead of the intended 

domain. According to Hyatt [236], DNS cache poisoning results in pharming, which 

allows the attackers to perform identity theft, distribution of malware, dissemination of 

false information, and man-in-the-middle attacks.  

The Experiment 

The current DNS cache poisoning experiment aims to add a new domain named 

feitosa.tnt into the authoritative DNS server of GPRT laboratory. In order to achieve 

this goal, two computers are used (all of them running Linux distribution). They both 

execute a python script (called DNScachepoisoning.py) that exploits the vulnerability 
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discovered by Dan Kaminsky [55]. This script sends fake recursive queries aiming to 

insert a dummy record in the vulnerable DNS server by guessing the transaction ID. It 

also inserts an Authority record for a valid record of the targeted domain. The script 

uses a random source IP address, a source port number equal to 32883 (the vulnerable 

DNS port for recursive queries) and the transaction ID starting with 1024 and increasing 

+1 for each interaction. Figure 8.7 illustrates this scenario.  

DNS Server
Firewall/Gateway

DNS Cache Poisoning

DNS fake queries

 

FIGURE 8.7: DNS cache poisoning scenario 

In order to clarify this attack experiment targeted to GPRT DNS server, Figure 

8.8 clearly shows the increase in the packet number seen before and after the attack is 

started.  

 

FIGURE 8.8: DNS cache poisoning attack without defense 

The line plotted in the graphic depicts the amount of UDP DNS packets during a 

time interval between 15:00 and 15:50 of June, 02 2010, without the presence of any 

type of defense. Before the attack taking place, there was a mean of 167 packets per 

second whereas it suddenly increased to 586 packets per second once the attack was 

launched.  

The first thirty minutes corresponded to normal user traffic while all detectors 

were running and without injecting any attack traffic. At the thirtieth minute, attacks are 

injected into the local area network. Hence, from now on, alert classification, evaluation 
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and decision start taking place. Ten minutes into the experiment, the attack traffic is 

halted.  

Analysis 

The DNS cache poisoning attack took place at 15:30. As shown in Figure 8.8, the 

average of received packets per second suddenly increased from 167 to 586 packets per 

second once the attack was launched.  

During the first minute of the attack (15:31), Alert Pre-Processor received two 

alert files, in the IDMEF format. These represent alerts from the Snort 

(Firewall/Gateway) and Snort (DNS server), containing 6864 and 30 alerts respectively. 

The Pre-Processor has therefore to perform significant cluster extraction. On the other 

hand, ChkModel did not generate any alerts because it only supports TCP inspection 

and not that of UDP packets, and Profiling only generated alerts after two time slots (in 

this case, two minutes).  

The Snort detector (Firewall/Gateway) generated a huge number of alerts to type 

“DNS response for RFC1918”, according to the original DNS rule. The other Snort 

detector (DNS server) generated alerts classified as “ET CURRENT_EVENTS DNS 

Query Responses with 3 RR’s set (50+ in 2 seconds) – possible A RR Cache Poisoning 

Attempt”, according to Emergent threat‟s [230] DNS rule file. The difference of the 

number of alerts between both Snort detectors is due to the fact that the first one is 

located into the local LAN segment of the GPRT network (that uses NAT IP addresses) 

and therefore receives directly the attack. On the other hand, the second Snort detector 

running at the DNS server is located on a DMZ segment and only receives the attack 

once it passes though the two hosts (Firewall/Gateway of LAN segment and Gateway of 

DMZ segment). Therefore, this reduces the number of packets received by the second 

Snort detector. When the second Snort generates one alert every 2 seconds, the first one 

generates between 5 and 8 alerts per second. Such discrepancy reflects the differente 

rules employed in these detectors.  

As far as is concerned to the orchestration analysis (Algorithm 8.1), all Snort 

alerts were considered significant, according to the three keys: srcIP, dstIP and class 

(all of them had an                  ), and were consequently forwarded to the 

Decision Service. After receiving these alerts, the Decision Service performs a simple 

validation of these and eliminates those are duplicated. Consequently, only two alerts 

were analyzed and the following decisions were made:  

 To block any packet sent by IP address 150.161.192.253, source port 53, 

destined to DNS server with destination port 32883 and; 

 To block any packet sent by IP address 192.168.0.7 with source port 53, 

destined to 150.161.192.2:32883.  

Figure 8.9 shows a simple example for IPTables configuration to achieve these 

two actions at the firewall. 

IPTABLES -A INPUT -s 150.161.192.253 --sport 53 -d 150.161.192.2 --dport 32883 

–j DROP 

IPTABLES -A INPUT -s 192.168.0.7 --sport 53 -d 150.161.192.2 --dport 32883 –j 

DROP 

FIGURE 8.9 Possible IPTables rules for DNS cache poisoning alerts 
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At the third minute of the attack (15:02), Alert Pre-Processor received 1 alert file 

from the Profiling (DNS server) and 44 alerts from Snort (Firewall/Gateway). The 

Profiling alert represents the increase of the number of flows from IP address 

150.161.192.253 (gateway) to IP address 150.161.192.2 (DNS server), as previously 

detected by the Snort (DNS server). It is important to emphasize that the Profiling 

detector (DNS server) needs at least two minutes to start generating alerts and its output 

is naturally summarized, what explain having only a single alert.  

The alerts of Snort (Firewall/Gateway) are of the same classification as those 

from the previous (DNS response for RFC1918). However, the amount of generated 

alerts is smaller. Such fact is directly related with the enforcement of the decisions 

illustrated earlier on Figure 8.9 by the firewall. These block all packets from 

150.161.192.253:53 to 150.161.192.2:32883 and all packets from 192.168.0.7:53 to 

150.161.192.2:32883 from passing. 

Considering the orchestration analysis, all Snort alerts were taken to be 

significant and sent to the Decision Service when the Profiling alert was evaluated to 

determine if it could be applied in FER analysis. However, as it does not fulfill the 

minimal threshold condition (number of alerts > fer_threshold, imposed by step 3a of 

the orchestration algorithm), no forwarding was made. The Decision Service suggested 

blocking any packet sent by IP address 150.161.192.253 with source port 53 destined to 

DNS server on 32883 port. 

Figure 8.10 gives a closer view of all attack. The average number of packets 

before this attack was 167 per minute and increased to 1456 packets per minute in the 

first minute of the attack. With the evaluation and decisions taken by the OADS 

heuristic, the attack effects were felt only the first 120 seconds. This time represents the 

average time that the architecture requires to detect and take an action to mitigating it. 

From then on, only the “normal” packets are seen in the network. 

 

FIGURE 8.10: DNS cache poisoning attack with OADS decision and actions 

Note that the decisions taken by OADS (via Decision Service) are applied at the 

two firewalls of the testbed topology. Consequently, Profiling and Snort, located on 

DNS server, stop to generate alerts during the rest of attack, since the internal traffic 

with source port 32883 was blocked from getting into the DMZ zone. The same also 

happens with Snort and Profiling detectors located on the Firewall/Gateway computer.  
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8.4.3. SMTP Flood 

The next attack scenario is that of an e-mail spam flood towards an external SMTP 

Server. This experiment represents a hypothetic scenario where corrupted computers by 

Storm worm [22][86] are trying to infect other hosts via e-mail.  

The Experiment 

In order to achieve this setup, four (4) computers (all of them running Linux 

distribution) are used to execute a simple shell script (called spamflood.sh) that uses 

Packit tool to initiate TCP communication (TCP SYN) with GPRT SMTP server. 

Having duration of five minutes, the script uses forged IP addresses (and subnets) with 

randomly allocated client port numbers in the originator‟s addressing fields.  

Figure 8.11 illustrates the number of packets destined to GPRT‟s SMTP server 

during 15 minutes, between 09:15 and 09:30 (the time of highest activity from GPRT 

users) of June, 09 2010. It is clear that the amount of packets increase after the attack is 

started. Before the attack taking place, the mean of SMTP packets was around 305 per 

minute whereas it suddenly increased to approximately 18000 packets per minute once 

the attack was launched. It is important to explain that this specific time interval was 

chosen because it represents the period with increased SMTP activity by GPRT users. 

 

FIGURE 8.11: SPAM attack without defense (collected from Firewall/Gateway) 

Analysis 

Before the attack was started, none of the four detectors acting in this experiment (see 

Table 8.3) reported any alert, but this changed soon after the first minute of attack.  

Approximately 5 seconds into the second minute (09:21), the Alert Pre-

Processor received a single alert file from the ChkModel detector summarizing events 

that took place during the first minute. It contained 1160 alerts and indicated 

SUSPICIOUS activities from different hosts towards GPRT‟s SMTP server 

(150.161.192.192). Since the detection mechanism of ChkModel is based on the ratio of 

sent and received packets, all these are marked as suspicious because there is a rate of 1 

to 0 observed. In other words, one packet is sent while none were received back. 
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Regarding the orchestration analysis, the significant cluster extraction process 

confirmed that all alerts were significant (using destination address as a key) and, for 

this reason, they were forwarded to the Decision Service. Here the state machine was 

used to evaluate them. Considering that the lack of Profiling and Snort alerts is 

represented by good state, the result of the state machine analysis is the state B1 

(represented by the combination: Profiling=good, ChkModel=suspicious and 

Snort=good). Consequently, this decision was translated to the following actions:  

 To limit during 60 seconds any packet destined to IP address 

150.161.192.192 with destination port 25.  

Figure 8.12 shows an example of how such decision may be enforced at the 

firewall level. 

IPTABLES -A INPUT -s 192.168.0.5 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit 

60/second -j DROP 

IPTABLES -A INPUT -s 192.168.0.1 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit 

60/second -j DROP 

IPTABLES -A INPUT -s 192.168.10.11 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit 

60/second -j DROP 

IPTABLES -A INPUT -s 192.168.243.13 -d 150.161.192.192 --dport 25 -p tcp -m limit --

limit 60/second -j DROP 

……. 

FIGURE 8.12: Possible IPTables rules for SMTP flood attack 

In the next minute (09:22) a change of roles happens. The ChkModel detector, 

which had classified the initial e-mail traffic as suspicious, adjusts its thresholds and 

from now on it considered all traffic as legitimate since the TCP handshake mechanism 

for connections establishment is correctly used. For this reason, it not generates any 

alert. On the other hand, Profiling generates 1 alert file (containing 1240 source IP 

addresses) about this “massive” anomaly and sends it to the Alert Pre-Processor.  

As the Profiling alert is composed by a unique IDMEF alert, it was not 

considered significant by the cluster extraction and also could not be applied in FER 

analysis as it did not fulfill the minimal count requirement (number of alerts > 

fer_threshold). Thus, it was sent to DST analysis. However, it was also refused because 

has a unique source. Lastly, the only possible solution is sending it to the Decision 

Service.  

After evaluate the Profiling alert, Decision Service, using the state machine 

analysis, attributes the state C1 (combination of Profiling=bad, ChkModel=good and 

Snort=good). Consequently, this decision was translated to the following actions: 

 To limit during 300 seconds any packet destined to IP address 

150.161.192.192 with destination port 25.  

It is important to observer that since the Profiling was developed to detect 

massive anomalies, its alerts have more weight in the state machine analysis.  

For the next minutes (09:23, 09:24 and 09:25), until the end of the attack, only 

the Profiling detector continues to generate alerts (containing 1055, 890 and 335 source 

IP addresses, respectively) and send them to be analyzed. The evaluations using state 

machine are the same (state C1) and the decisions taken are also similar: to limit during 

300 seconds any packet destined to IP address 150.161.192.192 at port 25. 



141 
 

 
 

Figure 8.13 shows a complete view of this spam attack and its detection. It is 

straight forward to see that only the Profiling strategy was capable of detecting the 

attack. This can be explained by the fact that for the ChkModel, spam e-mail is 

legitimate traffic as it looks just like normal e-mail when making use of the TCP 

handshake mechanism for connection establishment. In other words, Spam email does 

not violate the TCP model of connection establishment. It is its content that is harmful 

and wasteful of user time. On the other hand, the Profiling detects the attack as it senses 

a sudden increase of the number of flows targeting a single SMTP server or IP address. 

However, the response time for the Profiling remains relatively high as it borders the 

two minutes. 

 

FIGURE 8.13: SPAM attack with defense 

It is important to explain that Figure 7.13 is using flow information as 

parameters because both detectors (ChkModel and Profiling) employ this type of 

aggregation to perform their analysis and evaluations.  

To sum up, the decisions taken by OADS (via its own Decision Service) in this 

experiment can be considered correct and functional. However, it is undeniable that they 

are also somewhat inefficient. The actions of limiting all and any packet targeting to 

SMTP server (150.161.192.192) with destination port 25, although proven to be 

effective, also do stop legitimate and correct connections of GPRT users. A good 

solution for this issue can be the use of Trusted IP List (TIL) [173][237]. The main idea 

of TIL consists in keeping a table with the description of the history of “good” 

connections already established with the network, so that during attack situations such 

as these are favored with most of the bandwidth available to the detriment of unknown 

connections and/or possible aggressors who will be limited by filters. Traffic shaping 

may therefore be used to differentiate both types of TCP connections.  

8.4.4. Slowloris 

Slowloris [235] is a low rate service denial attack (though it really not is a DoS attack). 

It operates by sending legitimate but incomplete HTTP requests, very similar to SYN 
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flood packets, but at a higher layer (the application layer in this case). This results in 

fewer packets needed and more granularities to collapse a Web server.  

Slowloris attack takes advantage of Web server design, typically protected of 

massive attacks (mainly DDoS), occupying all available sockets, making that the server 

“waiting for the resting of requests”. Figure 8.14 illustrates a Slowloris HTTP request.  

POST /somepage.com HTTP/1.1 r n 

HOST: some_url_or_other.com r n 

User-Agent: Mozilla/4.0  r n 

Content-Length: 42 r n 

X-a: b r n 

FIGURE 8.14: Typical slowloris HTTP request 

What differentiates the example of a functional HTTP request is the final line, 

where it should be finished off with an additional r n (Carriage Return and New Line 

characters). So the last line should be: X-a: b r n r n. This simple lack of r n causes 

some web servers to wait for completion, which is not unreasonable: maybe the missing 

carriage return/line feed (CRLF) is still on its way. Waiting is also one way of 

protecting the server against a brute force attack such as DDoS. The problem is that, by 

default, some Web servers will wait five minutes. That is, as a result, there is one 

resource that is used up for five minutes, unnecessarily in this case of Slowloris. 

However, it is important that each resource is kept busy, so every so often a new header 

is sent with the missing CRLF. If the exact form of this header is each time changed 

then it makes writing intrusion detection signatures harder. 

The Experiment 

In order to execute this experiment, two computers, one located in Informatics Center 

(Cin) of the Federal University of Pernambuco (UFPE) and the other one located in the 

Science Computer Department (DCC) of the Federal University of Amazonas (UFAM) 

were used to attack GPRT Web servers as depicted in Figure 8.3. These attackers were 

set up to shoot simultaneous attacks to the targets. In addition, in order to observe the 

attacks and their effects, a vulnerable distribution of the Apache Web server on the two 

targets was installed. However, it was decided to only enforce the decisions to stop the 

attack to the Web server 1 (150.161.192.192), as it is a production server.  

It is important to explain that although the Slowloris script uses random source 

IP address, the attackers were located at networks behind NAT servers. For this reason, 

only two distinct source IP address will be perceived in this attack. 

The experiment was initiated at 15:00 PM of June 17, 2010, during 20 minutes. 

Figure 8.15 illustrates the increase of the number of established connections destined to 

the GPRT Web server 2 (150.161.192.51), where clearly it is possible to see after the 

attack taking place, the Web server reaches its maximum capacity of connections (150).  
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FIGURE 8.15: Slowloris attack without defense on Web server 2 

Analysis 

The Slowloris attack took place at 15:00. Two minutes into the attack (15:01), among 

the seven (7) detectors used in this scenario, Profiling and Snort using emergent 

configuration (Emergent threats) were unable to generate alerts. The explanation for this 

is simple. As this attack has the same behavior of a low rate SYN flood, it generates a 

low number of flows and hence slips through the control of the Profiling technique. 

Snort no built-in rule capable of classifying this attack.  

Nonetheless, both Snort‟s and ChkModel detectors saw a number of “TCP 

SYN” packets going through towards the same destination servers and therefore should 

be capable of detecting the attack. In fact, the Alert Pre-Processor received 7 IDMEF 

alerts file (4 for Web server 1 and 3 for Web server 2). Snort classifies the attack as 

“SPECIFIC-THREATS Slowloris http DoS tool” with severity equal to 2, whereas 

ChkModel classify the attack as BAD.  

Please recall that according to Algorithm 8.1, the execution of significant cluster 

extraction is the first step. However, at the end of such process, all five alerts were 

considered not significant since they were only few of them and had little differences 

among them. Hence, the next step is to verify if these alerts can be evaluated by the 

FER Analyzer. Again, due to their reduced number, the alert also failed to pass this 

verification. Consequently, they are then sent to the ADS-Fusion (step 5). Unlike other 

attacks, this one generated alerts from distinct detector, which make them good 

candidates to evaluation using the Dempster-Shafer Theory.  

As explained in section 8.2.2, the ADS-Fusion begins with the synchronization 

of alerts aiming to establish connection among them. So, the received alerts are 

aggregated according to their affinities. In other words, the alerts are split according to 

their targeting of Web server 1 or Web server 2. After that, they are combined to 

generate bpa values. For this, their severity parameter, the number of equal alerts and 

thresholds are used. The two first are extracted from Snort alert and the latter from 

ChkModel alerts. Then, the bpa for each alert is calculated. Snort alerts 

(Firewall/Router and Web server 1) have only a single alert each with severity as 

medium. This way, the calculated bpa for each one is 0.65 (what correspond to medium 

severity as explained in section 8.2.2). For the ChkModel alerts (Firewall/Router and 
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Web server 1), the calculated bpa is based on threshold values. So, the calculated bpa 

for each one is 0.8. Tables 8.4 and 8.5 describe the bpa’s of all alerts.  

TABLE 8.4: Calculated bpa’s of Web server 1 

Detector Severity Threshold Bpa 

Snort (Firewall/Router) medium 0.65 0.65 

ChkModel (Firewall/Router) bad 0.8 0.8 

Snort (Web server 1) medium 0.65 0.65 

ChkModel (Web server 1) bad 0.8 0.8 

TABLE 8.5: Calculated bpa’s of Web server 2 

Detector Severity Threshold Bpa 

Snort (Firewall/Router) medium 0.65 0.65 

ChkModel (Firewall/Router) bad 0.8 0.8 

ChkModel (Web server 2) bad 0.8 0.8 

The last step is inferences generation. This step requires the definition of a frame 

of discernment, an element that contains the possible states of the network, and the 

hypothesis being evaluated. In this work, all generated frames of discernment have only 

two possible elements to represent the network state: Normal or Anomalous (  
                      . In addition, the hypothesis to be questioned always is if the 

network state is Anomalous, that is, the network is under attack (             ).  

Next, the belief,      , and plausibility,      , functions are calculated, 

considering the hypothesis H, and, as consequence, a range of belief,     , which 

expresses the range of values in which it is possible to believe in the hypothesis H, is 

generated. 

Overall, ADS-Fusionconsiders for Web server 1 that: 

 m_1 as the mass function of the Snort attack evidence from Firewall/Router, 

m_2 as the mass function of ChkModel attack evidence from 

Firewall/Router, m_3 as the mass function of Snort attack evidence from 

Web server 1 and m_4 as the mass function of ChkModel attack evidence 

from Web server 1. 

 Frame of discernment is                        , and: 

o m_1(Anomalous) = 0.65 and m_1( ) = 1 – m_1(Anomalous) = 0.35 

o m_2(Anomalous) = 0.8 and m_2( ) = 1 – m_2(Anomalous) = 0.20 

o m_3(Anomalous) = 0.65 and m_3( ) = 1 – m_3(Anomalous) = 0.35 

o m_4(Anomalous) = 0.8 and m_4( ) = 1 – m_4(Anomalous) = 0.20 

 The belief and plausibility for all mass functions are 1, i.e., 

                          and                           . 

As result, the Dempster combination obtained the following values:       
                              and                         
        . 

For Web server 2, ADS-Fusion considers that: 

 m_1 as the mass function of Snort attack evidence from Firewall/Router, 

m_2 as the mass function of ChkModel attack evidence from 
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Firewall/Router, m_3 as the mass function of ChkModel attack evidence 

from Web server 2. 

 Frame of discernment is                        , and: 

o m_1(Anomalous) = 0.65 and m_1( ) = 1 – m_1(Anomalous) = 0.35 

o m_2(Anomalous) = 0.8 and m_2( ) = 1 – m_2(Anomalous) = 0.20 

o m_3(Anomalous) = 0.8 and m_3( ) = 1 – m_3(Anomalous) = 0.20 

 The belief and plausibility for all mass functions are 1, i.e., 

                          and                           . 

As result of the Dempster combination, the same values of Web server 1, i.e., 

                                and                     
        , were obtained. 

Since the inferences were generated, according to Algorithm 8.1, the next step is 

sending the results to OADS‟s Decision Service. Note that the results include the 

inferences and original alerts.  

After a validation, the Decision Service takes the following decisions:  

 To block all packets sent by IP addresses 150.161.2.53 (CIn/UFPE) and 

200.17.49.5 (DCC/UFAM), destined to Web server (150.161.192.192) on 

port 80.  

Consequently, the Slowloris attack to Web server 1 is blocked and the detectors 

do no generate any more alerts. Figure 8.16 demonstrates the attack effects on Web 

server 1. Note that after the first minute of the attack, the enforcement actions are taken 

and the attack is blocked. 

 

FIGURE 8.16: Slowloris attack without defense on Web server 2 

For effect of evaluation, it was decided not to apply the enforcement actions 

destined to Web server 2. In other words, the decisions of blocking the packets of the 

attackers are not configured, hence allowing the monitoring of the subsequent alerts and 

their analysis by ADS-Fusion. Table 8.6 represents the individual belief of the detectors 

and the Dempster combination for the hypothesis of the network is under attack.  
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TABLE 8.6: Dempster combination for attack in Web server 2 

Time 
Snort 

(Firewall/Router) 

ChkModel 

(Firewall/Router) 

ChkModel   

(Web server 2) 
DST 

15:00 0.65 0.80 0.80 88% 

15:01 0.70 0.80 0.80 90% 

15:02 0.75 0.80 0.80 92% 

15:03 0.80 0.80 0.80 94% 

15:04 0.85 0.80 0.80 95% 

15:05 0.90 0.80 0.80 97% 

15:06 0.95 0.80 0.80 98% 

15:07 1.00 0.80 0.80 99% 

15:08 1.00 0.80 0.80 99% 

... 

15:19 1.00 0.80 0.80 99% 

Note that the belief of the Snort detector increases as the number of repeated 

alerts is received. For example, during the initial time period (15:00), the unique alert 

has its belief equal to 0.65. At the second time (15:01), one more equal alert was 

received. For this reason, its belief was 0.65 (its severity) + 0.05 (second apparition of 

the same alert), totalizing 0.7. As a result, the Dempster combination for the network is 

under attack hypothesis also increases. At 15:07, after receives 8 identical alerts from 

Snort, the belief achieved the maximum level (1.0). From this point on, ADS-Fusion 

achieves almost 100% of belief (confidence) regarding the existence of an attack.  

8.4.5. Multi-step Attack 

The last experiment (but not the least important one) is composed of a set of attack 

actions, that is, a multi-step attack. According to Robiah et al. [238], a multi-step attack 

is a sequence of attack steps that an attacker has performed, where each step of the 

attack is dependent on the successful completion of the previous one.  

The interesting and relevant aspect of multi-step attacks is that they can and 

must be observed by different detectors. However, it is necessary to gather all pieces so 

that an attack scenario can be seen a multi-step attack.  

For the experiment at hand, a multi-step attack scenarios caused by the Blaster 

worm [239] spreading mechanism was emulated. Blaster worm scans the local class C 

subnet, or other random subnets, on port 135, in an attempt to discover vulnerable 

systems and thus use them as targets. The exploit code opens a backdoor on TCP port 

4444 and instructs them to download and execute the file MSBLAST.EXE from a 

remote system via the Trivial File Transfer Protocol (TFTP) running over UDP port 69 

to the %WinDir%\system32 directory of the infected system [238].  

The Experiment 

In order to implement a Blaster worm experiment, a different testbed, shown in Figure 

8.17, was built. As one is dealing with an internal attack, during 30 minutes, as many as 

60 computers of GPRT laboratory, where nine (9) computers, running Linux 

distribution, were “prepared” to makeup this experiment. One of these was selected to 

act as the attacker machine whereas the other emulated Windows machines.  
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PC26 PC27 PC60 PC62PC61 PC63

 

FIGURE 8.17: Blaster worm testbed scenario 

Based on the Blaster worm operational steps described above, the experiment 

had the following behavior. First, the attacker was activated and it began a scanning 

process in the network, looking for open port 135 TCP to explore DCOM RPC 

vulnerability in Microsoft Windows. For this, a port scan script (pscan.py) with 

192.168.0.0/24 as target and 192.168.0.96 as source IP address was used. 

The second step consisted in exploring the vulnerability on TCP port 135. In 

order to emulate this step, the attacker executed a script (blaster.py) whereas each one of 

the 8 “vulnerable” computers executed other script (blaster_client.py) to communicate 

with the attacker. Basically, the attacker sent a message instructing the vulnerable 

computers to open a backdoor on port 4444 TCP. As a proof of concept, the attacker 

script tried to next to connect to the vulnerable computers on port 4444 TCP and get an 

image file, called BLASTER.jpg. A specific Snort rule to detect this communication, as 

shown in Figure 8.18, was developed. 

alert tcp $HOME_NET any -> $HOME_NET 4444 (msg:“Blaster Worm Simulation 4444”; 

flow:established; uricontent:“BLASTER.jpg”; nocase; sid:1000001; rev:1); 

FIGURE 8.18: Specific Snort rule to detect Blaster worm simulation 

At a third step, the vulnerable computer makes a TFTP connection to the 

attacker, to get the file MSBLAST.EXE. In order to turn viable this step, the TFTPy 

API [240] was used to implement all TFTP communication between attacker and 

vulnerable computers. After this step, the attacker closes its activities. 

To finish the attack, all vulnerable computers tried to establish connections with 

Web sites where this Storm worm [22][86] can be found, in order to create a new 

infection. For this, each one of them has a list containing 10 Web site addresses 

recognizably related with this worm, and chooses only 2 to try a connection. After this 

step, as the attacker, the vulnerable computers also close their activities.  

It is interesting to observe that multi-step attack scenarios must be observed by 

different detectors, like signature-based network IDS, ADS and file integrity checker. 

However, in this scenario only Snort detectors were used due to the fact that they are 

more prepared, regarding the existence of rules. In addition, both ChkModel as Profiling 

are not adequate in this case, since this experiment does not generate differences 
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between ingress and egress TCP packet (what discards the use of ChkModel) nether 

does it generate huge amount of traffic, hence discarding the use of Profiling to detect it. 

For such reasons, only Snort detector versions 2.8.3.2 and 2.8.6 are used.  

Analysis 

The Blaster worm experiment was started at 10:00 of July 26 2010. After the first 

minute, the Alert Pre-Processor received three alert files from Snort Firewall/Gateway 

(version 2.8.6) and Snort‟s PC 1 and PC 25 (version 2.8.3.2), containing 240, 193, and 

194 alerts, respectively. 

These alerts represent all attack steps and were classified by Snort‟s as 

“PSNG_TCP_Portsweep” (551 alerts), “Blaster worm simulation 4444” (24 alerts), 

“TFTP Get” (24 alerts), and “Storm worm phone address” (48 alerts). The first 

represents the port scan activity. The second one represents TCP connection opening to 

port 4444 in vulnerable computers. The third represents the TFTP connection to get 

MBLASTER.exe file. The last alerts show the attempt to connect to Web sites related to 

the Storm worm.  

With regard to the orchestration analysis (according to Algorithm 8.1), the alerts 

are evaluated using the significant cluster extraction process. As a result, all alerts of 

“PSNG_TCP_PORTSWEEP” type are considered relevant (                   of 

class and                    of srcIP). Next, they are forwarded to the Decision 

Service, which decides to block any packet sent by IP address 192.168.0.96, destined to 

192.168.0.0/24, as shown in this simple IPTables example (IPTABLES -A INPUT -s 

192.168.0.96 -d 192.168.0.0/24 –j DROP).  

One must emphasize that although an enforcement action is taken by the 

Decision Service, it has no effect. The reason is simple. In this testbed, the attack is 

totally inside the network (internal to the network) making the first point of 

enforcement, namely, the Firewall/Gateway computer useless in such case. This way, 

although an explicit order was issued to block all packets from this source, their 

presence continues in the network.  

Nonetheless, there are still other alerts to be analyzed. Those alerts that were 

considered as irrelevant at step 2 of the orchestration algorithm may still be used. The 

next step is to verify if these alerts can be evaluated by the FER analyzer. As the 

number of alerts is greater than fer_threshold (96 > 50), the discovery of frequent 

episodes is applied.  

Consequently, all alerts are translated into events. Table 8.7 exemplifies some 

alerts and event types in this scenario. 

TABLE 8.7: Example of event types and event names for Blaster worm scenario 

Event 

Type 
Event Name Source IP/Port Destination IP/Port 

A Blaster worm simulation 4444 192.168.0.96:34521 192.168.0.50:4444 

B Blaster worm simulation 4444 192.168.0.96:50674 192.168.0.51:4444 

H Blaster worm simulation 4444 192.168.0.96:12543 192.168.0.57:4444 

I TFTP Get 192.168.0.50: 5643 192.168.0.96:69 

J TFTP Get 192.168.0.51: 3027 192.168.0.96:69 
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P TFTP Get 192.168.0.57: 3027 192.168.0.96:69 

Q Storm worm phone address 192.168.0.50: 64267 222.252.232.184:22861 

R Storm worm phone address 192.168.0.50: 4530 216.139.142.17:10788 

F1 Storm worm phone address 192.168.0.57: 1155 217.77.54.253:12358 

G1 Storm worm phone address 192.168.0.57: 7897 222.33.177.224:12555 

Next, using the established parameters from Table 8.1 (window size 10, 

frequency threshold 0.01, and confidence threshold 0.8), the computation of frequent 

episodes is made and the following values (Table 8.8) are discovered.  

TABLE 8.8: Performance for Blaster worm scenario 

Window 

Size 
Candidates 

Frequent 

Episodes 

Level of 

Participation (%) 

1 32 32 100.00% 

2 289 153 52.94% 

3 1376 612 44.47% 

4 3468 1428 41.17% 

5 5712 2142 37.50% 

6 6426 2142 33.33% 

7 4998 1428 28.57% 

8 2652 612 23.07% 

9 918 153 16.66% 

10 187 32 17.11% 

Note that the presence of a low number of alerts generating a more focused 

number of frequent episodes. Such affirmation is proved by the final number of frequent 

episodes found (32) for a maximum value window size.  

The next step of FER analysis has to do with episode rules generation. FER 

generates 4334 normal rules and 137 reduced rules, respectively, using frequency 

threshold of 0.01 and confidence level of 0.8 (Table 8.1). Among the reduced rules, it is 

possible to find representations of the multi-step attack. For instance, the rules A  AI 

with confidence 1.00 and I  IQR with confidence 1.00 allow deducting that in 100% of 

the cases of event A (Blaster worm simulation on port 4444, from 192.168.0.96:34521 

to 192.168.0.50:4444) occurs, the event sequence AIQR (Blaster worm, TFTP Get, 

Storm worm and Storm worm) also occurs.  

The processing time including frequent episodes calculation and episodes rule 

generation was around 67 seconds.  

Since the episodes rules were generated, the next step is sending these rules (and 

event tables) to the Decision Service. After validation, a series of decisions is taken to 

block the communication between the attacker (192.168.0.96) and the vulnerable 

computers (192.168.0.50-57). Note that these decisions have no effect. Once again, 

these decisions will be applied in Firewall/Gateway computer, but all communication 

between attacker and vulnerable computers actually do not pass through this network 

point of ingress/egress traffic.  
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As such, all this described process is repeated until the attack scripts stop 

working. A solution would be achieved through the use of an automatic access control 

mechanism as proposed in [241], where the authors employ 802.1x [242] to implement 

access control based on physical access device ports. This way, specific user traffic may 

be filtered out at the access switches.  

8.4.6. Experimenting with real traces 

In order to evaluate the OADS approach, some actual traffic traces were used.  

The first one was CAIDA‟s 2007 DDoS Attack Dataset [243], obtained from 

CAIDA (Cooperative Association for Internet Data Analysis [139]). This trace contains 

approximately one hour of anonymized traffic traces from a DDoS attack that took 

place on August 4
th

, 2007 (20:50:08 UTC to 21:56:16 UTC). This type of denial-of-

service attack attempts to block access to the targeted server by consuming computing 

resources on the server and by consuming all of the bandwidth of the network 

connecting the server to the Internet. The total size of the dataset is 21 GB, where only 

attack traffic to the victim and responses to the attack from the victim are included.  

Although this trace contains bidirectional traffic, none of the detectors used in 

testbed topology was able to identify any attack. The reason is simple. Since the 

payload was removed from all packets in this trace, Snort detectors would hardly find 

any signature. Regarding ChkModel and Profling, there was no satisfactory explanation 

of why they did not detect anything. There is the possibility that the anonymization 

process may have affected the trace data.  

The second trace is CAIDA‟s Backscatter 2008 Datasets [244]. It consists of 

quarterly week-long collections of responses to spoofed traffic sent by denial-of-service 

attack victims and received by the UCSD Network Telescope. Data was collected 

quarterly in February, May, August and November. In addition to the quarterly 

collections, data was also collected on March 18 and 19 for the Day in The Life of the 

Internet (DITL) project. Only this last one was experimented with.  

Since this trace is a backscatter from DoS victims (responses), only the Profiling 

detector can use them to look for anomalies (the ChkModel needs requests and 

responses to perform analysis and the Snort needs a payload). This way, it was decided 

not to use this trace since, according to Algorithm 8.1, the final result will be getting 

Profiling alerts (one each five minutes) and simply forwarding these to the Decision 

Service.  

The third and fourth traces are UMass Gateway Link 3 Trace, obtained from 

Umass Trace Repository [245], and MAWI 2006 samplepoint B, obtained from MAWI 

Working Group Traffic Archive [246]. The former is a collection of traces taken at the 

UMASS OIT gateway router. The traces are collected every morning from 9:30 to 

10:30 from July 9
th

, 2004 to July 22
nd

, 2004. They are in DAG format. All the IP 

addresses have been anonymized with prefix preserving algorithms. The latter is 

collected from trans-Pacific line (18Mbps CAR on 100Mbps link) during the six first 

months of 2006. The traces of June 1
st
, 2006 were used as discussed next.  

Regarding these two traces, both were injecting into the OADS prototype 

(separately), but none of them generates any type of alert. The MAWI trace not 

indicates if there is or not attacks and anomalies in its data. On the other hand, UMass 

trace is listed as containing anomalous traffic. But a simple evaluation using 

http://www.caida.org/data/passive/network_telescope.xml
http://www.caida.org/projects/ditl/
http://www.caida.org/projects/ditl/
http://traces.cs.umass.edu/
http://traces.cs.umass.edu/
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TCPDump
31

 and WireShark
32

 tools show that there is not unwanted traffic in its data, 

the reason because nothing was found.  

8.5. Chapter Discussion 

This chapter has presented and described the implementation and evaluation of the 

OADS approach conducted as part of this study to show the effectiveness of the 

proposed ideas. A key feature of the implementation was the use of a simple heuristic 

(represented by Algorithm 8.1) instead of more complex solutions, allowing that OADS 

approach be more agile and flexible.  

In order to evaluate the OASD prototype, different experiments in a controllable 

environment (GPRT laboratory) were conducted, proving that the proposal is very 

capable to identify and stop unwanted traffic. Unfortunately, the many attempts to 

execute OADS approach with public and real traffic traces were not well successful. 

Basically, the presence of backscatter traffic (only the traffic from the victim(s) to the 

attacker(s) is recorded) restraints that the used detectors discovery some kind of attack 

or anomaly.  

Although early, it is fair to state that the approach may be seen as a significant 

step towards building sound security and unwanted traffic detection and mitigation 

unified platforms. 

 

  

                                                           
31

 http://www.tcpdump.org 
32

 http://www.wireshark.com 
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Chapter 9  

Conclusions 

 

 

A key contribution of this Thesis is to allow that network operators and IT managers be 

free of everyday and cumbersome tasks of evaluating security events, alerts, and 

incidents provided by the numerous network security software and services. For this 

goal, a generic, open and flexible approach to deal with unwanted Internet traffic was 

designed and implemented. It is generic, because its components may be organized to 

detect a large and varied range of intrusions, attacks and anomalies, spanning from a 

traditional LAN access control service to large high-speed ISPs and backbones. It is 

openness stems from employing open source languages, standard protocols, and tools. It 

is flexible in that allows the update or seamless insertion of new detection techniques.  

Our approach is a holistic view of the orchestration concept applied in intrusion 

and anomaly detection. Named Orchestration Anomaly Detection System (OADS), it 

offers support for collaboration and harmonization of different detectors, increasing the 

power of perception (detection) of anomalies and consequently turning the network 

more and more secure. In practical terms, OADS is a complete unified framework for 

unwanted traffic identification able to deal with different detectors and their multitude 

of alerts, employing different techniques and methods for analysis to confirm or deny 

the presence of intrusions, attacks and anomalies and indicate some type of enforcement 

action.  

The rest of this chapter is organized as follows. We begin our conclusions by 

summarizing the main contributions of this Thesis. Then, we take a look back and 

report on the key lessons learnt in this research. Next, we show some perspectives, 

contexts and points to directions for future works. Finally, we provide concluding 

remarks. 

9.1. Summary of Contributions 

In this Thesis, we have advocated that the collaboration and harmonization among 

different anomaly detectors is a good step to achieve a desired result in security area. 

Motivated by this view, we proceeded to design and develop a complete unified 

framework for unwanted Internet traffic. We then applied this framework in different 

scenarios, aiming to validate it and consequently point out where and how it could be 

improved.  

In particular, this Thesis makes the following contributions:  

 Unwanted Internet Traffic Survey: In order to better understand the issues 

involving this traffic, we made an ample review of the subject. Our research 

began by surveying the unwanted Internet traffic (Chapter 2). We presented 

different definitions and formulated a new one that summarizes the other and 

includes aspects as the characterization of legitimate and illegitimate traffic 

as unwanted. It also discussed about context, classifications, and the possible 

reasons to explain its increase on recent years, followed by the presentation 

of many examples of unwanted traffic. Next, we made a survey 
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contemplating the most varied solutions employed against this traffic 

(Chapter 1). It includes strategies ranging from as simple as the used of anti-

virus software to more advanced research tools for anomaly traffic detection. 

 Orchestration Approach for Unwanted Internet Traffic Identification. 

The finding that collaborative unified solutions are needed to efficiently deal 

with the problem of unwanted traffic was instrumental in the direction of the 

adopted solutions. Our second contribution is the proposal of a new approach 

based on the orchestration of different security components for unwanted 

traffic identification (Chapter 4). In practical terms, the Orchestration 

Anomaly Detection System (OADS) specifies a unified framework capable 

of receiving multiples inputs (alerts) from different anomaly detectors, 

evaluating them and warming about possible problems. Enforcement actions 

can be taken, but they are not considered at depth by this Thesis.  

 OADS Miner (ARAPONGA). Information is the key to any efficient 

solution. As such, network administrators and IT managers must rely on 

Web sites to get this information. Our third contribution is a tool capable of 

gathering information about vulnerability reports, security events and 

Internet traffic statistics, consolidating and indexing them into a single place. 

The result is a practical, simple, fast, useful and straightforward information 

source for users (Chapter 5). ARAPONGA contributes by applying the 

concepts of WIRSS and ISSS to provide functionalities support that go 

beyond a traditional system of searching and indexing. In addition, it uses 

data mining techniques and templates to expand the capability of indexing 

information about security and therefore allow different and more focused 

queries. 

 OADS Alert Pre-Processor tool. In order to deal with the multitude of 

alerts from different detector, our fourth contribution is a solution for the 

aggregation and extraction of significant alerts (Chapter 6). Based on the 

clustering approach, the Alert Pre-Processer tool receives multi-source alerts, 

aggregates them and extracts the most relevant ones. Furthermore, in order to 

reduce the computational load at the (centralized) server and decrease the 

false negative rate, it can also be used in learning about attack strategies.  

 OADS FER Analyzer. Our fifth contribution is in the form of a statistical 

module based on the frequent episodes discovery technique capable of 

correlating alerts, discovering sequences of events that represent strategies or 

phases of attacks and enabling the prediction of future alerts (Chapter 7). 

Moreover, as part of its analysis result, this tool generates probabilistic rules 

that can be used in the enforcement actions. 

9.2. Lessons Learned 

We now draw out some lessons that we learned through the development of the OADS 

approach. 

9.2.1. Content Selection vs. Crawler Tool (OADS Miner) 

There was a high level of difficulty encountered with the implementation of „OADS 

Miner. In particular, there was a difficult decision to be taken when choosing between 
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obtain all the information possible versus respecting the limits set by the visited Web 

sites for Crawlers. As previously mentioned (Section 7.3.1), we choose dozens of Web 

sites as point of gathering reliable security information and has to sometimes ignore the 

limits imposed by these sites for the purpose of building a useful database of events.  

Unfortunately, around a dozens of important security information sites were 

discarded due to their limiting access policies to the content. More specifically, two 

issues were registered. The first one is related to robots.txt, a file found at the root page 

of each domain and created to control the actions of search robots, dictating their search 

behavior. Typically, robots.txt files are generated to hide all content of robots. They 

have the following settings: User-agent: * and disallow: /, which restricts any agent 

(robot) from accessing any content inside their directory. The second issue is related to 

the META-TAGs, HTML reserved keywords (labels) that among other functions 

describe what contents a robot can see. A typical example of anti-crawling META-

TAGS has the following format (<meta name="robots" content="index,nofollow">), 

where index and nofollow fields indicate that permission is given to index only the 

initial page of Web site.  

This Thesis seeks to offer mechanisms for gathering information for the combat 

of attacks and anomalies. For this, we should be change Nutch configuration (good 

behavior policies) to ignore robots.txt and META-TAGS restrictions, modifying the 

source code of Nutch. By definition, a Crawler tool that does not respect these policies 

is known as Malware Crawler. We opted for not to follow this line of thinking. So, we 

tried to contact many Web sites, explaining the Thesis intentions and the need to obtain 

the advertized information.  

Many Web contacted sites did not respond to our solicitations and consequently 

they were not used. Fortunately other, like Atlas [63], made available special accounts 

with full access for their data. 

9.2.2. Detectors and IDMEF 

Although we have presented some interesting unwanted traffic strategies in Chapter 2, it 

was a hard task, in terms of implementation and adequacy to the work, to define and test 

anomaly detectors.  

Among all presented academic strategies, we could only use two: ChkModel 

[158] and Profiling [151]. The former because it was originally designed and developed 

by GPRT team (as part of undergraduate work) whereas the latter was implemented 

following the original specifications. Both are used in the RobustIP project [173]. 

Regarding the other academic strategies, when requested, the authors could not make 

available their code due to privacy issues in their projects. In addition, as described in 

Chapter 4 and 6, we had to develop a parser to convert the outputs of detector or sensors 

such the ChkModel and Profiling into the IDMEF format. This simple tool was written 

in Java.  

Regarding commercial detectors, we tested three tools: Snort [163], Bro [164] 

and Prelude IDS [165]. Although all of them seem to be similar in their objectives, we 

choose Snort (version 2.8.3.2) due to its easier installation and simpler update rules. 

Another point in favor of Snort is the existence of the Snort-IDMEF plugin [178] is 

used to translate Snort logs into IDMEF alerts. However, after isolated tests, we 

discovered that: (i) Snort 2.8.3.2 does not support the most recent rules, due to 
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incompatibility of implementations; (ii) Snort-IDMEF plugin only works with Snort 

version 2.8.3.2.  

As result, we opted for using Snort 2.8.6 (the most recent version) and use Java 

code that translates Snort logs to the IDMEF format. 

9.2.3. Real traffic traces 

Despite the OADS evaluation being performed using attack scenarios (originated from 

four experiments), further evaluations may be conducted to better prove the 

effectiveness of the approach.  

An interesting, problematic and further point to be studied is the use of real 

traffic traces. Despite the increased interest in security, especially after the increased use 

of social networks, it is practically impossible to find traces that allow us consistently to 

test any solution. On the other hand, the strategy to use attack descriptions to recreate 

multi-step scenarios depends of what to exploit and demands an extra effort in terms of 

requirements.  

9.3. Future Directions 

This thesis introduced a unified approach for unwanted Internet traffic mitigation, 

composed by distinct components and designed to be modular. However, this approach 

can be further extended and applied in other contexts as well. We now explore some 

avenues for future research based on the contributions in this Thesis. 

9.3.1. Distributed support and cooperation 

The collaboration between detection systems is extremely necessary to increase, in both 

quality and quantity, the detection process of anomalies, suspicious events, and security 

incidents and, for this reason, it is an important aspect that must be studied. This 

collaboration must be based on information exchange (data and control) between local 

and remote detection systems. Standard message formats and protocols such as IDMEF 

[88], IODEF [89], and IDXP [90] can be used for this purpose. Recently, the use of 

description languages as WSDL (Web Service Description Language) [247] and OWL 

(Web Ontology Language) [248] has been practiced in the context of IDS collaboration.  

9.3.2. Secure and trusty relationship 

Another possible future work is related with some security and trust relationship 

requirements. The first one is data privacy. It aims to deal with the unwillingness, by the 

most different reasons, of the participant in to share security alerts and information 

about their domains and users. Some works have been proposed to address this issue. 

Lincoln et al. [249] proposes a set of sanitization techniques to obscure sensitive fields 

(IP addresses and data) and sensitive associations (the configuration and defense 

coverage of a network site). Xu and Ning [250] proposed the use of concept hierarchies 

to balance privacy requirements and the need for intrusion analysis. Already Gross et al. 

[251] proposed a privacy-preserving mechanism using Bloom filters for use in a CIDS. 

Other security aspect is the use of authentication and data integrity to prevent that 

wrong or forged information to be injected as part of the generated messages by the 

elements of CAIDSs. The works described in [252] and [253] use certificates to 

authenticate the messages and thus to guarantee the security of alerts and participants. In 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib87
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib32
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib32
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addition, these approaches use a central certificate authority unit that can cause 

scalability problems. The proposal of Brandão et al. [92] describes a framework to 

integrate IDS, called IDS Composition, based on Web Service technology, where a 

security service is established using WS-Security standard [254], XML-Encryption 

[255], and XML-Signature [256] to deal with authentication and access control of 

elements and to exchange IDMEF messages. 

9.3.3. Studies on distribution of the OADS orchestration 

An interesting work would be to study the feasibility of distributing the orchestration 

functionality. Since the collected traffic can easily exceed the processing capacity of a 

server, especially in broadband networks, OADS orchestration can be quickly flooded 

by hundreds or thousands of alerts and diagnosis in a short time.  

Intuitively, we can point out two solutions to solve the problem. The first one is 

to use more than one OADS orchestration engine to share the responsibility for the 

analysis and decisions. The second one (more interesting, but more complex) exploits 

the concept of parallelism to harmonize multiple OADS orchestration. This 

harmonization requires cooperation based on the use of fixed time intervals for making 

an analysis and the same dictionary of decisions.  

9.3.4. Improvements in Orchestration algorithm 

Other further work would be to study more attack scenarios to identify new and 

affective orchestration sequences. Although the proposed orchestration algorithm has 

been efficient, the current implementation may be seen as a proof of concept only. So, it 

is possible to design other scenarios and experiments, i.e., the current heuristic cannot 

be sufficiently prepared to detect all types of unwanted traffic. For this reason, extensive 

studies and tests are required to build orchestration sequences that are more effective 

and able to reduce the time taken to detect unwanted traffic. 

9.3.5. Design and implementation of an inter-domain advertisement 

service 

Another possible future work is the design and implementation of an advertisement 

service. In OADS approach, we advocated that the collaboration concept can and must 

be extended to external elements, systems or networks (Chapter 4), allowing that all 

participating domains of some type of collaboration must publically advertize the 

detection scope and types of defenses that they offer, opening opportunities for possible 

cooperation with others domains or similar systems.  

The kickoff to address this issue begins by making available our information 

bases, including alert (received and pre-processed), analysis of OADS component (FER 

Analyzer and ADS-Fusion, for example), history of decisions and vulnerabilities reports 

and Internet traffic statistics (gathered by OADS Miner), in a shared storage space.  

9.3.6. Information bases 

In order to help on the anomaly detection process and attempt the advertisement scope 

requirement, we believe that the use of distinct information bases to store available and 

useful data about alerts and traffic summaries (anomaly detectors output), 

vulnerabilities and Internet anomalies, and history data is very interesting. The idea 
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behind the information bases is to offer for the orchestration approach a variety of 

knowledge about network state, allowing that it can take more satisfactory and correct 

decisions.  

In OADS approach, for example, two data structure (information bases) to help 

on the orchestration tasks would be deployed. They are: 

 Alert base contains the outputs of the analysis or traffic summaries 

performed by anomaly detectors. The idea is keeping processed network 

traffic while respecting its specificities. These information can used by 

OADS as important feedback for improving collaborative activities, taking 

decisions or looking for new anomaly patterns based on these observed 

results. For instance, the OADS approach can determine that a detector 

specialized in spam uses the generated alerts by the profiling [151] detector 

to evaluate further those results considered suspicious and not yet confirmed 

involving TCP port 25 (SMTP protocol). Such feedback procedure increases 

the chance of discovering unperceived and new anomalies and consequently 

enhancing the network security level.  

 History base contains all previous historical decisions taken by the OADS 

approach for possible future processing. This way, when similar network 

situations happen, including the same network behavior and anomaly 

detectors being involved, the OADS approach can be compared or even take 

the same old decision. 

9.4. Final Remarks 

Unwanted Internet traffic can and must be considered a plague. Although the types and 

their consequences are known, issues such as the definition and ways to minimize its 

effects are still under discussion and study. The existence of an “evil industry” 

motivated and evolved, coupled with the emergence of new services and applications, 

the constant technological evolution and the population boom of new (and often 

unskilled) users imposes new challenges in the activity of detection and limitation of 

unwanted traffic. 

This Thesis has made the case for studying unwanted Internet traffic and 

proposed an orchestration oriented anomaly detection system (OADS) approach for 

unwanted Internet traffic identification. It has also demonstrated the effectiveness of the 

OADS approach in the identification and mitigation of the unwanted Internet traffic 

through different scenarios and experiments. 

To conclude this Thesis, it is notorious that the problem of the unwanted Internet 

traffic identification is still far from being solved, that one is dealing with an evolving 

problem and that only the tip of the iceberg was touched. However, there is also a 

general agreement both in academic as well as industry that the most promising results 

will be achieved. The expectation is that this Thesis had contributed by giving the 

interested reader some starting background and stimulated new research for the design 

of new effective approaches for unwanted traffic identification. The hope is to see other 

more advanced approaches for the protection of the Internet emerging in the near future. 
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