

Federal University of Pernambuco

Informatics Center

Doctorate in Computer Science

“An Orchestration Approach for Unwanted

Internet Traffic Identification”

Eduardo Luzeiro Feitosa

Recife, August 2010.

Federal University of Pernambuco

Informatics Center

Doctorate in Computer Science

“An Orchestration Approach for Unwanted

Internet Traffic Identification”

Eduardo Luzeiro Feitosa

This thesis has been submitted to the

Informatics Center of the Federal University of

Pernambuco as a partial requirement to obtain

the degree of Doctor in Computer Science.

Supervisor: Prof. Dr. Djamel Fawzi Hadj Sadok

Co-Supervisor: Prof. Dr. Eduardo James Pereira Souto

Recife, August 2010.

Feitosa, Eduardo Luzeiro

 An orchestration approach for unwanted internet traffic identification / Eduardo
Luzeiro Feitosa. - Recife: O Autor, 2010.

 xiii, 172 folhas : il., fig., tab.

 Tese (doutorado) Universidade Federal de Pernambuco. CIn. Ciência da
Computação, 2010.

 Inclui bibliografia.

 1. Redes de computadores. 2. Segurança da informação. 3. Medições de tráfego.
I. Título.

 004.6 CDD (22. ed.) MEI2010 – 0146

To my parents, wife and sons

i

Acknowledgments

The fulfillment of this Thesis would not have been possible without the contribution of

a large number of persons. The first persons I am deeply indebted to are my wife Livia

Soraya and my children‟s Gabriel, Bruna and Luísa. While they did not contribute to

this Thesis directly, but I would like to thank them for their support and love. I would

also like to thank my parents, Clarice and José Ribamar, for their important support.

I owe a big thank-you to my Thesis advisor, Djamel Sadok, who offered the

opportunity to join his research team a few years ago. I must say that at that time, I was

not really imagining the kind of experience I was about to embark on. I appreciated very

much Djamel‟s very pragmatic approach to networking. Djamel is also an inexhaustible

source of networking references. Through his enthusiasm and unlimited support (time,

ideas and experience), he helped me to complete this Thesis. In addition to that, this

work contains the fruits of many and lengthy discussions regarding the present

contributions with Djamel.

My sincere thanks also go to Professor Judith Kelner for giving me as well as to

my family a great deal of support when we moved to Recife. She was instrumental in

my participation in the GPRT group. I learned a lot from her valuable experience. I am

also thankful for the excellent example she has provided as a successful researcher and

Professor.

The third person I would like to thank is my Thesis co-advisor Eduardo Souto.

Souto has been a great friend from Manaus, where we worked together in the

University‟s Data Processing Center (CPD). He was key to my decision for choosing

Recife as the place to do my Doctorate studies. I learned a lot from the references he

pointed me to and from the many discussions we had. We collaborated on a lot of

problems, especially about the design of the OADS Miner.

I am grateful to the external members of my Thesis examination committee,

namely professors, Artur Ziviani, Carlos Alberto Kamienski, Nelson Rosa and Paulo

Maciel, and must thank them warmly for accepting to be part of this work. I would

especially like to thank Carlos Alberto Kamienski and Nelson Rosa for their detailed

comments and recommendations when defending the proposal for this Thesis, more

than a year ago.

Let me also thank the members of GPRT for their direct collaboration and

participation in this Thesis: Bruno Lins, Rodrigo Melo, Leo Vilaça, Thiago Rodrigues,

and Fernando Rodrigues. Bruno Lins helped me to develop the Alert Pre-Processor tool.

In addition to this collaboration, I am also obliged to thank him for using his tool for

Dempster-Shafer analysis from C++ to Java in this Thesis. Rodrigo Melo helped

implementing almost all the experiments presented in this Thesis. Leo Vilaça and I

collaborated on the study of the frequent episode analysis and the joint development of

the Alert Analyzer tool. Thiago Rodrigues and I collaborated on the characterization of

the OASD Miner (ARAPONGA) tool and we had several discussions on how to turn

this more efficient with the extraction of security information from the Web. Fernando

Rodrigues helped me a lot improve the writing of many parts of this Thesis.

ii

Other members of GPRT that also deserve my thanks due to their contributions

with different points of the study are: Rafael Aschoff, Guthemberg Silvestre, Patricia

Endo, Luis Eduardo Oliveira, and Josias Junior. I would also acknowledge the work

done by Manuela Melo e Nadia Silva and their contributions to the pleasant ambiance

that reigns in GPRT.

Lastly, I offer my regards and blessings to all of those who supported me in any

respect during the completion of this thesis.

Eduardo Luzeiro Feitosa

August 30, 2010

iii

Resumo

Um breve exame do atual tráfego Internet mostra uma mistura de serviços conhecidos e

desconhecidos, novas e antigas aplicações, tráfego legítimo e ilegítimo, dados

solicitados e não solicitados, tráfego altamente relevante ou simplesmente indesejado.

Entre esses, o tráfego Internet não desejado tem se tornado cada vez mais prejudicial

para o desempenho e a disponibilidade de serviços, tornando escasso os recursos das

redes. Tipicamente, este tipo de tráfego é representado por spam, phishing, ataques de

negação de serviço (DoS e DDoS), vírus e worms, má configuração de recursos e

serviços, entre outras fontes.

Apesar dos diferentes esforços, isolados e/ou coordenados, o tráfego Internet não

desejado continua a crescer. Primeiramente, porque representa uma vasta gama de

aplicações de usuários, dados e informações com diferentes objetivos. Segundo, devido

a ineficácia das atuais soluções em identificar e reduzir este tipo de tráfego. Por último,

uma definição clara do que é não desejado tráfego precisa ser feita.

A fim de solucionar estes problemas e motivado pelo nível atingido pelo tráfego

não desejado, esta tese apresenta:

1. Um estudo sobre o universo do tráfego Internet não desejado, apresentado

definições, discussões sobre contexto e classificação e uma série de

existentes e potencias soluções.

2. Uma metodologia para identificar tráfego não desejado baseada em

orquestração. OADS (Orchestration Anomaly Detection System) é uma

plataforma única para a identificação de tráfego não desejado que permite

um gerenciamento cooperativa e integrado de métodos, ferramentas e

soluções voltadas a identificação de tráfego não desejado.

3. O projeto e implementação de soluções modulares integráveis a

metodologia proposta. A primeira delas é um sistema de suporte a

recuperação de informações na Web (WIRSS), chamado OADS Miner ou

simplesmente ARAPONGA, cuja função é reunir informações de segurança

sobre vulnerabilidades, ataques, intrusões e anomalias de tráfego

disponíveis na Web, indexá-las eficientemente e fornecer uma máquina de

busca focada neste tipo de informação. A segunda, chamada Alert Pre-

Processor, é um esquema que utilize uma técnica de cluster para receber

múltiplas fontes de alertas, agregá-los e extrair aqueles mais relevantes,

permitindo correlações e possivelmente a percepção das estratégias usadas

em ataques. A terceira e última é um mecanismo de correlação e fusão de

alertas, FER Analyzer, que utilize a técnica de descoberta de episódios

frequentes (FED) para encontrar sequências de alertas usadas para

confirmar ataques e possivelmente predizer futuros eventos.

De modo a avaliar a proposta e suas implementações, uma série de experimentos

foram conduzidos com o objetivo de comprovar a eficácia e precisão das soluções.

Palavras-Chave: Tráfego Internet não Desejado, Orquestração, Correlação de Alertas,

Descoberta de Episódios Frequentes, WIRSS.

iv

Abstract

A brief examination of the current Internet traffic shows a varying mix of known and

unknown services, legacy and new applications, legitimate and illegitimate traffic,

solicited and unsolicited data, highly relevant and unwanted traffic. Among these,

unwanted Internet traffic is increasingly becoming harmful to network performance and

service availability, often taking up processing and scarce network resources. Typically,

unwanted traffic is represented, in general, by spoofing activities, spam, phishing, DoS

and DDoS, virus and worms, misconfiguration, or among other sources.

Nonetheless, there are many isolated and coordinated efforts to deal with this

issue, unwanted Internet traffic continues to grow. First, because basically unwanted

traffic represents a wide range of user applications, network data and harmful

information with different objectives for its existence. Secondly, the inefficiency of the

current solutions to identify, reduce, and stop unwanted traffic is notorious. The

increase in Internet link bandwidth and service mix makes the timely detection of

unwanted traffic an interminable task that does not scale easily as such links increase in

capacity. Lastly, a clear definition of what is unwanted traffic remains to be elaborated.

In order to address these problems and motivated by the current alarming

situation that unwanted traffic has reached, this thesis presents:

4. A study of unwanted Internet traffic universe, presenting definitions, discussing

about context and classifications, and a series of existing and potential solutions.

5. An approach to identify unwanted traffic based on orchestration defined as

OADS. OADS (Orchestration Anomaly Detection System) is a single-platform

for unwanted traffic identification management to allow an integrated

management of all cooperative methods, tools and events for unwanted traffic

identification.

6. The design and implementation of three tools. The first one is a Web

Information Retrieval Support System (WIRSS), called OADS Miner or

ARAPONGA, gathering security information about vulnerabilities, attacks,

intrusions and traffic anomalies available on the Web, indexing them efficiently,

and providing a focused search engine. The second one is an Alert Pre-Processor

tool, which employs a cluster approach to receive multi-source alerts, aggregates

them and extracts the most relevant, allowing their correlation and possibly

perception of their attack strategy. The third and last one is an alert correlation

and fusion tool, OADS FER Analyzer, which employs a Frequent Episodes

Discovery (FED) technique to discover sequences of alerts applied to confirm

attacks and predict future events.

In order to evaluate this proposal and its implementations, a set of

experimentation were conducted, aiming to prove the efficacy and accuracy of tools.

Keywords: Unwanted Internet Traffic, Orchestration, Alert Correlation, Frequent

Episodes Discovery, WIRSS

v

Contents

PART I - BACKGROUND .. 1

CHAPTER 1 .. 2

INTRODUCTION ..

1.1. OBJECTIVES AND CONTRIBUTIONS .. 4

1.2. ROAD MAP .. 5

1.3. BIBLIOGRAPHIC NOTES ... 6

CHAPTER 2 .. 8

UNWANTED INTERNET TRAFFIC ..

2.1. DEFINITION ... 8

2.1.1. Context problem ... 9

2.2. CLASSIFICATION ... 9

2.3. UNWANTED TRAFFIC: WHO IS GUILTY? .. 12

2.3.1. Internet Design Principles .. 12

2.3.2. The root of all evil .. 15

2.4. RECENT EXAMPLES OF UNWANTED TRAFFIC .. 16

2.4.1. Internet infrastructure attacks ... 16

2.4.2. SPAM ... 19

2.4.3. Malicious code .. 21

2.4.4. Social networks .. 22

2.4.5. Recreational traffic ... 23

2.5. CHAPTER SUMMARY ... 24

CHAPTER 3 .. 26

APPROACHES AGAINST UNWANTED TRAFFIC ..

3.1. TRADITIONAL SOLUTIONS ... 26

3.1.1. Filtering .. 26

3.1.2. Intrusion Detection System .. 27

vi

3.1.3. Anti-something software .. 27

3.1.4. Honeypot .. 28

3.2. PROMISING SOLUTIONS ... 28

3.2.1. Advanced Filtering ... 28

3.2.2. IP address space investigation .. 29

3.3. COLLABORATIVE SOLUTIONS.. 29

3.3.1. Alert Normalization .. 30

3.3.2. Alert Aggregation ... 31

3.3.3. Alert Correlation ... 31

3.3.4. False Alert Reduction ... 33

3.3.5. Alert Prioritization .. 34

3.3.6. Alert Prediction .. 35

3.4. TRAFFIC ANALYSIS ... 36

3.4.1. Non-Gaussian and Long Memory Statistical Characterizations for Internet

Traffic with Anomalies ... 36

3.4.2. Extracting Hidden Anomalies using Sketch and Non Gaussian

Multiresolution Statistical Detection Procedures ... 37

3.4.3. A Novel Approach for Anomaly Detection over High-Speed Networks . 39

3.4.4. Anomaly Detection of Network Traffic based on Wavelet Packet 41

3.4.5. Profiling Internet backbone Traffic: Behavior Models and Applications 42

3.4.6. Mining Anomalies Using Traffic Feature Distributions 43

3.4.7. Discussion of evaluated traffic analysis approaches 47

3.5. CHAPTER SUMMARY ... 48

PART II - OADS APPROACH AND TOOLS ... 49

CHAPTER 4 .. 50

ORCHESTRATION ANOMALY DETECTION SYSTEM (OADS)

4.1. OADS OVERVIEW .. 51

4.2. OADS ARCHITECTURE .. 51

4.2.1. Anomaly Detectors ... 52

4.2.2. Alert Pre-Processer ... 52

4.2.3. Alert Analyzer .. 53

4.2.4. Decision Service ... 54

4.2.5. OADS Miner .. 55

vii

4.3. OADS CONTRIBUTIONS .. 56

4.4. CHAPTER SUMMARY ... 56

CHAPTER 5 .. 58

OADS ALERT PRE-PROCESSOR ...

5.1. BACKGROUND ... 59

5.1.1. Entropy and Relative Uncertainty .. 59

5.1.2. Extracting Significant Clusters ... 60

5.2. ALERT PRE-PROCESSOR ARCHITECTURE .. 61

5.3. IMPLEMENTATION ... 62

5.3.1. Alert Handler Module ... 62

5.3.2. Aggregation Module ... 64

5.4. PERFORMANCE EVALUATION .. 65

5.4.1. Benchmarking ... 65

5.5. STRESS TEST ... 67

5.5.1. Alert files AF1 and AF2 ... 67

5.5.2. DARPA 2000 Dataset ... 69

5.6. CHAPTER SUMMARY ... 75

CHAPTER 6 .. 76

OADS FER ANALYZER ...

6.1. FREQUENT EPISODES RULES (FER) .. 77

6.1.1. Basic Concepts ... 77

6.1.2. Related Work .. 80

6.2. FER ANALYZER: DESIGN AND IMPLEMENTATION... 80

6.2.1. Alert Handler module ... 81

6.2.2. Frequent Episode Analysis module .. 82

6.2.3. Implementation ... 86

6.3. EVALUATION .. 86

6.3.1. Performance overview .. 86

6.3.2. Episode Rules ... 91

6.3.3. Real Traffic Analysis .. 96

6.4. CHAPTER SUMMARY ... 97

CHAPTER 7 .. 99

viii

OADS MINER: CODENAME ARAPONGA ..

7.1. BACKGROUND AND RELATED WORK .. 99

7.2. ARAPONGA OVERVIEW ... 102

7.2.1. Templates ... 104

7.2.2. Architecture .. 106

7.2.3. Components Interaction .. 107

7.3. IMPLEMENTATION ... 108

7.3.1. Preliminary Questions .. 108

7.3.2. Components .. 111

7.4. EVALUATION AND INITIAL RESULTS ... 116

7.4.1. Performance Metrics... 116

7.4.2. Evaluation Methodology .. 117

7.4.3. Experiment Results ... 118

7.5. CHAPTER SUMMARY ... 121

PART III - RESULTS .. 123

CHAPTER 8 .. 124

OADS IMPLEMENTATION AND PERFORMANCE EVALUATION....................

8.1. OADS IMPLEMENTATION ... 124

8.1.1. ADS-Fusion .. 125

8.1.2. Decision Service ... 127

8.1.3. Enforcement Actions .. 128

8.2. HEURISTIC FOR ORCHESTRATION .. 128

8.3. TESTBED ENVIRONMENT ... 131

8.3.1. Malicious traffic generation.. 133

8.4. ORCHESTRATING ANALYSIS ... 133

8.4.1. Scan UPnP .. 133

8.4.2. DNS cache poisoning ... 135

8.4.3. SMTP Flood ... 139

8.4.4. Slowloris ... 141

8.4.5. Multi-step Attack .. 146

8.4.6. Experimenting with real traces ... 150

8.5. CHAPTER DISCUSSION .. 151

ix

CHAPTER 9 .. 152

CONCLUSIONS ...

9.1. SUMMARY OF CONTRIBUTIONS ... 152

9.2. LESSONS LEARNED ... 153

9.2.1. Content Selection vs. Crawler Tool (OADS Miner) 153

9.2.2. Detectors and IDMEF ... 154

9.2.3. Real traffic traces .. 155

9.3. FUTURE DIRECTIONS .. 155

9.3.1. Distributed support and cooperation .. 155

9.3.2. Secure and trusty relationship .. 155

9.3.3. Studies on distribution of the OADS orchestration 156

9.3.4. Improvements in Orchestration algorithm .. 156

9.3.5. Design and implementation of an inter-domain advertisement service . 156

9.3.6. Information bases ... 156

9.4. FINAL REMARKS ... 157

REFERENCES ... 158

x

List of Figures

2.1: HTTP “hourglass model” .. 13

2.2: Spam email offering a DDoS attack service.. 19

2.3: SPIM example. .. 21

3.1: Sketches generation process .. 38

3.2: Anomaly detection stage ... 39

3.3: Profiling Methodology .. 43

3.4: ChkModel Sock and Flow Schema ... 45

3.5: ChkModel Architecture ... 45

4.1: E-mail example of the fight against unwanted traffic ... 50

4.2: OADS architecture view.. 52

4.3: Snort and Prelude nomenclature problem. .. 53

4.4: Example of attack evaluation by two anomaly detectors. 54

4.5: OADS Miner overview. .. 55

5.1: Functional diagram of OADS Alert Pre-Processor. .. 62

5.2: Translation example of ChkModel output to IDMEF format 63

5.3: Data structure of ATable and CTable .. 64

5.4: CPU load of the Aggregation module from alert file 2 (AF2) 66

5.5: Memory usage of the Aggregation module from alert file 2 (AF2) 66

5.6: Significant clusters extracted from class of attack dimension in AF2 68

5.7: Significant clusters extracted from destination IP address dimension in AF2 69

5.8: Significant clusters extracted from source IP address dimension in AF2 69

5.9: Class of attack frequency distribution in LLDOS 1.0 inside scenario 70

5.10: Destination IP frequency distribution in LLDOS 1.0 inside scenario 71

5.11: Source IP clusters dispersion in LLDOS 1.0 inside scenario 72

5.12: Class of attack frequency distribution in LLDOS 1.0 outside scenario 72

5.13: Destination IP frequency distribution in LLDOS 1.0. outside scenario 73

5.14: Source IP frequency distribution in LLDOS 1.0 outside scenario 73

5.15: Class of attack frequency distribution in LLDOS 2.0.2 inside scenario 74

5.16: Destination IP frequency distribution in LLDOS 2.0.2 inside scenario 74

xi

5.17: Class of attack frequency distribution in LLDOS 2.0.2 outside scenario 74

5.18: Destination IP frequency distribution in LLDOS 2.0.2 outside scenario 75

6.1: A Graphical Representation of the Sequence of Events s 77

6.2: Time Window within Sequence s .. 78

6.3: X, Y and Z represent serial, parallel and non-serial non-parallel episodes 78

6.4: Functional diagram of FER Analyzer.. 81

6.5: Event sequence representation .. 82

6.6: Normal rules and reduced rule for a sadmind request in LLDOS 1.0 Outside 86

6.7: Number of frequent episodes as a function of window size, with frequency

threshold of 0.002, for LLDOS 1.0 scenarios... 88

6.8: Number of frequent episodes as a function of window size, with frequency

threshold 0.002, for LLDOS 2.0.2 scenarios .. 90

6.9: Rule space generated from LLDOS 1.0 Inside .. 91

6.10: Rule space generated from LLDOS 1.0 Outside ... 91

6.11: Rule space generated from LLDOS 2.0.2 Inside ... 92

6.12: Rule space generated from LLDOS 2.0.2 Outside .. 92

6.13: The effects of pruning for LLDOS 1.0 Inside, with various confidence thresholds,

with frequency threshold 0.005 and window size 20 ... 93

6.14: The effects of pruning for LLDOS 1.0 Outside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20 93

6.15: The effects of pruning for LLDOS 2.0.2 Inside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20 94

6.16: The effects of pruning for LLDOS 2.0.2 Outside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20 94

6.17: Sample of the episode rules generated for LLDOS 1.0 Inside (confidence

thresholds 0.8, frequency threshold 0.002 and window size 20) 95

6.18: Translation of an episode rule to IPTable rules ... 95

6.19: Episode rules generated for LLDOS 2.0.2 Inside (confidence thresholds 0.8,

frequency threshold 0.002 and window size 20) .. 96

7.1: A partial multi-level knowledge structure for vulnerability by vendor 103

7.2: Differences among search spaces .. 104

7.3: Secunia Web site Template ... 105

7.4: Architectural and workflow diagram of ARAPONGA ... 107

7.5: Example of Vulnerability summary query by Microsoft term 115

xii

7.6: ARAPONGA‟s GUI Interface ... 116

7.7: Comparison ARAPONGA‟s GUI Interface .. 118

7.8: Brazilian ASes related to malicious activities ... 120

7.9: Frequency distribution in Atlas Web site .. 121

7.10: A timeline of Microsoft Internet Explorer vulnerabilities 121

8.1: OADS implementation architecture .. 124

8.2: Mapping classifications and enforcement actions ... 128

8.3: Full OADS Testbed Topology .. 132

8.4: UPnP alerts time line ... 133

8.5: Possible IPTables rules for UPnP alerts .. 134

8.6: Summary_vulnerabilty for SCAN UPnP alert .. 135

8.7: DNS cache poisoning scenario .. 136

8.8: DNS cache poisoning attack without defense ... 136

8.9 Possible IPTables rules for DNS cache poisoning alerts .. 137

8.10: DNS cache poisoning attack with OADS decision and actions 138

8.11: SPAM attack without defense (collected from Firewall/Gateway) 139

8.12: Possible IPTables rules for SMTP flood attack ... 140

8.13: SPAM attack with defense .. 141

8.14: Typical slowloris HTTP request .. 142

8.15: Slowloris attack without defense on Web server 2 ... 143

8.16: Slowloris attack without defense on Web server 2 ... 145

8.17: Blaster worm testbed scenario ... 147

8.18: Specific Snort rule to detect Blaster worm simulation .. 147

xiii

List of Tables

3.1: A subjective comparison of various anomaly detection techniques 47

5.1: Characteristic of alert files AF1 and AF2.. 66

5.2: CPU load and memory usage of the Aggregation module 66

5.3: Characteristic of alert files AF1 and AF2.. 67

5.4: Class of Attack relative uncertainty in AF2 .. 68

5.5: Class of attack relative uncertainty in LLDOS 1.0 inside scenario 71

5.6: Destination IP relative uncertainty in LLDOS 1.0 inside scenario 71

6.1: Example of event types, event names and their attributes....................................... 81

6.2: Performance for LLDOS 1.0 inside scenario .. 87

6.3: Performance for LLDOS 1.0 outside scenario .. 87

6.4: Performance for LLDOS 2.0.2 inside scenario ... 89

6.5: Performance for LLDOS 2.0.2 outside scenario ... 89

6.6: GPRT Laboratory Frequency Episode Results. .. 97

7.1: Secunia Advisories template ... 105

7.2: Comparison among various Web sites .. 109

7.3: Heritrix and Nutch comparison ... 110

7.4: Features of Lucene and Jericho ... 112

7.5: Query types of ARAPONGA Interface ... 113

7.6: Base evaluation .. 117

7.7: Comparative study of search results from the query ... 119

8.1: Representation of information sent by detectors to Decision Service 127

8.2: FER parameters for orchestration algorithm ... 130

8.3: Distribution of detectors in OADS testbed .. 132

8.4: Calculated bpa‟s of Web server 1 .. 144

8.5: Calculated bpa‟s of Web server 2 .. 144

8.6: Dempster combination for attack in Web server 2 .. 146

8.7: Example of event types and event names for Blaster worm scenario 148

8.8: Performance for Blaster worm scenario .. 149

1

Part I

Background

2

Chapter 1

Introduction

A brief examination of current Internet traffic shows a varying mix of known and

unknown services, legacy and new applications, legitimate and illegitimate traffic,

solicited and unsolicited data, highly relevant and unwanted traffic. Among these,

unwanted Internet traffic is increasingly becoming harmful to network performance and

service availability, often taking up scarce precious network and processing resources.

Typically, unwanted traffic is generated by backscatter
1
 from spoofing activities,

unsolicited electronic messages (spam), phishing
2
 and pharming

3
 attempts, denial of

service attacks (DoS and its distributed form - DDoS), virus and worms spreading,

misconfiguration, among other sources.

Unwanted Internet traffic can be considered an Internet plague, which

consequences are reflected in financial losses around the world. Statistics provided by

the Computer Security Institute (CSI) [1] and public security agencies such as the

American FBI indicate that the financial losses occasioned by network attacks,

intrusions and anomalies reached approximately US$ 252 million in last three years [2]

[3][4]. The Gartner Inc. [5] reveals that financial fraud hit 7.5% of Americans in 2008.

The Radicati Group [6] estimated global losses equivalent to US$ 198 billion related to

spam messages in 2007. In addition, they predicted that the number of spam messages

would reach 79% of the volume of global e-mail messages in 2010. Recent studies

prove that the proliferation of this traffic is so fast that 3G networks [7] are beginning to

feel its negative effects.

In Brazil, despite the lack of an accurate figure showing the level of financial

loses, the statistics provided by the CSIRT (Computer Security Incident Response

Team) reveal an alarming increase of the number of incidents. The CERT.br (Computer

Emergency Response Team Brazil) [8] reported 222,528 security incidents in 2008, an

increase of 39% in relation to 2007, where almost 62.3% were fraud attempts. It also

recorded 108,242 notifications of breach of copyright via distribution on P2P networks.

The CAIS (Centro de Atendimento a Incidentes de Segurança) [9] recorded more than

35.000 security incidents.

In spite of the old presence of unwanted traffic in the Internet, only recently

some serious isolated and coordinated efforts are being taken to deal with this problem

and the losses it has been causing. This is witnessed, among other things, by the large

number of workshops and conferences dedicated to the exchange of experience and

tools in the combat of this phenomenon. Examples of such meetings include SRUTI
4

(Steps to Reducing Unwanted Traffic on the Internet) and the setup of an Internet

1
 Backscatter is the traffic received from victims that are responding to denial of service attacks.

2
 Phishing is a form of electronic fraud, characterized by attempts to acquire sensitive information, such

as passwords and credit card numbers, to be getting as a trustworthy person or a company sending a

communication electronics officer as a mail or an instant message.
3
 Pharming is a technique that uses kidnapping or "contamination" of the DNS (Domain Name Service) to

redirect users to a fake domain. It can also redirect users to sites not authentic through proxies controlled

by phishers, which can be used to track and intercept the typing.
4
 http://www.usenix.org/events/sruti05/

3

Architecture Board (IAB) working group on unwanted traffic that resulted in the RFC

4849 [10], in addition to flagship communication and networking conferences such as

the ACM SIGCOMM
5
.

Despite these separate efforts, this type of traffic continues to grow. First,

because basically unwanted traffic represents a wide range of user applications, network

data and harmful information with different objectives for its existence. Some of it may

be pure nuisance such as spam messages, other consists of bulky multimedia content

result from technological trends in applications, networks and users‟ habits, including

P2P file sharing (e.g., Emule, Bit torrents), video sharing (e.g., Justin.tv
6
, Joost

7
,

YouTube
8
), and recreational traffic (e.g., MP3 downloads, instant messaging, Skype,

MSN), and finally one finds specially designed intrusive traffic targeting networking

resources and service availability such as worms, viruses, and denial of service attacks.

Secondly, the inefficiency of the current solutions to identify, reduce, and stop

unwanted traffic is notorious as well described in recent works [10][11][12]. The

increase in Internet link bandwidth and service mix makes the timely detection of

unwanted traffic a boring task that does not scale easily as such links increase in

capacity. Typically, the existing solutions trigger alarms often after some damage was

already caused. More active strategies need to be put in place to speed the detection and

response up. Nowadays, while some users are recovering from given problems from

unwanted traffic, others are next to be subjected to it.

Lastly, a clear definition of what is unwanted traffic remains to be made.

Someone‟s unnecessary or even harmful traffic may be seen as someone else‟s normal

service. Recreational applications such as online games, instant messages, P2P

applications, VoIP and video services, and emerging social networks can be considered

normal activities by given ISPs, while being inappropriate in most enterprise networks.

Since it is hard to get consensus over this, a single and flexible solution capable to

accommodate all concerns becomes more and more difficult.

To sum up, this thesis is motivated by the current alarming situation that

unwanted traffic has reached. It becomes clear that this type of traffic stands as one of

the key security problems and one that needs urgent identification and mitigation

although it is still not trivial how to do so. Issues as types, sources and goals need to be

carefully studied and answered so that effective actions can be undertaken to mitigate

the effect of the unwanted traffic.

This thesis shares the view that:

 Limiting the line of defense to peripheral mechanisms provides a small

picture of a wide scenario.

 The use of highly specialized systems to combat specific problems can

achieve little benefit and these are inefficient in handling other types of

unwanted traffic including new ones.

 The distributed and collaborative solutions are primordial to get an early

interception and filtering out of suspicious traffic and to ensure a limited

damage by such type of traffic.

5
 http://www.sigcomm.org/

6
 http://www.justin.tv

7
 http://www.joost.com

8
 http://www.youtube.com

4

1.1. Objectives and Contributions

Actually, strategies for dealing with unwanted traffic are based on three steps: (i) to first

gain knowledge of the different types and sources of unwanted traffic, (ii) to assess their

impact and the effectiveness of existing solutions against these, and (iii) to develop and

test effective new countermeasures against unwanted traffic.

The main goal of this thesis is to achieve these steps focusing on the study,

definition and description of the problem of unwanted Internet traffic identification and

consequently putting forward a solution that is able to accurately identify this traffic.

Overall, there are five contributions on this thesis:

1. The study of unwanted Internet traffic universe. The work begins by

introducing the reader into the world of unwanted Internet traffic.

Definitions, classifications and gives some examples designed to explain the

growth of this traffic (Chapter 2). Next, many solutions to deal with

unwanted traffic are also presented (Chapter 3).

2. An approach to identify unwanted traffic based on orchestration

(Chapter 4). The proposal of a single-platform for unwanted traffic

identification management to allow an integrated management of all

cooperative methods, tools and events for unwanted traffic identification is

detailed next. Denominated OADS (Orchestration-oriented Anomaly

Detection System), it specifies a framework capable to receive multiples

inputs (alerts) from different anomaly detectors, evaluates them and decides

of any likely existence of some type of traffic anomaly.

3. The design and implementation of the Alert Pre-Processor tool (Chapter

5). This tool employs a cluster approach to receive multi-source alerts,

aggregates them and extracts the most relevant, allowing their correlation

and possibly perception of their attack strategy. To sum up, this tool has the

potential to reduce the bandwidth and computational load at the

(centralized) server(s), decreasing the false negative rate and prioritizing the

most relevant alerts.

4. The design and implementation of an alert correlation and fusion tool,

OADS FER Analyzer (Chapter 6). More specifically, this tool relies on the

gathering and correlation of incoming alerts, aiming to discover sequences

(or frequent episodes) and predict future alerts and consequently possible

targets of anomalies. To achieve this, it adopts episode frequency analysis,

an adaptive technique that observes and develops knowledge, in the form of

probabilistic rules, to generate relationships among events (alerts) that

anticipate and make up a given attack.

5. The design and implementation of a Web Information Retrieval

Support System (WIRSS) tool, OADS Miner (Chapter 7). This tool

gathers security information about vulnerabilities, attacks, intrusions, and

traffic anomalies available on the Web. It has two main applications. The

former collects data from distinct and reliable Internet sources and indexes

them efficiently, excluding irrelevant information. The latter provides a

focused search engine that allows ISP network operators, IT managers and

researchers to better understand of the causes, effects and trends involving

attacks and anomalies on the Internet.

5

In order to evaluate the ideas behind this Thesis and its implementations, a series

of experimentation were conducted, aiming to prove the efficacy and accuracy of the

adopted solutions. The obtained results can be used to give insights and ideas towards

building future robust network architectures that may avoid some of the pitfalls and

unpredicted shortcomings of protocol design leading to unwanted traffic domination of

the Internet.

1.2. Road map

This Thesis is organized in three parts. The first part provides the background required

to understanding this work. It consists of two surveys: one on unwanted Internet traffic

universe and other one relates to solutions suggested in dealing with it. Readers who are

familiar with unwanted Internet traffic definitions and known solutions against it can

skip this part. The second part describes the design aspects of the proposed approach for

unwanted traffic identification. The implementation of each component is showed in

individual chapters, describing some related works and the artifacts employed for their

deployment. The third part shows the evaluation results of the current unified proposal.

The implemented tools are tested in different scenarios and using both controlled and

injected real Internet traffic.

Part I - Background

In Chapter 2, background notions required to understand the Thesis are provided. First,

an overview of unwanted Internet traffic is introduced. Some formal definitions are

presented and a new one is provided. Next, existing classifications of unwanted traffic

are presented and a new one, related to legitimate traffic, is formalized. Furthermore,

the most relevant points, aspects and shortcomings on the Internet architecture design

are discussed to establish a relationship with the current level of unwanted Internet

traffic found today. The existence of an underground economy, commonly related with

attacks and the proliferation of this traffic, is also discussed. Last, the most recent

unwanted traffic types are presented, including Internet infrastructure attacks, popular

“social activities” like spam, phishing, and P2P applications; malicious codes, and

uncommon traffic as encapsulated traffic.

Chapter 3 discusses unwanted traffic solutions and the combat to do away with

it. First, some current mechanisms and solutions are presented and their failures with

regard to unwanted traffic are discussed. Second, some promising and relevant solutions

are described. In this section, a survey of approaches to traffic analysis, together with

special emphasis on traffic behavior analysis and its applicability to identify,

characterize, and detect unwanted Internet traffic, are presented. Last, collaborative

solutions are described, including requirements to develop this type of solution and

many related works.

Part II – OADS Approach and Tools

Chapter 4 explains the Thesis vision for what is the next step in direction of the

automatic and quick detection and limitation of unwanted Internet traffic. The proposal

of the Orchestration oriented Anomaly Detection System (OADS) is presented. The

idea behind this approach is to harmonize a range of components (anomaly detectors,

information bases, alert handlers, analyzers, and decision service) via an orchestration

engine, emulating the interaction among different and distinct elements and increasing

the accuracy of a diagnosis towards an event. The OADS approach facilitates the

management of unwanted traffic identification, by providing means to integrate

6

(collaboration) different anomaly detectors and consequently increasing the network

security level.

In Chapter 5, the design and implementation of OADS Alert Pre-Processor tool

is presented. It focuses on solving the problem of the large number of overwhelming

alerts generated by intrusion and anomaly detectors whenever abnormal or suspicious

activities are detected. Since inspecting and investigating all reported alerts manually is

a difficult, error-prone, and time-consuming task, the concepts of entropy and relative

uncertainty are applied to developed a simple tool capable to automatically aggregate

large volume of multi-sources alerts (without specific prior knowledge about them) and

next extracting only the most significant ones. This module is able to deduce simple

scenario attacks and take immediate actions.

In Chapter 6, the design and implementation of OADS FER Analyzer tool is

presented. This chapter evaluates the benefits of the use of frequent episodes analysis to

correlate and predict alerts with a high confidence level. Therefore, the implementation

of this tool is presented and some tests are made to confirm its efficiency in the presence

of anomalous traffic. Making use of a more representative input (only relevant alerts

from OADS Alert Pre-Processor), it is proved that the tool is capable to correlate these

alerts, allowing a better representation of attack scenarios and taking more effective

countermeasures.

In Chapter 7, the design and implementation of an OADS Internet Miner tool is

presented. The focus of interest is to help ISP network operators and IT managers in

enlisting the help specialized Web sites containing vulnerabilities reports and Internet

traffic statistics in an attempt to keep up to date with current security threats and

incidents, minimize their impacts and speed up both detection and mitigation phases.

While making use of information retrieval concepts such Web-based Information

Retrieval Support System (WIRSS) and Search Support Engine (SSE), a module

focused on gathering information about Internet security events (OADS Miner) is built

into the unified solution.

Part III – Results

Chapter 8 describes the implantation and evaluation of the OADS approach. First, the

orchestration heuristic is presented and explained. Next, relevant points of the

implementation (and not previously discussed) are described to provide a better

knowledge of the adopted OADS approach. Therefore, five experiments, representing

and emulating different but real scenarios, are conducted in order to test the OADS

prototype.

Chapter 9 presents the Thesis conclusion. It reviews and summarizes the Thesis

contributions, discusses some lessons learned and points towards interesting future

works.

1.3. Bibliographic Notes

Most of the work presented in this Thesis appears in previously published or currently

submitted conference proceedings and journals. The list of related publications is shown

hereafter:

 L. E. Oliveira, R. Aschoff, B. Lins, E. L. Feitosa, D. Sadok. Avaliação de

Proteção contra Ataques de Negação de Serviço Distribuídos (DDoS)

7

utilizando Lista de IPs Confiáveis. In Anais of VII Simpósio Brasileiro em

Segurança da Informação e de Sistemas Computacionais (SBSeg 2007). Rio

de Janeiro, Brasil: SBC, 2007.

 E. L. Feitosa, L. E. Oliveira, B. Lins, A. Carvalho Junior, R. Amorim, D.

Sadok, U. Carmo. “Security Information Architecture for Automation and

Control Networks”. In Anais of VIII Brazilian Symposium on Information

Security and Computing Systems (SBSeg’08). Porto Alegre, Brasil: SBC, pp.

17-30, 2008.

 E. L. Feitosa, E. Souto, and D. Sadok, “Tráfego Internet não Desejado:

Conceitos, Caracterização e Soluções,” in Text-Book of Mini courses of the

VIII of the Brazilian Symposium on Information Security and Computing

Systems (SBSeg’08). Porto Alegre, Brasil: SBC, 2008, ch. 3.

 D. Sadok, E. J. Souto, E. L. Feitosa, J. Kelner, L. Westberg. “RIP - A

Robust IP Access Architecture”. Computers & Security, vol. 38, pp. 359-

380, 2009.

 B. Lins, E. L. Feitosa, D. Sadok. “Aplicando a Teoria da Evidência na

Detecção de Anomalias”. In Anais of XXVII Brazilian Symposium of

Computer Networks and Distributed Systems (SBRC’09). Recife, Brasil:

SBC, pp. 583-596, 2009.

 T. G. Rodrigues, E. L. Feitosa, D. Sadok, J. Kelner. “Uma Ferramenta de

Suporte a Recuperação de Informação na Web focada em Vulnerabilidades

e Anomalias Internet”. Submitted to the 10th Brazilian Symposium on

Information Security and Computer Systems (SBSEG 2010).

 L. Vilaça, E. L. Feitosa, D. Sadok, J. Kelner. “Aplicando a Frequência de

Episódios na Correlação de Alertas”. Submitted to the 10th Brazilian

Symposium on Information Security and Computer Systems (SBSEG 2010).

 E. L. Feitosa, T. G. Rodrigues, E. Souto, D. Sadok. “A Web Information

Retrieval Support System for Internet Anomalies and Vulnerabilities”.

Submitted to the 11th International Conference on Web Information System

Engineering (WISE 2010).

 B. Lins, E. L. Feitosa, D. Sadok. “Um Esquema para Agregação e

Extração de Alertas para Soluções Colaborativas”. Submitted to the 10th

Brazilian Symposium on Information Security and Computer Systems

(SBSEG 2010).

 E. L. Feitosa, L. Vilaça, D. Sadok, J. Kelner. “OADS Alert Pre-Processor: a

tool for alert correlation and prediction”. Submitted to the International

Journal on Multi-Sensor, Multi-Source Information Fusion (Elsevier).

 E. L. Feitosa, E. J. Souto, D. Sadok. “Orchestration oriented Anomaly

Detection System”. Submitted to the Computers & Security Journal

(Elsevier).

8

Chapter 2

Unwanted Internet Traffic

Not all unwanted Internet traffic should be seen as harmful. All involved parties

(Internet Service Providers - ISP, Telecoms, enterprises, end users, for example) have

different views about what is unwanted traffic or not, and, consequently, the way that

they react to it is also similarly different.

This chapter defines unwanted Internet traffic according to some works and

presents a new definition that includes both legitimate and illegitimate traffic. The

problem involving the context is also discussed and illustrated using some examples.

Then, a formal classification and a new one based on common traffic and application

features is presented. Next, some possible reasons that could explain the recent increase

of this type of traffic are enumerated. Architectural Internet design and choices are

analyzed and a relationship with unwanted traffic generation is established. Finally, a

discussion of the main types or sources of this traffic is made. The main or more known

types are explained and examples of results are described.

2.1. Definition

Initially introduced in the beginning of the 80‟s, the term “unwanted traffic” was always

associated with some incidents like viruses, worms, intrusions and attacks. Some of

those became famous such as the Internet worm [13] and DDoS attack to eBay,

Amazon, and CNN.com [14].

Only recently unwanted traffic has been used to define any Internet unsolicited,

non-productive, not desirable, and illegitimate traffic. Pang et al. [15] define unwanted

traffic as a non-productive traffic composed by malicious (flooding backscatter, scans

for vulnerabilities, worms) or benign (misconfiguration) traffic. They term this as

background radiation traffic and include backscatter traffic related with DoS and DDoS

attacks response, scan activities, spam, and exploits traffic. They also refer to unwanted

traffic as “up to no good” traffic. Soto [16] adds that unwanted traffic also can be

generated by traffic corrupted by noise or interference on network transmission lines.

Indeed there were many occasions where misconfigured routers or faulty networking

equipment would send huge amounts of traffic towards networks where it was not

needed. Xu et al. [17] characterize unwanted traffic as malicious or unproductive traffic

that attempts to compromise vulnerable hosts, propagate malware, spread spam or deny

the use of valuable services. Other existing nomenclatures are: background traffic [10],

abnormal traffic [15] and “junk” traffic [18].

Despite the previous definitions comprehend almost all aspects related to the

generation and impact of unwanted traffic, a recent and important factor is not

considered: financial gains. For this reason, this thesis defines unwanted traffic as: any

not requested and unwanted network traffic, which its unique purpose or outcome is

consuming network and computing resources, wasting communication, processing and

storage time and money of the users or the owner of the resources while often

generating profitability for hackers in some form [19].

9

2.1.1. Context problem

In spite of these definitions, there is no consensus about what is unwanted traffic.

Commonly, such “concept” is relative and dependent of the context in which it is

located or applied, and of the used application. For example, China treats the traffic

generated by SkypeOut application [20], a service that allows Skype voice over IP users

to access the worldwide public switched telephone (PSTN) lines, as illegal because it

affects the profit of the government owned Telecommunication Company.

Following the same logic, ISPs, Telecoms, and public and private enterprises

began to limit the use of Peer-to-Peer (P2P) file sharing and video sharing (YouTube,

for example). They argue that the generated traffic of these applications is potentially a

breach for distributing malicious code such as spreading viruses, worms, spywares, and

bots to their customers. In addition, it breaches copyright protection, consumes

unnecessary bandwidth, and wastes work-time of employees.

This same view has been given to recreational applications (online games) and

activities such as emerging social networks (Orkut
9
, MySpace

10
, Facebook

11
, for

example) and relationship applications such as IRC (Internet Relay Chat), instant

messages (MSN
12

 and Google Talk
13

, for example). The most recent case involves the

Comcast Company, which in October 2007 was secretly discovered degrading several

popular peer-to-peer applications, including BitTorrent [21].

2.2. Classification

Typically, the strategy for dealing with unwanted traffic is to gain knowledge about it

and then establish deterministic ways for detecting it in the traffic mix. For this reason,

it is necessary to categorize and classify unwanted traffic in terms of its nature (root

causes, common types, targets and effects).

The first formal unwanted traffic taxonomy was specified at an IAB (Internet

Architecture Board) workshop [10]. It proposes a classification of the deliberately

created unwanted traffic in enterprise networks into three categories: Nuisance,

Malicious, and Unknown.

 Nuisance, as the name says, covers the background traffic that clogs

bandwidth and resources like computing power and storage. Typical

examples include Spam and P2P file sharing since this kind of traffic

normally carries malware or lures the user to access unreliable links.

Regarding to P2P traffic, there is the cumbersome issue of the infringement

of copyright. Beyond Spam and P2P, this category can also include DoS and

DDoS attacks. Denial of Service attacks, as their name suggests, remove

temporarily access to a service by bombarding this with service requests.

Although one of the most used forms of attacks, they are often quickly

detected and cause only loss of service time which may sometimes reflect

on enterprise revenues. Often the loss is limited to service unavailability,

seen as a nuisance at best. DDoS attacks usually generate an unusual traffic

9
 http://www.orkut.com

10
 http://www.myspace.com

11
 http://www.facebook.com

12
 http://www.msn.com

13
 http://www.google.com/talk

10

profile where many hosts target a single server in a very short duration by

sending a very high number of service requests. This traffic profile is used

in the detection and identification of such attacks.

 Malicious represents the traffic responsible for spreading malware

including viruses, worms, spywares, and others. An important fact is that

after incidents caused by malicious traffic are detected, the solution

demands specific tools, skills and time. The high level of losses that this

class of unwanted traffic requires a fast and efficient response and costly

constant software updating. In addition, it is normally specific to targeting

operating systems, router and other software vulnerabilities. To complicate

matters, there are even kits available in the Internet to teach any user how to

create new versions of viruses and worms.

 Unknown involves all traffic that even when belonging to the above

categories it could not be identified as such (malicious traffic encrypted or

merged with legitimate traffic, for example) or those that nobody knows

anything about their intentions or sources. Quiet worms like Storm [22] are

another example. They open backdoors on hosts and stay dormant for a long

time. Generally, this kind of bad traffic results in the greatest financial

losses.

Another classification was proposed by Soto [16] where the unwanted traffic is

categorized according to its primary or secondary sources. A primary source

corresponds to the initiator of a communication such as when using a request like TCP

SYN (TCP request with SYN flag set used to open a new connection), UDP, and ICMP

Echo Request packets. Primary sources hence may include P2P services, spam email,

viruses and worm propagation, intrusions, and massive attacks. Secondary sources

correspond to traffic responses like TCP SYN/ACKs, TCP RST/ACKs, and ICMP. This

class of unwanted traffic includes all traffic originated by backscatter and benign traffic.

In spite of important, the classifications of unwanted traffic seen so far do not

consider one aspect: legitimate traffic. As previously mentioned, the discussion about

what actually is unwanted traffic or not depends of where this occurs and the business

model used. Considering this assertive, any traffic, even legitimate, that infringes one‟s

business model is not welcome and labeled as unwanted. Based on this fact, this chapter

presents another classification that also includes the legitimate unwanted type of traffic.

Unwanted traffic is therefore split into the following four categories:

 Malicious codes represent the kind of unwanted traffic employed purposely

to damage initially hosts and consequently networks, without the user

consent. Normally, these malicious codes steal data, allow unauthorized

access to resources, exploit systems, and utilize the compromised hosts and

networks to proliferate more unwanted traffic. This category is composed by

viruses, worms, trojan horses (and variants such as remote access trojans

and “gimme
14

”), and spywares. Among all of them, worms and trojan horses

are considered the most “contagious” because of their capability of

including unhealthy hosts in botnets (networks of invaded and controlled

hosts), generate a massive spam, execute host service scans, and probe the

IP address space. Malicious codes often exploit operating system and

networking software design pitfalls and bugs. Like an epidemic, they

14

 Actually, trojan horses are known as gimme, a slang for “give me”, in reference to spam messages that

promise some gain or hot content.

11

propagate through networks at considerable speeds. The complexity of

today‟s system software has opened the way for the increasing presence of

this class of damaging traffic. To combat their spread, a number of fast

response structures have been put into place to identify and provide network

administrators with information on the recovery patches needed to cure their

software. These sites should be consulted continuously to help

administrators keep their system sane and stay a step ahead of attackers.

 Unsolicited messages represent a class of unwanted traffic used to send

undesired and unsolicited bulk electronic messages. Email spam takes the

biggest share. This is currently seen as the most cost-effective online

advertising method available. This is very similar to the postal junk mail

people are used to receive at home. A number of companies engage into

aggressive email marketing campaign. A mail shot (or direct mail) is a form

of advertising and apparently among the most successful ways of selling a

product or service. Although they claim raising awareness among selected

potential customers about their products, for most people it is nothing but

junk mail. This is even worse in the case of the Internet as email addresses

are very easy to collect from the Web using specialized crawlers and the

cost of blind direct e-mail is minimal in addition to annoying the receivers

and wasting network resources. Spam‟s bad reputation is due to the fact that

email messages are often related to dozens of unwanted and illicit activities.

Regarding illegitimate activities, spam scan type can be used for phishing

techniques, social engineering attempts, “letter-bombs”, denial of service

attacks, mail storms, server overloads, and so on. With regard to unwanted

activities, hoaxes, chain letters, and publicity are typical examples of how

spam can be very unproductive. Another type of unsolicited messages is

pop-up spam. Not discussed thus far, pop-up spam is a typical nuisance

application since it exhibits windows messages like “error occurred” and

“machine compromised”. According to Krishnamurthy [11], this type of

unsolicited message started at least 4 years ago and hundreds of millions of

these messages are sent by hour. Spam variations include SPIT (Spam via

Internet Telephony) and SPIM (Spam via Instant Messages). Spam

creativity does not stop growing and there could certainly be more spam

forms in the future using bulky objects such as video information.

 Internet vulnerabilities represent the kind of unwanted traffic generated or

explored due to the design and building of the proper Internet or protocols

that compose it. Denial of service attacks (DoS and DDoS) and its variants,

attacks to the Internet infrastructure involving BGP (Border Gateway

Protocol) and DNS (Domain Name Service), backscatter, low rate attacks,

misconfigurations, and benign failures (outages and flash crowds) are

examples of Internet vulnerabilities regarding unwanted traffic. The section

2.4 gives more information on Internet vulnerabilities. Architectural Internet

services such as DNS and BGP were built with little concern with security

and based on cooperation. In today‟s scenario even Internet state terrorism

is not a fear-fetched possibility.

 Recreational applications represent the natural reason for the traffic

growth seen on the Internet. The natural convergence among data

(especially multimedia) associated with the user demands lead to an

explosion of recreational traffic. Examples of such traffic include Internet

radio, MP3 downloads, instant messages, interactive online games, and

12

specially streaming abundant multimedia traffic resultant from new

applications such as Skype, MSN, Joost, Justin.TV, eMule, and Bit torrents.

At first sight, the relationship between recreational applications and

unwanted traffic is not perceived, but another deeper look changes that.

Although typically this type of traffic is not related with the generation of

gains for hackers, it is easily associated with the network resource waste like

bandwidth and storage space, and the spent time of end-users in

unproductive activities. For instance, online games, IPTV, and radio via

Internet are not related with malicious activities, but are responsible for

many bandwidth problems, especially at the edge and access networks. A

recent Ipoque Internet study [23] reveals a considerable growth on web

traffic. This fact is attributed to the popularity of file hosting, social

networking sites and the growing media richness of Web pages. According

to this study, file hosting has increased to up to 45% of all web traffic.

Social networks
15

 are considered not productive traffic, chiefly in work

environments, and can be used to spread malwares among users (SAMY
16

virus, for example). The exception of the rule is P2P applications.

Confessedly a large source of unwanted traffic, they carry malware codes,

are responsible for high bandwidth-consumption, and are the main

encourager for piracy because it breaches the copyright protection.

2.3. Unwanted Traffic: Who is guilty?

In today‟s Internet architecture, the presence of both malicious and unintentional

unwanted traffic by some may be seen as a design weakness while others think that such

phenomenon reflects human activities and behavior. There is truth in both statements.

This section discusses the possible causes of unwanted Internet traffic about two

different angles: Internet design principles and underground economy.

2.3.1. Internet Design Principles

At least 40 years ago, a set of desirable features was established to define the goals of an

experimental network known as the ARPAnet, which major mission was to develop a

robust military computer network using packet switching, a recent technological

breakthrough invention of that time, capable to employ different link technologies

(leased phone lines, satellite, radio, etc.) inside the same communication infrastructure,

i.e., with internetworking support [25]. This network arises the Internet and these

features were known as the Internet Design Principles and recorded in some important

and fundamental papers and formal documents [25][26][27].

Although many years have passed, these design principles have withstood time

by remaining remarkably stable, successfully resisting to a great number of new and

emerging requirements from the different user communities. However, it is easy today

to establish a relationship between them (as well as their existing implementations) and

unwanted traffic. Basically, there was a total lack of concern with issues such as

privacy, control, and security. The requirements were centered on the robustness of the

15

 Social networks represent the interaction between human beings through the formation of groups or

relationships. MySpace, Facebook, and Orkut are great exponents of social networks. Despite being

ranked as the virtual world, the Second Life can also be seen in this category.
16

 Samy virus is a worm, also known as JS. Spacehero, especially develop to attack MySpace social-

network site [24]

13

routing relay network and its fundamental services were based on the assumptions that

network members are going to cooperate in forwarding to the best of their capabilities

information.

The first example is layering principle [26]. Especially created to insert

simplicity and modularity in the Internet architecture development, the idea is that each

layer, arranged in a vertical stack, relies on the next lower layer to execute more

primitive functions and provides services to the next higher layer. This principle is

known as hourglass model, where the IP protocol works as a universal data packet

delivery mechanism (“IP over everything, and everything over IP”). However, this

apparent simplicity has caused some problems. According to this model, all complexity

was delegated to the network edges (end-points) while the IP layer (the thin waist of the

hourglass) remained or tried to remain as simple as possible. Since the responsibility to

implement all additional and necessary functions was “delegated” to the end-points, it is

easy to understand the great number of vulnerabilities in protocols, software, and

applications founded today. This is the price that one pays for giving user end systems

more control over the network.

Specifically when speaking about unwanted traffic, the same idea has been used

in P2P and multimedia applications to bypass traffic shaping policies. The Hyper Text

Transfer Protocol (HTTP) has been used as generic transport protocol for applications

that have little or no relation to the Web and its actual intended usage (Figure 2.1).

Almost all P2P applications do take a ride over this protocol. The explanation is simple.

HTTP is normally released in almost all firewalls, ACL (Access Control List), and

filters. In addition, it is versatile and simple. Thus, it is easier to use and forge the HTTP

communication with new applications instead of trying to surpass these security

systems. As a result, the Internet infrastructure is also used to disseminate unwanted

traffic.

VoIP, TV, Rádio

Web

P2P

HTTP

T
h

is

w
a

y

FIGURE 2.1: HTTP “hourglass model”

The simplicity principle [26][28] is the second example. The idea is that in order

to be successful, the Internet needed to be as simple as possible. This philosophy is

often referred to under the message: “Keep it Simple Stupid” or KISS for short.

However, this choice also has influenced in unwanted traffic. In non-linear system

theory there is the amplification principle. It states that there are nonlinearities that

happens at large scales but which do not occur at small to medium scales [28]. In other

words, small fluctuations in a dynamic system like the Internet may accumulate and

produce major dangerously uncontrollable changes. The classic Internet example is the

14

BGP traffic. A recent case occurs involving the youtube.com and the Pakistan Telecom

[29]. The Pakistan Telecom (AS 17557) accidently started broadcasting internally an

unauthorized announcement of the network prefix 208.65.153.0/24 as being that of

youtube.com. However, one of Pakistan Telecom‟s upstream providers, PCCW Global

(AS3491), forwarded this announcement to the rest of the Internet. It then took only few

minutes to result in the hijacking of YouTube traffic on a global scale.

The last example is the end-to-end argument [26][28][30]. Basically, it suggests

that communications protocol operations (functions) should occur at the end-points of a

communications system or as close as possible to the resource being controlled. This

reduces the subnet responsibility to packet relaying, or switching more accurately. The

design of any new service does not suffer from any form of network processing and

should be straight forward as the actual experience over recent years has indeed shown.

However, there is ample evidence of the set of factors involving the end-to-end

argument that directly corroborated with the unwanted traffic dissemination.

Firstly, this principle was planned to work in a small group of mutually trusting,

trusted, collaborative, and technically knowledgeable and skilled users (end-points)

attached to a transparent network [26]. Nowadays, this scenario is totally different and

is practically impossible to guarantee that the original commandments of cooperation

and willingness would be enforced. The statistics provided by different CSIRT

(Computer Security Incident Response Team) teams ratify that the number of security

events including attacks, inappropriate interactions (spam e-mail, for example),

misconfigurations, and annoyances, increases day after day and practically always

involves unsecure, uncompromised and badly used end-points. It is safe to assume that

the Internet operates in an untrustworthy world when designing new services and

protocols.

Secondly, instead of relying on dumb and limited terminals hooked onto reliable

and often proprietary super and mini computers, today‟s users are computing consumers

equipped with powerful personal devices and computers with embedded processors,

portable user-interface devices, Web-enabled televisions and accessories, cell-phones,

and so on. These users are not expected to understand the inner working of such

powerful devices in order to use over networks. Consequently, configuration,

protection, and control problems are trite and making these end-points easy targets to

many types of security attacks, privacy invasion and other similar anomalies.

Lastly, the current business model of the Internet is not seen as being adequate to

emergent applications. Actually, many ISPs view the massive use of streaming media

and other types of new applications as a service to be offered only within some bounds

(competitive differentiator) rather than a sort of capability to be provided, end-to-end,

across multiple ISPs. The result is that while great investments have been made to keep

the isolated networks, especially at the network core, reliable safe and trustworthy, the

end-points are abandoned to their own faith. In addition, there is a trend of third-party

involvement. Organizations, companies, and governments have demonstrated a growing

interest in imposing in the communicating among end-points, to provide and enforce

service accounting and taxation, law enforcement, and public safety. These

interferences in the end-to-end argument can purposely insert unwanted and unsolicited

communication between end-points.

To summarize, the IAB [10] enumerates some facts that prove how the

purposely chosen natural Internet design principles have facilitated the rapid

proliferation of unwanted Internet traffic:

15

 Open nature: The Internet is one of few operational platforms without

control centers and surprisingly this feature is still contributing to its success.

However, just like everything else, such open architecture comes at a cost.

This design feature inflicts a series of technical limitations and problems as

for example when identifying the whereabouts and identity of an attacker.

The Internet architecture offers full and free communication between hosts

and its main engine, the Internet Protocol (IP), does not provide any

mechanism for auditing or taking a “tomography” of an attack. As a result,

there is potentially no limit on what a host can do and there is also no record

kept on the activities of a host by the network. This memoryless model has

been purposely chosen for its simplicity and quick adaptability to network

changes and traffic loads. In addition, the end-to-end argument [27] gave to

the users a powerful mean to easily design and deploy new applications

without the need for any network changes. Of course, harmful applications

and unwanted ones have also taken advantage of this ride.

 Versatility: The same Internet infrastructure employed to access web pages,

read e-mails, and chat is available for miscreants trying to get other types of

benefits, often illegal ones, or simply cause harm to others. Protecting

network resources and information has become a big business. A number of

international and small players are offering their expertise and services to

both enterprise level and home users. Think that any IT professional

specialized in giving support and maintaining a network or a service (IRC,

for example) is also potentially capable of eluding and skinning uninformed

users and sometimes stealing and collecting privileged information or

compromising the security of their hosts and systems.

 Lack of meaningful deterrence: There is no existing simple way to

attribute responsibility when something goes wrong, be it unintentionally or

maliciously. There is a limit to what existing solutions can achieve and

continuous efforts are needed to seek and identify new threats and develop

cures to these.

2.3.2. The root of all evil

In spite of the existence of many reasons to explain the real “boom” that unwanted

traffic underwent in the last ten years, there is some consensus of the fact that there

exists an infamous industry gaining lots of money with the generation and proliferation

of unwanted traffic. This outlaw economy is responsible for stimulating and generating

the most varied malicious activities such as stolen credit cards or bank accounts,

malware and root kits design and spreading, phishing attacks, sale of logins and

passwords, and so on, on the Internet.

This “black market” weighs heavily with the building and execution of

malicious codes. Famous specialized security companies such as Kaspersky Lab [31]

have perceived that current malwares and its variants exclusively aiming to obtain

financial gains, and that “nonprofit” malwares are in extinction. Davies [12] asserts that

this black market is strongly deep rooted into the Internet as a culture capable to dispose

of billions of dollars around the world and that its eradication is almost impossible. The

IAB workshop [10] considers this outlaw economy as “the root of all evil of the

Internet”.

16

The foundation of this black market lays partially in the use of IRC servers.

These are widely used to manage and execute illicit activities such as theft of bank

accounts and credit cards numbers, login and passwords, and the proliferation of

malicious code. In addition, IRC servers can be seen as big virtual multi-floor mall

where stolen belongings and properties as well as private codes and tools are sold. For

instance, in the first floor, equipments and tools (bots and botnets) for beginners are

sold freely. On the second floor can be found more elaborated tools and hosts and

routers access passwords. The third floor corresponds to retail sales. Bank accounts,

credit cards numbers, and personal logins and passwords for ISPs and Internet services

are negotiated directly or sometimes via auction sale. The last floor sold access to

respectable servers of big companies and governments businesses.

Part of the profits is reinvested to diversify the illegal activities including the

recruitment of professional writers to compose more elaborated spam messages,

specialized programmers to develop new and robust malware codes (virus, worms, and

spyware), Web experts (programmers and designers) to create more sophisticated Web

sites for phishing activities. To complicate this ugly and dark scenario, the people

behind this black market take advantage of the lack of punishment for most malicious

activities and the lack for adequate legislation on the Internet. For instance, a DDoS

attack usually makes use of a large number of hosts previously “corrupted”, spread

across different backbones possibly in different countries. Since there is a large number

of involved elements (hosts, access networks, backbones, routers, victims), it is not

clear who should take the responsibility for the problem. Furthermore, the absence of a

legal system in most countries, including Brazil, which criminalize some kinds of user

conducts also, has contributed to the increase of malicious, non-productive, and

unwanted traffic on the Internet. Even in countries where there is some jurisdiction over

Internet crimes in place such as United States and England, the laws seek to penalize the

violators only once the crimes have occurred and commonly much time after.

2.4. Recent Examples of Unwanted Traffic

In order to improve the understanding of the subject, this section splits the most

notorious types of unwanted traffic in five subsections and presents for each one of

them examples of attacks and related applications that are capable to generate

unsolicited and unproductive traffic.

2.4.1. Internet infrastructure attacks

2.4.1.1. DNS

The Domain Name System (DNS) [32][33] is a hierarchical and distributed database

that provides an essential service for the applications and Internet services: the

translation of domain names to IP addresses. Due to its importance in the Internet

infrastructure, any failure has potential to affect a large number of users and domains.

This is behind the constant DDoS attacks made against DNS root servers. The most

recent one was registered in February 2007 [34], when a significant Distributed Denial

of Service (DDoS) attack, from the Asia-Pacific region, affected 6 of the 13 Internet

DNS root servers that form the foundation of the Internet name service. Similar attacks

have been occurring since 2002 [35][36][37][38].

Currently, there has been a considerable advance in the fight against DNS denial

of service attacks. It has almost been mitigated due to efforts in developing and

17

implementing new solutions such as the anycast
17

 technology, for example. On the other

hand, more specific and located DNS attacks gained more widespread. Among then,

DNS spoofing attacks has been highlighted by many studies. The basic idea behind such

attack is trying to corrupt the DNS information base, changing domain name data or

adding new unreal domain addresses, aiming to redirect legitimate connections to fake

servers (false addresses and websites) on the domains controlled by attackers. Actually,

this type of attack is called pharming and its main target includes web sites for financial

institutions.

There are two main techniques to perform DNS spoofing. In the first, known as

DNS ID spoofing, the attackers run sniffers to intercept (Man in the Middle) DNS

requests and get their request ID number. Next, a fake reply is sent with the correct ID

number, but with the IP address of the corrupted DNS server. Recently, Dan Kaminsky

[39] reported and publicly demonstrated a previously known BIND vulnerability

implementation that permits attackers to “guess” the DNS ID and consequently to

personify the DNS domain. DNS incidents occurred at the U.S. National Security

Agency in May 2008 [40] and at the China Netcom (CNC) in August 2008 [41]. These

were attributed to this spoofing vulnerability, but nothing was proved so far. The second

technique is referred to as DNS cache poisoning. It is achieved through the invasion of a

DNS server and replacing its DNS original information and data by other completely

fake or modified data. The DNS zone transfer process is also used to spread the cache

poisoning.

Another recent type of DNS attack is called Fast-Flux Domains. Typically, Fast-

Flux Domains [42] presents quick changes of Resource Record (RR) data and therefore

has a low TTL (Time to Live). Commonly, Fast-Flux Domains are composed by

hundreds or even thousands of compromised hosts and are used to generate a Fast-Flux

Service Network (FFSN). The attackers employ the services from such networks to send

large volumes of spam via malware codes such as the Warezov/Stration [43] and Storm

[22] (and its variation including Nuwar/Zhelatin/Peacomm/Peed), to steal (phishing

scheme) logins and passwords (in social networks like Myspace, for example). It is

rather difficult to identify, track, and neutralize domains and hosts utilized for this type

of illegal purpose.

Lastly, typo-squatter domains [44][45] and DNS rebind [46] are also used to

spread unwanted traffic. Typo-squatting, also called URL hijacking, is a phishing

technique where the attacker takes advantage of URL mistakes or typo errors. Attackers

record and host unallocated domains with similar spelling to great access Web sites,

changing only one letter or a sub-domain (from .com to .net or .org, for example). This

type of action is known as domain parking and normally is used to spread virus, worms,

adware and spyware. Recently, the work of Zdrnja et al. [47] identifies that many typo

squatting domain are hosted in a same IP address to divulge advertisements and

publicity.

DNS rebind tries to elude web browser to execute arbitrary malicious scripts on

other machines of the same network [46]. Basically, this attack makes use of the DNS

name resolution to forward request for a corrupted DNS server, configured to response

with a TTL very low. The first response contains the server IP address that is hosting

malicious code. Subsequent responses contain spoofing IP addresses to the attack target.

17

IP Anycast is a load balancing and routing technology that enables multiple hosts to provide a service or

function to a single IP address normally assigned to one host on the Internet. Servers that use IP Anycast

share a single IP address, and user requests are routed to the nearest server on the network.

18

2.4.1.2. BGP

The Internet routing is based on a distributed system composed by several routers,

aggregated in management domains known as Autonomous Systems (AS). These were

introduced in the year of 1991 exactly when the Internet was moving from being a U.S

government run project to embrace a new backbone that also interconnects to private

and corporate networks. The main new change needed was to do with routing among

these different networks. Hence, the Internet was split into politically and economically

driven networks and there was a need to review how routing should be made between

these new players. This leads to the birth of the Border Gateway Protocol (BGP) [48] as

a solution for constantly advertising new reachability information among such ASs.

These would then use the number of hops and other policies to decide on what external

routes to use. Thus, Internet routing may be divided according to two distinct scopes:

intra or inter domains. Attacks and anomalies concerned with intra-domain routing,

though also relevant, do not produce chaotic effects, since the number of elements

involved is often normally small. The management of intra-domain routing attacks is

relatively easier to contain. On the other hand, routing attacks between different

domains (inter-domains) are more worrisome because as they are likely to quickly affect

all Internet traffic and clog expensive transatlantic links. Further, loosing information or

connectivity within one‟s domain is hardly the same as having one‟s traffic being

wrongly forwarded or one‟s domain being unreachable.

Considered the main target of attacks and unwanted traffic, BGP [48], an inter-

domain routing protocol was designed and implemented in the 80s and is seen as an

Internet “de facto” standard today. However, according to the domain view at that time

and similarly to what was deployed and operational on the Internet, security aspects

were “minimized” in the BGP protocol design. Consequently, it is considered one of the

five most vulnerable points of the Internet [49].

According to Kuhn et al. [50], BGP can suffer from many anomalies such as

denial-of-service attacks, starvation, blackholing, delay, route looping, network

partition, high churn, route instability, and router resource exhaustion. This is a part of

the long list of BGP´s vulnerabilities. Others include peers spoofing via TCP resets and

ICMP, session hijacking, route flapping, routing disaggregation, malicious route

injection, and so on. The consequences can be summarized in four results according to

Nordström and Dovrolis [51]:

 Blackholing, where a prefix remains unreachable from a large portion of the

Internet;

 Traffic redirection, where the traffic addressed to a specific domain is

forced to take a different path towards a spoofed destination;

 Subversion, a special case of redirection, where the attacker forces the

traffic to pass through some links in order to listen, spy or modify the data;

 Instability, resulting from successive advertisements (potentially with

different attributes) and withdrawals for the same network.

In practice, the most notorious incidents involving BGP were caused by

misconfiguration. What happened at AS7007 [52], AS3561 and AS15412 [53], and

more recently to AS17557 [29] (Pakistan Telecom vs. YouTube) are examples. In

addition, Anton Kapela and Alex Pilosov deployed a technique that simply exploits the

natural way BGP works [54][55]. They make use of the naive trust BGP router put into

each other when finding what they consider as best path and assert this with their

19

trusting neighbors. The technique uses IP hijacking to intercept data and advertise a

range of IP addresses. The announcement would take just minutes to propagate

worldwide, often before data heading to those addresses would even begin to arrive.

Unlike old IP hijack attacks where outages were created, this technique

intercepts data silently to the actual destination, so here no outage occurs. This method

is called AS Path Prepending that causes a select number of BGP routers to reject their

deceptive advertisement. They then use these ASes to forward the stolen data initially

destined to its rightful recipients.

2.4.2. SPAM

Spam (often defined as unsolicited commercial email or unsolicited bulk email) has

grown dramatically in volume and in malefic results. Formerly, spam was synonymous

to chain letters and its effect was time and resource wasting. Now, spam messages affect

business productivity, inflate network traffic, and wastes storage space. This may

sometimes lead to ISPs ignoring or the wrongful removal by users of useful electronic

mail. Those who would find a definitive solution for spam email would make huge

amounts of profit as almost everyone is affected by spam.

Spam messages can be classified according to their content. Hoaxes try to

impress through fake histories and similar artifacts to guarantee their propagation (using

urban legends, for example). Scam messages sometime lure recipients into offering

them financial opportunities (such as huge lottery winnings and lucky winning draws).

Phishing, typically uses commercial messages, and tries to obtain personal information

(bank account details, credit card numbers and their passwords, for example) to be used

in future frauds or shopping over Internet sites. Virus/Malware permits the installation

of virus, worms, and trojan horses also to allow different types of fraud attempts or

denial-of-service attacks. Pharmaceutical products, education, and adult content are also

typical spam content.

Figure 2.2 illustrates a fairy spam offering an unusual service.

Date: Sat, 03 Mar 2007 10:54:33 -0400 (EDT)

From: ddos@safe-mail.net <DDoS Services>

To: XXXXXXXXXXXXXXXXXX

Subject: I offer the DDoS attack service!

Hi, I offer the DDoS attack service. 10 minutes of free demonstration. The price is based on the
difficulty to pull down the target website. For free demonstration of information please contact:

DDoS attack service: ddos@safe-mail.net

FIGURE 2.2: Spam email offering a DDoS attack service.

Despite that spam is hardly a novelty; it seems that current solutions have

miserably failed in mitigating and removing this practice. Current statistics show that

2006, the Messaging Anti-Abuse Working Group (MAAWG) estimated that 80% of all

email, based on an evaluation of approximately 390 million mailboxes, was spam [56]

while the European Network and Information Security Agency (ENISA) asserted that

almost two thirds of all emails that European providers received were nothing but

useless spam [57]. To add to this wave of concern and complicate further this scenario,

the Anti-Phishing Working Group (APWG), also in 2006, affirmed that at the time there

were more than one hundred hijacked brands, several hundred unique password stealing

20

malicious code applications, more than one thousand passwords stealing malicious code

URLs and up to ten thousand new phishing sites born every month [58].

2.4.2.1. SPIT and SPIM

Despite spam being the most famous type of unsolicited messaging, there are other

types of nuisance unknown until recently and that began to cause considerable damage,

namely, SPIT and SPIM.

Spam via Internet Telephony (SPIT) is characterized as unsolicited messages

sent to VoIP users quickly and cheaply. Even spam traffic is also benefiting from recent

cheap VoIP services. Among the first VoIP spam incidents are some that took place

recently in Japan where VoIP usage is more common than elsewhere. In one of these

incidents, spam announcements of an adult site where sent to unsuspecting SoftbankBB

users, a major Japanese VoIP service provider. In a second effort, illegitimate requests

for personal information were made [59]. Recently, similar incidents were reported in

Australia and Columbia University [60]. Some Australian users reported that their

mobile phones rang once and when they called back, they found themselves paying to

listen to advertising material.

Unlike traditional spam email messages, which average only 10–20 kilobytes in

file size, unwanted VoIP voicemails can require up to few megabytes of storage [61].

Although SPIT not having really taken root worldwide yet, an increasing number of

incidents have already been registered. Recall that the level of spam was as little as 17%

only in 2002. SPIT can be many times as annoying as spam. VoIP calls may be

programmed to disturb the peace of people at home or while sleeping at night. Both the

lawful intercept and tracing of VoIP calls is not trivial knowing Internet topology and

privacy design concepts. Further, the presence of SPIT may lead to a huge drop in the

quality of VoIP calls and consequently huge possible revenue losses. There is a

justifiable fear of clogging phone lines with unlawful advertising and spam messages.

Spam via Instant Messages (SPIM) represents the delivery of unsolicited

messages sent by instant messaging applications. Generally, this type of spam is based

on the creation of fake profiles in instant message systems to send unsolicited messages,

which could include commercial scam-ware, viruses, and links to paid links for the

purpose of click fraud. SPIM is usually sent in the form of request messages that cause

content to automatically appear on the user‟s display. The typical request messages in

SIP (Session Initiation Protocol) [62] are as follows:

 SIP MESSAGE request (most common)

 INVITE request with large Subject headers (since the Subject is sometimes

rendered to the user)

 INVITE request with text or HTML bodies

Figure 2.3 shows examples with SIP INVITE and MESSAGE.

INVITE sip:Bob1@192.168.10.10:5060 SIP/2.0

Via: SIP/2.0/UDP 10.10.10.10:5060;branch=z9hG4bK00002000005

From: Spammer <sip:spammer1@10.10.10.10:5060>;tag=2345

To: Bob <sip:Bob1@192.168.10.10>

Call-Id: 9252226543-0001

CSeq: 1 INVITE

Subject: Hi there, buy a cool stuff in our website www.spam-example.com

Contact: <sip:spammer1@10.10.10.10>

21

Expires: 1200

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 143

MESSAGE sip:Bob1@192.168.10.10:5060 SIP/2.0

Via: SIP/2.0/UDP 10.10.10.10:5060;branch=z9hG4bK00002000005

From: Spammer <sip:spammer1@10.10.10.10:5060>;tag=2345

To: Bob <sip:Bob1@192.168.10.10>

Call-Id: 9252226543-0001

CSeq: 1 MESSAGE

Max-Forwards: 70

Content-Type: test/plain

Content-Length: 25

FIGURE 2.3: SPIM example.

2.4.3. Malicious code

Malicious code represents the unwanted traffic used to cause damage to computers,

systems, and networks. Typically, it steals data, allows unauthorized access, exploits

systems, and the use of compromised computers and networks to proliferate further

unwanted traffic.

The main examples of malicious code are:

 Virus: a program that can copy itself and infect a computer without

permission.

 Worm: a self-propagating piece of malicious software that spreads across a

network.

 Trojan: a destructive program that masquerades as a benign application.

 Bot: a program used for the co-ordination and operation of an automated

attack on networked computers.

 Rootkit: a set of programs that work to subvert control of an operating

system from its legitimate operators by making changes to the underlying

operating system itself.

 Spyware: a program installed surreptitiously to intercept or take partial

control over the user‟s interaction with the computer.

 Backdoor: a method of bypassing normal authentication obtaining covert

access to a computer, while attempting to remain undetected.

 Downloader: a program that downloads and installs malicious software.

 Adware: a package that automatically displays or downloads advertising

material to a computer.

 Ransomware: a type of malicious code that encrypts the data belonging to

an individual on a computer, demanding a ransom for its restoration.

2.4.3.1. Botnets

Among all malicious code related with unwanted traffic, bots are the more alarming

ones due to their capacity to cause disastrous effects on the worldwide network

infrastructures. According to some estimates, there are nowadays between 500 and 2550

different botnet Command & Control (C&C) servers running every day [63][64]. This is

22

actually a growing business as some are offered for rent to attackers interested in

disturbing company sites and even official overseas government institutions. However,

due to the development of countermeasures, botnets have been changing to adapt to new

technologies and contexts. For example, instead of using the IRC protocol, HTTP

became the preferred protocol to create these new plagues. Another example is the

Storm botnet. It uses a similar protocol to P2P (and UDP over port 4000) to establish

communication with other peers.

Unlike other malwares, botnets can be used in the most diverse malicious

activities like DDoS, spam, and frauds. For example, assuming that a botnet has an

average of 20.000 hosts (bots or zombies) and that a single DDoS attack session can

consume 40Kb/s of upload bandwidth from each bot, the consequences of this attack

can be enormous if one does the mathematics. Online frauds can also be performed by

botnets. Once installed in a host, a bot sends personal information (login credentials,

bank accounts, intranet applications, webmail, online services, social web pages, and so

on) and exploitable information (installed programs‟ serial numbers and online gaming

credentials, for example) to its C&C server that should use them in different unlawful

activities.

Also taking advantage of thousands of controlled bots, botnets are especially

used to send spam. A spam bot can send up to three spam e-mails per second (259.200

e-mails per day). In addition to making it difficult to track down the spam sources, spam

e-mail can contain scam, illegal pharmacy sites or the fraud known as „pump-and-

dump‟ (or „stock spam‟), involving the use of false or misleading statements to hype

stocks, which are „dumped‟ on the public at inflated prices.

Lastly, botnets can distribute malicious code to infect new bots and permit the

use of malicious software (Internet banners or advertisements, for example).

2.4.4. Social networks

Social networks
18

 (Bebo
19

, Facebook, MySpace, Orkut, and Hi5
20

 are famous examples)

can be considered the new Internet phenomenon. The growing number of users of these

services at a drastic rate in the last few years is proof of that. For example, in June 2010,

Facebook announced had 500 million users around the world achieves [65].

In general, such large number of users is attracted by a set of functionalities

focused in the social relationships such as posting personal data into profiles and the

creation of a “circle of friends” sharing common interests and life styles. Furthermore,

social networks are used as a forum for collaboration, education, experience-sharing,

and trusted information exchange.

Despite their apparent harmless face, social networks may present innumerous

risks to their users. In [66], the authors describe many of these. Among the most

relevant to unwanted traffic there are:

 Spam: due to the exponential growth of social networks, spammers begin to

invest in these networks to spread unsolicited messages to their users. In

general, they use specific spamming software such as FriendBot [67] to

18

Social networks are often called as online social network sites or social networking sites.
19

 http://www.bebo.com
20

 http://hi5.com

23

automatically send friend invitations and note/comment posting. Typically,

these messages can include links to product sites, adult content or phishing.

 Cross site scripting, viruses and worms: the use of HTML to create

profiles and/or post messages leaves the door open for new attack

possibilities. Cross-site scripting
21

 (XSS) attacks and viruses like SAMY

recently infected one million MySpace user profiles in less than 20 hours

[69].

 Spear phishing: since there are millions of user profiles (and “circles of

friends”) completely and easily available in social networks, phishers have

developed highly targeted phishing attacks known as spear phishing. For

instance, the worm JS/Quickspace.A [70] infected MySpace profile pages

with links to a phishing site to steal their profiles.

To sum up, the benefits offered by social networks is visible and fundamental

for the development of society, but if it fell into the wrong hands (spammers, attackers,

and phishers) these powerful tools can produce catastrophic results and huge amounts of

unwanted traffic. In addition, social networks affect the productivity, since the

employers involved in social networks waste part of their time checking these circles to

keep updated.

2.4.5. Recreational traffic

Unwanted traffic generated by recreational applications is a consequence of real Internet

progress. It represents the natural convergence between the different types of data,

especially multimedia, associated with the growing number of users and their interest

and focus on the news. Examples of recreation traffic include radio and television via

Internet, P2P file sharing, video sharing (YouTube, for example), instant messages, and

online games. Social networks are also responsible for generating recreational traffic,

but they will not be discussed again in this section.

Regarding to unwanted traffic, recreational traffic is responsible for a large

chunk of bandwidth consumption, especially at the edge network. In other words, this

type of traffic steals bandwidth that should otherwise be used for business and what

some may refer to as “useful” applications. Recreational applications are very

aggressive and may quickly start consuming large amounts of WAN and Internet

bandwidth. To download quickly, a stream of “live” video or swap files efficiently,

recreational applications may initiate a large number of simultaneous connections and

start suddenly consuming large amounts of bandwidth resources during sustained

periods of time [71].

For example, the YouTube, currently considered as the most famous video

sharing website, needs to convert upload videos into .FLV (Adobe Flash Video) format

after uploading these. According to Michael Dell of Dell Inc. [71], YouTube traffic in

2007 consumed as much bandwidth as the entire Internet utilized just seven years ago.

In spite not using a P2P system, YouTube video files are located all around the world.

In addition, they are not streamed. Contrariwise, they are downloaded and buffered.

Another example is represented by P2P file sharing applications. Basically, these

applications portray some natural features that confirm their tight relationship with

21

Cross-Site Scripting (XSS) is a type of computer security vulnerability typically found in web

applications which allow code injection by malicious web users into the web pages viewed by other users

[68].

24

unwanted traffic. File transfer, may consume as much bandwidth as there is available.

Bidirectional traffic and aggressive behavior (sharing different contents in the same

bandwidth) are some of the features that clearly explain the “power” of P2P file sharing.

In addition, they are confessedly source of main malicious code spreading mechanisms.

They have been responsible for spreading viruses, Trojan horses, and bots. Moreover,

there is a major problem with the use of current P2P file sharing: that of copyrighted

content (music, video, books, and so on.). The main reasons for this concern stem from

the natural distributed feature of P2P networks and the lack of laws to govern and

enforce policies for their worldwide content exchange. Consequently the volume of

unlawfully used copyrighted material across P2P networks continuous to increase on a

yearly basis.

2.4.5.1. Encapsulated and obfuscated traffic

Newer versions of P2P protocols can flexibly use any port number, even port 80. This

technique is called port hopping. The cat and mouse race does not stop here with regard

to P2P file exchange. A surprising recent Internet development caught by surprise the

community. Many P2P applications are now giving their users the optional luxury of

allowing them to intentionally hide or camouflage their traffic.

In order to avoid recent payload string matching and signature based detection

methods, P2P applications have been working on the fast track to use encryption and

SSL. This way such encrypted traffic would be missed (unrecognizable) as P2P content.

This counter-technique is called protocol obfuscation
22

 [72]. It is employed to surpass

traffic shaping limitations that found their application in many Internet providers. It

permits the hiding of the protocol structure (data and control messages through their

encryption). For example, in the case of the eMule P2P application, the use of this

technique changes all communication data to appear just like a random data, hence

complicating its identification and consequent mitigation. Recent examples of protocol

obfuscation in P2P applications have also been seen with both the BitTorrent and Skype

P2P applications.

2.5. Chapter Summary

In this chapter, the universe of unsolicited, non-productive, irrelevant, and illegitimate

traffic that crosses the Internet on daily was introduced. First, a more detailed view of

the unwanted Internet traffic was presented through some definitions. Due to the

presence of a number of sometimes limited definitions that were adopted in both

academia and the industry, a generic one embracing varying relevant characteristics for

unwanted traffic was given. Moreover, context problems are also presented. After, a

formal classification that was proposed during the IAB workshop on unwanted traffic

and others based on its traffic sources were discussed. The failures of such

classifications were shown and a new and more general classification was made. It

includes most known types of unwanted traffic as well as considers even legitimate

traffic that can be considered unwanted in some contexts.

Next, the possible causes of unwanted Internet traffic were discussed. First,

some Internet design principles and how they have been exploited to create and spread

attacks and traffic anomalies have been discussed. Three of the most important Internet

22

 Protocol obfuscation also is known as protocol encryption, message stream encryption, protocol

header encryption.

25

principles: layering, end-to-end argument, and simplicity have also been described.

Examples showing their limitations and the way they have been explored have been

presented as a proof. To finish, some disturbing reports on the existence of an

underground economy behind unwanted traffic were put forward. Many services taken

for granted by Internet users today, such as IRC, have their servers being utilized as

marketing platforms for where everything related to fraud, stolen information, and

security invasion can be traded.

Towards the end of this chapter, the main types of unwanted traffic were

presented. First, many Internet infrastructure attacks, including denial of services (DoS

and DDoS), DNS, and BGP anomalies were described. In order to provide the reader

with a more complete view, recent incidents, events, anomalies, and attacks witnessed

across the Internet community were presented. Secondly, spam, unsolicited messages,

and its variants SPIM and SPIT were shown. The alarm has been raised for taking steps

before SPIT simply dominates VoIP traffic, as was the case with spam dominating

email traffic. Thirdly, malicious codes were presented and a special section was

dedicated for botnets. Some of its relevant features and examples were showed.

Fourthly, the unwanted traffic generated in association with social networks was

discussed. The main issues and risks this new phenomenon faces have also been

presented. Lastly, recreational traffic was discussed including encrypted and obfuscated

traffic.

26

Chapter 3

Approaches against Unwanted Traffic

In the search for the Aladdin‟s lamp to deal with unwanted traffic, a considerable

number of solutions have been employed to identify and mitigate its effects on the

Internet traffic.

This chapter reviews some of these solutions. First, traditional and well-known

tools, including firewall, IDS, anti-something software, and honeypots, are presented

and its pros and cons are discussed. After, promising solutions are explained. These

solutions are not really utilized to stop unwanted traffic, but can help substantially on

the process of identification. Next, collaborative solutions, those capable to mix

different approaches and tools, are presented. In this section, the interest is on the

necessary requirements and features to project and develop an effective collaborative

solution. Finally, recent traffic analysis approaches and strategies are reviewed to show

its applicability on unwanted traffic detection.

It is not the aim of this chapter to claim that all of the existing strategies are

reviewed here but it should give a good idea on current work and argue for the need to

continue such efforts as a solution remains a further undertaking.

3.1. Traditional Solutions

3.1.1. Filtering

Undoubtedly, filtering mechanisms are among the most widely deployed security

solutions in the world and can be considered the first line of defense.

Traditionally, filtering mechanisms are represented by firewall, Access Control

List (ACL), proxies, and application-level gateways. BGP null routing, a DDoS

mitigation technique very popular for ISPs, consists in the changing of every edge

router to configure null-route and consequently to stop a victim host attack [73], also

can be considered a traditional filtering mechanism. The main function of these

mechanisms is to approve or deny the traffic exchange between networks. Basically,

they employ rules that define what to do. This way, all ingress or egress network traffic

match with rules and, as result an action is taken.

However, their effectiveness has not been sufficient against undesired traffic.

Some aspects prove that. First, although practicable, they are inevitably imperfect

because it mainly relies on “heuristics” and manual configuration to identify unwanted

traffic. Consequently, they can harm both unwanted and legitimate packets. Second,

they require application-specific support. Filtering mechanisms like proxies or

application-level gateways are developed to evaluate the traffic (encrypted or not) of

specific application. This way, for each new service or application a new specific

solution needs be build.

27

3.1.2. Intrusion Detection System

Intrusion Detection Systems (IDS) are hardware and/or software designed to detect

unwanted attempts at accessing systems or networks [19]. Basically, IDS solutions are

composed by sensors that generate and send events and security alerts to management

stations.

Traditionally, signature-based (or misuse-detection) and anomaly detection are

the two most used approaches to build IDS. Signature-based strategies identify patterns

matching network traffic or application data using an attack signature, often in the form

of a known bitstring, from a previously compiled database. Known attacks are detected

fairly quickly with a low false positive rate, while unknown ones often slip through.

Nonetheless, anomaly detection is a more generic approach. It works based on building

a behavior profile for what is considered as normal activity which is then matched to the

actual traffic in order to find out anomalous events. Hence, this class of approaches is

capable of adapting to new classes of anomalies as well as “zero day” attacks. This is

seen as powerful advantage over other techniques.

Although mostly capable of discovering a wide range of malicious activities, by

definition, IDS are passive, that is, only detect and record events. No action is taken.

Moreover, they suffer from accuracy problems: false positives and false negatives. In

addition, IDS are focused mainly only on internal security.

3.1.3. Anti-something software

The closest solution to end users can be referenced as the anti-something software. It

represents all programs designed to detect and remove potential threats to systems and

networks such as anti-virus, anti-spyware, anti-phishing, and anti-spam.

Antivirus are software that detect and remove computer virus. However, its

usefulness depends on constant update, since daily new virus and/or variant of know

virus are spread. Other issue regarding antivirus is what to use. There are a great

number of available antivirus solutions, differentiated by features like detection method,

offer functionalities, and price.

Anti-spyware software is used to fight against software and spy codes such as

spyware, adware, and keylogger. Similar to antivirus, there is dozens of solutions split

in commercial and free. However, as aggravating, some anti-spyware solutions are

famous to spread spyware [19]. Anti-phishing software aims to block possible fraud

attempts in web sites or e-mail. Typically, this type of solution is embedded on web

browsers, email clients, and toolbars. In spite of to help the end users, there are some

issues about the current versions. According to Wu et al. [74], the location of toolbars

and information display does not favor end users, and there is not any suggestion about

to do when a phishing attempt is detected.

Lastly, anti-spam solutions try to detect spam based on filtering unsolicited

messages through the header fields or message content. Header fields filtering checks

source address, name of the sender, and subject of a message to validate it or not. This

type of anti-spam solution is simpler, but is more prone to setup errors, since it is

necessary to define rules that whether or not to receive, or which addresses, senders and

subjects are unwanted. Blacklists (blacklists) are examples of filtering header. On the

other hand, filtering based on message content is the most used. Usually this technique

performs searches for keywords in the content of messages. When configured correctly,

28

the content-based filtering is very efficient, but also can make mistakes. Furthermore,

the content inspection does not check the origin of the message.

3.1.4. Honeypot

The term honeypot refers to a security tool whose main function is to collect

information about attacks and attackers, i.e., a software or system that has real or virtual

security failures intentionally implemented and with the purpose of being invaded and

attacked so that the used invasion mechanisms can be observed and studied.

Honeypot have been used against unwanted traffic to characterize traffic and

advise network managers and operators (beyond network devices such as firewall and

IDS) about attacks and anomalies (bots and worms using IP address space not allocated

or not allowed, for example). In addition, they offer traffic trends that can be used to

take decisions about the network security. Currently, honeyd is most famous open

source honeypot available [75]. However, it is important emphasize that honeypots do

not provide any kind of prevention, but offer invaluable information for use to build a

cure to the attack being observed.

3.2. Promising Solutions

Although traditional solutions are being employed against the unwanted traffic with a

certain level of efficiency, currently, some newly developed solutions such advanced

filtering and IP space investigation can be used to improve the effectiveness of

traditional solutions.

3.2.1. Advanced Filtering

As previously mentioned, the typical filtering is not sufficient for dealing with the

current unwanted traffic level. In order to address this problem, researches have

proposed advanced filtering schemes and mechanisms. Currently, the IETF (Internet

Engineering Task Force) best current practices on network ingress filtering BCP 38

(RFC 2827 [76]) and BCP 84 (RFC 3704 [77]) are pointed out as the effective solution

to block DDoS attacks using spoofed source IP addresses.

BCP 38 is a filtering method that prohibits attackers from using forged source

addresses which do not reside within a range of legitimately advertised prefixes [76]. In

other words, if an ISP is aggregating routing announcements for multiple downstream

networks, strict traffic filtering should be used to prohibit traffic which claims to have

originated from outside of these aggregated announcements [10].

BCP 84 is focused for multihomed networks and presents other ingress filtering

implementations such as Strict Reverse Path Forwarding (SRPF), Feasible Path Reverse

Path Forwarding (Feasible RPF), Loose Reverse Path Forwarding (Loose RPF), and

Loose Reverse Path Forwarding Ignoring Default Routes, which offer automatic and

dynamic configuration of advanced ingress filters mechanism in core and transit

networks. Nowadays, the joint of these practices with Remotely Triggered Black Hole

(RTBH
23

) filtering technique is being proposed by IETF draft [78] to drop unwanted

traffic before it enters a protected network.

23

 RTBH filtering is a technique that uses routing protocol updates to manipulate route tables at the

network edge or anywhere else in the network to specifically drop undesirable traffic before it enters the

ISP network [79].

29

In [10], researches and specialists argue that a global deployment of BCP 38 and

BCP 84 will permit effectively to block DDoS attacks using spoofed source IP

addresses. However, the lack of incentive, infrastructure changes, and mainly the

possible blocking of legitimate traffic due to accidental errors are some of reasons for a

lack of a wider deployment.

3.2.2. IP address space investigation

The investigation of the traffic coming from unassigned, unused, and unannounced IP

address spaces is another potential solution, since these addresses are used in unwanted

activities such as scanning, DDoS attacks, and worm and virus infection.

Currently, Internet Motion Sensor (IMS) [80][81] and Network Telescopes

[82][83] are the most important implementations. Internet Motion Sensor (IMS) is a

globally distributed monitoring system which goal is to identify and track traffic native

of or from those types of address spaces and non-routable networks. According to [10]

the IMS monitors approximately 17 million prefixes, about 1.2% of the IPv4 address

space spread around the world in ISPs, organizations, enterprises, and universities.

Network Telescopes are composed by monitors keeping an eye on traffic routed to

unused IP address space and observe Internet events like viruses and worms

propagation. The idea behind a network telescope is to maintain active hosts to listen all

traffic sent to these address spaces. This way, it permits to see exactly all events in their

“brute state”, i.e., without any traffic interferences.

So far, IP address space investigation is not an unwanted traffic tool or solution.

Its results have been used to gain knowledge about the actual propagation and effects

caused by attacks and malware. Hereafter, it will be used to help in the fight against

unwanted traffic.

3.3. Collaborative Solutions

The term collaboration is defined as “mutual engagement of participants in a

coordinated effort to solve the problem together” [84]. Applied on network security

area, collaboration is the process of detecting abnormal behaviors or events by a group

of security solutions and devices that share information with each other. More

specifically, collaboration permits employ different approaches, solutions, and tools to

deal with the most vary types of anomalies and attacks.

The use of collaborative solutions has a more effective due to the arising of more

and more elaborated and coordinated attacks and anomalies such as worm infections

such as SQL-Slammer [85] and Storm [22][86] worms and distributed attacks as the

DDoS attacks occurred from September 2007 to March 2008 [87].

Typically, collaborative solutions are composed by misuse and anomaly based

Intrusion Detection Systems (IDS). The misuse normally checks for intrusions at packet

level over single connection and are capable to detect known attacks fairly quickly with

a low false positive rate. The latter, anomaly, is a more generic approach, which is

based on building a behavior profile for what is considered as normal activity and later

on matched to the actual traffic in order to find out anomalous events. The last one is

also recongnized as Anomaly Detection Systems (ADS) and are capable of adapting to

new classes of anomalies, as well as “zero day” attacks and are mostly observed at the

network level involving multiple connections.

30

Based on this features and advantages, its integration in collaborative solutions

can permit not only the detection of known attacks but also unknown anomalies. These

approaches are known as Collaborative Anomaly and Intrusion Detection Systems

(CAIDSs) or as CIDS (Collaborative IDS) and DIDS (Distributed IDS).

The goal of a CAIDS solution is to permit that distinct detection systems work

jointly and cooperatively, allowing traffic anomalies identification quickly and

accurately through the reduction of the numbers of alerts, the discard of false alerts, and

a global view of the anomaly. Normally, CAIDSs are composed by detection units,

formed by multiple detection sensors, where each sensor monitors its own sub-network

or hosts separately and then generates low-level intrusion alerts; and at least one

correlation unit to transform the low-level intrusion alerts into a high level intrusion

report of confirmed anomalies.

In spite of its advantages, CAIDS solutions introduce new challenges or

requirements for detection activity such as normalization, aggregation, and correlation

of alerts, false alert reduction, prioritization, and prediction. The subsequent sections

discuss each one of these issues and present some solutions for them.

3.3.1. Alert Normalization

Since collaboration involves different detection systems and typically alerts encoded in

distinct and proprietary formats, the use of standard message formats and/or protocols to

information exchanges (data and control) among them is a key aspect with important

impact on the collaboration scheme.

Recent efforts resulted in three standards for information exchanges among

detection systems. The first is the Intrusion Detection Message Exchange Format

(IDMEF) [88], an XML based specification for an intrusion alert format, which defines

data format and exchange procedures used to exchange information between detection

systems and management centers, independently of the communication protocol. The

second is the Intrusion Object Description and Exchange Format (IODEF) [89], which

defines a data representation (format) and a framework for CSIRTs to exchange

operational and statistical security incidents information among themselves. In addition,

IODEF was designed to be heavily based on IDMEF and provides upward compatibility

with it. The last of recent standards is the Intrusion Detection Exchange Protocol

(IDXP) [90], an application-level protocol for exchanging data between detection

systems and focused in to provide exchange of IDMEF messages, unstructured text, and

binary data, beyond to support mutual-authentication, integrity, and confidentiality over

a connection-oriented protocol.

The use of these standards provides a series of benefits, including representation

of alerts in an unambiguous fashion, interoperability among different tools and systems,

facility to aggregate alerts, and capability to establish correlations among them,

improving the accuracy of detection process.

Currently, IDMEF language has been adopted as standard in great part of works

such as [91][92]. However, according to Sadoddin and Ghorbani [93], IDMEF standard

presents still some issues to be addressed for true inter-operability among detection

systems. First, IDS normally use different nomenclatures in order to fill the

classification fields of alerts. In other works, there is a lack of common convention to

fill alert information. Second, there is no accepted taxonomy to describe attacks.

31

Typically, each detector have its own definition mapped locally, what limit or difficult

the interoperability with other detectors.

3.3.2. Alert Aggregation

Regardless of the use or not of some kind of alert normalization, the activity of alert

aggregation must be essential in any proposed CAIDS solution. According to Sadoddin

and Ghorbani [93], the use of alert aggregation is justified by two reasons. First, similar

alerts tend to have similar root causes or similar effects. Second, due to large number of

alerts produced by low-level sensors for a single malicious activity, alert aggregation

has proven to be highly effective in reducing alert volume.

Normally, alert aggregation is made matching the similarity between determined

numbers of attributes (alert fields) except with little time difference. A good example is

the work of Valdes and Skiner [94], which utilizes IP addresses (source and

destination), port (source and destination), time, and attack class attributes to extract

similarities among alerts. However, recent works have been extended this concept

employing the use of cluster to group alerts that share the same root causes, due to the

fact that this type of organization permits to easily detect causality or false positives on

the analysis. The works of Julish [95] and Cuppens [96] are interesting examples. The

former aggregates all alerts, which share the same root, causes what is intuitively the

reason for which alerts occur. For this, hierarchy structures, called generalization

hierarchy, are used to separate the attributes of alerts from the most general values to the

most specific ones. This way, dissimilarities of two alerts can be measured comparing

the longest path between values of that attribute in the corresponding structure. The

latter employs a relational database to store alerts and evaluate them using a set of

expert similarity rules to group them according to the occurrence in a same attack. Other

works as Morin et al. [97] and Xie et al. [98] are also based on clustering techniques.

Other works consider that alert aggregation is a function of alert correlation.

Zhou et al. [99] and Yusof et al [100] classify aggregation (similarity and clustering)

activity as similarity based approaches for alert correlation due to the fact that these

techniques are intrinsically related with design and implementation of alert correlation

function.

3.3.3. Alert Correlation

Alert correlation has the function of to detect attacks and anomalies, in different stages,

and produces a high-level description of the abnormality on the network. According to

Sadoddin and Ghorbani [93], the goal is to find causal relationships between alerts in

order to reconstruct attack scenarios from the individual alerts.

In spite of there is a discordance whether alert correlation include aggregation

activity, this thesis shares the view presented in other works [99][100] and divide alert

correlation into the following categories: similarity based, attack scenario based, rule

based, and statistical based.

Similarity based techniques

Similarity techniques are typically based on the similarity between alert attributes.

Basically, they compare an alert to all alerts that have similar attributes or features (e.g.

source IP address, destination IP address, ports, time, attack class, and so on). Similar

32

alerts tend to have similar root causes or similar effects on network resources. For this

purpose, techniques like similarity and clustering are employed.

Valdes and Skiner [94] have developed a probabilistic alert correlation approach

for EMERALD [101] project. They implement three phases of correlation: synthetic

attack threads, where the alerts are clustered if some similarity is found; security

incidents, used to fuse the same attack reported by multiple detectors; correlated attack

reports, which merge alerts representing different stages of a complex attack. In [102],

Debar and Wespi proposed an aggregation and correlation algorithm for intrusion alerts.

In this approach, three steps are necessary to perform alert aggregation and correlation:

alert processing, where the alerts are translated to a data model (the authors used the

first discussion about IDMEF as data model); relationship correlation, that extracts

correlation between alerts; relationship aggregation, where the output of second step

(alerts) are aggregated into seven different scenarios (situations) according to its

attributes.

Regarding clustering approaches, the works of Julish [95] and Cuppens [96] are

considered very representatives. Already the work of Zhu and Ghorbani [103] employs

two neural networks approaches (Multilayer Perceptron and Support Vector Machine)

to determine correlation between alerts and consequently establish causal relationships.

For this, they introduce the idea of Alert Correlation Matrix (ACM) to store the average

correlation between alert classes, which is computed adaptively based on statistical

analysis of consecutive input alerts. The adaptation characteristic of this method makes

it possible to start with initial (and maybe immature) correlation probability values and

learns more from the environment as the operation proceeds, and help to extract high

level attack strategies.

Attack scenario based techniques

Attack scenario techniques use the fact that attacks often require several actions or steps

to take place in order to succeed [99]. The idea is that every attack scenario has

corresponding steps required for the successfulness of the attack. This way, low-level

alerts can be compared against attack scenarios before the alerts can be correlated.

Typically, approaches using this technique have used formal models defined by

expert users for specifying attack scenarios or employing machine learning to create

attack scenarios. In [104], Morin and Debar propose a multi-alarm misuse correlation

component based on the chronicles formalism able to model attack scenarios. The

chronicle formalism proposed by Dousson [105] is used to build correlation blocks and

represents a set of patterns (attack scenarios), whether new alerts are received; they are

compared with chronicles. Chronicles are update always a matching occurs or otherwise

are constructed.

In addition, researches have proposed several formal correlation and definition

languages to generate attack scenarios. Among the most known are LAMBDA [106],

STATL [107], ASL [108], JIGSAW [109] and ADeLe [110]. In [111], Dain and R.

Cunningham propose a scheme to fuse alerts into predefined attack scenarios. The idea

is to use a fusion system to determine for that attack scenario the alert belongs. Thus,

always that a new alert is received it is compared to determine for what attack scenario

the alert must be a member. The scenarios are generated using two approaches, one

based on heuristic and one based on data mining.

33

Rule-based correlation techniques

Since attacks and its variants should be generating a large number of scenarios, the use

of rules (pre-condition and post-conditions) has been employed to address this problem,

reducing the number of possible attacks scenarios. This approach is known as rule-

based correlation techniques and some authors to classify it as subclass of attack

scenario based technique.

The paper of Debar and Wespi [102], previously described and classified in

similarity techniques, uses consequence rules to define attack scenarios. Consequence

rules specify that one event (alert) should be followed by another type of event,

allowing thus that alerts be correlated. In [112], the authors proposed an approach to

map causal relationships between alerts using rules. They introduced the concept of

hyper alerts to encode the pre-condition and post-condition of an alert in its prerequisite

and consequence fields, respectively [93]. This way is possible to extract prerequisites

and consequences of hyper alerts, generate graph, which is useful in determining the

attacker‟s goal.

Statistical techniques

Despite effectives, similarity and attack scenario techniques are only focused to

correlate know attacks and anomalies. In order to complete this deprivation, statistical

techniques have been proposed to detect unknown attacks and anomalies.

Qui and Le [113] use Granger Causality Test (time series analysis method) to

correlate alerts which emphasis on attack scenario analysis. The idea behind this

approach is to use the causality analysis to correlate alerts and generates attack

scenarios without any pre-defined knowledge. For this, it assumes that each multi-step

attack will generate alert that have statistical similarities in their attributes, and this

attack steps have causal relationship [100].

In other work, Qui [114] employs a Bayesian network to model the causality

relationship between alerts, where the alerts are node and its causality relationships are

edges. In this model, continues alerts are divides along equal time slots and the state of

each node corresponding to an alert is a binary value representing the presence of the

alert in the time slot [93]. The central idea of this work is to discover which alert types

may cause an alert of type X and how the conditional probability of X is related to its

causes (parents). Almgren et al. [115] also use a similar approach.

3.3.4. False Alert Reduction

The recent detection systems have faced a serious problem caused by the large number

of alerts. However, the problem is not only limited to huge in quantity, but also in

quality with the presence of a high rate of false alerts. Basically, this occurs because the

detectors employ different approaches (algorithms, information bases, and rules) to find

a determined type of attack or anomalies. This way, to reduce the false alerts aiming to

identify real alerts becomes an essential requirement for the deployment of any CAIDS.

Several methodologies have been applied to solve the problem of false positives.

Alharby and Imai [116] proposed to mine historical alerts aiming to discover how future

alerts can be more efficiently handled. The proposal consists in, firstly, to characterize

the “normal” flow of alerts and, lastly, an algorithm for detecting anomalies based on

continuous and discontinuous sequential patterns. Viinikka and Debar [117] make use

34

of Exponentially Weighted Moving Average (EWMA) control chart for extracting

trends and highlighting abnormalities on the alerts flows.

In [118], Manganaris et al. use Frequent Episode Rules (FER) [119][120] to

create profiles from non-intrusion periods. The use of FER allows discovering real

alerts in the future, since sequence of alerts matching a frequent episode rule is

considered as false positives. Clifton and Gengo [121] also use the frequent episodes to

discover usual sequences of alarms through time and characterize them as false alarms.

Yu and Frincke [122] propose the use of Weighted Dempster-Shafer, an

extension from the basic Dempster-Shafer theory, to combine beliefs in certain

hypotheses (e.g. alerts reported by a signature-based sensor and an anomaly-based

sensor). The goal is to resolve contradictory information in different analyzers.

Similarly, in [123] Svensson and Josang use subjective logic to reduce false alerts in the

presence of uncertainty.

Data mining techniques are used in the works of Pietraszek [124][125] and Tian

et al. [126] train classifiers. However, the necessity of human intervention to help on

training becomes a complex factor to implement these approaches. Similarly, neural

networks and fuzzy logic are used in Alshammari et al. [127]. This method also requires

some training in order to be able to reduce false positives.

In Hooper [128], checking back hosts produces extra information about the

probability that an alert is true or false. Host checking produces interesting information

about the nature of alerts; on the other hand it introduces an additional level of

complexity. It is not always the case that host checking is permitted by default, and if

not the security policy of an organization may have to be significantly altered.

3.3.5. Alert Prioritization

Alert prioritization requirement is important in collaborative solutions because permit to

prioritize the most critical alerts or class of alerts according to predefined metrics and

severity and take appropriate actions for dealing with each one of them. Moreover, alert

prioritization permit to enhance the alerts quality.

Normally, alert prioritization is focused on the detector‟s output and takes into

account various domain information in addition to alert types or classes such as security

policy, network topology, vulnerability analysis of the network services and installed

software, and asset profiles.

The work of Yu et al. [91] focuses on the alert prioritization in two aspects: the

not correspondence of the alert to any known attack (and consequently must be

prioritized for further investigation) and the applicability of the attack against the

protected network. Qui and Lee [113] propose an alert priority score calculated

according to the severity and relevance of the attack. Porras et al. [129] propose an alert

ranking based on the likelihood of the attack to succeed, the importance of the targeted

asset, and the amount of interest in the type of attack. It is capable to evaluate alerts and

clusters and is known as M-Correlator. The work of Alsubhi et al. [130] proposes a

technique based on fuzzy logic for scoring and prioritization of alerts. In addition, a

rescoring technique is also proposed to reduce the number of alerts.

Although these techniques have been show efficient in to evaluate alerts

generated by IDS, they are not able to deal with ADS outputs due to the fact that a

knowledge base is not exist.

35

3.3.6. Alert Prediction

Alert prediction is the ability to obtain a specific knowledge about determinate

anomalies and attacks in order to anticipate and stop them before causing damage. The

knowledge of previous anomalies and attack patterns is core to their prediction. One

learns from history to avoid falling again in those traps previously encountered. By

storing sequences that determine an attack signature, this may be identified and

removed before taking place. Typically, alert prediction occurs in two phases. The first

one is a training stage to enable the software to learn what characterizes an anomaly or

an attack. The second phase is the comparison of partial patterns stored locally with the

current alerts.

Over the years various approaches have been used to make alert prediction. Ye

et al. [131] make use of EWMA (exponentially weighted moving average) forecasting

method for intrusion detection, using a Markov chain model to learn and predict normal

activities. A forecast of normal activities is used to detect a large deviation of the

observed activities from the forecast as a possible intrusion into computer systems. A

Chi-square distance metric is used to measure the standard deviation of a given activity

from those considered normal ones.

Hu and Heywood [132] developed a two-stage attack prediction system

(classification and prediction) aiming to investigate whether it is possible to predict

attacks before they are initiated. This two-stage system employs Support Vector

Machine (SVM) algorithm for classification and Self-Organizing Maps (SOM), a

special unsupervised neural network technique, as predictor. Although interesting, the

training and test results conducted using TCP connection feature from the DARPA

KDD data set produced rates of 23.8% and 7.1% for false positive and false negative,

respectively.

Wang et al. [133] introduced an alert correlation and prediction technique for

multistage attacks. Based on the fact that the existing correlation methods use an in-

memory index for fast searches and that finite memory is a limiting factor, they propose

the use of a novel queue graph (QG) approach to represent an implicit correlation

between new alerts and other alerts according to temporal order, allowing that alerts

arbitrarily far away can be correlated. Moreover, a unified method based on QG

approach was proposed to hypothesize missing alerts and consequently to predict future

alerts at same time. Empirical results showed that this technique can process alerts faster

than an IDS can report them, making of it a promising solution for an administrator to

monitor the progress of intrusions.

Using the victim-end concept, Kannadiga and Zulkernine [134] developed an

IPS called Event-based Network Intrusion Prediction System (E-NIPS). The idea of this

work is to split an attack scenario into several stages depending on the actions taken

during such incident. This way, attacks with similar or related goals are clustered in

classes to reduce the processing of the prediction module. When the first stages of an

attack is detected, i.e., when the initial stages of an attack corresponds to a class of

attacks, alerts are released. The sequences of attack events are represented by rules,

which are used to correlate detected attack classes in the attack scenarios.

36

3.4. Traffic Analysis

One of the shortcomings resulting from existing and traditional unwanted traffic

solutions is the need of prior analysis, manually, to correctly detect unknown and

undesirable traffic. This is not always feasible if it is considered the fast growing

number of new applications and services. In addition, high-speed networks introduce

non-trivial issues for these solutions including detection, characterization, and

mitigation.

In this context, traffic analysis approaches have attracted special interest of

researches in recent years and presented promissory results against non-requested and

undesirable traffic. Techniques to characterize the Internet traffic, methods to discover

the traffic generated by applications, approaches to develop more accurate anomaly

detection systems, and specific solutions to deal with specific types of unsolicited traffic

(e.g., SPAM and P2P) have emerged in an attempt to facilitate the automatic, quick, and

accurate identification and reduction of unwanted traffic.

This section describes some the most relevant works that have been proposed

including its new methodologies, approaches, techniques, and algorithms for traffic

analysis and that can be directly or indirectly applicable for unwanted traffic

identification.

3.4.1. Non-Gaussian and Long Memory Statistical Characterizations

for Internet Traffic with Anomalies

Scherrer et al. [135] propose a statistical model based on modeling aggregate traffic

using time series and, as a consequence, offer an anomaly detection procedure based on

such modeling. The authors argue that network traffic consists of IP packets arrival

processes, which could be modeled using non stationary point processes or stationary

Markov modulated point process but, due to the high volume of packets, these models

would generate huge data sets. This way, they propose a model using marginal

distributions and covariance functions, called the Gamma Auto-Regressive Fractionally

Integrated Moving Average (ARFIMA) model.

The Gamma ARFIMA model [136] is defined as a stochastic stationary non-

Gaussian long-range dependent process where the Gamma distribution solves the

marginal problems and the ARFIMA covariance function deals with long-range

dependence (LRD) processes. This model is assumed to be 2
nd

 order stationary. The

Gamma distribution (first order stationary) satisfactorily models traffic marginal

distributions for both small and large range scales of aggregated traffic (at byte, packet

or flow), as opposed to a Gaussian distribution like log-normal and Weibull. The

ARFIMA covariance function (defined as being second order stationary) is a natural

choice because it allows dealing with both short and long-range dependence. The

Gamma ARFIMA model uses only five parameters (α and β from the Gamma

distribution; , d, and  for ARFIMA), adjusted according to each aggregation level.

The preliminary results indicate a good adequacy in both small and long aggregation

levels. Moreover, the use of these parameters provides a simple, highly flexible and

practical solution.

In addition to the Gamma ARFIMA model, the authors also describe a scheme

to detect anomalous traffic including legitimate (Flash Crowds) and illegitimate (DDoS

attacks) traffic. The adopted behavior pattern is generated through the analysis of the

37

statistical profile at various time-scales of the series, which has been shown to be

sensitive to changes caused by anomalies. Hence, what is needed is to explore the multi-

resolution nature of the problem. Consequently, the scheme works by splitting each

time series during analysis into adjacent non overlapping time windows (one minute,

initially) and computing, for each time window, a distance (Mean Quadratic Distance -

MQD) between a statistical characteristic measured during the window and the same

one measured on an a priori chosen reference window. In order to detect anomalies,

thresholds are applicable for the calculated distance where an unexpectedly large

deviation is assumed to signal anomalous traffic behavior. The initial results of this

procedure detection are encouraging indeed when taking into account the high hit ratio

for both large and even low rate illegitimate traffic. The authors also explain the

necessity to explore the analysis over several minutes as a mean to increase the degree

of detection.

In order to evaluate the proposed analysis, the authors conducted some

experiments using standard data from major available Internet trace repositories such as

PAUG and LBL-TCP-3 [137], AUCK-IV [138], CAIDA [139], and UNC/FORTH

[140] and time series collected from the RENATER [141] network.

 Advantages: generally speaking, the idea presented in this work, despite not

being a new one, could give anomaly detection a great step forward for many

reasons. First, unlike other works, this is a simple model that is capable of

representing Internet traffic using only five parameters. Second, its

versatility in that it can portray traffic behavior at different aggregation

levels could be used to create more efficient and realistic traffic generators.

Third, the results of procedure detection are encouraging indeed when taking

into account the high hit ratio for both large, and more importantly, low rate

illegitimate traffic (denial-of-service attacks).

 Limitations: the hit ratio of the detection procedure for flash crowds can

sometimes be very small and remained below 15% in most evaluated

scenarios. Moreover, the estimation of ARFIMA covariance and model

parameters is hardly trivial but nonetheless feasible.

3.4.2. Extracting Hidden Anomalies using Sketch and Non Gaussian

Multiresolution Statistical Detection Procedures

Dewaele et al. [142] introduce a procedure especially tailored for detecting hidden low-

intensity anomalies in Internet traffic. This technique combines sketches and a non-

Gaussian statistical model to discover anomalies in traffic data. Sketches permit to

reduce the data dimensionality and measure the reference traffic behavior, whereas the

Gamma distribution extracts the shape parameter of the marginal distributions of the

traffic for each individual sketch and each aggregation level, and accurately captures

short-time correlation structures of traffic [136]. The detection procedure makes use of

the Mahalanobis distance [143], a statistical measure used to determine similarity of an

unknown sample set to a known one, to perform comparisons among sketches, and is

thus to determine anomalous behavior.

This detection procedure consists of the following main steps: sketches

generation, multi-resolution aggregation, non-Gaussian modeling, reference, statistical

distances, and anomaly detection by sketches combination.

38

1. Sketches generation: sketches or random projections are used to divide the

traffic packets into sub-groups according to sliding time-windows. For each

one of these time slots, only the arrival timestamp, source and destination IP

address information and port numbers are analyzed. As a result, hash tables

are then generated, representing sub-traces of the original trace, while using

IP source or destination addresses as their hash keys. Figure 3.1 exemplifies

this process.

{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...{srcIP, srcPort, dstIP, dstPort}

200.134.56.23, 1345, ...

IP Traffic

0 1 h0(k)

0 1 h1(k)

0 1 h2(k)

0

1

..

J

0

1

..

J

0

1

..

J

Hash Tables

FIGURE 3.1: Sketches generation process

2. Multiresolution aggregation: the sub-traces are next put together to form

aggregated time series for a specific scale.

3. Non Gaussian modeling: the Gamma distribution is used to describe the

marginal distributions of aggregated traffic time series. In other words, for

each aggregated hashed time series of an aggregate time scale, the Gamma

parameters (α an β) are estimated for use to calculate reference and statistical

distance. The Gamma distribution choice and adequacy are explained in

[135][136][144].

4. Reference: the average behaviors and typical variability are estimated for

each hash using mean and variance estimator. In spite of simplicity, the

joining of sketches and reference permits the definition of normal and

anomalous behavior patterns (anomalies can be found observing changes in

statistical patterns comparing sketches with others at the same time).

5. Statistical distance: the Mahalanobis distance is used to measure anomalous

behaviors of references. Each calculated distance is matched against a

threshold. If the distance of reference is less or equal to a threshold, it is

considered normal, otherwise it is classified as anomalous.

6. Anomaly detection by sketches combination: the anomaly detection is

realized comparing sketches (hash keys) with attributes (source and

destination IP address, and port numbers) registered in a list during the

detection process.

All the process is illustrated by Figure 3.2.

39

IP Traffic Step 1 Step 2 Step 3 and 4 Step 5

Normal

Normal

Suspicious

Anomalous

Sketches Aggregation
Modeling and

Reference
Distance

FIGURE 3.2: Anomaly detection stage

The authors deployed and validated this strategy using data from the MAWI

traffic repository [145] through two case studies: one with low-intensive long-lasting

spoofed flooding and another one with a short-lived port-scan. The results demonstrate

that the procedure is able to discover elephant (large) packets, flash crowds, DDoS

attacks (SYN and ICMP flooding), scan activities, P2P traffic, and worms, among other

anomalies.

 Advantages: in spite of this strategy being a work in progress, the initial

results are very promising. First, no prior knowledge of the traffic and its

characteristics is necessary. Second, the procedure seems to be capable of

detecting short-lived anomalies as well as longer ones. Third, it requires very

low computational power and can therefore be implemented in real-time.

Lastly, its “detection window” can work at less than one minute as well as

over longer than a minute period.

 Limitations: as raised by the authors, sometimes, the legitimate traffic

(DNS, for instance) could be recognized as illegitimate if it presents a unique

traffic pattern. Hence the authors suggest the addition of filters to exclude

known patterns during the analysis phase. Note that attackers knowing the

use of such filters may use them to hide their attacks.

3.4.3. A Novel Approach for Anomaly Detection over High-Speed

Networks

Salem et al. [146] propose a new framework for anomaly detection for use over high-

speed links. It provides an early and efficient detection as well as the appropriate and

corrective countermeasures. Unlike others, the proposed approach does not depend on

any traffic distribution parameters and their variations, and does not suffer from a

possible lack of capability for handling large state space generated by traffic

information at high-speed links. To achieve this, it uses a new variation of sketches to

aggregate multiple data streams and a parametric version of the multi-channel

cumulative sum (M-CUSUM) algorithm to detect anomalies in each sketch.

The methodology is organized in two steps. Firstly, Count-Min Sketch (CMS),

which permits random aggregation of flows without any significant disruptions from

their variations, is employed to store large traffic volumes in flows. This is achieved

with a small amount of memory and with a little complexity degree, for a fixed time

interval T. Secondly, M-CUSUM is applied to each sketch. As a result, it is then

40

possible to identify the keys of the sketches that are mapped with a raised alarm by

CUSUM. However, before being in a position to identify any anomalies yet, the authors

needed to solve some relevant issues. First, they argue that sketches, in general, are not

reversible, i.e., they do not preserve the key (e.g., source IP address) of the flows, and

when anomalies are detected, it is difficult to infer the culprit flows. The only solution is

to test all possible entries, by hashing these for the second time, to match that consist

anomalous flows. As this solution is neither scalable nor desirable, they propose a new

variant for the sketch by adding an inversion procedure to it.

The idea is based on exploring a new index in an additional sketch named Multi-

Layer Reversible Sketch (MLRS), where such index is used to store keys. MLRS is

used in the same way as the initial CMS sketch, where the arrival of any key increments

its associated counter. However, each key has l counters (one for each layer), and the

key of N bits is split into l x w0 bit, with w0 = 2
P
, and l = [N/P]. P is the number of bits

used to split the key, and w0 is used as layer width (number of columns) in MLRS

[146]. Since anomalous flows must have one alarmed bucket in each layer and this

methodology executes hierarchical searching, if a search does not find at least one

bucket raised alarm by CUSUM in each of i
th

 (i ≤ 1 – i) first layers of MLRS, there is no

need to continue searching in other deep layers.

On the other hand, if there is at most one anomalous flow in each layer, the

suspect key is obtained by the concatenation of the l indices in MLRS. However, it is

necessary to ensure the validity of the candidate key. At this stage a new challenge is

raised: that of collision with other IP prefixes. Due to the large amount of traffic

information, many buckets in different layers may be subject to possible collisions,

which in some cases will generate a bigger set of keys to verify than the originally

determined. The suggested solution was in using an IP mangling technique [147]. This

is a reversible procedure that randomizes the input data in an attempt to reduce and

destroy correlation between keys. It is based on an optimized version of RC4 (Ron‟s

Code) [148] ciphering algorithm. The confirmation makes use of a query of CUSUM

functionality in CMS.

The authors evaluated the proposed framework using many public traces

including LBL-TCP-3, Abilene, Auckland, and within OSCAR RNRT French Research

project. The implementation used Endace DAG 3.6ET Gigabit network interface [149]

sniffers.

 Advantages: this proposed framework combines sketches with M-CUSUM

to develop a powerful tool for detecting traffic anomalies. One that

especially considers DoS and DDoS attacks even when exhibiting low rates

over high-speed links. This approach is flexible and could be easily

decentralized. The timescale of detection can be reduced to as little as a

minute or even less.

 Limitations: M-CUSUM raises alarms only at the starting phase, expected

to take few minutes when subjected to constant rate attacks. In addition, the

proposed methodology needs to be adjusted to work with other strategies

such as those that deal with anomalies detected through the examination of

TCP flags and other protocols.

41

3.4.4. Anomaly Detection of Network Traffic based on Wavelet Packet

Gao et al. [150] describe a new network anomaly detection method based on wavelet

packet transforms. The authors argue that there are four problems seen in current

methods based on wavelet transforms when used to detect anomalies. First, almost all of

these use multi-resolution analysis, considered only adequate for detecting low

frequency anomalies. Second, their results can be incorrect or misleading when only a

single scale is analyzed. Third, wavelet transforms demand relatively high

computational power and, consequently, can be considered inappropriate for real time

operation. Lastly, choosing the adequate time-windows and calibrating their respective

thresholds remains a challenging exercise.

As a workaround these limitations, they propose the use of wavelet packet

analysis, which is capable of decomposing a signal, hence offering a diverse range of

possibilities for analysis. Overall, wavelet packet analysis permits that a signal can be

split into an approximation and details parts. In turn, the approximation is then itself

split into a second-level approximation and details, and the process is repeated many

times over again. For n-level decomposition, there are n+1 possible ways to decompose

or encode the signal.

The proposed detection method is able to adjust the decomposition process

adaptively, and exhibit the same detection ability across low, middle, and high

frequency anomalies. In order to achieve this objective, the authors use one fast wavelet

packet algorithm based on sliding window aiming to decrease the nature of computation

complexity reminiscent from wavelet packet transforms, and a statistical detection

algorithm based on scores together with a thresholds based mechanism to discover

anomalies. The detection process employs an initial anomaly detection stage, to verify

at each scale by means of a statistical detection algorithm whether there are anomalies.

This is achieved by analyzing wavelet packet coefficients (representations of signals

present in the wavelet transform). In the case that an anomaly has been perceived, a new

decomposition of wavelet packet coefficients is made and this step is executed again.

The decomposition levels are self-adaptive. In the event that there is an anomaly, the

reconstruction of wavelet packet and confirmation of anomaly stages are used to

reconstruct the signals from the initial scales and check whether the reconstructed signal

is anomalous, respectively. The main goal here is to reduce the number of false alarms.

To validate their approach, the authors simulated a number of scenarios using

LBL trace as background traffic and the public domain Network Simulator software

(NS-2) to generate anomalous traffic (DDoS attacks).

 Advantages: the simulation results have demonstrated that the wavelet

packet analysis is a promissory technology for anomaly detection.

 Limitations: this procedure only was tested to discover DDoS attacks.

Moreover, the time spent in the detection process increases with the number

of signal decompositions. Last, the representativeness of the generated DDoS

attacks remains to be proven. An alternative would be to include other

independently generated DDoS traces into the simulated scenarios.

42

3.4.5. Profiling Internet backbone Traffic: Behavior Models and

Applications

The methodology proposed by Xu et al. [151] and aims to identify traffic anomalies by

profiling Internet backbone traffic. The profiling method uses data-mining and

information-theoretic techniques to extract and classify flows. It automatically discovers

significant behavior patterns from link-level traffic data, and to provide plausible

interpretation for the observed behaviors. In particular, this approach places great

emphasis on the entropy concept. Entropy can be seen as the measurement of

information of a given dataset, which essentially quantifies “the amount of uncertainty”

contained in that dataset [152].

This methodology uses different metrics to calculate the entropy such as the

quantities of flows and bytes. The profiling methodology implements an identification

technique, which consist of four related basic stages:

1. Preprocessing: deals with the definition of the domain data that will be

processed. In other words, in this stage the packets are captured and

aggregated into flows.

2. Extracting significant clusters: determines the clusters for four features or

dimensions. This procedure aims to reduce and facilitate dataset behavior

inspection through the identification of its most significant or principal

elements. The extraction of significant clusters deals with a four dimensional

feature space composed by the four attributes srcIP, dstIP, srcPrt and dstPrt.

Considering these elements, it is possible to identify two relevant types of

network communication behavior. Firstly, there is a relationship between IP

addresses (srcIP and dstIP), one that determines the communication pattern

between hosts. Secondly, there is also the behavior built from port/service

(srcPrt and dstPrt) usage patterns.

3. Clusters classification: classifies each cluster‟s element into behavior

classes based on similarities and dissimilarities of communication patterns

(ports and IP addresses).

4. Communication patterns interpretation: defines a set of behavior classes

capable of better describing given applications and services.

Figure 3.3 shows the interconnection among the four stages and how they are

fed and interact. This process allows an automated or supervised adaptation of

parameters. For instance, the iterations allow that information coming from

communication patterns interpretation to affect the decisions taken on preprocess stage.

In the profiling methodology, entropy is used to measure the amount of relative

uncertainty (RU) contained in the significant clusters extracted from a fixed dimension

(e.g. source IP). Next, behavior classification based on communication patterns of end-

hosts and services are made. Therefore, for every cluster, an RU is computed and used

as a metric to create behavior classes (BC). Among these classes, it should then be

possible to identify which one represents anomalous traffic. As result, the study

presented in [17] have proven their ability to detect a wide variety of massive anomalies

such as port and IP scans, DoS and DDoS attacks, among others.

43

Network Traffic

Behavior

Patterns

Cluster

Classification

Behavior Pattern

Classification

Fir
st

 S
te

p

S
ec

ond S
te

p

Preprocess

Extracting

Significant

Clusters

Flows

Clusters

srcIP

dstPort

dstIP

srcPort

Behavior

Classifictions

FIGURE 3.3: Profiling Methodology

The profiling approach was implemented and validated using datasets composed

by packet headers (only the first 44 bytes for legal and privacy reasons) collected from

different links of a large undisclosed ISP. These traces varied in their duration between

3 to 24 hours whereas the capacity of the monitored links ranged between 155Mbps to

10Gbps.

 Advantages: traffic profiling is seen as a powerful tool for network

operators and security analysts with applications to critical problems such as

detecting anomalies or the spread of hitherto unknown security exploits,

profiling unwanted traffic, tracking the growth of new services or

applications. Moreover, this approach is flexible and capable of

automatically discovering others significant behavior patterns.

 Limitations: the profiling methodology is appropriate to a single backbone

link, not network-wide traffic. Moreover, flow analysis is not adequate to

detect low-intensity attacks. Lastly, the process of packet header collection

and posterior aggregation in flows in real-time is time and CPU expensive,

especially when considering emerging multi-gigabit broadband interfaces.

The authors in [17] draw the attention to the fact that the minimum time

needed to transform collected packets into flow-level statistics is five

minutes. This cannot be acceptable in the context of real-time network and

service security. A further limitation of traffic profiling is that it is useful for

identifying traffic profile classes only and fails to distinguish between

different applications that exhibit similar profiles. Profiling may therefore

need some other complementing strategies to work effectively.

3.4.6. Mining Anomalies Using Traffic Feature Distributions

Lahkina et al. [153] propose an anomaly detection methodology based on the

distributions of packet features capable of identifying low and high volume anomalies.

44

The authors argue that Origin-Destination (OD) flow analysis can reveal a diverse and

general set of anomalies, especially the malicious ones. The proposed method uses

entropy to make observations and extract very useful information with regard to

dispersions in traffic distribution. The mining methodology is organized in two main

phases: traffic feature distributions and diagnosing methodology.

During the former, traffic feature distribution, extracts fields from packet

headers to look for anomalies possibly caused by changes (dispersions) in the

distribution addresses or ports being observed. For example, during a port scan event,

the distribution of destination ports will be more dispersed than during normal

operations. Four IP header fields were examined: source and destination IP addresses

and source and destination ports (srcIP, dstIP, srcPort, and dstPort). The authors claim

that it is possible to capture the degree of dispersal or concentration of a distribution

using entropy, since common anomalies, for example port scans, can viewed clearly in

terms of entropy in comparison with traffic volume.

Next, the results of the entropy application phase are then fed to a second phase

where a distribution is used to reach a diagnosis and classify anomalies. Consequently,

the multiway subspace method is used to detect anomalies and offers an unsupervised

classification strategy to classify them. This method is a derivate of the subspace

method proposed in [154], and which results in traffic analysis study in [155]. The idea

behind this method is to identify correlated variations on multiple traffic features (srcIP,

dstIP, srcPort, and dstPort). Such correlations should point to possible anomalies. The

unsupervised classification uses a clustering approach to form clusters, where the data is

then analyzed to discover anomalies. It also occurs in two phases. First, known

anomalies are clustered in order to gain knowledge of how anomalies emerge. Thus, the

clusters are labeled based on their types. Next, the classification is performed by

clustering unknown anomalies.

Datasets collected from both the Abilene [156] and Géant [157] research

backbone networks were used. The results show that the prototype was able to identify a

wide range of anomalies including alpha flows, DoS and DDoS attacks, flash crowds,

varied scans (port, IP, network, worm), outages, and some unknown anomalies.

 Advantages: the use of entropy helps detecting variations on network traffic

caused by the most diverse anomalies. The results obtained in the traces from

high-speed backbone prove that entropy could be more efficient than

volume-based techniques. Moreover, the proposed multiway subspace

method also demonstrates its superior handling of huge volumes of OD

flows and, consequently, to discover anomalies.

 Limitations: the implementation complexity and the necessary

computational power are pointed out as limitations of this methodology.

Moreover, the time necessary to build OD flow time series is large as it is in

the order of few minutes. Similarly, the method has been validated using

academic research networks. Commercial traffic tends to exhibit different

profiles as the applications and speed of their adoption differ between the

two scenarios.

ChkModel

Aschoff [158] proposes an anomaly detection methodology based on statistical analysis

of TCP connections behavior capable to identifying low and high volume of TCP

45

attacks. ChkModel is designed to distinguish between well and badly intentioned traffic,

and also to identify possible service resource problems. It observes the total traffic

between clients and servers, at connection and socks granularity. A connection is

represented by the combination of the following elements: IP addresses and port

numbers of the clients and servers. A sock is defined as a collection of connections that

have the same IP address and port number of the server [159]. Connection classification

is used to create the good client list, and socks classification is used to detect attacks or

resource problems. Figure 3.4 illustrates the concepts of a connection and a sock.
Sock

Server

Client

Client

Client
Port

Connection

FIGURE 3.4: ChkModel Sock and Flow Schema

Figure 3.5 depicts a ChkModel deployment at the network edge. Rather than

establishing the legitimacy of individual packets, ChkModel observes connection and

sock behavior and classifies them as being legitimate or attacks. As shown in Figure

3.4, the ChkModel is basically composed of the traffic observation and classification

components. The traffic observation component is responsible for capturing and

aggregating packets based on connections and socks. These are then fed into the

classification component responsible for identifying any anomalous behavior based on

known legitimate connection and socks models.

ChkModel

Network Traffic

Packet
Observation

Component

Conn

Sock

Classification

Component

Network

State

FIGURE 3.5: ChkModel Architecture

The traffic observation component is responsible for collecting real traffic at one

or more points on a target network and for gathering traffic statistics at connection and

sock granularity which are then stored in the Conn-Hash and the Sock-Hash tables

respectively. These statistics are continuously read by the classification component that

compares them with existing legitimate connection and sock models. The current

46

implementation of the ChkModel verifies only the legitimacy of TCP traffic, which

currently reaches as much as 90% of traffic in the Internet [158]. Judging a TCP

connection as legitimate is based on the two-way communication paradigm of the TCP

protocol. A TCP connection is modeled by the ratio of the number of packets sent to

and received from a specific destination [159]. This relationship will be used as a

baseline for the implementation of legitimate connection and sock models, as described

in more details next.

Legitimate TCP Connection Model

Data flows from the source to destination during a TCP session are controlled by the

constant flow of acknowledgments in the reverse direction. Congestion can be perceived

if the flows of acknowledgments decrease. In this situation, TCP reduces the sending

rate. This explains why normal TCP communication can be modeled by the ratio of the

number of packets sent to and received from a specific destination. A legitimate TCP

connection model defines two thresholds, ConnThr1 and ConnThr2 as the maximum

ratio (number of packets sent to or received from) for a healthy TCP connection and the

maximum ratio for a suspicious connection respectively. ChkModel classifies a

connection as good if its ratio is below ConnThr1, as suspicious if its ratio is between

ConnThr1 and ConnThr2 otherwise it is classified as being definitely bad. Because of

the dynamic nature of network behavior, some normal traffic may sometimes be miss-

classified as bad. In order to deal with this problem, a second threshold which provides

a new classification, called suspicious, for borderline cases for use in the sensor was

created.

Legitimate TCP Sock Model

ChkModel‟s legitimate TCP sock model is similar to the previous one. The main

difference is that it defines only one threshold namely SockThr, seen as the maximum

ratio for a normal sock. Recall that sock is defined as a collection of connections that

have the same IP address and port number of the server. A sock is classified as normal

if its ratio is below SockThr and as an attack otherwise.

When a TCP sock is low, it is an indication that a determined server is

overloaded, possibly by an attack, and through the TCP connection model, the presence

of an aggressive sending host in the Conn-Hash Table signals the possibility that a host

can be participating in an attack.

The ChkModel methodology was written in C++ and validated using a GPRT

testbed.

 Advantages: the use of a statistical function to model TCP connection

permits to detect the most diverse anomalies TCP related. The results

obtained on initial tests prove that it can be used in both on-line and off-line

traffic monitoring. Moreover, the use of adaptive thresholds helps to adjust

to the real network state. Last, this is appropriate both for a single backbone

link and for network-wide traffic.
 Limitations: this methodology was designed to discover only TCP attacks.

Moreover, as raised by the authors, sometimes, illegitimate traffic (SPAM,

for instance) could be recognized as legitimate if the target (server) was

capable to respond great part of connection requests.

47

3.4.7. Discussion of evaluated traffic analysis approaches

In spite of the advances in unwanted traffic detection, especially over challenging high-

speed links, these approaches either present a costly price of computational complexity

and infrastructure changes or some type of inadequacy related with some features such

as timescale of detection and detection range.

For instance, the behavior-based techniques Profiling [151] and Mining [153]

are very similar but diverge over some aspects. In terms of computational complexity,

the first one is simpler. On the other hand, whereas Mining perceives both low and high

intensity anomalies, Profiling is only adequate to massive anomaly detection. Other

good examples are statistical approaches [136] and [142]. Both are conceptually similar,

but they differ in their ability to detect a great number of anomalies and the timescale.

Whereas [136] has a poor performance in detecting two types of anomalies, [142]

reaches a varied scale of anomalies. On the other hand, the timescale of detection in

[142] can be more than fifteen minutes whereas in [136] it is less than one minute.

Finally, while by no means comprehensive, this work is of the opinion that this

chapter captures the essence of the discussion and analysis about anomaly detection

techniques. Table 3.1 summarizes the comparisons of anomaly detection techniques

presented.

TABLE 3.1: A subjective comparison of various anomaly detection techniques

Approach

Metrics

Analysis

Technique

Data

Format

Time of

Detection

Anomalies

Identified

Non-Gaussian

Multiresolution

Statistical

analysis

Aggregated

traffic

At least one

minute

DoS and Flash

crowds

Sketches and

Multiresolution

Statistical

references
Sketches For low-rate, less

than one minute.

For high-rate,

until 15 minutes

Flash crowds,

DDoS, Scan, and

unwanted traffic like

P2P and worms

Sketches and

CUSUM

Parametric

M-CUSUM
Sketches At least one

minute

DoS and DDoS

attacks

Wavelet Wavelet

Packet

Analysis

Not

applicable

Not defined Massive and

unknown attacks

Profiling Data mining

and Entropy

Flows At least five

minutes

Port and IP scans,

DDoS and unknown

attacks

Mining Statistical

multiway

subspace

OD flow At least five

minutes

Alpha flows, Flash

crowds, scans,

DDoS and unknown

attacks

ChkModel Statistical

analysis

Connections

and Socks

Instantly TCP attacks

48

3.5. Chapter Summary

This chapter introduced an overview of solutions against unwanted Internet traffic.

First, a brief discussion about traditional and promissory approaches was presented.

Common filtering mechanisms (including firewalls, ACLs, proxies, and BGP null

routing), IDS, anti-something software, and honeypot were showed and its usefulness

and shortcomings in to deal with unwanted traffic were pointed out. After, the recent

and promissory solutions (advanced filtering mechanisms and IP space investigation)

have also been presented in this section and examples of how they can be used to deal

with unwanted traffic were showed.

Next, collaborative solutions (CIDS and CAIDS) were presented and discussed.

Overall, the most important researches and contributions in this area were shown as

soon as the essential requirements for building such solutions were contextualized.

Lastly, an overview of relevant research in traffic analysis to detect unwanted

traffic was provided. The state of art in techniques used for detecting unwanted traffic

was surveyed. The review was organized with the goal of achieve a great spectrum of

anomalies. Solutions based on statistical distributions, mathematical models, and,

mainly, behavior analysis of hosts and network were studied and, then their advantages

and coverage and also their limitations were discussed.

To sum up, the aim of this chapter is not claim that all of the existing strategies

are reviewed here but it should give the reader ideas and argue for the need to continue

such efforts as a solution remains a further undertaking. As practical result, this chapter

demonstrated the fact that no single or isolated strategy is sufficient to deal with

unwanted traffic. The main reason is because it is a very complex and dynamic. Despite

initiatives like the IETF to provide some general guidelines (BCP 38 and BCP 84) for

operators and providers to put in place common procedures and efforts to root out

unwanted traffic and save on the resources, new attack forms keep popping all the time,

for different purposes and targeting different services. A solution that may achieve some

reasonable results would only be the result of cooperating processes, administrators,

security alert sites and any other mean that could contribute to this endeavor. This thesis

considers collaborative and cooperative solutions as its focus and a significant step in

the direction self-defending networks. In the next chapters, the proposed approaches for

analyzing and diagnosing unwanted traffic and anomalous will be introduced.

49

Part II

OADS Approach and Tools

50

Chapter 4

Orchestration Anomaly Detection System (OADS)

Internet services relied for a long time on the informal agreements and goodwill of

member sites in protecting and correctly forwarding each other‟s traffic. Although

lacking a centralized control or ownership, the Internet is one of the few, if not the only,

self-governing infrastructure that manages to operate reasonably well under such a

paradigm.

Today, that trust model is coming under intense attacks as a result of the

diversified communities that joined the Internet bandwagon. Figure 4.1 illustrates an

example (an email received in nanog.org list) of the almost routine discomfort and

trouble caused by unwanted traffic.

Date: Mon, 15 Sep 2008 08:14:06 -0400 (EDT)

From: Tom Obama <tb@dyndns.com>

To: nanog@nanog.org

Subject: Paging Level(3) Security Operations

Hello NANOG list,

I'm trying to reach out to Level(3) Security Operations for assistance with a Denial of Service attack.

So far, the normal means to contact Level(3) have failed.

I can be reached directly at 679-798-1248.

Thanks,

Tom Obama

FIGURE 4.1: E-mail example of the fight against unwanted traffic

Can the Internet way of life be maintained? For how long and at what price?

What can be done to make a network administrator‟s work easier to handle such

problems? Would not be nice to have some automatic, quicker and highly efficient

response to similar unwanted traffic? One cannot simply blacklist the domains where

unwanted traffic comes from, as this would only benefit those who are exploiting

existing Internet weaknesses or preferably the choice of a simple design.

In an attempt to answer to such concerns this chapter presents the specification

of a new orchestration-based approach to detect, and as far as possible, to limit

anomalous (unwanted) traffic. Core to the proposal, is a framework that coordinates the

receiving of a multitude of alerts and events from detectors, evaluates this input to

detect or prove the existence of anomalies, and last choose the best action to be taken,

named Orchestration-oriented Anomaly Detection System (OADS).

In order to explain how this proposed approach could be useful in improving the

anomaly detection process, firstly, an overview will be made aiming to explain the

orchestration concept and how it is applied in this proposal. Next, all OADS

51

architectural components will be individually detailed. Lastly and foremost, the benefits

of the proposed approach will be explained, detailing how it will deal with special

services and comparing it with some existing specialized architectures.

4.1. OADS Overview

The research in the field of collaborative anomaly and intrusion detection systems is

extensive and currently, but yet only very few systems have been simulated or

implemented. In addition, due to the technological trends and evolution of strategies and

mechanisms to generate unwanted Internet traffic (anomalous traffic), the typical

collaboration solutions can be considered deficient to deal with the current level of

Internet traffic, especially for high-speed links. Aiming to address these issues, a new

approach based on the concept of orchestration services is proposed called

Orchestration oriented Anomaly Detection System (OADS).

Orchestration is nothing but a modern metaphor that describes an already well-

known security network administrator activity. Analogously to a musical concert

maestro responsible for keeping the rhythm, cuing the different players, security

managers organize the harmony and rhythm of various detection instruments (IDS,

ADS, remediation systems, firewall, walled gardens, traffic analysis appliances, and so

on) to achieve a desired effect, turn the network as more secure as possible.

The idea behind OADS approach is to automatically manage the execution of

different anomaly detectors traditionally unaware of each other‟s. In other words, the

proposed approach permits and explores the added benefits obtained from the

collaboration and harmonization among different techniques against malicious

activities. Collaboration enables two or more processes to work together towards a

common goal without the need for a pre-established leadership. In the music world, this

occurs when musicians work on the same musical album or individual song. In the

information security context, this thesis sees collaboration as a facilitator of

relationships between different anomaly detectors. For instance, two or more detectors

can share the same traffic base (traces) to perform analysis or the final result from one

that may be taken as input for another detector to help reach a better decision. Harmony,

also seen as an interesting concept, means that two or more different sound notes fit

well together. Extending such concept to the network security area, one can say that

harmonization is enabling a service from any source, exposed through any technology,

to work well with an orchestration.

4.2. OADS architecture

To better clarify the orchestration approach, Figure 4.2 illustrates its organization and

shows its components.

The OADS architecture consists of four basic elements: Alert Pre-Processer,

OADS Analyzer, Decision Service, and OADS Miner. In addition, OADS approach

uses anomaly detectors as external elements. This section explains in details each one of

them.

52

Internet

Actions

(Filtering,

adjust,

email, ...)

Orchestration Core

OADS Analyzer

OADS

Miner

Decision

Service

Aggregated

AlertsRaw

Alerts

 ADS1

...

Anomaly
Detectors

 ADS2

 ADSn

Results

Crawling

Information

History

Anomalies and

Vulnerabilities

Alerts Base

Alert Pre-

Processor

Queries4.2.1

4.2.2 4.2.3 4.2.4

4.2.5

FIGURE 4.2: OADS architecture view

4.2.1. Anomaly Detectors

Anomaly detectors implement the intelligence necessary to analyze traffic information

from its sensors looking for potential attacks or abnormal events. They extract data

related to suspicious and anomalous traffic and supply the orchestration core of OADS

approach with alerts. In other words, the main goal of an anomaly detector is to identify

and notify the likely existence of any anomalous, unwanted or harmful traffic behavior

to the orchestration core.

In practical terms, anomaly detectors are logical devices that may be

implemented in hardware or software. In hardware, they are commonly aggregated with

sensors that implement a variety of techniques such as sampling and filtering, packet

level capture, flow aggregation, and DPI. Currently, there are a great number of

hardware-based products to capture and inspect network traffic in real time that has

been developed. P-Series (Force 10 networks) [160], Orca-flow (Cetacea networks)

[161], and Cloudshield technologies [162] are some examples. Regarding software-

based, a plurality of solutions, tools, techniques, and systems to process the traffic may

be used, including IDSs (Snort [163], Bro [164] and Prelude IDS [165]), honeypots

(Honeyd [75] and Nepenthes [166]), and academic prototype software or solutions

[151][167].

4.2.2. Alert Pre-Processer

Alert Pre-Processer component can be seen as the front door of the OADS approach. It

plays a role that consists of receiving information (raw alerts) from anomaly detectors

and preparing them to be analyzed. Basically, it performs two activities.

The first one is the adequacy of alerts. Although OADS approach adopts

IDMEF standard as alert message format, is necessary a content adequacy since some

anomaly detectors present distortions in relation to IDMEF output, as previously

presented in Section 3.3.1. A good example involves two famous free IDS software:

53

Snort [163] and Prelude IDS [165]. Basically, they have different nomenclatures for

alert identification field. Figure 4.3 highlights this divergence.

<?xml version="1.0"?>
<IDMEF-Message version="1.0">
 <Alert messageid="3004">

<?xml version="1.0"?>
<IDMEF-Message version="1.0">
 <Alert ident="abc123456789">

(a) Snort IDS (b) Prelude IDS

FIGURE 4.3: Snort and Prelude nomenclature problem.

While Snort employs the standard nomenclature (Alert messageid), Prelude

names this field as Alert ident.

The second is aggregation. Since attacks and anomalies might consist of one or

multiple steps and the anomaly detectors are capable to create alerts for each of these

steps, aggregation activity makes easy to build hypothesis about the anomalies and

possible defense strategies, and to reduce the volume of data.

Alert Pre-Processer component may employ two aggregation schemes: similarity

and cluster. The first and most used scheme explores the distance in time between alerts

with some similarity between determined alert fields. The idea behind it is to aggregate

“near” alerts, that is, to fuse alerts if they are both close in time and typical attributes

such as Source IP, Source Port, Destination IP, Destination Port, Attack Class, and

source detector are similar. This thesis does not make use of Port fields since source

ports can be easily changed to hide the attack and destination ports are normally related

to attack class field. This aggregation approach is very simple and must be utilized to

evaluate a reduced alert number, i.e., it is adequate for simple attack scenarios.

The second is based on clustering, where alerts set are divided into different

groups. The goal is to group alerts that have the same attack scenario. Since the majority

of attacks are against the same target machine (or other network devices), so the attacks

with the same target IP, for example, often have greater similarity. Consequently, it is

easier to find similar alerts. The choice for this aggregation approach is justified by the

need of working with massive alerts, especially when checking high-speed links.

In addition, in order to provide security requirements, the Alert Pre-Processer

component can implement two security measures: session control and cryptography.

The former is to register all participants and consequently enhance the general security

of the OADS approach. Universal Description, Discovering, and Integration (UDDI)

specification [168] has been used for this purpose in a solution involving Web Service

as in [92]. The latter is to guarantee that all communication among all OADS

components will be encrypted.

4.2.3. Alert Analyzer

Alert Analyzer is a tool that correlates incoming reports, trying to confirm the existence

or not of attacks and anomalies. Moreover, it is also capable to predict future threats and

targets. This OADS component has the function of receiving the aggregated alerts built

by Alert Pre-Processor component, correlate them to increase their accuracy and

consequently to validate the assumptions contained in each one of them, and possible

predicting their occurrence in the future with some level of confidence.

The idea behind this correlation is to build an anomaly traffic patterns base. In

other words, all confirmed positive diagnosis (true abnormal traffic) would generate

54

rules that can and must be stored, to be consulted on future. Although this may seem a

bit controversial, there is a good reason for it. The following example presents to the

reader a more detailed view. Assuming the existence of a network scenario where a host

is infected by a botnet injecting a low-rate TCP SYN attack on the network. This attack

occurs constantly at intervals of 10 minutes in a network where there are two detectors.

The first detector (ADS1) was deployed to evaluate the TCP message exchange

behavior pattern while the second one (ADS2) is specialized in massive traffic

anomalies. When both are put together to evaluate this anomalous traffic, only ADS1

detects the abnormality because it recognizes a progressive growth in TCP connections

as illustrated in Figure 4.4. As result, a generic rule will be created by OADS AC-

Analyzer to identify this anomalous behavior clearly perceived on the picture.

FIGURE 4.4: Example of attack evaluation by two anomaly detectors.

To achieve this objective, OADS Analyzer makes use of an adaptive technique,

namely, episode frequency analysis [119][120]. It observes and develops knowledge, in

the form of probabilistic rules, of the relationships among events that anticipate and

make up a given attack. Not only is it capable of building adaptive event basis

signatures, but can also be used to predict the buildup and preparation towards a

possible attack before it is carried out, hence giving networks managers a kind of early

warning system.

4.2.4. Decision Service

Decision Service (OADS-DS) implements the software responsible for the decision

process related to analyzed network traffic. According to received information (or even

collected), it decides whether there is any abnormality.

To implement the OADS-DS, a number of mechanisms, methodologies, and

techniques can be used. Voting methods (simple voting, priority-base, weight levels,

and decision tree), neural networks (supervised or unsupervised [169]), fuzzy logic

[170], Dempster-Shafer‟s Theory of Evidence [171][172], Markov Chains (normal or

hidden), finite state machines [173] and other knowledge fusion approaches are only

some examples. The ability to tailor this service, making it context-aware, to different

scenarios, network traffic, network status, available detectors, or other conditions is a

great advantage of this service.

0

10

20

30

40

50

60

70

80

0 5 10 15 20

P
ac

ke
ts

Time (Minutes)

ADS2

ADS1

55

Since it has access and knowledge about the past and the current network status,

OADS-DS uses predefined policies (heuristic rules) to choose the best decision

mechanism to make at any determined moment. In OADS approach, Decision Service

employs the concept of Policy-Based Management (PBM), defined by IETF [174], to

take decisions according to defined network policies. Policy definitions are an answer to

relatively high level questions such as: What to do when such event happens? The PBM

approach is governed by a set of rules that determines the action course to be taken

based on some conditions [175]. The evaluation of a policy is triggered by an event,

which results in a policy decision being enforced on specific network device(s) or

service(s). Policies are declarative, i.e., they can be adapted at run-time to flexibly

control system behavior and are therefore becoming increasingly popular in adaptive,

run-time configurable networks and information systems.

4.2.5. OADS Miner

OADS Miner is a specialized tool able to receive queries and to answer with

summarized and specific content based on obtained information from the Internet and

stored on anomaly and vulnerability base.

Basically, OADS Miner is divided in two distinct modules (Figure 4.5). The first

one, named OADS Crawler, is responsible to gather on the Internet new information

sources about traffic anomalies, vulnerabilities, and attacks. This module acts like a

crawler collecting and concentrating the maximum possible information available on the

Internet (technical and alert reports, summary traffic, black and white lists, and

vulnerabilities databases) and stores them in a unique repository. It is important to

emphasize that operation control like activation, deactivation, and parameters change

(number of pages searched, initial URLs, specific content, for example) of OADS

Crawler can and must be made by the Decision Service component. To achieve such

goal, it is desirable that these actions are made using a predefined configuration file

using a description language like XML.

Internet
Internet

Crawler

Anomalies and

Vulnerabilities

Search

Engine

AODS Miner

Analyzer

queries

queries

Decision

Service

Control and Adjust

FIGURE 4.5: OADS Miner overview.

The second module works providing a differentiated search engine, focus on the

support of the decision-making. It is capable to receive general or specific queries

elaborated from end-users (typically network and IT managers) or other systems and

tools, and return specific summarized information. This functionality is better explained

56

by the following example. Assuming that many anomaly detectors are reporting

suspicious behavior in a determined set of IP address and that Alert Handler

summarizes them in a same cluster, the Analyzer decides to search thoroughly what the

possible causes are. For this, it consults the OADS Miner about information related with

this case. So, OADS Miner executes queries in its anomaly and vulnerability base

looking for any data which characteristics are similar or peculiar to the behavior. Hence,

all available information matched with the original query is retrieved, summarized to

eliminate duplications or inconsistencies, and forwarded to the Analyzer in order to

decide whether the suspicious behavior is or not anomalous one.

4.3. OADS Contributions

The possibility of collaboration between anomaly detectors in the attempt to identify

traffic anomalies quickly and accurately seems to be the major benefit of the OADS

approach. Although, this modular framework may grow to embrace other detectors and

technologies, it is seen as a good and significant step in the direction of self-defending

networks.

Another benefit offered by the OADS approach is freeing the network operators

and administrators of the routines and cumbersome repetitive tasks of evaluating

security events, alerts, and incidents provided by the numerous network security

software and services. Today, network security can no longer be achieved by

individually setup of each network security element and the manual configuration of

devices and services remains prone to human errors and does not scale well. For this

reason, OADS approach may use security policies to especially describe or define what

is considered as unwanted traffic and to support actions that deal with it (domain

policies). In a recent work Erro! Fonte de referência não encontrada., security policies

were employed for this goal, although they are not very scalable.

The flexibility to update or add new detection techniques is another offered

benefit. OADS approach permits that any detectors may participate into the framework

since it makes use of a predefined pattern for communication exchanges (in this case

IDMEF).

Lastly, OADS is a generic and open approach to deal with unwanted traffic. It is

generic as its components may be assembled to detect a large number of different types

of anomalies, spanning from a traditional LAN access control service to large high-

speed ISPs and backbones. The approach is also open as it uses open source languages,

defines and uses existing standard protocols, and tools. The possible number of anomaly

detectors and their invocation sequence offers a wide and flexible range of effective

cooperative work in order to defeat unwanted traffic. The external domain

communication capability is no doubt a significant step in the direction of zeroing in on

current cyber-attacks by rapid online cooperation with external security alert sites and

colleagues.

4.4. Chapter Summary

Around two decades after the seminal work by Denning [176], anomaly detection

remains a relatively less studied field when compared to intrusion detection for

example. It is only now that the potential benefits of anomaly detection are being looked

at under a high-speed network magnifying glass. This perspective culminates from the

57

increasing number of high-speed networks, the emergence of new services, and the

increasing convergence of the two.

In this thesis, the collaboration and harmonization of different anomaly detectors

is a step towards to achieve a desired effect in security area, i.e. turn the network more

and more secure. In this context, this chapter presented a holistic view of the proposed

architecture to deal with unwanted Internet traffic identification, called the

Orchestration oriented Anomaly Detection System (OADS). This novel architecture

employs collaboration and harmonization of different anomaly detectors to achieve a

desired effect in the security area, i.e., turns the network more and more secure. In

general lines, it facilitates the management of unwanted traffic identification, by

providing means to integrate (collaboration) different anomaly detection techniques

(detectors) and consequently increasing the network security level.

Although this thesis acknowledges that anomaly detection is still far from being

solved, it believes that the most promising results will still be achieved and this thesis

contributes with a new effective approach for anomaly detection. Moreover, as main

benefit, it releases the network operators and administrators of the routines and

cumbersome repetitive tasks of evaluating security events, alerts, and incidents provided

by the numerous current network security software and sites.

58

Chapter 5

OADS Alert Pre-Processor

The growth of coordinated network attacks such as scans, worms and distributed denial-

of-service (DDoS) is undoubtedly real. Although collaborative solutions have the

potential to detect these attacks due to enabling all their sub-detection systems and

sharing valuable intelligence with each other, some fundamental issues remain to be

solved.

Sadoddin and Ghorbani [93] pointed out three reasons to justify the need for

alert aggregation based solutions. First, it is not always easy to locate the source or

target of attacks or faults in a network by examining merely low-level alerts. Secondly,

current “low-level” data collection components consider raw alerts in isolation and raise

alarms for each of them, without considering rich logical connections and relationship

between these. Thirdly, automatic responses tend to be inefficient when solely based on

such raw alerts as their input for decision taking.

The huge number of alerts triggered by numerous security and traffic analysis

tools limits the ability to detect coordinated attacks in a scalable and accurate manner.

Hence, the question is: how to aggregate and reduce duplicated alerts from different

detectors inasmuch time as possible to permit their joint summarized interpretation?

This problem is addressed through the design and development of a component

(tool) based on multi-source alert aggregation to deal with the generated huge volumes

of raw alerts. Among the adopted techniques, there is one proposed by Xu et al. [151],

focused as profiling Internet backbone traffic for discovering significant behavior

patterns of interest. It provides their plausible interpretation, by aggregating raw alerts

and extracting significant clusters along the three dimensions: source IP address,

destination IP address and class of attack. An information-theoretic approach is taken to

classify traffic into meaningful clusters.

The goal is to obtain the most relevant alerts grouped in clusters of interest,

allowing that a correlation algorithm can be used to discover the attack strategy, helping

network operators and IT managers to see the real attack intentions and take the most

adequate decision. This solution has the potential to reduce the bandwidth and

computational load at the (centralized) server, decreasing the false negative rate and

prioritizing the most relevant alerts.

In order to explain how the proposed solution can be useful in the context of

alert aggregation, the remainder of this chapter is structured as follows. First, the

background behind entropy and relative uncertainty is explained, followed by the

process of extracting significant clusters. Next, an overview design of the Alert Pre-

Processor is presented, including complete details of each architectural component.

Then, the implementation of each component is described. After, performance

evaluation and stress tests are presented to validate the solution. Last, some conclusions

are discussed.

59

5.1. Background

5.1.1. Entropy and Relative Uncertainty

The work of Xu et al. [151] proposed the use of an information-theoretical measure,

named relative uncertainty (RU), to extract significant data based on the mathematical

concept of entropy, proposed by Shannon and Weaver [152].

Entropy essentially measures “the amount of uncertainty” contained in

determined information. Let be a random variable that may take discrete values

 . Suppose we randomly sample or observe for times, which induces an

empirical probability distribution on ,

 , where is the frequency

or number of times that was observed taking the value [151]. The Shannon entropy

of random variable is defined as:

 (1)

where by convention .

Since entropy measures the “observational variety” in the observed values of ,

it is correct to affirm that , where

is defined as the maximum entropy of when .

So, assuming that there is an “observational variety” and , Xu et

al. [151] introduced a standardized entropy, named relative uncertainty (RU), to

provide an index of variety or uniformity regardless of the support or sample size

defines as:

 (2)

Since relative uncertainty provides an index of variety or uniformity in the

observed values of , if , then all observations of are of the same kind,

i.e., for some , meaning that the observational variety is completely

absent. On the other hand, when , if and only if and

 for each , where denotes a subset of the observed values of .

Thus all observed values of are different or unique and the observations have the

highest degree of variety or uncertainty. If , if and only if
 , thus for , i.e., the observed values are uniformly

distributed over . In this case, measures the degree of uniformity in the

observed values of .

As described in their original work, the authors considered the conditional

entropy and conditional relative uncertainty by conditioning based

on , where , and .
Hence if and only if for every . In general,

 means that the observed values of are closer to being uniformly

distributed, thus less distinguishable from each other, whereas indicates

that the distribution is more skewed, with a few values more frequently observed. This

measure of uniformity is used for defining “significant clusters of interest”

60

5.1.2. Extracting Significant Clusters

Before explaining the process used to extract significant clusters, it is necessary to

clarify that the original focus has been changed. Instead of extracting clusters needed to

identify attacks and anomalies, significant clusters are used to reduce the number of

alerts and avoid the cognitive overloading of system managers.

In addition, for the above reason, unlike the original work that uses the four-

feature space (source IP address, destination IP address, source Port, and destination

Port) to determine the communication patterns of the end hosts and services, this work

adopts a feature-space composed by the three elements, source IP address (srcIP),

destination IP address (dstIP) and class of attack (class)
24

. The extracted srcIP and dstIP

clusters are used in a similar role to the one in the original work as they represent a set

of “interesting” host behaviors (communication patterns), while the class cluster yields

a set of “interesting” class/impact information of the attack alerts. No use is made of

source Port and destination Port information in cluster identification due to the fact that

source port can be easily changed to hide an attack and destination port is normally

related with attack class field.

Regarding the process to extract “significant clusters of interest” proposed by Xu

et al. [151], considering:

 , a random variable. For example, representing a one feature dimension like

srcIP,

 , a time interval,

 , the total number of alerts observed during the time interval , and

 , the set of distinct values in ,

the probability distribution on is given by , where is the

number of alerts that take the value and the (conditional) relative

uncertainty, , measures the degree of uniformity in the observed

features . If is close to 1, say, , then the observed values are close

to being uniformly distributed, and thus nearly indistinguishable. Otherwise, there are

likely feature values in that “stand out” from the rest.

Consequently, it is possible to define a subset of that contains the most

significant (thus “interesting”) values of if is the smallest subset of such that: i)

the probability of any value in is larger than those of the remaining values; and ii) the

(conditional) probability distribution on the set of the remaining values, , is

close to being uniformly distributed. Intuitively, contains the most significant feature

values in , while the remaining values are nearly indistinguishable from each other.

Algorithm 5.1 Simplified significant cluster extraction algorithm

Input: ;

01:

02: compute probability distribution and its ;

03: while do

04:
05: for each do

06: if then

07:

24

 Class of attack is obtained from the IDMEF alerts.

61

08: endif

09: end for

10: compute (conditional) probability distribution and ;

11: end while

Algorithm 5.1 presents a general draft of the used algorithm (in pseudo-code) for

extracting the significant clusters in from . Initializing with , the algorithm

searches for the optimal cut-off threshold from above via “exponential

approximation” (reducing the threshold by an exponentially decreasing factor 1/2
k

with k constant). As long as the relative uncertainty of the (conditional) probability

distribution on the (remaining) feature set is less than , the algorithm examines

each feature value in and includes those whose probabilities exceed the threshold

into the set of significant feature values. The algorithm stops when the probability

distribution of the remaining feature values is close to being uniformly distributed

().

The algorithm results are in the form of vectors, one for each cluster, containing

the key of interest (IPsrc, for example), its frequency and the pointer for all elements

this key.

It is important to explain that the Alert Pre-Processor component only employs

the clustering technique from the proposed approach by Xu et al. [151].

5.2. Alert Pre-Processor Architecture

In order to achieve high detection accuracy without introducing an excessive

computational overhead, an efficient mechanism of multi-source (multi-dimensional)

alert aggregation is necessary.

The proposal addresses this issue through the design and implementation of an

alert aggregation module (or component). This module receives alerts from different

detectors, converts them to the IDMEF-based alert format, and then aggregates these

using an adapted algorithm based on cluster similarity. Figure 5.1 depicts a functional

diagram of the architectural components in accordance with their roles.

The main entities that compose Alert Pre-Processor are:

1. Alert Handler Module - plays a role that consists in receiving information

(raw alerts) from different detectors and preparing these for analysis. It is

seen as the front-end of the Alert Pre-Processor component since it

represents the unique access gate to the offered functionalities. More

specifically, it performs three activities:

o Translation – performs translation of alert messages from different

formats to the IDMEF standard format. This activity is optional.

o Validation – performs the validation of the alerts to guarantee that they

are in conformance with the IDMEF standard format.

o Ordering – performs the ordering and synchronization of alerts according

to their timestamps. It is important to emphasize the need of all detectors

to have their clocks synchronized in order to ensure the correct ordering

of alerts.

Architecturally speaking, the Alert Handler module is divided into two parts:

Alert Handler agent (AHa) and Alert Handler server (AHs). The former runs

continually when the detector is active, i.e., it is implemented as a daemon or

62

service. It is responsible for collecting the generated alerts, translate and

validate them when necessary, and finally sending them to AHs. The second

handler also acts as a daemon or service and is responsible for receiving the

alerts from the AHa, ordering them according to their timestamps, and

ultimately forwarding them to the Aggregation module.

2. Aggregation Module – is the core of the Alert Pre-Processor. It has as main

task for aggregating alerts from multiples sources (detectors) that have some

common feature values. It receives ordered alerts and executes a cluster-

based algorithm in order to extract only significant alerts. The results

(summarized alert information) are then forwarded for possible correlation to

check or confirm the likelihood of attack or anomaly.

Ordered

alerts

Multi-source

Alerts

Alert Handler

Module DS1

...

Detectors

DS2

 DSn

Alert Pre-Processor

Vector of

significant

clusters

Aggregation

Module

srcIP dstIP

class

AHa

AHa

AHa

FIGURE 5.1: Functional diagram of OADS Alert Pre-Processor.

5.3. Implementation

This section describes the implementation process of the OADS Alert Pre-Processor

while focusing on its data structure.

5.3.1. Alert Handler Module

In order to receive multi-source alerts, this handler employs a client/server approach,

where the clients are called Alert Handler Agents (AHA) and the server is known as the

Alert Handler Server (AHS).

Alert Handler Agent (AHA)

Developed using Java 1.6, AHAs are deployed together with anomaly and intrusion

detectors (Snort, for example), in the form of a daemon processes. Their operation is

divided in four tasks. The first one verifies the existence of alert files generated by

detectors. To achieve this, an AHA checks periodically (typically between 1 and 5

minutes, usually configured according to the type of the detector used) if there are new

alert logs. When it is the case, it copies these alerts and starts the processes of

translation and validation.

The second task is that of translation. It converts the original alerts to the

IDMEF format. For example, a typical output of the ChkModel [158] detector,

composed by source IP address and port numbers, destination IP address and port

numbers, the rate of sent and received packets and the state (see Figure 5.2a), needs to

be translated for further manipulation. The result of the conversion to the IDMEF

standard is shown in Figure 5.2b.

63

<?xml version="1.0"?>

<!DOCTYPE IDMEF-Message>

<IDMEF-Message version="1.0">

 <Alert messageid="57">

 <Analyzer analyzerid="ChkModel">

 <Node category="unknown"></Node>

 </Analyzer>

 <Source>

 <Node category="unknown">

 <Address category="ipv4-addr">

 <address>58.33.126.229</address>

 </Address>

 </Node>

 <Service ip_version="4">

 <portlist>5576</portlist>

 </Service>

 </Source>

 <Target>

 <Node category="unknown">

 <Address category="ipv4-addr">

 <address>192.168.0.163</address>

 </Address>

 </Node>

 <Service ip_version="4">

 <portlist>0</portlist>

 </Service>

 </Target>

 <Assessment>

 <Impact severity="high">BAD</Impact>

 </Assessment>

 </Alert>

</IDMEF-Message>

58.33.126.229:5576 è 192.168.0.163:0

Pkt Send: 92 PktRec: 0

 State: BAD

 (b)

(a)

FIGURE 5.2: Translation example of ChkModel output to IDMEF format

In practice, AHAs have implemented translation support for three detectors:

Prelude IDS (as previously explained in Chapter 4, section 4.3.2), Profiling [151] and

ChkModel [158].

The third task is the validation of alerts. Its goal is to discard those alerts that are

malformed. Basically, this task compares each alert with the IDMEF DTD
25

 (Document

Type Definition) to check whether or not it correctly formatted. The validation task is

implemented using DocumentBuilderFactory class from the javax.xml package.

The fourth and last task consists of sending the alerts, via socket communication,

to Alert Handler Server (AHS).

Alert Handler Server (AHS)

Also developed using Java 1.6 and designed to act as a service, AHS has the role of

receiving, via socket communication, alerts from different detectors. All received alerts

are buffered, ordered according to their timestamps, and then forward to the

Aggregation module.

25

 DTD defines a structure of a document, where are specified what elements and attributes can be used in

the document.

64

It is important to emphasize that this work considers that all detectors employ

some kind of time synchronization like NTP (Network Time Protocol) to ensure the

success of the overall approach.

5.3.2. Aggregation Module

The Aggregation module receives ordered alerts from the Alert Handler module and

then processes them to extract the most significant ones. Since all received alerts are

considered “important”, two data structures using Java, named ATable and CTable,

were implemented to store some values of interest for further evaluation. Figure 5.3

illustrates the structures of ATable and CTables.

0

1

101

201

247

301

Alert Table 192.168.0.51

200.129.163.5

Port Scan

next alert

next srcIP

next dstIP

Alert 4

192.168.0.51

10.10.10.4

WEB MISC SSLv2

next alert

next srcIP

next dstIP

Alert 1

192.168.0.1

150.161.192.11

Port Scan

next alert

next srcIP

next dstIP

Alert 3

192.168.0.67

150.161.192.11

Malformed ICMP

next alert

next srcIP

next dstIP

Alert 2

2

Alert pointerAlert count

scrIP cluster table

Alert pointerAlert count

class cluster table

0

1

2

next class

next class

next class

next class

0

1

2 2

2

Alert pointerAlert count

dstIP cluster table

0

1

2

FIGURE 5.3: Data structure of ATable and CTable

ATable is an array data structure that stores source IP address information

(srcIP), source port, destination IP address (dstIP), destination port, class of attack

(class), timestamp and alert severity. In addition, it also has three alert pointers (next

srcIP, next dstIP, and next class) to link alerts sharing the same feature value in the

given dimension. This idea removes the need to duplicate the alerts and then to group

each alert into three clusters along each dimension, not to mention that is both more

scalable and efficient regarding memory cost especially when dealing with hundreds of

millions of alerts. For example, in Figure 5.3, the next srcIP pointer of Alert 1 links to

65

Alert 4 since they share the same source IP 192.168.0.51. Similarly, the next dstIP

pointer of Alert 2 links to Alert 3 since they share the same destination IP

150.161.192.11, and the next class pointer of Alert 3 links to Alert 4 since they share the

same class Portscan.

Once all the received alerts are correctly stored in ATable, CTables are put in

operation to reference the first occurrence of an alert, providing an easy and simple way

to quickly find the “old” alerts of the same clusters. Since there are three types of

clusters, three instances of CTable were created for managing clusters along three

dimensions.

In spite of their simple design, CTables are essential to the computation and

extraction of the significant clusters. Each CTable stores an alert counter, for recording

the number of occurrences of a given value, and an alert pointer, for referencing the its

first time. For example, when evaluating alert 1 in Figure 5.3, the given source IP

address (150.161.192.51) is compared with srcIP cluster and as it is the first time that

this IP address occur it is therefore inserted into CTable. The alert count field is

incremented by 1 and an alert pointer is linked to this alert at ATable. The same occurs

with the other dimensions dstIP and class. However, when evaluating alert 3´s dstIP

value (150.161.192.11), one finds the first alert (alert 2) of the cluster dstIP (index 1),

and updates the next dstIP pointer of alert 2 to alert 3. Next, alert count is finally

incremented by 1.

When the CTables are filled (with the insertion of all ATable elements), the

process of cluster extraction is triggered. According to algorithm 5.1, it results in three

lists (one for each cluster) composed by key (srcIP, dstIP or class of attack), frequency

and the pointer for the first occurrence in its respective CTable.

As a final result of Aggregation module, each list is used to create a vector (one

for each dimension) containing only significant elements (alerts). Each vector is

composed by the following attributes: source IP address, source port, destination IP

address, destination port, class of attack, timestamp and alert severity.

5.4. Performance Evaluation

5.4.1. Benchmarking

CPU load and memory usage of the Aggregation module are measured using jProfiler

[177], an all-purpose java profiling suite targeted at Java applications. Its features

include CPU, memory and thread profiling telemetry.

In order to collect the CPU load, the code has been divided in two parts: ATable

construction and significant cluster extraction, which also includes CTable construction.

Similarly, the same division is applied to measure memory usage. Next, a number of

breakpoints before and after each part are inserted. The output difference points out the

CPU load and memory consumption of each part whereas the sum of these parts

indicates the total CPU load and memory usage of the Aggregation module.

To test the Aggregation module two alert files (AF1 and AF2) inject anomalous

traffic (port scans and traffic with the same source and destination address) in the used

test-bed consisting of real machines within the GPRT research laboratory. Table 5.1

summarizes the characteristics of these alert files.

66

TABLE 5.1: Characteristic of alert files AF1 and AF2

File Date Duration No. Alerts Size Detector

AF1 November, 30 2009 01h 45min 5.224 12.6 Mb Snort 2.8.3

AF2 December, 1 2009 06 h 04 min 24.824 36.5 Mb Snort 2.8.3

Table 5.2 shows CPU load and memory usage results for these two alert files

(AF1 and AF2). Figures 5.4 and 5.5 show the CPU load and memory cost of the

Aggregation module for AF2 (the largest alert file), respectively. Interestingly, it is

possible to clearly observe that the greater the number of alerts to be processed the

smaller is the CPU load and memory usage of the module. Such fact could be due to the

reading of alerts fields to build the ATable.

TABLE 5.2: CPU load and memory usage of the Aggregation module

File
CPU Load (%) Memory (MB)

min avg max min avg max
AF1 22,47 34,51 64,43 1,4 29,13 84,72

AF2 24,75 28,33 61,81 0,83 26,62 74,37

FIGURE 5.4: CPU load of the Aggregation module from alert file 2 (AF2)

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

Time (s)

FIGURE 5.5: Memory usage of the Aggregation module from alert file 2 (AF2)

0

10

20

30

40

50

60

70

1 11 21 31 41 51 61 71

C
P

U
 lo

ad
 (

%
)

Time (s)

67

In summary, the CPU load tends to be constant and is largely determined by the

number of alerts to record in ATable and consequently in CTables as well as that of the

size of significant clusters. On the other hand, memory usage is determined by the

number of alerts to be evaluated and recorded in ATable, as represented by the time

interval between 1 and 69 seconds in Figure 5.5. The oscillation perceived is a

consequence of the process of the alerts reading and evaluation process and their

insertion in ATable. The time interval between 69 and 75 in both pictures correspond to

CTables building, significant cluster extraction and the generation of the resulting

vectors.

5.5. Stress Test

The performed performance benchmarking of CPU load and memory usage

demonstrated the operational feasibility of the aggregation module. However, one needs

to show that it is efficient when extracting significant clusters. In order to fulfill this

requirement, two experiments were conducted: the first using the alert files of

performance benchmarking and the second using a DARPA 2000 dataset [179]. The

latter is a known publically available trace of security attacks and has been used in

many works [103][130][132]. It is important to emphasize that in both tests, the IDS

Snort (version 2.8.3.2) [163] is running to capture anomalies and the Snort-IDMEF

plugin [178] is used to translate Snort logs into IDMEF alerts.

5.5.1. Alert files AF1 and AF2

Table 5.3 summarizes the results obtained by the implemented Aggregation module

from AF1 and AF2. Note that both use the IDMEF format.

TABLE 5.3: Characteristic of alert files AF1 and AF2

File
Src IP Dst IP Class

Unique Extracted Unique Extracted Unique Extracted

AF1 2 1 467 13 8 4

AF2 35 20 22 7 16 7

From alert file 1 (AF1), consisting of 1399 alerts, 4 significant clusters of attack

classes from a total of 8, 13 significant clusters of destination IP addresses from a total

of 467 and 1 significant cluster of source IP address from a total of 2 distinct IP

addresses have been extracted. When processing alert file 2 (AF2), made of 24.824

alerts, 7 significant clusters of class of attack from a total of 16, 7 significant clusters of

destination IP address from a total of 22 and 20 significant clusters of source IP address

from a total of 35 distinct elements were also extracted. Figure 5.6 and Table 5.4

illustrate the class of significant attack clusters extracted from AF2.

68

FIGURE 5.6: Significant clusters extracted from class of attack dimension in AF2

TABLE 5.4: Class of Attack relative uncertainty in AF2

Class of Attack RU
Probability

[]
α

Bad Traffic same src/dst IP 0.387171712517231 0.450451176281018 0.02

Bad Traffic Loopback IP 0.396398827192577 0.449685787947147 0.02

Misc UPnP Malformed Advertisement 0.406761881088819 0.056235900741218 0.02

SQL Probe Response Overflow Attempt 0.418514276148485 0.018329036416371 0.01

ICMP Destination Unreachable Port 0.519671597203675 0.017603931679020 0.01

Storm Worm Phone Home Address 0.602436402138431 0.004028359651950 0.0025

Policy Outbound Teredo Traffic detected 0.627372862460001 0.002054463422494 0.00125

Final RU 0.925323538573275

Table 5.4 represents the extraction of significant clusters based on relative

uncertainty (RU) according to the previously described Algorithm 5.1. Before initiating

the extraction process, the first RU is calculated while considering all elements inside

the set, where . When the first cluster (bad traffic

loopback ip) begins to be evaluated, its probability is calculated by dividing their

frequency by the total number of alerts (522/1109), resulting in

 . After that, its probability is compared with the α

parameter (line 6 of the Algorithm 5.1). If its probability is greater than or equal to α,

then this cluster is significant and is therefore added to the set and removed from set

 . This process is repeated until all elements of have been compared to α. In Table

5.4, the three first clusters were extracted in the first interaction (α = 0.02), whereas the

fourth, fifth, sixth and seventh clusters are extracted in the second (α = 0.01), third (α =

0.0025) and fourth (α = 0.00125) iterations respectively. Note that in each interaction, α

is reduced by half, to improve the approximation. The extraction of significant clusters

stops when the RU value is greater than β, in this case 0.925323538573275 > 0.9.

Figures 5.7 and 5.8 illustrate the destination and source IP address significant

clusters extracted from AF2.

11182

11163

1396

455

437

100

51

0 2000 4000 6000 8000 10000 12000

Bad Traffic same src/dst IP

Bad Traffic Loopback IP

Misc UPnP Malformed Advertisement

SQL Probe Response Overflow Attempt

ICMP Destination Unreachable Port

Storm Worm Phone Home Address

Policy Outbound Teredo Traffic detected

Frequency

cl
as

s
cl

u
st

e
rs

69

FIGURE 5.7: Significant clusters extracted from destination IP address dimension in AF2

FIGURE 5.8: Significant clusters extracted from source IP address dimension in AF2

5.5.2. DARPA 2000 Dataset

The DARPA 2000 dataset [179] is a known trace offered as an IDS baseline evaluation.

Created by the MIT Lincoln Laboratory, it contains two scenarios (LLDOS 1.0 and

LLDOS 2.0.2), where both present traffic from external and internal networks.

LLDOS 1.0 is divided in 5 phases. In phase 1, the attacker sends ICMP to

discover which hosts are active in the targeted network. The packets are sent to sub-

networks 172.16.115.0/24, 172.16.114.0/24, 172.16.113.0/24 and 172.16.112.0/24.

Once with a list of active hosts as a result of the previous scanning phase, the attacker

begins phase 2 launching an exploit type tool to determine if the sadmind service is

executing at one of these hosts in the active list. Phase 3 consists in a set of attempts to

gain privileged root mostly using known buffer-overflow attacks over hosts executing

the sadmind daemon service. If root access to a host is obtained, the attacker initiates

phase 4 using remote access commands such as telnet and remote procedure calls (RPC)

to launch DDoS attacks from the newly invaded hosts. A new file named “.rhosts"

(short or remote hosts) and a program called master-sol are installed into these hosts. To

0 5000 10000 15000 20000 25000

127.0.0.1

239.255.255.250

192.168.0.58

192.168.0.57

12.168.253.2

224.0.0.253

192.168.0.140

Frequency

d
st

IP
 c

lu
st

e
rs

22331

608

457

180

180

152

144

130

0 5000 10000 15000 20000 25000

1

2

3

4

5

6

7

8

Frequency

sr
cI

P
 c

lu
st

e
rs

70

finalize (phase 5), the attacker, controlling the three hosts (172.16.115.20,

172.16.112.10 and 172.16.112.50), uses the command “mstream 131.84.1.31 5” to

unleash large numbers of packets to the target 131.84.1.31 during 5 seconds while using

random IP source addresses to avoid detection in what is known as IP spoofing.

Similarly to LLDOS 1.0, the LLDOS 2.0.2 DDoS dataset consists of 5 phases.

In phase 1, the attacker made HINFO DNS queries from the DNS server

(172.16.1145.20) trying to obtain information about possible future victims. The

knowledge of the hardware and software environment of a possible victim allows the

attacker to better narrow down the techniques and tools that are more likely to succeed.

In phase 2, using the same sadmind vulnerability, the attacker invades the DNS server.

Next, phase 3, through an FTP connection, the attacker installs remotely the mstream

program in the DNS server. The attacker also tries to gain control of two other hosts,

but in only one it succeeds (phase 4), where mstream program is installed. Lastly (phase

5), using both controlled hosts, DDoS packets are sent towards the same host

LLDOS1.0 (131.84.1.310) for the duration of 5 seconds while using fake random source

addresses.

Results

In LLDOS 1.0 scenario, 1109 internal alerts (inside-tcpdump file) and 2.465 external

alerts (dmz-tcpdump file) were evaluated. It is important to emphasize that Snort was

not able to detect phase 1 and part of phase 4 of this scenario. The explanation is simple.

Snort does not consider (and has no rules for) ICMP requests and telnet connections as

malicious activities. All other phases are detected.

Specifically, using internal alerts, from a total of 29 distinct classes of attack (class), 37

distinct destination IP address (dstIP) and 294 distinct source IP address (srcIP), the

Aggregation module extracted 9 significant clusters of class of attacks, 12 significant

clusters of destination IP address and no significant cluster of source IP address. Figures

5.9 and 5.10 illustrate the frequency distribution of the extracted clusters of class of

attack and destination IP address respectively, and Tables 5.5 and 5.6 summarize the

relative uncertainty (RU) for these two dimensions (class and dstIP).

FIGURE 5.9: Class of attack frequency distribution in LLDOS 1.0 inside scenario

572

262

90

30

26

20

14

14

12

0 200 400 600

bad traffic loopback ip

bad-traffic loopback traffic

rpc portmap sadmind request udp

netbios nt null session

community sip dns no such name treshold

attack-responses directory listing

rpc sadmind query with root credentials …

rpc sadmind udp overflow attempt

attack-responses 403 forbidden

Frequency

C
la

ss
 C

lu
st

e
r

71

FIGURE 5.10: Destination IP frequency distribution in LLDOS 1.0 inside scenario

TABLE 5.5: Class of attack relative uncertainty in LLDOS 1.0 inside scenario

TABLE 5.6: Destination IP relative uncertainty in LLDOS 1.0 inside scenario

Destination IP RU (dstIP) Probability [] α

131.84.1.31 0.349490430592109 0.7556357078449053 0.02

172.16.112.100 0.352162574775310 0.05049594229035167 0.02

172.16.112.105 0.354952942524035 0.026149684400360685 0.02

172.16.115.20 0.357870741608349 0.018034265103697024 0.01

194.7.248.153 0.860696355068559 0.015329125338142471 0.01

172.16.113.148 0.868338326412219 0.013525698827772768 0.01

172.16.112.194 0.876366490152678 0.013525698827772768 0.01

172.16.112.10 0.884815250608347 0.012623985572587917 0.01

172.16.116.20 0.893723469979750 0.012623985572587917 0.01

172.16.112.50 0.903135238078656 0.012623985572587917 0.01

172.16.115.87 0.913100810499855 0.010820559062218215 0.01

172.16.113.105 0.923677760466658 0.010820559062218215 0.01

838

56

29

20

17

15

15

14

14

14

12

0 200 400 600 800 1000

131.84.1.31

172.16.112.100

172.16.112.105

172.16.115.20

194.7.248.153

172.16.113.148

172.16.112.194

172.16.112.10

172.16.116.20

172.16.112.50

172.16.115.87

frequency

d
st

IP
 c

lu
st

e
rs

Class of Attack RU(class) Probability [] α

bad traffic loopback ip 0.488631524175470 0.5157799819657349 0.02

bad-traffic loopback traffic 0.493777284296841 0.23624887285843102 0.02

rpc portmap sadmind request udp 0.499225829629953 0.0811541929666366 0.02

netbios nt null session 0.505008637575596 0.027051397655545536 0.02

community sip dns no such name threshold 0.511161965629217 0.023444544634806132 0.02

attack-responses directory listing 0.517727823878885 0.018034265103697024 0.01

rpc sadmind query with root credentials

attempt udp
0.886411053116980 0.012623985572587917 0.01

rpc sadmind udp overflow attempt 0.899158381707709 0.012623985572587917 0.01

attack-responses 403 forbidden 0.912897436954964 0.010820559062218215 0.01

Final RU 0.9277653930176893

72

Final RU 0.934932404156025

Regarding source IP address information, no significant cluster could be

extracted since the initial RU of the set is 0.922710283397728, that is, .

This happens because although there are 294 clusters their frequency distributions have

low variation. Figure 5.11 shows the dispersion of source IP address clusters.

For external alerts observed in the LLDOS1.0 scenario, from a total of 24

distinct classes of attack (class), 42 distinct destination IP address (dstIP) and 29

distinct source IP address (srcIP), the Aggregation module extracted 9 significant

cluster of class of attack, 10 significant clusters of destination IP address and 4

significant cluster of source IP address. Figures 5.12, 5.13 and 5.14 illustrate the

frequency distribution of the extracted clusters

FIGURE 5.11: Source IP clusters dispersion in LLDOS 1.0 inside scenario

FIGURE 5.12: Class of attack frequency distribution in LLDOS 1.0 outside scenario

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

Fr
e

q
u

e
n

cy

srcIP

2158

160

32

32

17

12

8

7

7

0 500 1000 1500 2000

icmp redirect host

rpc portmap sadmind request udp

rpc sadmind udp overflow attempt

attack-responses directory listing

attack-responses 403 forbidden

rservices rsh root

web-cgi redirect access

web-misc /doc/ access

Frequency

cl
as

s
cl

u
st

e
rs

73

FIGURE 5.13: Destination IP frequency distribution in LLDOS 1.0. outside scenario

FIGURE 5.14: Source IP frequency distribution in LLDOS 1.0 outside scenario

In the LLDOS 2.0.2 scenario, 935 internal and 1.108 external alerts were

evaluated. Similarly to the first scenario, phase 1 was not detected, whereas phase 3 did

not generate any alert. All other phases are detected. Using internal alerts, from a total

of 29 distinct classes of attack (class), 26 distinct destinations IP address (dstIP) and

434 distinct sources IP address (srcIP), the Aggregation module extracted 6 significant

cluster of class type attack, 2 significant clusters of destination IP address. No

significant cluster of source IP address was detected as the initial RU of the set is

0.9803433665539428, that is, . Figures 5.15 and 5.16 illustrate the frequency

distribution of the extracted clusters of class and destination IP address types of attacks

respectively.

2119

43

40

24

20

17

15

14

14

14

0 500 1000 1500 2000 2500

172.16.114.50

172.16.114.30

172.16.114.10

172.16.114.20

172.16.115.20

194.7.248.153

172.16.113.148

172.16.112.10

172.16.112.50

172.16.112.100

Frequency

d
st

IP
 c

lu
st

e
rs

2158

230

17

8

0 500 1000 1500 2000 2500

172.16.114.1

202.77.162.213

172.16.112.100

137.245.85.134

Frequency

sr
cI

P
 c

lu
st

e
rs

74

FIGURE 5.15: Class of attack frequency distribution in LLDOS 2.0.2 inside scenario

FIGURE 5.16: Destination IP frequency distribution in LLDOS 2.0.2 inside scenario

For external alerts in the LLDOS2.0.2 scenario, from a total of 23 distinct

classes of attack (of type class), 28 distinct destination IP address (dstIP) and 20 distinct

source IP address (srcIP), the Aggregation module extracted 5 significant clusters of

class type attacks, 8 significant clusters of destination IP address type and 1 significant

cluster of source IP address (IP address 172.16.114.1 had as many as 1047 occurrences

and RU=0.120516348873754). Figures 5.17 and 5.18 illustrate the frequency

distribution of the extracted clusters

FIGURE 5.17: Class of attack frequency distribution in LLDOS 2.0.2 outside scenario

408

408

19

18

10

10

0 100 200 300 400 500

bad-traffic loopback traffic

(snort decoder) bad traffic loopback ip

community sip dns no such name treshold

netbios nt null session

rpc portmap sadmind request udp

attack-responses directory listing

Frequency

cl
as

s
cl

u
st

e
rs

823

36

0 200 400 600 800 1000

131.84.1.31

172.16.112.100

Frequency

d
st

IP
 c

lu
st

e
rs

1047

10

8

6

6

0 500 1000 1500

icmp redirect host

web-cgi redirect access

attack-responses directory listing

web-iis iissamples access

web-misc /doc/ access

Frequency

cl
as

s
cl

u
st

e
rs

75

FIGURE 5.18: Destination IP frequency distribution in LLDOS 2.0.2 outside scenario

5.6. Chapter Summary

As discussed previously, collaborative solutions are characterized by a huge amount of

generated alerts. To deal with this issue, the availability of efficient storage and search

schema is necessary.

This chapter discussed the design and implementation of a solution, named Alert

Pre-Processor, capable of convert original alerts into uniform IDMEF-based alerts and

summarizing or aggregating these using a clustering algorithm. It therefore allows a

more efficient alert correlation and consequently improves the potential usage within a

collaborative framework. The cluster-based approach proposed by Xu et al. [151] to

extract clusters of interest from raw intrusion alerts has been adopted.

To evaluate the proposed solution, some real-world intrusion data sets were

collected from the GPRT research laboratory in addition to the DARPA 2000 dataset.

As demonstrated, the proposed solution reduces alert messages significantly.

1024

16

8

6

6

6

6

6

0 200 400 600 800 1000 1200

172.16.114.50

172.16.114.10

196.37.75.158

207.46.176.50

172.16.114.20

216.32.120.132

172.16.115.20

172.16.112.100

Frequency

d
st

IP
 c

lu
st

e
rs

76

Chapter 6

OADS FER Analyzer

Although there are many available solutions for detecting anomalous traffic, including

IDS (Intrusion Detection Systems), IPS (Intrusion Prevention Systems) and APS

(Anomaly Prevention Systems), their effectiveness depends mostly on a higher level of

management and coordinated usage.

Currently, different efforts have been made to develop collaborative solutions,

called CIDSs (Collaborative Intrusion Detection Systems) and CAIDSs (Collaborative

Anomaly and Intrusion Detection Systems) composed by a set of individual IDSs, IPSs

and APSs coming from different network administrative domains or organizations,

which cooperate to detect coordinated attacks. A key component of the proposed

solution in this work is the alert correlation mechanism it uses. This clusters similar

incidents observed by different IDSs, prioritizes these incidents, and identifies false

alerts generated by individual IDSs. As result, a global and condensed high-level view

of network attacks resulting from analyzing raw alerts is then produced.

However, one of the issues involving alert correlation work (also known as event

correlation) lies in the need to improve the scalability of alert correlation while still

maintaining the expressiveness of the patterns that can be found. According to [180],

solutions based on single-dimensional correlation have been widely used due to their

simplicity, but they fail to characterize a wide scope of types of attack behaviors. Multi-

dimensional correlation schemas that are capable of identifying more patterns in events

provide better solutions. Although multi-dimensional correlation has a clear advantage

in terms of their expressiveness, its computational complexity limits its use in

collaborative IDSs, especially when operating online.

In this thesis, the alert correlation problems were addressed through the design

and development of a system based on data mining. The present solution uses the

concept of Frequent Episodes Rules (FER) to perform sequence analysis and

consequently detect anomalies, including also unknown attack patterns. Proposed

originally by Mannila et al. [120] for monitoring alarms in telecommunication networks

and finding relationships among them, FER is based on the fact that the data subject to

analysis consists of a sequence of events. So, the question is to find into collections of

events those that occur frequently together. FER is employed to observe and develop a

specific knowledge, in the form of probabilistic rules, of the relationships among events

(alerts) that anticipate and make up a given attack or anomaly. Moreover, it is capable

of building adaptive event basis signatures, but it also can be used to predict the buildup

and preparation towards a possible attack before it is actually carried out, hence giving

networks managers a kind of early warning system.

In order to explain how the following solution can be useful in anomaly and

attack detection and their early intercept, the remainder of this chapter is structured as

follows. Firstly, the theory behind frequent episodes analysis is introduced and some

examples of its applicability are discussed. Next, an overview design of the proposed

solution is presented, including a complete detail of each architectural component and

77

its accomplished implementation. Then, an initial evaluation is presented to validate the

solution. Lastly, some conclusions are discussed to summarize this chapter results.

6.1. Frequent Episodes Rules (FER)

Mannila et al. [120] proposed and designed a popular framework for spatial and

temporal data mining, named frequent episodes rules. The framework is applicable on

data as a single long sequence of ordered pairs, which are called events. Two key

concepts are adopted in frequent episodes analysis: event sequence and episode. The

first one refers to user/system actions and behavior collected over many domains or

places when the second one is seen as a set of events occurring relatively within small

distances following some partial order.

Next, the basic concepts of frequent episodes discovery employed in anomaly

detection and their prediction, including event sequence, time window, episodes and

sub-episodes, and calculations of frequency are presented.

6.1.1. Basic Concepts

Event Sequence

According to Mannila et al. [120], given the set of event , where is its

type (which takes values from a finite alphabet, A) and an integer representing its

occurrence instant.

An event sequence s over is the set , where

is an ordered event sequence such that for all , and

for all . Furthermore, and are two integers that represent the

starting and terminating times, respectively, and for all .

Figure 6.1 illustrates the sequence of events where:

60 65 70 75 80

 C C C B B BM MGK

FIGURE 6.1: A Graphical Representation of the Sequence of Events s

An examination of the event sequence in Figure 6.1 shows that it started at time

59 and terminated at 83. The sequence has 10 events that all occurred in the time

interval [59; 83].

Time Window

Since the reason behind using the event sequence abstraction is to identify and calculate

episode frequency for each given class of episodes, one needs to establish a time

interval over which such frequency is defined. Mannila et al. [120] define a time

window as a slice of an event sequence as exemplified in Figure 6.2 (time window

between 26 and 31 events). As a result, it is clear to see that the event sequence is made

up of a number of consecutive time windows. As far as is concerned to the size of such

time window, it is up to the user to establish it sufficiently large enough for events to

78

occur within it. Note that the choice of an appropriate window is important as it impacts

directly on the value for such frequencies.

20 25 30 35 40

R AY JP TRVT

FIGURE 6.2: Time Window within Sequence s

Formally, a time window within an event sequence is seen as a

sequence of events , with and , and consist of the pair
 from where . The time difference is defined as the window

size of and is represented by width . As a result, given the event sequence and

the integer , the set of all Windows of size in this sequence are denoted as

 . Further, the first and last windows reach out of the sequence timeline, in

that the first one only contains the first time sequence element whereas the last one

contains only the last point in time.

Episodes

Episodes are defined as partially ordered events according to their occurrence in time.

On a more formal tone, an episode is seen as , where is the set of all nodes

in the episode, the notation ≤ symbolizes the events order in time within an episode, and

 maps (m : V → Seq) the nodes to their respective events within the sequence.

Episodes fall into the following three classes: parallel, serial e and non-parallel

and non-serial, as illustrated in Figure 6.3.

A

B

A

B

CA B

X Y Z

FIGURE 6.3: X, Y and Z represent serial, parallel and non-serial non-parallel episodes

Episode X is said to be serial if subsequently all events of types A and B happen

in a given order, in other words, their order is important within a sequence of events.

Formally, A and B V, A ≤ B ≠ B ≤ A if A ≠ B for all A and B within the episode X.

Episode Y is described as parallel when it does not enforce a strict restriction in the

order of its events, turning their temporal order irrelevant. Formally, Y is such that for A

and B V, with A ≠ B. The third episode Z, from the figure, is called non-parallel and

non-serial at the same time. This is the case when events A and B are both part the same

episode and have no temporal relationship between them whatsoever.

Sub-episodes

Sub-episodes are based on the idea of that one episode may contain others embedded

within it. For example, a look at Figure 6.3 shows that Y is sub-episode of Z, as there is

79

mapping m that connects nodes A and B with others. To put it more simply, both nodes

of Y have corresponding ones in Z.

Formally, is a sub-episode of , written as ,

as there exists a mapping such that for all and for

all with and also .

Episode Occurrence

An episode is said to occur within a sequence if and only if all its events happen in such

sequence while all partial order is maintained.

Formally, an episode happens within an event sequence
 is there exists a mapping represented by the function

 for all the nodes from X to events in s such that for

any , and with and , hence one must also verify that

 .

Episode Frequency Calculation

The frequency of an episode is defined by Mannila et al. [120] as the fraction of

windows in which a given episode takes place. Hence for an event sequence s and an

episode window of size win, the frequency of an episode E within s is given by the

formula:

To establish whether an episode E is considered frequent or not a threshold

(min_fr) is used. As a result, E is said to be frequent is when its frequency

 . The set of all frequent episodes for a sequence s is given by

 . An important observation to be made here is that whenever an

episode is considered as frequent, then also all its sub-episodes are. This is an important

result, as seen later, used for the reduction of candidate generation for frequent episodes.

Discovering Episode Rules

Once frequent episodes are determined, these are then used in the study of event

correlations. Such relationships are known as episode rules. A rule between two

episodes X and Y is formally defined as , called , if X is a sub-episode of Y.

For example, the episodes and are frequent, with the frequencies

 and respectively. A resulting rule is if the expectation

for

 is higher than an established threshold.

The confidence of a rule is the ratio of its sub-episode expectation by that of the

episode. In other words, it represents the conditional probability for Y taking place

within a window, given that the episode X did happen in the same window.

Mannila et al. [120] suggest two approaches for calculating episode frequencies:

the first one is based on the number of windows whereas the other is based on minimal

occurrences. In this work, the first one is used for simplicity.

80

6.1.2. Related Work

Many data mining approaches have been recently applied to design of

collaborative IDSs, and frequent episode is one of these. First proposed by Mannila et

al. [120], there has been several studies devoted to applying frequent episodes in the

designs of NIDSs [181][182][183][184][185]. Lee et al. [181] developed a data-mining

framework as core to an IDS based on the use of the association rules and frequent

episodes. They modified Mannila et al.’s algorithms to use axis attribute(s) and

reference attribute(s) as forms of item constraints, intended to compute only the relevant

episodes (thus, ignore non-relevant one). In addition, Lee et al. used an iterative level-

wise approximate mining procedure to uncover low frequency, but important, episodes.

Luo and Bridges [182] imposed fuzzy logic to frequent episodes mining. This way,

flexible episodes could be mined, thereby enhancing the detection performance of the

proposed NIDSs. Luo et al. [183] modified the method of Luo and Bridges [182] in

order that the proposed system could be applied in “near” real-time detection. However,

like Luo et al. [183], the actual response time on an attack was not explicitly reported,

and only a single attack, named mscan, was experimented.

Qin and Hwang [184] proposed a new Internet trace technique for generating

frequent episode rules to characterize Internet traffic events. These episode rules were

used to distinguish anomalous sequences of TCP, UDP, or ICMP connections from

normal traffic episodes. In addition, fundamental pruning techniques were introduced to

reduce the rule search space by 70% when analyzing the DARPA 1999 traffic Dataset.

Hwang et al. [185] proposed a hybrid system, which combined the advantages of the

low false-positive rate of a signature-based intrusion detection system with the ability of

anomaly detection system (ADS) to detect novel unknown attacks. By mining

anomalous traffic episodes from Internet connections, Hwang et al. [185] built an ADS

that detects anomalies beyond the capabilities of the signature-based Snort system. A

weighted signature generation scheme was developed to integrate ADS with Snort by

extracting signatures from detected anomalies. That is, the hybrid system extracts

signatures from the output of ADS and adds them into the Snort signature database for

almost immediate and accurate intrusion detection. Experiments on real-world audit

data showed that the rate detection of HIDS is equal to 60%, when the results using

Snort and BRO system are 30% and 22% respectively.

Soleimani and Ghorbani [186] introduced changes in Mannila et al.’s algorithms

to manipulate the large quantity of alerts issues by IDSs. The main focus of this work

was given to the discovery of all possible alert sequences and their combinations. The

most critical among these were then identified. When applying the strategy to the

DataSet LLDDoS 1.0 from DARPA collected in 2000, good results were obtained as far

as the detection of critical intrusions, memory usage and execution time. The gain

shows as much as 90% reductions in alerts, even though critical attacks were still

identified and those occurring in more than one place were maintaining.

6.2. FER Analyzer: Design and Implementation

Core to this important module is to correlate alerts and increases the detection accuracy.

For this reason, its architectural design is modular to allow ease future modification and

the seamless addition of new components. Figure 6.4 depicts a functional diagram of the

architectural components in accordance with their roles.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib17
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib17
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib11
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib23
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib23
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bbib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bbib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib36
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib36
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4XK45J9-1&_user=686475&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1343826550&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=310afa1650eee9c8410fdb3d7ae0fb11#bib36

81

Rules

Multi-source

Ordered Alerts

Alert Analyzer

Frequent Episodes

analysisAlert Hnalder

Events

FIGURE 6.4: Functional diagram of FER Analyzer

6.2.1. Alert Handler module

The alert handler module performs alert translation into internal format (values from a

finite alphabet starting with A) supported for analysis.

All received alerts are correlated (translated) to an event type in preparation for

establishing frequent episode discovery. The selected and extracted attributes of each

alert are: class or type of attack, IP address and port number of source system or host,

and IP address and port number of target system or host. A correspondence table

between events and alerts attributes is built as shown in Table 6.1
26

.

TABLE 6.1: Example of event types, event names and their attributes

Event Type Event Name Source IP Destination IP

A Community SIP DNS no such

name treshold

172.16.112.100 172.16.115.20

B NETBIOS NT NULL session 172.16.112.100 172.16.112.20

C ATTACK-RESPONSE directory

listing
172.16.112.194 172.16.112.100

D NETBIOS NT NULL session 172.16.112.20 172.16.112.100

E ATTACK-RESPONSE Invalid URL 172.16.113.148 207.200.75.201

F WEB-MISC RBS ISP /newuser access 134.205.131.13 172.16.117.52

G WEB-MISC /doc/access 172.16.112.100 135.13.216.191

H ATTACK-RESPONSE 403 Forbidden 172.16.113.204 137.245.85.134

Other attribute selected and extracted of each alert is Timestamp. It is used in

association with Table 6.1 to build a list of formatted events time ordered (in seconds),

as shown in Figure 6.5.

26

 The events (alerts) presented in Table 6.1 are extracted from DARPA 2000 dataset, LLDOS 1.0 inside

scenario.

82

1 A I

2 C T F C

3 B O

7 A X K M

8 A O

9 B

10 C K P D

11 B O

13 C M O V

14 A Y U

15 A L P J

19 A S H U L R J I

25 B

27 A

FIGURE 6.5: Event sequence representation

Once completed, this list may then be sent to frequent episodes analysis.

6.2.2. Frequent Episode Analysis module

The present Frequent Episode Analysis (FEA) module is used to generate much rules

needed to indicate the eminent occurrence of attacks as a result of observing some

known sequences of alerts.

Recall that the parameters window size and threshold are important for the

precision of the results. The processing overhead is not a concern as this processing may

be performed offline and periodically to retrain the FEA module. The analysis made by

Frequent Episode Analysis module can be divided in four activities: event collector,

candidate generator, generator of frequent episodes and rules generator.

Event Collector

Event collector scans the list with the event types (Figure 6.5) and identifies those that

are more frequent. This process is described in Algorithm 6.1 [120]. Basically, it

receives a list of episodes of the same size as input and checks which among these are

frequent. It verifies if each episode is contained in the global event sequence as shown

by the code in line 5. As a result, all frequent episodes are returned.

Algorithm 6.1 Simplified algorithm for checking frequent episodes in the list of events

Input: episodesVector with size tam

01: frequents = []

02: for all episode in episodesVector do

03: eventList = getEventSequence(E)

04: if episodio.hasIn(eventList) then

05: frequents += episode

06: end if

07: end for

08: return frequents

In the algorithm, an episode is represented as a lexicographically

sorted array of event types.

83

Candidate Generator

Candidate generator receives a list of frequent episodes of size X and generates a new

list with possible frequent episodes of size X+1. The Algorithm 6.2 [120] describes the

candidates generation for serial episodes. This calculation demands a careful design

since is crucial to turn efficient the search for frequent episodes considering that the

number of possible frequent episodes grows exponentially with the increase of the

window size.

Algorithm 6.2 Simplified algorithm for candidate generation

Input: frequent episodies FrequentEpisodes

01: candidatesWithSizePlus1 = []

02: for all episode in FrequentEpisodes do

03: possibleCandidates = episodio.getChilds()

04: for all candidate in possibleCandidates do

05: subsets = candidate.getAllSubSets()

06: if (FrequentEpisodes.isSubSet(subsets) == TRUE) then

07: candidatesWithSizePlus1 += candidate

08: end if

19: end for

10: end for

11: return candidatesWithSizePlus1

The algorithm receives as input a ordered list of frequent episodes of size X. For

any given input frequent episode, all possible frequent episode candidates are

calculated. However, it is important to emphasize that if an episode is frequent in an

event sequence, then all subepisodes are also frequents (FER lemma 1 [120]). In order

to attend this rule, each episode of frequent episodes list (line 2) must have its possible

childs with size plus 1 verified (line 3). Consequently, each one of these possbile

candidates (line 4) is used to generate all possible subsets with size equal to the episode

(line 5). To qualify as a new frequency episode of size X+1, it must frequent, i.e., all its

sub-episodes of size X must be present in the input frequency list as enforced in line 6.

If the result is true, then the candidate is add to the list of candidates with size plus 1

(line 7). The algorithm finishes by returning an ordered list of candidate serial episodes

of size + l.

In order to provide a better understanding of this algorithm, a simple example is

explained. Given a frequent episodes list composed by four elements {AA, AB, AC,

AD}, the possible candidates of the episode AB will be (ABA, ABB, ABC, ABD, …,

ABZ) and each one of them will be tested to generate possible candidates. Evaluating

the first candidate, ABA, the subsets originated from it are AB, BA and AA. So, to prove

that the candidate ABA is frequent, its subsets (AB, BA and AA) are matched with the

frequent episodes list. As result, ABA is a possible candidate since AB, BA and AA are

represented in frequent episodes list by the episodes AA and AB. On the other hand, the

candidate ABZ is not since the subsets AZ and BZ not have representation of the

frequent episodes list.

Generator of Frequent Episodes

A generator of frequent episodes can be seen as the driver for the previous two modules.

It calculates all frequent episodes of all sizes using the output from the candidate

generator and event collector. Algorithm 6.3 [120] describes how to calculate a

collection of frequent episodes from an event sequence E of episodes.

84

Algorithm 6.3 Simplified algorithm for calculating frequent episodes

Input: event sequence E, window size win and frequency fr

01: C1 = {all elements in E with size equal to 1}

02: candidateSize = 1

03: candidateVector= {all element  C1 and |element| == 1}

05: for candidateSize to win do

06: /* Checking for frequent episodes (Algorithm 6.1) */

06: FrequentEpisodes=checkFrequentEpisodesInEvent List (candidateVector, win, fr)

07: AllFrequentEpisodes += FrequentEpisodes

08: candidateSize++

09: /* Candidate generation (Algorithm 6.2) */

10: candidateVector= generateCandidates(FrequentEpisodes)

11: end for

12: return AllFrequentEpisodes

It starts with the definition of a set (C1) contaning all elements from event

sequence E with size equal to 1 (line 1), a control variable candidateSize to permit

computing frequent episodes according to the window size win (line 2) and a structure

candicateVector to receive all generated candidates to be frequent episodes (line 3). To

calcule the frequent episodes, the algorithm 6.3 keeps running until it achieves the window

size limit (line 5). On each iteraction, the algorithm first verifies the frequency of the

candidate episodes from the event sequence (line 6) calling the algorithm 6.1. As result,

the returned frequent episodes are store in a general list AllFrequetEpisodes (line 7) and

the candidateSize variable is incremented by one. Secondly, it calls the algorithm 6.2 to

generate the candidates for frequent episodes, returning all possible candidates episodes

with size incremented by one (line 10). The algorithm finishes when returning all

frequent episodes.

Rule Generator

A rule generator extracts the rules one is seeking. It notifies an application such as an

IDS, how likely an attack or an anomaly is underway. Three main advantages are

important to mention here: considerable reduction of alert messages; higher precision

and confidence in alerts; and the prediction of attacks and anomalies. The pseudo-code

presented in Algorithm 6.4 [120] is responsible for rule calculation.

Algorithm 6.4 Simplified algorithm for rule calculation

Input: event sequence E, window size win, frequency fr and confidence conf

01: rules = []

02: /* Find frequent episodes (Algorithm 6.3) */

03: FrequentEpisodes = calculateFrequentEpisodes (E, win, fr)

04: /* Generate rules */

05: for all episode in FrequentEpisodes do

06: for all subepisode in episode do

07: if frequency(episode)/frequency(subepisode)  conf then

08: rules += [episode, subepisode, confidence(episode/ subepisode)]

09: end if

10: end for

11: end for

12: return rules

85

This simple algorithm first starts calling the algorithm 6.3

(calculateFrequentEpisodes) to calculate frequent episodes (line 3) for a given event

sequence E, when using a window of size win and a frequency fr. As result, a list of all

frequent episodes is returned (FrequentEpisodes). Secondly, the algorithm performs the

rule calculation process trhough a series of iterations. The first one extracts episodes

that composes a list of frequent episodes (line 5). The second one extracts subepisodes

relatively to the parent episode (line 6). The extraction of subepisodes is based on the

FER lemma 1 [120] that says that if an episode is frequent in an event sequence, then all

subepisodes are also frequents. Next, with the episode and its subepisodes at hand, the

algorithm 6.4 tests if the relation (proportion) between an episode and its subepisode is

greather than or equal to a defined confidence threshold (line 7). If the result is true,

then a new rule is generated as shown at line 8. The algorithm finishes returning all

generated rules.

Rule Reduction

Although functional and essential to frequent episodes analysis, the calculation and

generation of rules typically results in a huge number of FER and consequently a high

number of redundant or repeated rules. In order to solve this inefficiency, algorithm 6.5

employs two pruning techniques, proposed by Qin and Hwang [184], to reduce the rule

space and to provide a simplified view of data patterns. The idea is to establish if an

FER is effective (more frequently used) or ineffective (rarely used).

Algorithm 6.5 Simplified algorithm for rule calculation

Input: rules r

01: reducedRules = []; newRules = [];

02: for all rule in r do

03: /* Application of Transposition Law */

04: newRules += TranspositionReduction(rule);

05: end for

06: for all rule in newRules do

07: /* Application of Elimination of Redundant Law */

08: reducedRules += EliminationRedundant(rule);

09: end for

10: return reducedRules

The first law, transposition, asserts that given these two FERs
 , which describes behaviors for event A, the first one is seen as

being more effective than the second one. This is because of its satisfaction of the transposition

law, that is, the second rule can be induced by the first one. Therefore, the first rule is

kept (effective) and the second one is removed. In general lines, the goal is to make the

left hand side (LHS) as short as possible due to the fact that shorter rules are often easier to

apply or to compare.

The elimination of redundant law also assumes that rules with shorter LHSs are

more effective than rules with longer LHSs. This way, if there are two FERs
 in the rule set and there is a very frequent rule , it corrects to

assume that the rule is redundant, since it can be reconstructed from the two

previous rules. Therefore, the two rules are kept (effective) and the last one is removed

The result of algorithm 6.5 are rules without redundant elements. Figure 6.6

illustrates an example of rules reduction process.

86

Rule 136: M1 ----------> M1AAAAAAAAAAAA with confidence 0,81

Rule 137: M1A ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 138: M1AA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 139: M1AAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 140: M1AAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 141: M1AAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 142: M1AAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 143: M1AAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 144: M1AAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 145: M1AAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 146: M1AAAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

Rule 147: M1AAAAAAAAAAA ----------> M1AAAAAAAAAAAA with confidence 0,91

FIGURE 6.6: Normal rules and reduced rule for a sadmind request in LLDOS 1.0 Outside

In Figure 6.6, the event A indicates a port scan over the network and M1 an

attempt to obtain root privileges through sadmind. Since the probability of the

occurrence of sadmind attacks be followed by port scans is constant (same confidence

threshold), applying the transposition law, one generate a single rule to express these

attack situation (Rule 39), containing the lower LHS possible and the higher confidence.

In this example, 12 rules are reduced in one.

6.2.3. Implementation

The FER Analyzer module was entirely developed in Java (Version 1.6.0), using

Eclipse (version 3.3.2) as IDE.

6.3. Evaluation

This section describes a series of experiments in order to evaluate the performance and

results of FER Analyzer.

All experiments were conducted using a computer AMD Athlon 64 3000+

processor, with 4 GB main memory and 500 GB of hard disk, under the Ubuntu 10.4

Linux operating system.

6.3.1. Performance overview

In order to test the performance of the present implementation, the DARPA 2000

dataset [179] (LLDOS 1.0 and LLDOS 2.0.2 scenarios) was first used to measure the

influence of window size and frequency threshold in the frequent episodes generation.

DARPA 2000

The LLDOS 1.0 scenario consists of a sequence of 1109 alerts (inside) and 2465 alerts

(outside) covering a time period of almost 3 hours. Considering that each alert is

composed by the following five-tuple (source IP address, source port, destination IP

address, destination port and class of attack), there are 602 and 90 different types of

events, respectively, with very diverse frequencies and distributions. On average, there

is an alert every minute. However, since the scenarios illustrate attacks, the alerts tend

to occur in bursts. For example, 169 alerts occurred in a period of one second.

87

Tables 6.2 and 6.3 represent performance statistic for finding frequent episodes

in LLDOS 1.0 inside and outside scenarios with different window sizes and frequency

threshold of 0.005. The time required, the number of episodes found, the number of

possible candidates and the level of participation (frequent episodes/candidates rate) are

also presented.

TABLE 6.2: Performance for LLDOS 1.0 inside scenario

Window

Size (s)
Candidates

Frequent

Episodes

Level of

Participation (%)

Time

(s)

2 0 0 --- 4.8

3 1 1 100.00% 5.3

4 9 3 33.33% 5.9

5 100 10 10.00% 6.5

6 100 10 10.00% 7.3

7 100 11 11.00% 7.6

8 100 11 11.00% 8.0

9 100 11 11.00% 8.4

10 144 13 9.03% 8.8

11 144 13 9.03% 9.2

12 146 15 10.27% 9.5

13 152 21 13.82% 9.9

14 152 21 13.82% 9.9

15 152 21 13.82% 10.5

16 152 21 13.82% 11.0

17 152 21 13.82% 11.3

18 152 21 13.82% 11.7

19 152 21 13.82% 12.0

20 181 24 13.26% 12.5

TABLE 6.3: Performance for LLDOS 1.0 outside scenario

Window

Size (s)
Candidates

Frequent

Episodes

Level of

Participation (%)

Time

(s)

2 2 2 100.00% 1.0

3 9 5 55.56% 1.3

4 18 7 38.89% 1.7

5 199 18 9.05% 4.5

6 200 19 9.50% 5.0

7 201 20 9.95% 5.2

8 202 21 10.40% 5.7

9 203 22 10.84% 6.0

10 204 23 11.27% 6.2

11 199 24 12.06% 6.7

88

12 205 25 12.20% 7.0

13 206 26 12.62% 7.2

14 218 37 16.97% 7.8

15 248 39 15.73% 8.8

16 280 57 20.36% 9.7

17 286 59 20.63% 10.4

18 288 61 21.18% 10.7

19 291 64 21.99% 11.5

20 394 69 17.51% 14.5

In Tables 6.2 and 6.3, it is possible to see clearly the window size influence over

the number of frequent episodes obtained. Since the discovery of frequent episodes is

related with the existence of possible candidates, it is correct to assert that as more the

window size increases, the greater will be the number of candidates and consequently

the number of frequent episodes discovered. The processing time and the level of

participation also increases the same way. Regarding the stagnation on the number of

candidates and the frequent episodes (Table 6.2, window sizes 13 to 19), such fact

happens because it is not possible to generate new candidates for these window sizes. In

this specific case, all possible candidates are totally composed by episode candidates

with size 2 (145 candidates) and 3 (8 candidates).

Figure 6.7 represents the effect of the window size on the number of frequent

episodes for both scenarios.

FIGURE 6.7: Number of frequent episodes as a function of window size, with frequency

threshold of 0.002, for LLDOS 1.0 scenarios

The difference among the number of frequent episodes into inside and outside

scenarios is explained by the fact that the DDoS attack generated in these scenarios

originated a large amount of packets with random originating addresses. Hence, the

thousands of triggered alerts, with different source addresses, did not correlate with each

other‟s. Consequently, they were not potentially repeated which limited frequent

episodes. An examination of the correspondence table (Alert Handler module) revealed

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
e

r
o

f
Fr

e
q

u
e

n
t

Ep
is

o
d

e
s

Window Size (s)

LLDOS1.0-Inside LLDOS1.0 Outside

89

that more than 98% of the alerts taking place with the outside case were not repeated

within the internal scenario.

Within the LLDOS 2.0.2 scenario, there are 935 alerts (inside) and 1108 alerts

(outside) covering a time period of almost 1 hour and 30 minutes, where there are 867

and 41 different types of events, respectively, with very diverse frequencies and

distributions. Performance statistics of LLDOS 2.0.2 for the inside and outside

scenarios are available in Tables 6.4 and 6.5.

TABLE 6.4: Performance for LLDOS 2.0.2 inside scenario

Window

Size (s)
Candidates

Frequent

Episodes

Level of

Participation (%)

Time

(s)

2 2 2 100.00% 4.3

3 2 2 100.00% 4.8

4 15 7 46.67% 5.7

5 40 14 35.00% 6.5

6 40 14 35.00% 7.0

7 41 15 36.59% 7.5

8 43 17 39.53% 7.8

9 43 17 39.53% 8.3

10 56 20 35.71% 8.8

11 56 20 35.71% 9.2

12 56 20 35.71% 9.7

13 56 20 35.71% 10.1

14 56 20 35.71% 10.5

15 128 30 23.44% 11.0

16 128 30 23.44% 11.0

17 128 30 23.44% 11.3

18 128 30 23.44% 11.7

19 128 30 23.44% 12.8

20 130 32 24.62% 13.3

TABLE 6.5: Performance for LLDOS 2.0.2 outside scenario

Window

Size (s)
Candidates

Frequent

Episodes

Level of

Participation (%)

Time

(s)

2 3 3 100.00% 0.4

3 4 4 100.00% 0.5

4 6 5 83.33% 0.5

5 12 7 58.33% 0.7

6 20 9 45.00% 0.7

7 21 10 47.62% 0.8

8 22 11 50.00% 1.1

9 23 12 52.17% 1.2

90

10 24 13 54.17% 1.3

11 34 15 44.12% 1.5

12 35 16 45.71% 1.6

13 36 17 47.22% 1.6

14 37 18 48.65% 1.8

15 39 20 51.28% 2.0

16 116 27 23.28% 3.6

17 118 29 23.28% 3.6

18 121 32 24.58% 4.1

19 128 39 30.47% 4.3

20 157 52 33.12% 4.6

Figure 6.8 illustrates the effect of the window size on the number of frequent

episodes for both LLDOS 2.0.2 scenarios.

FIGURE 6.8: Number of frequent episodes as a function of window size, with frequency

threshold 0.002, for LLDOS 2.0.2 scenarios

Before showing the results of episodes rules, it is important and necessary to

clarify the importance and use of the frequency threshold parameter in any FER

analysis. The concept of frequency, represented by the picture of frequency threshold, is

essential to discover all frequent episodes of a sequence and consequently to obtain

rules that describes connections between events. This way, typical values of frequency

threshold for analysis are: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1 [120].

In fact, most works using FER employ frequency threshold values equal or

superior to 0.01. The explanation is simple. Small values of frequency threshold such as

0.001 and 0.002 allow the generation of a huge amount of candidates and frequent

episodes, with relevant impacts on processing time. For example, in LLDOS2.0.2

inside, the use of frequency threshold value of 0.001, with window size equal to 12,

generates 753.424 possible candidates of size 2, during a period of 25 minutes of

processing. In LLDOS 1.0 outside, window size superior to 8 generates 857.000

possible candidates of size 2.

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
e

r
o

f
Fr

e
q

u
e

n
t

Ep
is

o
d

e
s

Window Size (s)

LLDOS2.0.2-Inside LLDOS2.0.2 Outside

91

Nonetheless, values above 0.02 practically inhibit the generation of candidates

since only massive events (like massive DDoS attacks) can be recognized as frequent.

In the present four scenarios, no frequent episode was detected with this value.

6.3.2. Episode Rules

In order to test episode rules generation (the main goal of FER analysis), the current

implementation establishes two FER parameters: window size and confidence level.

The first one has influence over the number of frequent episodes generated and

consequently in the number of rules. The second one impacts the quality of such rules.

The higher the confidence level, the better is the quality and reliability of the obtained

rules.

Figures 6.9, 6.10, 6.11 and 6.12 plot the rule set growth against different window

size parameters four DARPA 2000 dataset scenarios. For clarity, the confidence level of

0.6 and the frequency threshold of 0.005 are assumed in all analysis.

FIGURE 6.9: Rule space generated from LLDOS 1.0 Inside

FIGURE 6.10: Rule space generated from LLDOS 1.0 Outside

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

G
e

n
e

ra
te

d
 R

u
le

s

Window Size (s)

Normal Rules Reduced Rules

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

G
e

n
e

ra
te

d
 R

u
le

s

Window Size (s)

Normal Rules Reduced Rules

92

FIGURE 6.11: Rule space generated from LLDOS 2.0.2 Inside

FIGURE 6.12: Rule space generated from LLDOS 2.0.2 Outside

A relationship between rules and window size is shown where the difference

between normal and reduced rules generated increases as the window size also

increases, although this reduction had been minimal in both inside scenarios. LLDOS

1.0 inside had a reduction of 8% (Figure 6.9) whereas LLDOS 2.0.2 inside had a

reduction varying between 24 and 29% (Figure 6.11). Such fact is explained by the

features of the traces, which generate many events. Consequently, this huge diversity

(602 events of 1109 alerts in LLDOS 1.0 and 867 events of 935 alerts in LLDOS 2.0.2)

is reflected in a low discovery of frequent episodes and the consequent generation of

rules. On the other hand, outside scenarios present consistent and relevant reductions. In

LLDOS 1.0 outside, the variation among rules achieved a range between 33 to 73%

(Figure 6.10) when in LLDOS 2.0.2 this variation stayed between 33 and 81% of rules

(Figure 6.12).

Figures 6.13, 6.14, 6.15 and 6.16 plot the rule set reduction against different

confidence level parameter under four DARPA 2000 dataset scenarios. For clarity of the

results, the maximum window size of 20 and frequency threshold of 0.005 were

assumed in all analysis.

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

G
e

n
e

ra
te

d
 R

u
le

s

Window Size (s)

Normal Rules Reduced Rules

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

G
e

n
e

ra
te

d
 R

u
le

s

Window Size (s)

Normal Rules Reduced Rules

93

FIGURE 6.13: The effects of pruning for LLDOS 1.0 Inside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20

FIGURE 6.14: The effects of pruning for LLDOS 1.0 Outside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20

0

2

4

6

8

10

12

14

16

18

0.0 0.2 0.4 0.6 0.8 1.0

N
u

m
b

e
r

o
f

R
u

le
s

ge
n

e
ra

te
d

Confidence Level

Normal Rules Reduced Rules

0

50

100

150

200

250

300

350

400

450

0.0 0.2 0.4 0.6 0.8 1.0

N
u

m
b

e
r

o
f

R
u

le
s

ge
n

e
ra

te
d

Confidence Level

Normal Rules Reduced Rules

94

FIGURE 6.15: The effects of pruning for LLDOS 2.0.2 Inside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20

FIGURE 6.16: The effects of pruning for LLDOS 2.0.2 Outside, with various confidence

thresholds, with frequency threshold 0.005 and window size 20

Since the rules with a high confidence are often the most interesting and useful

ones, especially if they are used for prediction, all Figures show how the number of

distinct rules varies as a function of the confidence threshold. From almost 900 rules

generated by the four scenarios, 108 have a confidence of exactly 1, for normal rules.

For reduced rules, this number is of 37. For many applications it is reasonable to use a

fairly low confidence threshold in order to point out the interesting connections, as is

discussed in the following subsection.

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0

N
u

m
b

e
r

o
f

R
u

le
s

ge
n

e
ra

te
d

Confidence Level

Normal Rules Reduced Rules

0

50

100

150

200

250

300

350

400

450

0.0 0.2 0.4 0.6 0.8 1.0

N
u

m
b

e
r

o
f

R
u

le
s

ge
n

e
ra

te
d

Confidence Level

Normal Rules Reduced Rules

95

Applicability of Episode Rules

In order to put in practice the applicability of episode rules, an enforcement agent is

built. It translates the episode rules generated by FER Analyzer to firewall rules,

specifically for IPTables.

Taking some episodes rules generated for LLDOS1.0 inside scenario as example

(Figure 6.17), the idea is to translate right hand side of each one in IPTables rules,

according to some predefined actions.

…

Rule 6: G ----------> GH with confidence 1,00

…

Rule 10: QR ----------> QRTU with confidence 1,00

Rule 11: TU ----------> QRTU with confidence 1,00

…

FIGURE 6.17: Sample of the episode rules generated for LLDOS 1.0 Inside (confidence

thresholds 0.8, frequency threshold 0.002 and window size 20)

The rule 6 represents the relationship between the events G and H. The first is an

WEB-MISC /doc/ access alert, with source address 172.16.112.50, source port 44482,

destination IP address 172.16.113.204, destination port 80, and severity 2 (medium risk)

and the second one is an WEB-MISC finger access alert, with source address

172.16.112.50, source port 33378, destination IP address 172.16.114.50, destination

port 80, and severity 2 (medium risk). According to the generated rule, the probability

of let event G to be followed by an event H has confidence equal to 1 (100%). This

way, the IPTable rules compatible with the episode rule is shown in Figure 6.18.

Rule 6: G ----------> GH with confidence 1,00

IPTABLES -A INPUT -i $INTERFACE -s 172.16.112.50 --dport 80 -p tcp -m limit

--limit 300/second -j ACCEPT

IPTABLES -A INPUT -i $INTERFACE -s 172.16.112.50 --dport 80 -p tcp -m limit

--limit 300/second -j ACCEPT

FIGURE 6.18: Translation of an episode rule to IPTable rules

Note that in this example, the action was to limit the malicious source IP

address. Such decision can be based on the value of severity parameter. Possible values

to the action are: Limit, during 60 seconds for low risk alerts; Extreme-Limit, during

300 seconds for medium risk alerts; and Block (DROP), for high risk alerts.

The rules 10 and 11 represent the relationship between the events Q, R, T and U.

All four events have the same class of attack, RPC portmap sadmind request UDP alert,

present the same source address 207.77.162.213, same destination port 111 and same

severity 2 (medium risk). Q event has source port 54790 and destination IP address

172.16.115.87. R event has source port 54793 and destination IP address 172.16.115.20.

T event has source port 55484 and destination IP address 172.16.115.50. U event has

source port 55485 and destination IP address 172.16.115.105.

According to the generated rules, the probability of the events Q and R to be

followed by the events T and U has confidence equal to 1 (100%). Moreover, the

probability of the events T and U to be preceded by the events Q and R has confidence

96

equal to 1 (100%). This way, the IPTable rules compatible with the episode rules is as

follow:

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j ACCEPT

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j ACCEPT

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j ACCEPT

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j ACCEPT

From LLDOS 2.0.2 inside scenario, also using confidence thresholds 0.8,

frequency threshold 0.002 and window size 20, the episodes rules generated are showed

in Figure 6.19, where H event is an Bad Traffic Loopback IP alert, with source address

127.201.162.238, source port 39965, destination IP address 131.84.1.31, destination

port 30906, and severity 3 (high risk) and I event is a Bad Traffic Loopback IP alert,

with source address 127.201.162.238, source port 39965, destination IP address

131.84.1.32, destination port 30906, and severity 3 (high risk):

Rule 1: H ----------> HI with confidence 1,00

Rule 2: I ----------> HI with confidence 1,00

FIGURE 6.19: Episode rules generated for LLDOS 2.0.2 Inside (confidence thresholds 0.8,

frequency threshold 0.002 and window size 20)

According to the generated rules, the IPTable rules compatible with the episode

rules is as follow:

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j DROP

 IPTABLES -A INPUT -i $INTERFACE -s 207.77.162.213--dport 111 -p tcp -m

limit --limit 30/second -j DROP

In LLDOS 1.0 outside and LLDOS 2.0.2 outside scenarios, none episode rules

were generated.

6.3.3. Real Traffic Analysis

This section presents an evaluation of the present module when submitted to real traffic

within a real environment. A LAN segment of the Laboratory GPRT, composed by

around 60 computers with two egress links: the first connects the GPRT to the local

Internet PoP-PE and the other one to the University Campus network via the IT Nucleus

(NTI).

To collect network traffic, Snort version 2.8.3.2 was setup at two gateways, one

per external link, and configured with the same IDS rules. Traffic was observed during

the days 17 and 19 of November 2009 during 14 hours on the 17
th

 and 18 hours on the

19
th

.

Frequent Episodes

Unlike the previous scenarios, there is no a priori knowledge of traffic at the laboratory

network. Nonetheless, during these two days, around 40.185 alerts were generated.

Clearly, a network administrator stands no chance in analyzing these notifications

97

without the auxiliary use of new tools. Using FER analysis, 348 event types were

registered. Table 6.6 contains more data on the GPRT evaluation scenario for frequency

threshold equal to 0.001.

TABLE 6.6: GPRT Laboratory Frequency Episode Results.

Window

Size (s)

Possible

Episodes
Candidates

Frequent

Episodes

Level of

Participation (%)

1 348 348 11 3.1%

2 82369 121 4 3.3%

3 2.10
7
 8 5 62.5%

4 7.10
9
 7 6 85.7%

5 2.10
12

8 6 75%

6 6.10
14

8 7 85.7%

7 2.10
17

9 6 66.6%

8 5.10
19

8 4 50%

9 1.10
22

4 2 50%

10 4.10
24

2 1 50%

Overall, the results reinforce the fact that the candidate generation technique

lowers substantially the cost of calculating frequent episodes.

Episode Rules

Regarding episode rules, none effective rule was generated. The reason is simple.

Although GPRT alerts have produced different frequent episodes, as presented in Table

6.6, the relevance of these frequent episodes is not sufficient to show the connections

between events.

For example, employing window size equal to 1 (the greatest number of

episodes discovered), only three rules was generated, but all of them with confidence

threshold inferior to 0.6. Moreover, as smaller the number of frequent episodes, lower is

the number of generated rules.

6.4. Chapter Summary

This chapter presented the design and development of a new module responsible for the

increase network security. Based on frequent episodes discovery technique, an Alert

Analyzer evaluates multi-source alerts and generates rules, helping on the identification

of network attacks and anomalies, increasing the accuracy and decreasing the

uncertainty.

In order to generate the frequent episodes rules effectively, the original

algorithms proposed by Mannila et al. [120] is combined with two episode rules

pruning techniques proposed by Qin and Hwang [184]. To evaluate this module, two

intrusion data sets were used: DARPA 2000 and one collected from the GPRT research

laboratory. As demonstrated, this solution is capable of handling multi-source alert

messages, generates effective frequent episodes rules and consequently produce

applicable firewall rules.

To sum up, the application of FED analysis to anomaly and attack detections has

shown to be useful. The role of the different parameters of such algorithm such as

98

window size and frequency threshold has been shown through experimentation. The

automatic interaction between this module and other security solutions like Firewall to

mitigate the identified will certainly increase the effectiveness of this solution and

provide the base for an autonomic security management solution.

99

Chapter 7

OADS Miner: Codename ARAPONGA

The last decade has seen a frightful increase of undesired, unsolicited, often illegitimate

Internet traffic, or simply unwanted. Despite being related to spam and denial of service

attacks, a great part of this problem directly involves security violations caused by

vulnerabilities exploits in software systems and some user services.

To security specialists and many businesses, this has been a welcomed

opportunity for the development of tools to combat these threats. To software and

hardware manufacturers, this phenomenon requires their constant monitoring of

evolving security problems targeting their products. Most of them alert their customers

as soon as they discover possible security problems and ask these to apply new patches

or undertake complete upgrades. There is nonetheless no way for a software

manufacturer to guarantee that its customers are acting comply with its advice. This is

often due to many reasons. IT administrators may find themselves overwhelmed with

the high number of requests to update their applications, suffering from a lack of human

resources, or may simply fail to understand the gravity of a given received alert. The

relevance of this kind of solution is witnessed by the existence of dozens of highly

visited private and public databases as a well as Web sites about vulnerabilities,

anomalies and attacks.

Despite having innumerous Web sites with security information, these often do

not coordinate their work, tend to use different report formats with emphasis on varying

information, specialize in different types of vulnerabilities, use different severity

classifications, lack statistical and event correlation data and may be difficult to search

through and visualize. This way, network administrators and IT managers may need to

spend precious resources and time browsing, filtering and locating reports on relevant

vulnerabilities and security information of interest to them instead of performing other

tasks.

In order to address this problem, a Web search system capable to provide

integration, into a single place, of security information and automated and advanced

search functionality over such content is proposed. This solution is called ARAPONGA.

The rest of this chapter explains how ARAPONGA can be useful in helping

users and other systems. Firstly, some background information and related works are

presented, aiming to differentiate out this solution from other proposals. Next, an

overview design of ARAPONGA is presented, including a detailed description of

architectural components and their implementation. An initial evaluation is then

presented to validate the developed tool. Lastly, some conclusions are discussed.

7.1. Background and Related Work

The constant human quest for innovation and technological advances resulted in a

wealth of data and information scattered, over the Internet, especially after the huge

success of the World Wide Web. However, with the rapid growth of information and

easy access of information, a question that may be raised is related on how to find

100

useful information and knowledge? After the entire semantic web remains a dream

concept. The usual advice is to use an Information Retrieval System (IRS) [187].

IRS is a generic name given to a class of tools dedicated to given technologies,

such as databases, for the selective manipulation and retrieval of large collections of

information in different presentation formats. Typically, an IRS investigates different

aspects of the information such as representation, storage, organization, and access. A

core assumption of their retrieval/search centric techniques is that their users know

exactly what information they seek.

Authors such as Baeza-Yates and Ribeiro-Neto [187] and Yao [188] consider

IRS as an extension (or evolution) of the basic search functionality of Data Retrieval

Systems (DRS). The reason is simple. Both are focused on the retrieval functionality.

However, they also have some differences. Yao [188] asserts that DRS deals with well

defined, structured and simple problems while IRS deals with not-so-well defined,

semi-structured or unstructured and not simple problems. In other words, DRS typically

work with database system while IRS investigates different aspects of the information

such as representation, storage, organization, and access. In addition, the core

assumption of DRS is that the data items and user information needs can be precisely

described while the core assumption of an IRS is that their users know exactly what

information they seek.

Despite being the natural evolution of the information retrieval area, coupled

with the rapid growth of the Web, IRS began experiencing problems due to their design

philosophy and principles. According to Yao [188], these problems are caused by the

emphasis on the storage and search functionalities, since an IRS performs search at the

raw data level, instead of the model level, and without user interaction. In other words,

trying to find useful and relevant information part of a large collection of unstructured

documents is undoubtedly a cumbersome task.

In order to solve this problem, Yao and Yao [189][190] proposed to shift the

focus of IRS from a system centric to a user centric and from a retrieval centric to a

support centric design philosophy. This culminated in what is known as Information

Retrieval Support Systems (IRSS). The main goal of any IRSS is to support users,

providing the necessary means, tools and languages to facilitate the task of finding

useful information to its users and managing it. In other words, IRSS set their focus on

the supporting functionalities for the users rather than concerning themselves with the

underlying retrieval related functionalities.

In IRSS, the users play more active and important roles. They can, for example,

take decisions at various stages of retrieval and find useful information process. With

exploratory search and browsing, only users may determine the relevance of each

information item. In addition, in some occasions, a user may not want details about

particular data, but rather a general view before going to a more in-depth analysis.

Unlike IRS that presents search results in the form of ranked list, an IRSS user would be

able to use graphical and visualization outputs to view a result, increasing the level of

inference and analysis.

However, in the context of Web, the focus on user interests does raise certain

issues. This is especially due to the fact that a user may not know exactly what is being

searched for inasmuch as billions of Web pages daily updated. For this reason, IRSS

applied to Web are known as Web Information Retrieval Support Systems (WIRSS).

According to Hoeber [191], WIRSS apply intelligent methods and advanced Web-based

technologies over the traditional focus on the automated search within digital

101

collections, to enable users to better specify their information needs, evaluating and

exploring search results, and managing the recovered information.

For example, what is the answer to the question: How many times have Brazil

won the FIFA World Cup? Among the results returned there will those reflecting the

fact that the Web knows, for instance, that Brazil will host the 2014 World Soccer Cup

competition and that the 2010 World Soccer Cup takes place on South Africa, even in

sites that do not consider the initial query terms. On the other hand, for a WIRSS with

support for semantic search, the answer would be five.

Two examples that illustrate such functionalities, taken from the Web, are

Google maps [192] and AllinOneNews [193]. The former is a heterogeneous WIRSS,

where the user queries by postal address information and receives topological map data,

terrain and geospatial data, high-resolution satellite imagery data, real-time traffic flow

stream data from sensors, and pictures of neighborhoods in the Web browser. The latter

is a news meta-search engine that integrates homogeneous information sources, where

the user queries are dispatched to a selected (based on the query) subset of 10-20 most

promising sources from a list of 1800 online news sources. The results are merged and

top ranked, before being presented [193].

However, the design and deployment of WIRSS introduce new challenges as

precisely pointed by [191][194]. The main one is the evolution of traditional Search

Engines (SE), based on classical IRS concepts, to Search Support Engines (SSE)

focused on providing different supporting functionalities for end users. Authors such as

Zeng et al. [194] and Marchionini and White [195] confirm SSE requirements, besides

offering typical and traditional navigation, search and browser functions, to additionally

implement important user oriented supporting functionalities such as knowledge

organization, discovery, and visualization. To prove and evaluate such approach, they

developed a layered SSE focused on the management of the DBLP dataset [196],

known as DBLP-SSE.

Another challenge is related to the representation of Web search results. The

typical list-based representation of results is extremely effective when the information

being sought is very specific. However, when the queries provided by the searchers are

ill-defined, vague, or ambiguous, the list provides little support for the searcher to

discover the few relevant documents from the many irrelevant ones. Tilsner et al. [197]

implement a prototype to Web search based on fuzzy clustering and visualization,

named CubanSea, capable to provide a novel method for representing search results,

allowing that users have an active role in the search process, making high-level

selections of fuzzy clusters of documents, thereby reducing the number of non-relevant

documents within the search results list.

Recently, a different approach proposed by Marchionini and White [195]

introduced the concept of Information Seeking Support System (ISSS), which

emphasizes the necessity of shifting from the study of Information Seeking towards

Seeking Support. The authors argued that seeking information for learning, decision

making, and similar complex mental activities that take place over repeating time

periods, requires the development of new specially designed solutions and support

services to help users managing, analyzing, and sharing the built up knowledge.

Current ISSS works cover a wide range of functionalities. Shah [198] developed

a framework, named ContextMiner, capable of executing automated crawls on various

Web sources and collecting data as well as contextual information. The ContextMiner

may analyze and add value to collected data and its context, and continuously monitors

102

digital objects of interest to its users over time. WolframAlpha [199] is seen as a famous

computational knowledge (semantic) engine able to answer queries directly by

computing the result from structured data, rather than providing large numbers of

pointers to documents or Web pages as is typically the case with existing search data

indexing engines. Relation Browser [200][201] provides a dynamic user interface that

allows users to explore a data set through the use of faceted browsing and keyword

search. Developed as a Java applet, it focuses the understanding of the relationships

between items in a collection and the exploration of information spaces (e.g., a set of

documents or Web pages).

7.2. ARAPONGA Overview

The adoption of web search technologies led people to expect immediate and easy

access to information in all aspects of life. Web-based search services have become

fundamental components of the cyber infrastructure that supports economic growth and

social advance. Although there is a built base of solutions for search, human needs for

information go beyond search to filtering, assessing, sense-making, synthesizing, and

using information to even meeting the drive for the creation of new knowledge.

A special and focused case is that of security information. Although there are a

great number of given Web sites built to manage vulnerabilities reports, lists of

malicious hosts (typically IP, DNS servers, domains and ASN), graphics and statistics,

network administrators and IT managers are forced to painfully search thoroughly to

found such information.

To such end, the present work develops and evaluates a tool called ARAPONGA

based on the basic principles of Web-based Information Retrieval Support Systems

(WIRSS) and Information Seeking Support Systems (ISSS). It is capable to provide: (i)

integration of Web crawled content into a single place; (ii) a powerful search support

engine focused on security; (iii) a unified and simple access with support for logical

expressions; and (iv) interfaces to deal with both human users as external system like

search engines and decision making tools.

ARAPONGA provides automated searches content on vulnerabilities and

malicious activity statistics published on the Web, storing them, and, finally, allowing

fast and easy access to this information directly for both users and other systems. More

specifically, ARAPONGA offers two types of supporting functionalities: search

refinement support and knowledge analysis support.

Search refinement support describes a set of searches that can be performed by

users and external system alike to found security information content. This functionality

can be compared with the traditional and advanced searches available on the most vary

Web search engines of the Internet. Although ARAPONGA also provides typical search

features as query input text box and search results listing, it also distinguishes itself.

ARAPONGA employs the concept of templates at indexing Web pages aiming to

extract better and more specific contents. Consequently, search results become more

consistent and relevant with users’ interests since there is a major diversity of

complements to help the search such as specific tags, kind of pages and knowledge

domain. Templates will be explained in next section.

As far as is concerned to search refinement support functionality, ARAPONGA

is able to answer some specific questions as the following:

103

 Is my IP address, server, domain or ASN related to some type of suspicious

or malicious activity, intrusion or attack reported on the Internet?

 Is there some new type of anomaly (attack, intrusion or similar) related to a

specific type of service, port or protocol?

 What is the last appearance of a particular anomaly or vulnerability?

 What are the vulnerabilities related to a specific product (software or

hardware) or given vendor?

The second main ARAPONGA functionality is knowledge analysis support. It

allows the elaboration (building) of various types of structures (knowledge and

statistical graphics) to represent a specific knowledge domain. For example,

ARAPONGA can model and present the frequency distribution of vulnerabilities or

knowledge domains. Figure 7.1 illustrates a knowledge structure of the “vendor” search

term, which products are related with vulnerabilities.

FIGURE 7.1: A partial multi-level knowledge structure for vulnerability by vendor

Based on all indexed documents, ARAPONGA may infer that if one needs very

general information with respect to “vulnerability” by vendor, the seeker may just want

the knowledge in the second level (the first level just has one node “vulnerability by

vendor”). Furthermore, if the user requires more detailed knowledge concerning one

branch of vendor, it can choose, for example, “Microsoft” and get a finer grained

structure. This way, it is possible to produce a scalable knowledge structure which

provides the knowledge source in different levels of details with an interactive manner

concerning different user needs.

It is important emphasize that knowledge analysis support functionality is

mainly user centered since the system generates relevant analysis results to help these

understand the security threats for a given context.

104

7.2.1. Templates

Typically, Web crawling technologies assume content extraction directly from Web

pages without relying on the actual keywords declared in the HTML source code. The

key reason is that Web publishers usually define keywords different from the actual

content. Consequently, indices generated by indexing process are common or generic

since they are based on the main subject of the pages.

Despite the adoption of RDF (Resource Description Framework) [202] as

standard model for data interchange on the Web, the problems involving index

generation continued because there is no guarantee for Web crawlers that the

information included in a RDF file fully corresponds to actual content. Moreover, RDF

description prepared for a specific Web page provides information about the content

and does not include any information about content allocation on that same Web page.

In order to solve this problem and also improve the results of the indexing

process, ARAPONGA employs the concept of templates. The term template refers to a

model to represent some content, while providing a kind of standard of visualization.

ARAPONGA templates have keywords (tags, fields or regions) often found in relevant

Web pages that follow some predefined standard. Templates can be created to represent

a complete Web site or domain inasmuch as the contents and structures are oftentimes

repeated. However, every time a Web site or domain introduces new different

structures, several templates need to be re-generated to represent such differences.

In ARAPONGA, templates try to establish a relationship between URLs and

keywords. This way, after the index process, there is not a unique search space, but a

multitude of search spaces are maintained for diversity, increasing the probability of a

particular topic being relevant. Figure 7.2 exemplifies the difference between a normal

search space and a search space with templates.

Search Space with Templates

Keyword “A”

Keyword “B”

Doc1

Doc2

Doc3

Doc1
Doc2

Doc3

Normal Search Space

Doc1

Doc2

Doc3

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

Doc?

FIGURE 7.2: Differences among search spaces

In order to clarify the idea behind ARAPONGA templates, Figure 7.3 shows an

example for Secunia’s Advisories Web site [203], a famous and reliable repository

about vulnerabilities, where the black rectangles represent the fields identified as useful

whereas the red round ones represent the content of each field. Table 7.1 describes each

field and its contents.

105

FIGURE 7.3: Secunia Web site Template

TABLE 7.1: Secunia Advisories template

Template Fields Description

Secunia Advisory Defines the unique identifier of the vulnerability by Secunia standard

Release date Indicates the release date of the vulnerability

Last update Indicates the last update of the vulnerability

Popularity Indicates the popularity of the vulnerability according to the number

of access of the Web page

Critical Exposes the level of severity of the vulnerability

Impact Describes how the vulnerability affect the targets

Where Describes where the vulnerability is achieved

Solution Status Describes what was done to solve the problem

Software Describes the software or systems affected by vulnerability

CVE-Reference Indicates the CVE identification of the vulnerability

Description Describes in general lines the vulnerability

Solution Describes how to solve the vulnerability

106

The use of templates offers the possibility to identify more specific content and

indexing this as keyword. In comparison with a common index process, where the

generated search space is composed by all content, the present indexing process using

templates generates a more reduced search space composed by content indexed using

keywords.

As result, the use of templates allows a performance gain in terms of response

time and processing. In ARAPONGA, this type of search is called an advanced search.

It is important emphasize that the search process for both simple and advanced search

remains the same (regarding searching, sorting and page ranking). What really changes

is the search space and the number of returned pages. A simple search is likely to return

much more results than the advanced one.

7.2.2. Architecture

The ARAPONGA architecture is modular, to ease future modification, and the seamless

addition of new components. As shown in Figure 7.4, the architectural components

were broken down in accordance with their role.

The entities that compose the ARAPONGA system are:

 Crawler – responsible for harvesting Web pages and associated metadata

and contextual information, where the sources of interest are defined in an

initial URL list (seeds). When a URL is accessed, the crawler downloads the

page associated to it and analyzes all links it finds there in order to select and

store these links into a list of new URLs to visit. This process is repeated

until some stopping condition is achieved.

 Indexer – responsible for indexing the collected content by the crawler.

However, instead of the simple indexing based on the traditional content of

pages (content, URL, timestamp and other identifiers), this component

makes use of known templates to extract different and more specific field

identifiers and, consequently, permits highly refined searches. The indexer is

also responsible for the removal of Web pages that are indexed if they lack

relevant content to the security context.

 Search Engine – receives queries and returns the answers in an orderly

manner. This component performs two distinct tasks: searching and ranking.

The search module takes in queries in a natural language like form interface

component. These are then translated into accepted queries and the base is

looked up for documents. The results are then passed to the next module.

The ranking module quantifies the relevance of received documents with

regard to the initial query and returns these to the interface component.

 Interface – offers a front-end between users (human operators and external

systems) and ARAPONGA (search engine component, more specifically),

providing different types of input and output interfaces for execution of

queries and display of responses. This component performs two main

functions: query handler and output viewing. The former is responsible to

translate originals queries for the format accepted by the search engine

component. The latter displays the queries’ results (typically a Web page,

but also uses graphics and ordered XML list).

107

Crawler

Database

Indexer

Templates

2. Candidate pages

Search

Engine

Interface

5. Refined query 7. Response

4. Query
1. Initial URLs

3. Indexed pages 6. Search

WWW

FIGURE 7.4: Architectural and workflow diagram of ARAPONGA

7.2.3. Components Interaction

The interaction between ARAPONGA components can be divided in two stages. First,

there is the processing of collecting and indexing Web pages. It involves the crawler

and indexer components (detailed on Steps 1, 2 and 3 in Figure 7.4). In Step 1, the

crawler is fed with initial URLs (or domains) that had been listed as information source

for vulnerabilities and Internet anomalies. Next, in Step 2, the crawled Web sites

(candidate pages) are saved and the indexer component starts using the templates to

index all these content. As a result, in Step 3, the relevant and useful files are saved in

the indexed files base.

The second stage involves querying (Steps 4, 5, 6, and 7). To help the reader

gain familiarity with the ARAPONGA system, an example is used. Supposing that an

IT manager desires to know if: there are TCP alerts on port 80 related to attacks, bots

and spam in the period ranging from 01/01/2010 and 01/07/2010?

Upon receiving this query, the interface component translates it and formulates a

new one according to predefined parameters. If some part of question is not understood,

that is, cannot be translated, the question is discarded and an error message is displayed

to the user. Otherwise, in this example, the following is generated:

TCP 80 -pageType “attack,botnet,spam” -date “01/01/2010 to 01/07/2010”

Upon its receipt by the search engine component, the query goes through its own

validation process, where insignificant or unimportant words are removed using an

efficient stop-words removal technique. Next, the search engine initiates the search

from the query on Web pages stored in its local database. The goal is to verify which

pages contain the information relevant to the present query (in this example TCP 80)

according to the specified parameters (-pageType “attack, botnet, spam” and date

“01/01/2010-01/07/2010”). The pages that fit this profile (respond positively to these

rules) are ranked and listed in an ordered in a decreasing way according to the ranking

field. Finally, the search engine returns the query result to the interface component.

108

7.3. Implementation

This section describes the implementation process of ARAPONGA while specifically

focusing on its components and their integration.

However, before describing ARAPONGA development, two important design

aspects in this project need to be clarified: content selection and prerequisites supported

by the crawler tool.

7.3.1. Preliminary Questions

Content Selection

Content selection is decisively important as it defines what type of Web sites are more

suitable for delivering relevant and updated information on Internet traffic anomalies

and vulnerability reports. There are indeed scores of Web sites offering security and

traffic anomaly reports. Some of these have an open access policy whereas others

require some level of subscription and hence have an extra obstacle for crawlers.

The question is: where to get reliable security information? The answer can be

found in a great diversity of sources such as ATLAS [63], ShadowServer [64], Secunia

[203], NVD [204], US-CERT [205], KB-CERT [206], OSVDB [207],ISS [208],

DragonSoft [209], SecurityFocus [210], SenderBase [211], ThreatExpert [212] and

Team Cymru [213].

In order to answer this question, two metrics to evaluate the general and relevant

characteristics of this kind of Web sites are adopted. These metrics better portray some

significant particularity of the content as well as the some features or aspects important

for the crawler process. Similarly to other evaluation works, metrics in the form of

simple discrete or continuous values to describe features such as the amount of recorded

information and the update time. These metrics are the following:

 Update time - indicates the frequency of the information updating. This

metric is important because it allows measuring the time interval in which a

search engine should visit the pages of a certain area.

 Access content - indicates if the information is accessible with or without

the need of authentication and if there is some type of restriction to access

the content. These metrics permit to identify the information sources where

the access is easier.

After analyzing the sources according to the established selection criterion, the

following Web sites have been chosen for ARAPONGA access:

 Secunia [203], NVD [204], US-CERT [205] KB-CERT [206], DragonSoft

[209] and SecurityFocus [210] for records and reports of vulnerabilities, and;

 ATLAS [63], ShadowServer [64], ThreatExpert [212], and Team Cymru

[213] for malware and Internet anomaly statistics.

Table 7.2 summarizes the results of the comparisons among all previously listed

using the defined metrics.

109

TABLE 7.2: Comparison among various Web sites

 Update time Access content

ATLAS Daily Part of the content needs of authentication

DragonSoft Daily No

ISS Unknown No

KB-CERT Daily No

NVD Daily No

OSVDB Daily No

Secunia Daily No

SecurityFocus Daily No

SenderBase Daily Meta-tag limitation for crawlers

ShadowServer Daily No

Team Cymru 2 hours No

ThreatExpert Daily No

US-CERT Daily No

The other Web sites could not be selected due to some issues. As far as is

concerned vulnerabilities Web sites, OSVDB [207] can be considered among the best

representatives due to its huge amount of recorded information, without the necessity of

authentication, and access support of all content by different ways. However, it fails

with regard to the completeness of its information. The work of Borba [214] shows that,

as of June 05 2009, the OSVDB base had 54.004 records, where 41.597 records present

some kind of unknown or simple null information. This problem was observed in both

old and new records, which confirms a serious problem of completeness. ISS Web site

[208] was also discarded due to the fact that its update time is unknown. There are times

were more than two weeks passed without any change.

Regarding malware and Internet statistic Web sites, SenderBase [211] was not

chosen since its information is only available in the form of graphs or figures. The small

amount of content gathered is not representative.

Crawler tool

The second design issue has to do with which crawler to use. After some studies and

exchanges with experts in Web mining information, it was decided to evaluate WIRE

[215][216], an open-source crawler. The choice by this tool was based on three features:

 Scalability – WIRE was designed to work with large volumes of documents,

and was positively tested with several million documents. The current

implementation would require further work to scale to billions of documents

(e.g.: process some data structures on disk instead of in memory).

 Configuration - all its parameters for crawling and indexing can be

configured, including several scheduling policies.

 Performance – WIRE is entirely written in C/C++ for high performance.

The downloader modules of the WIRE crawler (“harvesters”) can be

executed over several machines in parallel.

110

However, after initial tests utilizing the previous selected content, the WIRE

crawler revealed some issues with regards to ARAPONGA requirements. The main one

was the lack of authentication support. For example, one of the chosen Web sites

requires authentication when asked for further information on specific IP addresses

involved in DDoS attacks. Although WIRE is open source, the deployment of a new

module to support this requirement is difficult due to the limited available

documentation and unclear code. For these reason, the use of WIRE as ARAPONGA

crawler was abandoned.

After further consultations and studies, two crawlers were tested: Heritrix [217]

and Nutch [218]. Although both are developed in Java, they are very used both in

academic as commercial environments.

Developed by Internet Archive, Heritrix [217] is an open source and Web

crawler. Heritrix is a generic crawling framework into which various interchangeable

components can be plugged, enabling diverse collection and archival strategies, and

supporting the incremental evolution of the crawler. Totally developed in Java, it

employs text files to configure aspects such as initial URLs, environments, and Java

options. In addition, Heritrix fetches a vast variety of contents.

Nutch [218] is an open source Web-search tool capable of executing Web-

specific functions such as crawling and parsing HTML and other document formats.

Developed by the Apache Foundation in Java, Nutch utilizes the Lucene library [219] to

index the contents. Nutch has also been widely used to implement a fast and efficient

mechanism for searching and indexing documents in several formats. Nutch employs

XML files to configure aspects such as initial URLs, operation, and plugins (new or

not). Although it fetches contents on different formats it not recognizes images.

Since Heritrix and Nutch are very similar, both were evaluate in terms of

features. Table 7.3 summarizes the comparisons among these crawler tools.

TABLE 7.3: Heritrix and Nutch comparison

Features Heritrix Nutch

Source Code

Changes

The source code is documented,

but there is little material to help a

user to develop or maintain the

Heritrix source code.

All source code is very well

documented. In addition, there are

many examples and tutorials to

create and handle plugins.

MapReduce
27

 Available through an extension. Implemented as part of Nutch.

Authentication

Offers two types: Basic and

Digest authentication and POST

and GET of an HTML Form.

Offer HTTPS, NTLM (NT LAN

Manager), Basic and Digest

authentication schemes.

Clustering

Utilizes Heritrix Cluster

Controller (HCC), a set of

packages that enable control of a

cluster of Heritrix instances

running across multiple machines.

Available as a plugin (Carriot

Project [220]) included in Nutch

codebase.

Plugins
Provide several types of

pluggable modules.

Provide a large part of the

functionality of Nutch. Writing or

27 MapReduce is a programming model and an associated implementation for processing and generating

large data sets.

http://crawler.archive.org/

111

handling a Nutch plugin is easy.

Parallel operation

and Distributed File

System

Employs Hadoop
28

 Distributed

File System (HDFS) to stores

large files (multiples of 64 MB),

across multiple machines. It

achieves reliability by replicating

the data across multiple hosts, and

hence does not require RAID

storage on hosts.

Employs Nutch Distributed

File System (NDFS), a set of

software for storing very large

stream-oriented files over a set

of commodity computers.

These two facilities are

provided by Hadoop Project

[221].

Parallel operation

Supports multiple fetches and

distributed search through diverse

plugins.

Supports multiple simultaneous

fetches; parallel and distributed

db update; and distributed search.

Based on the features presented in Table 7.3 and considering installation and

operation tests realized, the choice ultimately fell on the Nutch crawler.

7.3.2. Components

Crawler

As previously mentioned, Nutch plays the role of a crawler component within

ARAPONGA. In order to deal with issues related to the quantity and quality of crawled

information, Nutch makes use of limiters and filters. For example, since the Web has a

huge number of pages and the rapid update of content increases the likelihood of

outdated content being downloaded, it employs depth limiters, to avoid huge deviations

from the top level, and amplitude limiters, to restrict the number of links in pages that

can be referenced. In addition, URL filters are also used to delimit specific URL for

consultation.

Indexer

To implement the indexer of the collected content, Java (version 1.6), Lucene API [219]

and Jericho HTML Parser [222] are used.

 Lucene [219] is a high-performance search engine library written entirely in

Java and open source. It is a technology suitable for nearly any application

that requires full-text search, especially cross-platform software. In addition,

Lucene offers through a simple API efficient search algorithms, including

field oriented searching, many powerful query types, multiple index

searching, and simultaneous update and searching operations. Furthermore,

the Lucene ranking function, the core of any search engine applied to

determine how relevant a document is to a given query, is built on a

combination of the Vector Space Model (VSM) and the Boolean model of

Information Retrieval. Lucene uses also the Boolean model to first narrow

down the documents that need to be scored based on the use of Boolean

logic in the query specification

 Jericho HTML Parser [222] is an open source java library for the analysis

and high-level manipulation of parts of an HTML document, including

28 Hadoop Map/Reduce is a software framework for easily writing applications which process vast

amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity

hardware in a reliable, fault-tolerant manner [221].

http://lucene.apache.org/hadoop/
http://lucene.apache.org/hadoop/
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/RAID

112

server-side tags, while reproducing verbatim any unrecognized or invalid

HTML. It also provides high-level HTML form manipulation functions.

Table 5.4 presents other features of Lucene and Jericho.

TABLE 7.4: Features of Lucene and Jericho

Lucene Jericho

Ranked searching: best results returned

first

The presence of badly formatted HTML

does not interfere with the parsing of the

rest of the document.

Many powerful query types: phrase

queries, wildcard queries, proximity

queries, exact phrase queries, range

queries for date/time and number values.

ASP, JSP, PSP, PHP and Mason server

tags are explicitly recognized by the

parser.

Fielded searching: all fields are searchable

as a whole or each field separately.

Compared to a tree based parser such as

DOM, the memory and resource

requirements can be far better if only

small sections of the document need to be

parsed or modified.

Boolean operators: any combination

between search terms (AND, OR, NOT).

Compared to an event based parser such

as SAX, the interface is on a much higher

level and more intuitive, and a tree

representation of the document element

hierarchy is easily created if required

Multiple index searching with merged

results.

Custom tag types can be easily defined

and registered for recognition by the

parser.

Simultaneous searching and updates. Provides a simple but comprehensive

interface for the analysis and manipulation

of HTML form controls, including the

extraction and population of initial values,

and conversion to read-only or data

display modes

 Analysis of the form controls also allows

data received from the form to be stored

and presented in an appropriate manner.

Back to the Indexed component (or Lucene), its operation can basically be

divided in three steps:

1. The Lucene API is used to acquire all downloaded Web pages.

2. For each received page, the Jericho library is used to make a comparison

between page titles and a set of predefined identifiers, aiming to identify

templates that help reference this page. Once a template for this page is

matched, the page has its context extracted and identified and each

information block (part of content) has an associated keyword. On the other

hand, if no template is found as a match for a given page, a generic common

http://msdn.microsoft.com/asp/
http://java.sun.com/products/jsp/
http://www.modpython.org/
http://www.php.net/
http://www.masonhq.com/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Source.html#DocumentElementHierarchy
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Source.html#DocumentElementHierarchy
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/TagType.html#register%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Segment.html#findFormFields%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/Segment.html#findFormFields%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormField.html#getValues%28%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormField.html#setValue%28java.lang.CharSequence%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setDisabled%28boolean%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setOutputStyle%28net.htmlparser.jericho.FormControlOutputStyle%29
http://jericho.htmlparser.net/docs/javadoc/net/htmlparser/jericho/FormControl.html#setOutputStyle%28net.htmlparser.jericho.FormControlOutputStyle%29

113

indexing is made for such page as explained in section 7.3.3 (Interaction

between components).

3. Lastly, Lucene adds the timestamp, title, and URL identifiers, to the internal

control system identifiers.

After executing these steps, Lucene is invoked to index the page.

Search Engine

Similarly to the other ARAPONGA components, the search engine is implemented in

Java. It is responsible for performing search and inference tasks and results analysis

before their presentation at the interface component.

To perform such activity, ARAPONGA’s search engine makes use of the

Lucene API. Basically, upon receiving a query, it starts a comparison process with the

documents already available in the local database. Next, the selected documents are

ranked, sorted in descending order, and sent to interface component.

Interface

The last, but not least, ARAPONGA component is its interface. It intermediates the

communication between users (both human and external systems) and the search

engine, providing different types of input and output interfaces for execution of queries

and the display of responses.

To achieve such functionality, many types of queries are supported. Table 7.5

describes and exemplifies each one of them.

TABLE 7.5: Query types of ARAPONGA Interface

Query Type Description

Simple Represent a common and generic query composed by a unique input,

the term or terms of interest. In addition, this query also allows

searches among time periods using the parameter date.

The search is executed over all indexed content. As result, this query

returns an ordered list.

Examples of this query are: “botnet” or “Internet Explorer -date

01/01/2009 to 12/31/2009”.

Advanced Represent a detailed query, resulting of the use of templates. This

query permits the union of different parameters (inputs), aiming to

restrain the search space and provide a more correct answer. It works

receiving the term or terms to be searched as input follow by the

advanced parameters.

Basically, there are three (3) advanced parameters:

 field – indicates that the searched term(s) must be obligatorily

founded along with the specified keyword(s). In the example

(AS3462 –field ASN), the parameter –field ASN indicates that the

term AS3462 only will be searched in Web pages where the

keyword ASN is present.

 pageType – indicates that the searched term(s) must be obligatorily

founded in Web pages which type match with the specified as

114

input. The example (Storm Worm –pageType alerts,bulletin)

represents the necessity to search the term Storm Worm in Web

pages classified as alerts and bulletin.

 domain – indicates that the searched term(s) must be obligatorily

founded in Web pages which Web domain match with the

specified as input. In the example (Microsoft –domain

secunia.com,cert.org), the term Microsoft only will be searched in

Web pages that belongs to the domains specified as input.

In addition, this query also allows searches among time periods using

the parameter date.

The result of this advance query is an ordered list containing the

contents where the term(s) are found. Note that the keywords are

extracted from each page during the indexing process made according

to specific templates.

Other examples of advanced search are presented as following:

 SQLInjection -pageType alert,bulleting,database -date

01/01/2010 to 01/31/2010

 ASN Brazil -field ASN -pageType report -domain

atlas.arbor.net -date 10/20/2009 to 12/31/2009

 Microsoft Internet Explorer -field system_affected,software -

date 01/20/2010 to 02/10/2010

 AS3462 -domain atlas.arbor.net,teamcymru.com -date

02/01/2010 to 02/08/2010

Malicious Represent a refined query, as advanced search, resulting of the use of

templates. The goal of this query is to identify (confirm) if a

determined input is related to a malicious activity. It works by

receiving two inputs: the term(s) to be searched and the parameter -

malicious. Typically, the search term represents an IP address, DNS

server, domain or ASN while the parameter -malicious is followed by

a list of keywords (attacks, spam, phishing, botnet, and so on) that

must be searched.

The result of this query is also an ordered list. However, the list is

ordered alphabetically according to the malicious activity founded.

This query is very useful to investigate specific situations such, for

example, if an SMTP server is listed in blacklist or whitelist Web sites.

An example of this query is the following: gprt.ufpe.br -malicious

spam,fastflux,CC,attack.

Beyond these queries, the interface component offers another distinct query.

Vulnerability summary is a query intended to generate a list for a specific

vulnerability. It takes three inputs: the term(s) (vulnerability, in this case) to be

searched, the parameter -summary_vulnerability, and the time period parameter -date.

This query goes through all contents looking for the searched term(s), returning

an XML file containing a description and the following information: (i) the level of

criticality or severity of the vulnerability, (ii) the number of times the vulnerability

achieved this level, and (iii) where and how to explore the vulnerability.

115

Figure 7.5 shows the returned result from the following query: Microsoft –

summary_vulnerability -date 09/01/2009 to 04/30/2010

<Summary_Vulnerability>

 <Vulnerability id="1">

 <Title name="Windows SMB2 Remote Denial of Service Test">

 <Description>

 Microsoft Windows Server 2008, Vista are exist array index error in the SMB2 protocol implementation

 in srv2.sys,which could allow remote attacker to cause a denial of service (system crash).

 </Description>

 <Timeline>

 <Disclosure_Date>2009-09-17</Disclosure_Date>

 <Published_Date>2009-09-17</Published_Date>

 <Last_Update>2009-10-13</Last_Update>

 <Solution_Date>2009-10-13</Solution_Date>

 </Timeline>

 <Classification>

 <Attack_From>Remote</Attack_From>

 <Impact risk="high">Denial of Service</Impact>

 <CVSS>7.8</CVSS>

 <CVE_ID>CVE-2009-3103</CVE_ID>

 </Classification>

 <Affected>

 <product>Windows Vista</product>

 <product>Windows Server 2008</product>

 </Affected>

 <Solution>

 Install the patch to fix the problem.

 </Solution>

 <References>

 <name>Microsoft Security Bulletin MS09-050</name>

 <url>http://www.microsoft.com/technet/security/bulletin/ms09-050.mspx</url>

 <name>Microsoft Security Advisory (975497)</name>

 <url>http://www.microsoft.com/technet/security/advisory/975497.mspx</url>

 <name>Microsoft Fix it for 975497</name>

 <url>http://support.microsoft.com/kb/975497</url>

 </References>

 </Vulnerability>

 <Vulnerability id="2">

 <Title name="Microsoft IE Unspecified Uninitialized Memory Corruption">

 <Description>

 Microsoft Internet Explorer 6, 6 SP1, and 7 does not properly handle objects in memory, which allows

 remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized

 or (2) is deleted, leading to memory corruption, aka "Uninitialized Memory Corruption Vulnerability.

 </Description>

 ...

 <Classification>

 <Attack_From>Remote</Attack_From>

 <Impact risk="high">Loss of Integrity</Impact>

 <CVSS>9.3</CVSS>

 <CVE_ID>CVE-2010-0267</CVE_ID>

 </Classification>

 ...

 </Vulnerability>

 ...

</Summary_Vulnerability>

FIGURE 7.5: Example of Vulnerability summary query by Microsoft term

In practical terms, the interface component offers two types of interfaces. The

first one is visual, Web-based, and is intended for human operators (Figure 7.6). The

second is a command line-based application and it allows ARAPONGA to interact with

external systems.

116

FIGURE 7.6: ARAPONGA’s GUI Interface

7.4. Evaluation and Initial Results

This section presents the evaluation and initial results of the ARAPONGA system.

7.4.1. Performance Metrics

In order to analyze the knowledge obtained by ARAPONGA, the performance

evaluation metrics, initially proposed by Cleverdon [223] and very used in information

retrieval area, based on relevance concept are adopted. In other words, a document is

considered relevant when it has importance for the queried topic.

The metrics are:

 Precision – defined as the fraction of documents retrieved that are relevant

in relation to all retrieved documents.

 , (1)

 Recall – defined as the fraction of the documents that are relevant to the

query that are successfully retrieved.

 , (2)

In short, precision is the percentage of recovered items that are relevant. Recall

is the percentage of relevant items that were recovered. For example, a query with a

value of accuracy equal to 0.70 means that 70 percent of the recovered items are

relevant, while a query with recall value equal to 0.70 has only 70 percent of the

documents are or could be relevant.

117

7.4.2. Evaluation Methodology

All stages of development, evaluation and tests of the ARAPONGA system were

preformed in the GPRT
29

 laboratory (Network and Telecommunication Research

Group) of the Federal University of Pernambuco (UFPE). The environment was

composed by a PC (Intel Core2Duo T5300, 2 GB of RAM, and 250 GB of HDD,

10/100 Mbps Ethernet interface), running Ubuntu 8.4 Linux distribution. The laboratory

keeps a sustained rate of 1 Gbps with PoP-PE (RNP
30

 point of presence of the State of

Pernambuco).

Considering that the objective is to evaluate the performance and features of

ARAPONGA, the base of collected content was divided in two. The first one was used

to validate and ensure that the implementation was in accordance to the specifications. It

was conducted in January 2010, from 4
th

 to 29
th

, where Crawler component of

ARAPONGA was set to capture 10 references (links) per page and with depth of 2

references using only ATLAS [63], Secunia [203] and US-CERT [205] Web sites as

information source.

To extract visible results, all collected Web pages were indexed during this

period using both ARAPONGA and Lucene. The goal is to establish a comparison

between them and thus to prove the relevance and efficiency of ARAPONGA‟s

templates. Table 7.6 shows the index results of this experiment.

TABLE 7.6: Base evaluation

Day
Visited

URL

Pages

indexed with

Lucene

ARAPONGA

Pages

indexed with

template

Pages indexed

without

template

Total of

pages

indexed

4 2708 347 87 100 187

7 2814 364 92 84 176

8 4417 359 83 78 161

9 3007 334 91 105 196

13 4367 346 79 75 154

15 2855 344 88 100 188

16 2887 351 85 84 169

17 2932 357 89 86 175

19 2888 347 86 115 201

20 2799 343 81 95 176

21 2943 368 84 82 166

22 2800 363 83 95 178

23 2974 354 107 109 216

29

 http://www.gprt.ufpe.br
30

 http://www.rnp.br

118

24 2904 350 85 78 163

26 4416 360 84 80 164

27 2779 339 85 93 178

28 2820 355 93 99 192

29 2732 346 86 87 173

Total 57570 6327 3213

The analysis of the table results reveals a striking difference between pages

indexed by Lucene, from now on referred to as the general base, and the pages indexed

by the ARAPONGA system. While the general base built 6327 pages, ARAPONGA

managed 3213 pages (non indexed pages are not considered). Altogether, such

difference is attributed to the use of templates, which permits a more detailed

information extraction.

Figure 7.7 clearly shows the difference among pages indexed by Lucene and

ARAPONGA.

FIGURE 7.7: Comparison ARAPONGA’s GUI Interface

Note that there were configuration and operation failures with ARAPONGA‟s

Crawler tool (Nutch) in the days 5, 6, 10 and 11. In addition, the days 12, 14, 18 and 25

have no data due to scheduled power shutdowns.

The second base was used to evaluate the support functionalities offered by

ARAPONGA such as advanced searches and knowledge analysis through the use of

graphics outputs. The evaluated information at this stage is composed by all collected

content from the period of February 1, 2010 to March 31, 2010. The Crawler

component of ARAPONGA was set to capture 150 references (links) per page and with

depth of 20 references using all information source defined in Section 7.3.1.

7.4.3. Experiment Results

Performance

0

50

100

150

200

250

300

350

400

4 7 8 9 13 15 16 17 19 20 21 22 23 24 26 27 28 29

P
ag

e
s

in
d

e
xe

d

Days

Lucene ARAPONGA

119

In order to evaluate the ARAPONGA‟s performance, a simple query composed by three

terms (Microsoft, vulnerability and high severity) was executed. The idea is to find

vulnerabilities considered to have high level of severity involving Microsoft products.

Table 7.7 provides a comparative study of search results from the query

performed on the first base, indexed both Lucene (general) as ARAPONGA.

TABLE 7.7: Comparative study of search results from the query

Query Microsoft + vulnerability + high severity

Results of

general base

Number of returned URLs: 3309

List of main URLs:

1. US-CERT Technical Alert - Microsoft Updates for Multiple

Vulnerabilities (136 pages)

2. US-CERT Security Alert - Microsoft Updates for Multiple

Vulnerabilities (408 pages)

3. Secunia Advisories - Vulnerability Information (747 pages)

4. ATLAS Report (Global, Service, Summary, and Vulnerability)

(349 pages)

5. US-CERT Cyber Security Bulletin (826 pages)

6. Other (843 pages)

Results of

ARAPONGA

base

Number of returned URLs: 25

List of main URLs:

1. US-CERT Cyber Security Bulletin SB10-025

2. US-CERT Cyber Security Bulletin SB10-018

3. US-CERT Cyber Security Bulletin SB09-355

4. US-CERT Cyber Security Bulletin SB09-348

5. US-CERT Cyber Security Bulletin SB09-327

6. US-CERT Cyber Security Bulletin SB09-258

…

Quantitatively, the query applied into the general base returned 3309 pages

containing references for Microsoft, where only 25 pages described vulnerabilities with

high level of severity. Thus, the precision in this base was 0.75%, i.e., only 25 pages

were relevant from a total of 3309 documents retrieved.

The recall was 0.39% due to the fact that only 25 pages were relevant from a

total of 6327 documents.

Regarding the refined base, the query also returned 25 pages containing

references for Microsoft, where all of them described vulnerabilities with high level of

severity. Thus, the achieved precision in the refined base was 100%. The recall was

0.77%, since 25 relevant pages were retrieved from 3213 available ones.

120

Support Functionalities

Knowledge Analysis Support

In order to evaluate the knowledge analysis support, three queries focused on topics

based on user interest (ISP network operators and IT managers, for example) were

made.

The first query seeks to identify Brazilian ASes (Autonomous System) related to

anomalous and malicious traffic and show the result by a domain structure graph (mind

map). Figure 7.8 illustrates a domain structure of the term “ASN Brazil” in January 4th,

2010 (query example: ASN Brazil –malicious ASN –date 01042010 to 01042010).

FIGURE 7.8: Brazilian ASes related to malicious activities

The second example query exemplifies an interest topic distribution of the Atlas

[63] Web site, based on the identified page types during the indexing process. The goal

is to provide an overview about the number of publications (referenced pages) involved

attacks and malicious activity and consequently indicating the trend (increase or

decrease) of determined type of content.

Figure 7.9 illustrates a frequency distribution graphic generated by

ARAPONGA based on the query -statistic -pageType atlas.

121

FIGURE 7.9: Frequency distribution in Atlas Web site

The third and last example query depicts the evolution of collected information.

Its goal is to show a timeline of the apparitions of determined topic, permitting that the

security team stays informed or pays more attention about the level of published pages

of a specific topic. In this example, the query identifies the advertized vulnerabilities of

the Microsoft Internet Explorer. The formulated query is as follows:

Microsoft Internet Explorer –field system_affected,software –date 01112010

to 01152010.

Figure 7.10 shows the graphic gerenerated by ARAPONGA referent to the

Microsoft Internet Explorer vulnerabilities found among January 11
th

 to 17
th

, 2010.

FIGURE 7.10: A timeline of Microsoft Internet Explorer vulnerabilities

7.5. Chapter Summary

This chapter presented a tool designed to obtain vulnerability information and Internet

anomaly traffic statistics. It is a current proof of concept implementation that combines

the use of data mining techniques and models (templates) to enhance the capacity of

0 200 400 600 800 1000

Vulnerability Report

Summary

Service Report

Host Report

Country Report

Attack Report

Network AS Report

Others

Number of Pages

A
TL

A
S

P
ag

e
s

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r

o
f

P
ag

e
s

122

indexing more accurately security information and consequently permitting differenced

and more focused queries. The use of templates shows the advantages over blind search.

Towards this end, ARAPONGA makes the following contributions. The

concepts of WIRSS and IRSS are applied to provide more supporting functionalities

that transcend traditional search and browsing. It concentrates security information

available from many sites into a unique base, containing only relevant data. Dozens of

Web vulnerability reporting sites were evaluated in terms of completeness and access to

content. The most adequate ones were selected for consultation by ARAPONGA.

ARAPONGA does not aim to provide a semantic search engine, but a small step

is taken by this work towards the tailored retrieval, monitoring, management and user

oriented visualization of Web information.

Expandir!!! (Paulo Cunha)

123

Part III

Results

124

Chapter 8

OADS Implementation and Performance Evaluation

This chapter describes a number of proofs of concept to progressive scenarios and the

overall OADS-based implementation. More specifically, concrete performance

examples are analyzed in terms of both their accuracy and response times. Firstly, the

implementation of the architecture for anomaly detection, called OADS, is presented,

including two new modules so far not formally described, namely: the Decision Service

and the ADS-Fusion. Next, the adopted heuristic responsible for the orchestration and

analysis of alerts is described. Then, some specially crafted testbed based scenarios are

illustrated to emphasize OADS‟s role in the detection of unwanted traffic. Lastly, the

results from such attack scenarios are shown and discussed.

8.1. OADS Implementation

As already explained in Chapter 4, the core of this thesis is based on making use the

known concept of orchestration to explore the collaboration and harmonization among

different anomaly detectors. In other words, the essence of the OADS framework lies in

the power gained from the clever combination and coordinated orchestration of different

attack detection modules. As a proof of that, the OADS prototype combines modules

from a famous and proven reliable IDS tool (Snort [163]) with two previously

introduced detection strategies (ChkModel [158] and Profiling [151]).

Figure 8.1 illustrates the architectural organization of OADS and shows its

components.

Internet

Actions

(Filtering,

adjust,

email, ...)

Orchestration Core OADS

Miner

Decision

Service

History

Anomalies and

Vulnerabilities

Alerts Base

Alert Pre-

Processor

1 – Significant Cluster Alerts 2 – OADS Analyzer

OADS Analyzer

FER Analyzer

ADS-Fusion

1

2

Multi-source

raw alerts

8.1.1

8.1.2

8.1.3

FIGURE 8.1: OADS implementation architecture

The following sub-sections explain in details each of the component of the

OADS architecture.

125

8.1.1. ADS-Fusion

Another module used to support the OADS Analyzer component is referred to as ADS-

Fusion. The central idea is to employ data fusion techniques to deal with uncertainty or

imprecision of anomaly detection results and consequently increase the degree of

confidence about intrusive or malicious activities, allowing that more correct and

accurate actions can be taken.

ADS-Fusion [224][225] is based on Dempster-Shafer‟s Theory of Evidence

(DST) [226][227][228]. DST is one of most known mathematical models to represent

uncertainty in knowledge-based systems. It focuses on solving problems and modeling

uncertainty when using purely probabilistic methods. Unlike other Bayesian

probabilistic theory, DST does not need prior knowledge of the probabilistic

distributions of the studied elements. This allows attributing belief values - Basic

Probability Assignment or simply bpa in DST – for a subset of possibilities and not only

for simple events.

Another important feature is that the belief not assigned to any event in

particular but attributed to the environment and not to the rest of the evidence.

Moreover, it is possible to combine belief functions for generating new functions of

belief in an independent manner of the order of appearance of new evidence requiring

only that the original assumptions are mutually exclusive and exhaustive.

ADS-Fusion architecture

ADS-Fusion was designed to study anomaly detection techniques and develop a system

capable of increasing the efficiency of detection through the data fusion. Practically

speaking, it is a software module that receives the outputs generated by anomaly

detectors as input, makes data fusion of these inputs, and produces an inference with a

greater degree of certainty than the uncertainty generated by anomaly detectors

individually. ADS-Fusion was originally implemented in C++, but currently it is

deployed in Java.

ADS-Fusion is composed by three elements: collector, sensors, and data fusion

engine. Collector is responsible for capturing the network traffic and generating trace

files in standard format. Sensors components are responsible for analyzing data

generated by the collector and detecting possible anomalies. Another key role of these

sensors, in the context of this additional mechanism, is assigning a belief for each

generated inference. The Data Fusion Engine is responsible for decision making. It

uses DST combination rules to associate and correlate the different analysis and results

of distinct sensors to generate more accurate inferences with a greater degree of

accuracy.

In the current OADS implementation, there is no need for the two ADS-Fusion

components collector and sensor. Instead, the ADS-Fusion module receives such

information from OADS Alert Pre-Processor. It is important to explain its important

role as a hypotheses generator about the possible real network state. Hence, in order to

work with Profiling, ChkModel and Snort detectors, it is necessary to adjust the alerts

generated by them, aiming to assign a well calibrated bpa value for each alert type.

Details of how this is made are explained below.

ChkModel

The bpa generation in ChkModel [158] is based on the distance among obtained values

from the Threshold Adaptive function. When the return of such function is equal to 1,

126

ChkModel considers the Network State as “Under Attack” and then calculates the bpa.

The greater the distance between the values of obtained threshold and the established

threshold, the greater is the belief in the existence of an attack.

Considering the example with an output that contains the detection of an

anomalous connection between 58.33.126.229 and 192.168.0.163 IP addresses, where

the threshold of packets exchange was calculated in 6. Supposing that for this network

the threshold for “Normal” state is equal to 5, any connection that is above this limit

will be considered anomalous. By fixing the belief of the normal state at 0.5, it is

possible to determine the belief of the attack as being the sum between belief and the

normal rate of increase (6 / 5 = 1.2, which represents a percentage increase of 20%),

obtaining thus a bpa = 0.6

Profiling

The bpa generation in Profiling is offered evaluating the BCs, the frequency of

repetition between them and the quantity of flows associated with this classification. For

example, considering dstIP as cluster key, at the first interaction (default time slot) the

IP destination 10.108.40.X (150 flows) is classified as BC = 24 (DDoS attack for key

group). On the second interaction, the BC for this IP remained the same and the number

of flows increased to 450, then it is possible to increase the belief on this inference.

Fixing the belief of the normal state at 0.5, it is possible to determine the belief of the

attack as the sum between belief and the normal rate of increase (450 / 150 = 3, which

represents a percentage increase of 200%), obtaining thus a bpa = 1.0, the maximum

possible value.

Snort

The bpa generation in Snort is based on severity field present in its alerts. For this,

initial beliefs for each possible value of this parameter are established as follows: Low

corresponds to 0.5, Medium corresponds to 0.65 and High corresponds to 0.8. In

addition, the frequency of repetition is also considered to increment these values.

For example, in a sequence of alerts, the first five represent the same attack and

have same features, including severity level equal to low. This way, the first alert to be

evaluated will have an attribute bpa equal to 0.5. The second will increase the bpa in

0.01. Now the bpa is 0.51. The next three alerts also will be increase the bpa. After the

five alerts have been evaluated, their bpa is 0.55. For alerts with severity level equal to

medium e high, the degree of increase is 0.05 and 0.1, respectively.

Data Fusion Engine

The Data Fusion Engine component was implemented using JDS [229], an API written

in java that supports the basic function of DST such as belief function (bel) and

plausibility (pl).

Overall, this engine‟s operation can be summarized in three stages:

 Synchronization: this process consists in establishing links (connections)

among the related events to both sensors. It is an essential process because it

is necessary to ensure that each of the events to be combined refers to the

same time interval. For example, if at any one time t, the ChkModel detects a

DDoS attack, it is important that this event is then combined with the

Profiling analysis of the same time t so that the ADS-Fusion can generate a

more accurate inference. This stage requires some small changes in the

generation of results from the sensors.

127

 Combination: this stage is used as “clues” for the generation of inferences

from the current network state. It combines (or transforms) the inputs into

JDS elements, which basically contain the state identified (LOW, MEDIUM

and HIGH) and the belief level in this state (bpa).

 Inference Generation: this stage determines the severity level of the

anomaly or anomalies affecting the network.

8.1.2. Decision Service

The Decision Service component is responsible for the decision process related to

analyzed network traffic. According to received information (or even collected), it

establishes what to do next.

It receives two types of inputs. The first one is a set of reduced alerts, sent by

Alert Pre-Processor, whereas the second one is rules, sent by the OADS analyzer (FER

Analyzer and ADS-Fusion modules). Although ultimately both inputs have the same

structure composed by a source IP address, source port, destination IP address,

destination port, class of attack and its severity, the treatment given to each is different.

This is because, unlike the rules, the reduced alerts are typically received first and

contain more reliable information, due to the process of significant cluster extraction.

This is in contrast with the rules that are the result of extensive analysis performed on

apparently less relevant data.

For such reason, the Decision Service adopts two different strategies: one to deal

with reduced alerts and second one for rule processing. The former employs the same

idea used in Chapter 6 to demonstrate the applicability of episode rules (see section

6.3.2). It translates alerts to basic firewall rules for enforcement at other devices. Recall

that enforcement actions are not the focus of this thesis.

As far as is concerned the use of rules as input, a simple finite state machine is

used. It correlates the information processed by different analyzers in possible states

that the decision service could take.

Table 8.1 shows the machine states that can be assigned according to the used

detectors.

TABLE 8.1: Representation of information sent by detectors to Decision Service

Profiling ChkModel Snort State

Good Good Good State-A

Good Good Low State-B1

Good Good Medium State-C1

Good Good High State-D

Good Suspicious Good State-B1

Good Suspicious Low State-B2

Good Suspicious Medium State-C1

Good Suspicious High State-D

Good Bad Good State-C1

Good Bad Low State-C1

Good Bad Medium State-C2

Good Bad High State-D

Bad Good Good State-C1

Bad Good Low State-C1

128

Bad Good Medium State-C2

Bad Good High State-D

Bad Suspicious Good State-C2

Bad Suspicious Low State-C2

Bad Suspicious Medium State-D

Bad Suspicious High State-D

Bad Bad Good State-D

Bad Bad Low State-D

Bad Bad Medium State-D

Bad Bad High State-D

Note that the information relative to the classification (good, bad, transient, low,

medium and high) is transported by IDMEF messages into a severity field. Figure 8.2

depicts the mapping between these information and the enforcement actions.

FIGURE 8.2: Mapping classifications and enforcement actions

As mentioned in section 6.3.2, possible values to the enforcement actions are:

Limitation, during 60 seconds; Extreme Limitation, during 300 seconds; and Blocking

of given traffic.

8.1.3. Enforcement Actions

In order to prove OADS functionalities, some enforcement component responsible for

receiving decisions from the Decision Service and translating these into real network

actions are defined. As previously described in Chapter 6 (see section 6.3.2), this is

actually represented by an enforcement agent that translates the decisions to firewall

rules, specifically for IPTables.

8.2. Heuristic for Orchestration

This work employs the concept of orchestration to automatically manage the inputs of

different anomaly detectors, harmonize them and consequently be able to make a well

informed, correct and efficient decision with regard to the existence of traffic anomalies.

Throughout the text, there is mention of the likely solutions for stopping and mitigating

unwanted traffic though this is not the object of this thesis. The present work

concentrates its efforts on the detection phase of unwanted traffic and the mechanisms

for that. Before going into the details of the OADS implementation, it is important to

shed some light on the way the concept of orchestration is used in the context of this

work.

129

Formally, orchestration refers to an executable business process that may

interact with both internal and external complex computer systems, middleware, and

services. Currently, orchestration is mainly related to connecting Web services in a

collaborative fashion. Orchestration establishes the sequence of steps within a process,

including conditions and exceptions, and creates a central controller to implement the

sequence. (referencia)

Though OADS may adopt Web Services as its underlying coordination engine to

coordinate its actions within a Web environment, it also operates on a standalone

manner. It is this second implementation mode that is emphasized throughout the rest of

this document. Typically, the use of emerging Internet standard effort as the Business

Process Execution Language for Web Services (BPEL4WS) [230] and the Service

Oriented Architecture (SOA) [231] has the clear advantage of opening access to an

unlimited number of services and security applications that adopts such technologies. At

the time of this work, there is still limited adoption of Web Services and as such, one

does not see the need for the added complexity toward OADS design.

Despite the above, the orchestration concept itself remains of interest to OADS

and as such it is present at its heart, managing all the interactions among its applications

(preprocessors and analyzers) in a controlled way. A simple, parameterized and

effective heuristic (represented as an algorithm) mimicking orchestration is used

instead. Such heuristic is based on common rules and acquired knowledge that governs

the way the received information (alerts and rules) should be treated by the OADS core.

Despite its simplicity, this intelligent module obtains results as shown in latter sessions

of this chapter.

Next, details of the orchestration heuristic are described in Algorithm 8.1.

Algorithm 8.1 Simplified algorithm for orchestration

Step 0: Initialization

Read alerts every x time

While TRUE

Step 1: Alert Pre-Processor receive all multi-source alerts

All received alert are prepared for possible extraction of significant cluster process.

Step 2: Significant cluster extraction

Execute significant cluster extraction process.

All alerts classified as significant are send to the Decision Service (Step 6).

Step 3: If there are alerts to evaluate, go to step 3a, otherwise go to Step 6

Step 3a:
If number of remain alerts > fer_threshold, go to step 4;

Otherwise go to step 5

Step 4: FER Analyzer examines received alerts

For all alerts

Calculate Frequent Episodes.

Generate Rule Episodes.

End

Send all rules to Decision Service (Step 6).

Step 5: ADS-Fusion examines received alerts

If alerts have two or more sources, go to step 5a, otherwise go to Step 6

Step 5a:
Execute Dempster-Shafer analysis in alerts.

Send all inferences (rules) to Decision Service (Step 6)

Step 6: Decision Service receives alerts or analysis results

Evaluate the received information

http://en.wikipedia.org/wiki/Middleware

130

If necessary use OADS Miner to discover extra information

Make decisions

End

The above six steps are explained. All received multi-source alerts are handled

by the Alert Pre-Processor component which extracts all the required alert attributes for

analysis (step 1). Next, the extraction of extraction of significant clusters is started (step

2). As previously described in Chapter 6, the idea is to extract significant information

from clusters of interest (srcIP, dstIP and class). The output of this process (in the form

of classified alerts) is directly sent to the Decision Service component. It decides what to do

next (step 6).

Although the studies in Chapter 6 demonstrate that the automatic identification

of relevant information is successful, it is also possible that some alerts, or even all of

these in some cases, are not considered relevant enough to take any decision. However,

instead of simply ignoring these, the adopted orchestration heuristic follows a series of

selective procedures, in an attempt to make use of these and likely improve the current

analysis. Such steps are:

1. First, to verify if there are any alerts classified as not relevant subsequent to

the significant cluster extraction process. If none are encountered, meaning

that all alerts are significant, the algorithm proceeds directly to Step 6, where

the Decision Service component must process all such information in order

to reach one or more decisions. Otherwise, the current amount of alerts is

compared with a pre-defined threshold (fer_threshold), used to evaluate the

viability of performing a FER analysis over these alerts (Step 3). The studies

about FER analysis from Chapter 6 show that the smaller is the number of

events, the less is the probability of detecting any frequent episodes.

Consequently, some important considerations are needed with regard to

configuring FER analysis as shown in Table 8.2.

TABLE 8.2: FER parameters for orchestration algorithm

Number of Alerts

(fer_threshold)
Window Size

Frequency

Threshold

Confidence

Threshold
>50 10 0.01 0.80

>500 10 0.02 0.80

>5000 20 0.05 0.80

In the case where the number of alerts is greater than the threshold

fer_threshold, the FER Analyzer component receives these alerts (Step 4).

Otherwise, the remaining alerts are sent to the ADS-Fusion component (Step

5).

2. Under FER Analyzer (in Step 4), the alerts are processed to discover the

existence of frequent episodes. These are calculated and episodes rules are

possibly generated next. This process has been extensively explained in

Chapter 7. Lastly, the episode rules are sent to Decision Service component

according to Step 6.

3. During the ADS-Fusion analysis (shown as Step 5), the alerts are evaluated

using the known Dempster-Shafer evidence theory. This is used to reduce

the uncertainty of these alerts and increase their degree of confidence.

However, before undertaking this analysis, the received alerts are verified to

determine if they are descendant of two or more distinct detectors, a

131

requirement of DST analysis. If this is not case, the alerts are forwarded to

the Decision Service. Otherwise, they are processed and the obtained

inferences (or rules) are then sent to the Decision Service.

The last step in this important heuristic is performed by the Decision Service. To

put it more simply, it is fed with a diversified set of inputs, including alerts, episodes

rules and inferences which it must process before reaching any decision. The present

proposal also includes an additional auxiliary mechanism. This is in the form of an

OADS miner module, ARAPONGA. It is used to obtain more information about some

alerts over the Internet. Finally, a decision is generated.

It is important to emphasize that, as described in Chapter 4, OADS‟s approach

allows a number of different types of reactions. Under the present implementation, two

main decisions are supported. The first one consists of limiting or mitigating something

considered malicious and bad by blocking its traffic. This decision is the most common

one and usually is taken by the Decision Service component. The second one consists of

simply not be taking any action. This lack of decision may be the case when there is

insufficient certainty (evidence) to act upon.

8.3. Testbed environment

OADS testing was purposely confined to an isolated testbed consisting of real machines

within GPRT laboratory. The idea was to create a controllable environment that

resembles as much as possible a realistic network topology that can be subjected for

example to DoS and DDoS attacks. As depicted by Figure 8.3, this testbed contains

around 60 PCs, 3 Cisco switches with 24 and 48 10/100/1000 Mbps interfaces. The PCs

are used as edge nodes running different user applications, to simulate routers, and

application level traffic generators. They are running different operational systems,

especially those from the Windows family (XP, Vista and 7) and Ubuntu Linux. The

PCs attackers also run similar operating systems.

The OADS server is an Intel Core 2 Quad CPU, with 4 processor Q6600 (2.40

GHz), 4Gb of RAM, 500 GB of HDD and one network interface 10/100/1000.

Although all OADS components (Alert preprocessor, FER Analysis, DST Analyzer and

Decision Service) were designed and implemented to work in a distributed setup, they

are collocated in the testbed server, except for the OADS Miner which requires

important resources for crawling the Internet for updating its security information base.

Regarding detectors, a range of these was used including: various Snort [163]

version 2.8.6, ChkModel [158] and Profiling [151]. As depicted by Figure 8.3, these

detectors are spread across specific interest points of the network. All servers run Linux

distributions, including Ubuntu and Debian. Firewall/Router server is running the

FreeBSD operational system. Table 8.3 describes the localization and type of employed

detectors in the testbed.

132

PC2

(Attacker)PC1
PC24

(Attacker)

...

Intermet

PC23

Switch

Switch

PC26

(Attacker)
PC25

PC63

(Attacker)

...

PC62

Firewall/Gateway

Web server 1

SMTP server DNS server

Firewall//Router
Switch

Web server 2

Intermet

Router

Attacker

Attacker

OADS

FIGURE 8.3: Full OADS Testbed Topology

TABLE 8.3: Distribution of detectors in OADS testbed

Server Detector

Firewall/Gateway Snort (default configuration)+ Profiling + ChkModel

DNS server Snort (DNS configuration) + Profiling (1 minute configuration)

SMTP server Snort (default configuration) + Profiling (1 minute configuration)

Web server 1 Snort (default configuration) + ChkModel

Web server 2 Snort (emergent configuration) + ChkModel

Firewall/Router Snort (default configuration)+ Profiling + ChkModel

It is important to emphasize some aspects of these detectors. Most Snort

detectors were set up to execute only with default configuration, provided by Snort

manufactures. Two different Snorts were set up to detect specific attacks. The first one,

located on a DNS server, had a configuration adequate for detecting DNS attacks and

anomalies provided by Emergent Threats [232]. The second one, located on a Web

server 2, had a configuration adequate for the detection of Web attacks as well as

anomalies also provided by Emergent Threats.

Regarding the ChkModel [158], it was designed and used to evaluate only TCP

packets and cannot be used to analyze UDP attacks. Finally, two different Profiling

configurations were used. Though both followed the original specifications [151], the

first one was set up to perform evaluations over a time interval of five minutes

(according to the proposal) whereas the second one was set up to operate over time

intervals of one minute. Obviously, this difference will reflect on the number of

generated alerts during the analysis.

133

8.3.1. Malicious traffic generation

In order to test different attacks and anomalies, two types of solutions were deployed: a

tool for packet injection and a range of python scripts. The former, called Packet

Analysis and Injection Tool or simply Packit [233], is a network tool designed to

customize, inject, monitor, and manipulate IP traffic. It allows the spoofing of nearly all

TCP, UDP, ICMP, IP, ARP, RARP, and Ethernet header options. Packit is useful for

testing firewalls, intrusion detection/prevention systems, port scanning, simulating

network traffic, and general TCP/IP auditing. Packit was used to create customizable

DoS and DDoS attack scripts.

The latter is a set of python scripts using Scapy [234], a powerful interactive

packet manipulation python library. Scapy is able to forge or decode packets of a wide

number of protocols, send them on the wire, capture them, match requests and replies,

and much more. It can easily handle most classical tasks like scanning, tracerouting,

probing, unit testing, attacks or network discovery. In addition to these solutions,

Internet script to perform Slowloris HTTP DoS [235] attacks was also used.

8.4. Orchestrating Analysis

The essence of the OADS approach lies in the power gained from the clever

combination and coordinated orchestration of different attack detection modules. In

order to cover the variety of attacks and to fairly evaluate the robustness of this work,

different attack scenarios are planned, aiming to illustrate the efficacy and more

importantly attack detection of the AODS solution.

It is important to emphasize that the analysis and evaluation process is based on

the steps of the orchestration algorithm. Next some of the experiments are described.

8.4.1. Scan UPnP

The first experiment for analysis can and must be considered an unplanned event. It is a

residual traffic collected by Snort detector, located on Firewall/Gateway computer,

during the third initial minutes of monitoring while preparing for a DNS cache

poisoning attack (second experiment).

Overall, Snort (Firewall/Gateway) sends 61 alerts reporting “SCAN UPnP”

service discovery from a GPRT laboratory computer (150.161.192.X) to the Internet

(239.255.255.250), during thirty minutes. Figure 8.4 illustrates the time line of these

alerts.

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14 15:16 15:18 15:20 15:22 15:24 15:26 15:28

15:01 15:03 15:05 15:07 15:09 15:11 15:13 15:15 15:17 15:19 15:21 15:23 15:25 15:27 15:29

7 5 1 1 2 5 4 1 2 6 5 1 0 1 1 1 1 1 1 1 3 1 0 5 0 1 1 2 1

Alerts

Time

FIGURE 8.4: UPnP alerts time line

134

Analysis

As established in Algorithm 8.1, for each time interval the orchestration algorithm must

evaluate the received alerts and make decisions about what course of action to take. At

15:01, 7 alerts are received for the Alert Pre-Processor component for handling alerts

(step 1) and are next forwarded for significant clusters extraction (step 2). As previously

described in Chapter 5, the process begins with the calculation of RU considering all

elements inside the set (in this case, 7 alerts). The results are

 for class, srcIP and dstIP cluster. Consequently, these

alerts were considered significant, since the RU value is less than β (0.9).

Thus, according to Algorithm 8.1, the next step consists of sending the alerts to

the Decision Service (Step 6). This service receives all alerts and employs its state

machine in order to evaluate them. As explained in Table 8.2, the states correspond to

the combination of the alerts source detectors and the level of severity of each one. In

this case, all alerts have the same origin and same severity (high). The result of the state

machine analysis is the transition to state D, since it was assumed that it is case where

Profiling is good, ChkModel is good and Snort is high. Ultimately, this decision can be

translated to the following action: block any packet sent by IP address 150.161.192.X,

source port 56134, destined to IP address 239.255.255.250 with destination port 1900.

Figure 8.5 shows a simple example for IPTables.

IPTABLES -A OUTPUT -s 150.161.192.52 --sport 56134 -d 239.255.255.250 --

dport 1900 –j DROP

IPTABLES -A OUTPUT -d 239.255.255.250 --dport 1900 –j DROP

FIGURE 8.5: Possible IPTables rules for UPnP alerts

Since two additional identical alerts are received in the next times (15:02 and

15:03), the same evaluation process is followed until the step 6. However, as described

in Algorithm 8.1, Decision Service makes use of OADS Miner (ARAPONGA) to obtain

more information about this type of alert.

For this, it makes the following query: SCAN UPnP service discover attempt -

summary_vulnerability. This query goes through all indexed contents looking for the

searched term(s). It then returns an XML file containing the following information

according to Figure 8.6. The page states that this vulnerability allows an intruder to run

code over an invaded machine and suggests the application of a patch for this type of

known attack and disable UPnP.

135

<Summary_Vulnerability>

 <Vulnerability id="1">

 <Title name="SCAN UPnP Service Discovery Attempt">

 <Description>

 Universal Plug and Play (UPnP) is a system to allow network devices to operate together. A

vulnerability in the Microsoft Windows XP and Windows ME implementation of UPnP may permit an intruder

to execute arbitrary code with SYSTEM privileges. Additionally, Windows 98 and Windows 98SE may be

affected if you have installed the Windows XP Internet Connection Sharing client.

 </Description>

 <Timeline>

 <Disclosure_Date>2001-12-20</Disclosure_Date>

 <Published_Date>2001-12-20</Published_Date>

 <Last_Update>2001-12-20</Last_Update>

 </Timeline>

 <Classification>

 <Attack_From>Remote</Attack_From>

 <Impact risk="high">An intruder can run arbitrary code in the local SYSTEM security context</Impact>

 <CVSS>7.5</CVSS>

 <CVE_ID>CVE-2001-0876</CVE_ID>

 </Classification>

 <Affected>

 <product>Windows XP</product>

 <product>Windows ME</product>

 <product>Windows 98</product>

 </Affected>

 <Solution>

 To disable UPNP.

 Apply a patch as described in MS01-059.

 </Solution>

 <References>

 <name>Microsoft Security Bulletin: MS01-059</name>

 <url>http://www.microsoft.com/technet/security/bulletin/ms01-059.asp</url>

 <name>CERT/CC vulnerability note: VU#951555</name>

 <url>http://www.kb.cert.org/vuls/id/951555</url>

 <name>Computer Incident Advisory Center Bulletin: M-030</name>

 <url>http://www.ciac.org/ciac/bulletins/m-030.shtml</url>

 </References>

 </Vulnerability>

</Summary_Vulnerability>

FIGURE 8.6: Summary_vulnerabilty for SCAN UPnP alert

8.4.2. DNS cache poisoning

DNS cache poisoning is an attack that consists of changing or adding records to the

resolver caches, either on the client or the server. The objective is so that a DNS query

for a domain returns an IP address for an attacker‟s domain instead of the intended

domain. According to Hyatt [236], DNS cache poisoning results in pharming, which

allows the attackers to perform identity theft, distribution of malware, dissemination of

false information, and man-in-the-middle attacks.

The Experiment

The current DNS cache poisoning experiment aims to add a new domain named

feitosa.tnt into the authoritative DNS server of GPRT laboratory. In order to achieve

this goal, two computers are used (all of them running Linux distribution). They both

execute a python script (called DNScachepoisoning.py) that exploits the vulnerability

136

discovered by Dan Kaminsky [55]. This script sends fake recursive queries aiming to

insert a dummy record in the vulnerable DNS server by guessing the transaction ID. It

also inserts an Authority record for a valid record of the targeted domain. The script

uses a random source IP address, a source port number equal to 32883 (the vulnerable

DNS port for recursive queries) and the transaction ID starting with 1024 and increasing

+1 for each interaction. Figure 8.7 illustrates this scenario.

DNS Server
Firewall/Gateway

DNS Cache Poisoning

DNS fake queries

FIGURE 8.7: DNS cache poisoning scenario

In order to clarify this attack experiment targeted to GPRT DNS server, Figure

8.8 clearly shows the increase in the packet number seen before and after the attack is

started.

FIGURE 8.8: DNS cache poisoning attack without defense

The line plotted in the graphic depicts the amount of UDP DNS packets during a

time interval between 15:00 and 15:50 of June, 02 2010, without the presence of any

type of defense. Before the attack taking place, there was a mean of 167 packets per

second whereas it suddenly increased to 586 packets per second once the attack was

launched.

The first thirty minutes corresponded to normal user traffic while all detectors

were running and without injecting any attack traffic. At the thirtieth minute, attacks are

injected into the local area network. Hence, from now on, alert classification, evaluation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45

D
N

S
P

ac
ke

ts

Time (minutes) - Started 15:00

137

and decision start taking place. Ten minutes into the experiment, the attack traffic is

halted.

Analysis

The DNS cache poisoning attack took place at 15:30. As shown in Figure 8.8, the

average of received packets per second suddenly increased from 167 to 586 packets per

second once the attack was launched.

During the first minute of the attack (15:31), Alert Pre-Processor received two

alert files, in the IDMEF format. These represent alerts from the Snort

(Firewall/Gateway) and Snort (DNS server), containing 6864 and 30 alerts respectively.

The Pre-Processor has therefore to perform significant cluster extraction. On the other

hand, ChkModel did not generate any alerts because it only supports TCP inspection

and not that of UDP packets, and Profiling only generated alerts after two time slots (in

this case, two minutes).

The Snort detector (Firewall/Gateway) generated a huge number of alerts to type

“DNS response for RFC1918”, according to the original DNS rule. The other Snort

detector (DNS server) generated alerts classified as “ET CURRENT_EVENTS DNS

Query Responses with 3 RR’s set (50+ in 2 seconds) – possible A RR Cache Poisoning

Attempt”, according to Emergent threat‟s [230] DNS rule file. The difference of the

number of alerts between both Snort detectors is due to the fact that the first one is

located into the local LAN segment of the GPRT network (that uses NAT IP addresses)

and therefore receives directly the attack. On the other hand, the second Snort detector

running at the DNS server is located on a DMZ segment and only receives the attack

once it passes though the two hosts (Firewall/Gateway of LAN segment and Gateway of

DMZ segment). Therefore, this reduces the number of packets received by the second

Snort detector. When the second Snort generates one alert every 2 seconds, the first one

generates between 5 and 8 alerts per second. Such discrepancy reflects the differente

rules employed in these detectors.

As far as is concerned to the orchestration analysis (Algorithm 8.1), all Snort

alerts were considered significant, according to the three keys: srcIP, dstIP and class

(all of them had an), and were consequently forwarded to the

Decision Service. After receiving these alerts, the Decision Service performs a simple

validation of these and eliminates those are duplicated. Consequently, only two alerts

were analyzed and the following decisions were made:

 To block any packet sent by IP address 150.161.192.253, source port 53,

destined to DNS server with destination port 32883 and;

 To block any packet sent by IP address 192.168.0.7 with source port 53,

destined to 150.161.192.2:32883.

Figure 8.9 shows a simple example for IPTables configuration to achieve these

two actions at the firewall.

IPTABLES -A INPUT -s 150.161.192.253 --sport 53 -d 150.161.192.2 --dport 32883

–j DROP

IPTABLES -A INPUT -s 192.168.0.7 --sport 53 -d 150.161.192.2 --dport 32883 –j

DROP

FIGURE 8.9 Possible IPTables rules for DNS cache poisoning alerts

138

At the third minute of the attack (15:02), Alert Pre-Processor received 1 alert file

from the Profiling (DNS server) and 44 alerts from Snort (Firewall/Gateway). The

Profiling alert represents the increase of the number of flows from IP address

150.161.192.253 (gateway) to IP address 150.161.192.2 (DNS server), as previously

detected by the Snort (DNS server). It is important to emphasize that the Profiling

detector (DNS server) needs at least two minutes to start generating alerts and its output

is naturally summarized, what explain having only a single alert.

The alerts of Snort (Firewall/Gateway) are of the same classification as those

from the previous (DNS response for RFC1918). However, the amount of generated

alerts is smaller. Such fact is directly related with the enforcement of the decisions

illustrated earlier on Figure 8.9 by the firewall. These block all packets from

150.161.192.253:53 to 150.161.192.2:32883 and all packets from 192.168.0.7:53 to

150.161.192.2:32883 from passing.

Considering the orchestration analysis, all Snort alerts were taken to be

significant and sent to the Decision Service when the Profiling alert was evaluated to

determine if it could be applied in FER analysis. However, as it does not fulfill the

minimal threshold condition (number of alerts > fer_threshold, imposed by step 3a of

the orchestration algorithm), no forwarding was made. The Decision Service suggested

blocking any packet sent by IP address 150.161.192.253 with source port 53 destined to

DNS server on 32883 port.

Figure 8.10 gives a closer view of all attack. The average number of packets

before this attack was 167 per minute and increased to 1456 packets per minute in the

first minute of the attack. With the evaluation and decisions taken by the OADS

heuristic, the attack effects were felt only the first 120 seconds. This time represents the

average time that the architecture requires to detect and take an action to mitigating it.

From then on, only the “normal” packets are seen in the network.

FIGURE 8.10: DNS cache poisoning attack with OADS decision and actions

Note that the decisions taken by OADS (via Decision Service) are applied at the

two firewalls of the testbed topology. Consequently, Profiling and Snort, located on

DNS server, stop to generate alerts during the rest of attack, since the internal traffic

with source port 32883 was blocked from getting into the DMZ zone. The same also

happens with Snort and Profiling detectors located on the Firewall/Gateway computer.

124 118

1456

850

186
98 77 97 123

245

99 101 113

0

200

400

600

800

1000

1200

1400

1600

15:29 15:31 15:33 15:35 15:37 15:39 15:41

D
N

S
P

ac
ke

ts

Time (minutes)

139

8.4.3. SMTP Flood

The next attack scenario is that of an e-mail spam flood towards an external SMTP

Server. This experiment represents a hypothetic scenario where corrupted computers by

Storm worm [22][86] are trying to infect other hosts via e-mail.

The Experiment

In order to achieve this setup, four (4) computers (all of them running Linux

distribution) are used to execute a simple shell script (called spamflood.sh) that uses

Packit tool to initiate TCP communication (TCP SYN) with GPRT SMTP server.

Having duration of five minutes, the script uses forged IP addresses (and subnets) with

randomly allocated client port numbers in the originator‟s addressing fields.

Figure 8.11 illustrates the number of packets destined to GPRT‟s SMTP server

during 15 minutes, between 09:15 and 09:30 (the time of highest activity from GPRT

users) of June, 09 2010. It is clear that the amount of packets increase after the attack is

started. Before the attack taking place, the mean of SMTP packets was around 305 per

minute whereas it suddenly increased to approximately 18000 packets per minute once

the attack was launched. It is important to explain that this specific time interval was

chosen because it represents the period with increased SMTP activity by GPRT users.

FIGURE 8.11: SPAM attack without defense (collected from Firewall/Gateway)

Analysis

Before the attack was started, none of the four detectors acting in this experiment (see

Table 8.3) reported any alert, but this changed soon after the first minute of attack.

Approximately 5 seconds into the second minute (09:21), the Alert Pre-

Processor received a single alert file from the ChkModel detector summarizing events

that took place during the first minute. It contained 1160 alerts and indicated

SUSPICIOUS activities from different hosts towards GPRT‟s SMTP server

(150.161.192.192). Since the detection mechanism of ChkModel is based on the ratio of

sent and received packets, all these are marked as suspicious because there is a rate of 1

to 0 observed. In other words, one packet is sent while none were received back.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

09:15 09:17 09:19 09:21 09:23 09:25 09:27 09:29

P
ac

ke
ts

Time (minutes)

140

Regarding the orchestration analysis, the significant cluster extraction process

confirmed that all alerts were significant (using destination address as a key) and, for

this reason, they were forwarded to the Decision Service. Here the state machine was

used to evaluate them. Considering that the lack of Profiling and Snort alerts is

represented by good state, the result of the state machine analysis is the state B1

(represented by the combination: Profiling=good, ChkModel=suspicious and

Snort=good). Consequently, this decision was translated to the following actions:

 To limit during 60 seconds any packet destined to IP address

150.161.192.192 with destination port 25.

Figure 8.12 shows an example of how such decision may be enforced at the

firewall level.

IPTABLES -A INPUT -s 192.168.0.5 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit

60/second -j DROP

IPTABLES -A INPUT -s 192.168.0.1 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit

60/second -j DROP

IPTABLES -A INPUT -s 192.168.10.11 -d 150.161.192.192 --dport 25 -p tcp -m limit --limit

60/second -j DROP

IPTABLES -A INPUT -s 192.168.243.13 -d 150.161.192.192 --dport 25 -p tcp -m limit --

limit 60/second -j DROP

…….

FIGURE 8.12: Possible IPTables rules for SMTP flood attack

In the next minute (09:22) a change of roles happens. The ChkModel detector,

which had classified the initial e-mail traffic as suspicious, adjusts its thresholds and

from now on it considered all traffic as legitimate since the TCP handshake mechanism

for connections establishment is correctly used. For this reason, it not generates any

alert. On the other hand, Profiling generates 1 alert file (containing 1240 source IP

addresses) about this “massive” anomaly and sends it to the Alert Pre-Processor.

As the Profiling alert is composed by a unique IDMEF alert, it was not

considered significant by the cluster extraction and also could not be applied in FER

analysis as it did not fulfill the minimal count requirement (number of alerts >

fer_threshold). Thus, it was sent to DST analysis. However, it was also refused because

has a unique source. Lastly, the only possible solution is sending it to the Decision

Service.

After evaluate the Profiling alert, Decision Service, using the state machine

analysis, attributes the state C1 (combination of Profiling=bad, ChkModel=good and

Snort=good). Consequently, this decision was translated to the following actions:

 To limit during 300 seconds any packet destined to IP address

150.161.192.192 with destination port 25.

It is important to observer that since the Profiling was developed to detect

massive anomalies, its alerts have more weight in the state machine analysis.

For the next minutes (09:23, 09:24 and 09:25), until the end of the attack, only

the Profiling detector continues to generate alerts (containing 1055, 890 and 335 source

IP addresses, respectively) and send them to be analyzed. The evaluations using state

machine are the same (state C1) and the decisions taken are also similar: to limit during

300 seconds any packet destined to IP address 150.161.192.192 at port 25.

141

Figure 8.13 shows a complete view of this spam attack and its detection. It is

straight forward to see that only the Profiling strategy was capable of detecting the

attack. This can be explained by the fact that for the ChkModel, spam e-mail is

legitimate traffic as it looks just like normal e-mail when making use of the TCP

handshake mechanism for connection establishment. In other words, Spam email does

not violate the TCP model of connection establishment. It is its content that is harmful

and wasteful of user time. On the other hand, the Profiling detects the attack as it senses

a sudden increase of the number of flows targeting a single SMTP server or IP address.

However, the response time for the Profiling remains relatively high as it borders the

two minutes.

FIGURE 8.13: SPAM attack with defense

It is important to explain that Figure 7.13 is using flow information as

parameters because both detectors (ChkModel and Profiling) employ this type of

aggregation to perform their analysis and evaluations.

To sum up, the decisions taken by OADS (via its own Decision Service) in this

experiment can be considered correct and functional. However, it is undeniable that they

are also somewhat inefficient. The actions of limiting all and any packet targeting to

SMTP server (150.161.192.192) with destination port 25, although proven to be

effective, also do stop legitimate and correct connections of GPRT users. A good

solution for this issue can be the use of Trusted IP List (TIL) [173][237]. The main idea

of TIL consists in keeping a table with the description of the history of “good”

connections already established with the network, so that during attack situations such

as these are favored with most of the bandwidth available to the detriment of unknown

connections and/or possible aggressors who will be limited by filters. Traffic shaping

may therefore be used to differentiate both types of TCP connections.

8.4.4. Slowloris

Slowloris [235] is a low rate service denial attack (though it really not is a DoS attack).

It operates by sending legitimate but incomplete HTTP requests, very similar to SYN

0

200

400

600

800

1000

1200

1400

1600

09:15 09:17 09:19 09:21 09:23 09:25 09:27 09:29

Fl
o

w
s

Time (minutes) - Start 09:15 AM

Profiling ChkModel

142

flood packets, but at a higher layer (the application layer in this case). This results in

fewer packets needed and more granularities to collapse a Web server.

Slowloris attack takes advantage of Web server design, typically protected of

massive attacks (mainly DDoS), occupying all available sockets, making that the server

“waiting for the resting of requests”. Figure 8.14 illustrates a Slowloris HTTP request.

POST /somepage.com HTTP/1.1 r n

HOST: some_url_or_other.com r n

User-Agent: Mozilla/4.0 r n

Content-Length: 42 r n

X-a: b r n

FIGURE 8.14: Typical slowloris HTTP request

What differentiates the example of a functional HTTP request is the final line,

where it should be finished off with an additional r n (Carriage Return and New Line

characters). So the last line should be: X-a: b r n r n. This simple lack of r n causes

some web servers to wait for completion, which is not unreasonable: maybe the missing

carriage return/line feed (CRLF) is still on its way. Waiting is also one way of

protecting the server against a brute force attack such as DDoS. The problem is that, by

default, some Web servers will wait five minutes. That is, as a result, there is one

resource that is used up for five minutes, unnecessarily in this case of Slowloris.

However, it is important that each resource is kept busy, so every so often a new header

is sent with the missing CRLF. If the exact form of this header is each time changed

then it makes writing intrusion detection signatures harder.

The Experiment

In order to execute this experiment, two computers, one located in Informatics Center

(Cin) of the Federal University of Pernambuco (UFPE) and the other one located in the

Science Computer Department (DCC) of the Federal University of Amazonas (UFAM)

were used to attack GPRT Web servers as depicted in Figure 8.3. These attackers were

set up to shoot simultaneous attacks to the targets. In addition, in order to observe the

attacks and their effects, a vulnerable distribution of the Apache Web server on the two

targets was installed. However, it was decided to only enforce the decisions to stop the

attack to the Web server 1 (150.161.192.192), as it is a production server.

It is important to explain that although the Slowloris script uses random source

IP address, the attackers were located at networks behind NAT servers. For this reason,

only two distinct source IP address will be perceived in this attack.

The experiment was initiated at 15:00 PM of June 17, 2010, during 20 minutes.

Figure 8.15 illustrates the increase of the number of established connections destined to

the GPRT Web server 2 (150.161.192.51), where clearly it is possible to see after the

attack taking place, the Web server reaches its maximum capacity of connections (150).

143

FIGURE 8.15: Slowloris attack without defense on Web server 2

Analysis

The Slowloris attack took place at 15:00. Two minutes into the attack (15:01), among

the seven (7) detectors used in this scenario, Profiling and Snort using emergent

configuration (Emergent threats) were unable to generate alerts. The explanation for this

is simple. As this attack has the same behavior of a low rate SYN flood, it generates a

low number of flows and hence slips through the control of the Profiling technique.

Snort no built-in rule capable of classifying this attack.

Nonetheless, both Snort‟s and ChkModel detectors saw a number of “TCP

SYN” packets going through towards the same destination servers and therefore should

be capable of detecting the attack. In fact, the Alert Pre-Processor received 7 IDMEF

alerts file (4 for Web server 1 and 3 for Web server 2). Snort classifies the attack as

“SPECIFIC-THREATS Slowloris http DoS tool” with severity equal to 2, whereas

ChkModel classify the attack as BAD.

Please recall that according to Algorithm 8.1, the execution of significant cluster

extraction is the first step. However, at the end of such process, all five alerts were

considered not significant since they were only few of them and had little differences

among them. Hence, the next step is to verify if these alerts can be evaluated by the

FER Analyzer. Again, due to their reduced number, the alert also failed to pass this

verification. Consequently, they are then sent to the ADS-Fusion (step 5). Unlike other

attacks, this one generated alerts from distinct detector, which make them good

candidates to evaluation using the Dempster-Shafer Theory.

As explained in section 8.2.2, the ADS-Fusion begins with the synchronization

of alerts aiming to establish connection among them. So, the received alerts are

aggregated according to their affinities. In other words, the alerts are split according to

their targeting of Web server 1 or Web server 2. After that, they are combined to

generate bpa values. For this, their severity parameter, the number of equal alerts and

thresholds are used. The two first are extracted from Snort alert and the latter from

ChkModel alerts. Then, the bpa for each alert is calculated. Snort alerts

(Firewall/Router and Web server 1) have only a single alert each with severity as

medium. This way, the calculated bpa for each one is 0.65 (what correspond to medium

severity as explained in section 8.2.2). For the ChkModel alerts (Firewall/Router and

0

50

100

150

200

250

300

14:50 14:55 15:00 15:05 15:10 15:15 15:20 15:25

Es
ta

b
lis

h
e

d
 C

o
n

n
e

ct
io

n
s

Time (minutes)

144

Web server 1), the calculated bpa is based on threshold values. So, the calculated bpa

for each one is 0.8. Tables 8.4 and 8.5 describe the bpa’s of all alerts.

TABLE 8.4: Calculated bpa’s of Web server 1

Detector Severity Threshold Bpa

Snort (Firewall/Router) medium 0.65 0.65

ChkModel (Firewall/Router) bad 0.8 0.8

Snort (Web server 1) medium 0.65 0.65

ChkModel (Web server 1) bad 0.8 0.8

TABLE 8.5: Calculated bpa’s of Web server 2

Detector Severity Threshold Bpa

Snort (Firewall/Router) medium 0.65 0.65

ChkModel (Firewall/Router) bad 0.8 0.8

ChkModel (Web server 2) bad 0.8 0.8

The last step is inferences generation. This step requires the definition of a frame

of discernment, an element that contains the possible states of the network, and the

hypothesis being evaluated. In this work, all generated frames of discernment have only

two possible elements to represent the network state: Normal or Anomalous (
 . In addition, the hypothesis to be questioned always is if the

network state is Anomalous, that is, the network is under attack ().

Next, the belief, , and plausibility, , functions are calculated,

considering the hypothesis H, and, as consequence, a range of belief, , which

expresses the range of values in which it is possible to believe in the hypothesis H, is

generated.

Overall, ADS-Fusionconsiders for Web server 1 that:

 m_1 as the mass function of the Snort attack evidence from Firewall/Router,

m_2 as the mass function of ChkModel attack evidence from

Firewall/Router, m_3 as the mass function of Snort attack evidence from

Web server 1 and m_4 as the mass function of ChkModel attack evidence

from Web server 1.

 Frame of discernment is , and:

o m_1(Anomalous) = 0.65 and m_1() = 1 – m_1(Anomalous) = 0.35

o m_2(Anomalous) = 0.8 and m_2() = 1 – m_2(Anomalous) = 0.20

o m_3(Anomalous) = 0.65 and m_3() = 1 – m_3(Anomalous) = 0.35

o m_4(Anomalous) = 0.8 and m_4() = 1 – m_4(Anomalous) = 0.20

 The belief and plausibility for all mass functions are 1, i.e.,

 and .

As result, the Dempster combination obtained the following values:
 and
 .

For Web server 2, ADS-Fusion considers that:

 m_1 as the mass function of Snort attack evidence from Firewall/Router,

m_2 as the mass function of ChkModel attack evidence from

145

Firewall/Router, m_3 as the mass function of ChkModel attack evidence

from Web server 2.

 Frame of discernment is , and:

o m_1(Anomalous) = 0.65 and m_1() = 1 – m_1(Anomalous) = 0.35

o m_2(Anomalous) = 0.8 and m_2() = 1 – m_2(Anomalous) = 0.20

o m_3(Anomalous) = 0.8 and m_3() = 1 – m_3(Anomalous) = 0.20

 The belief and plausibility for all mass functions are 1, i.e.,

 and .

As result of the Dempster combination, the same values of Web server 1, i.e.,

 and
 , were obtained.

Since the inferences were generated, according to Algorithm 8.1, the next step is

sending the results to OADS‟s Decision Service. Note that the results include the

inferences and original alerts.

After a validation, the Decision Service takes the following decisions:

 To block all packets sent by IP addresses 150.161.2.53 (CIn/UFPE) and

200.17.49.5 (DCC/UFAM), destined to Web server (150.161.192.192) on

port 80.

Consequently, the Slowloris attack to Web server 1 is blocked and the detectors

do no generate any more alerts. Figure 8.16 demonstrates the attack effects on Web

server 1. Note that after the first minute of the attack, the enforcement actions are taken

and the attack is blocked.

FIGURE 8.16: Slowloris attack without defense on Web server 2

For effect of evaluation, it was decided not to apply the enforcement actions

destined to Web server 2. In other words, the decisions of blocking the packets of the

attackers are not configured, hence allowing the monitoring of the subsequent alerts and

their analysis by ADS-Fusion. Table 8.6 represents the individual belief of the detectors

and the Dempster combination for the hypothesis of the network is under attack.

0

50

100

150

200

250

300

14:50 14:55 15:00 15:05 15:10 15:15 15:20 15:25

Es
ta

b
lis

h
e

d
 C

o
n

n
e

ct
io

n
s

Time (minutes)

146

TABLE 8.6: Dempster combination for attack in Web server 2

Time
Snort

(Firewall/Router)

ChkModel

(Firewall/Router)

ChkModel

(Web server 2)
DST

15:00 0.65 0.80 0.80 88%

15:01 0.70 0.80 0.80 90%

15:02 0.75 0.80 0.80 92%

15:03 0.80 0.80 0.80 94%

15:04 0.85 0.80 0.80 95%

15:05 0.90 0.80 0.80 97%

15:06 0.95 0.80 0.80 98%

15:07 1.00 0.80 0.80 99%

15:08 1.00 0.80 0.80 99%

...

15:19 1.00 0.80 0.80 99%

Note that the belief of the Snort detector increases as the number of repeated

alerts is received. For example, during the initial time period (15:00), the unique alert

has its belief equal to 0.65. At the second time (15:01), one more equal alert was

received. For this reason, its belief was 0.65 (its severity) + 0.05 (second apparition of

the same alert), totalizing 0.7. As a result, the Dempster combination for the network is

under attack hypothesis also increases. At 15:07, after receives 8 identical alerts from

Snort, the belief achieved the maximum level (1.0). From this point on, ADS-Fusion

achieves almost 100% of belief (confidence) regarding the existence of an attack.

8.4.5. Multi-step Attack

The last experiment (but not the least important one) is composed of a set of attack

actions, that is, a multi-step attack. According to Robiah et al. [238], a multi-step attack

is a sequence of attack steps that an attacker has performed, where each step of the

attack is dependent on the successful completion of the previous one.

The interesting and relevant aspect of multi-step attacks is that they can and

must be observed by different detectors. However, it is necessary to gather all pieces so

that an attack scenario can be seen a multi-step attack.

For the experiment at hand, a multi-step attack scenarios caused by the Blaster

worm [239] spreading mechanism was emulated. Blaster worm scans the local class C

subnet, or other random subnets, on port 135, in an attempt to discover vulnerable

systems and thus use them as targets. The exploit code opens a backdoor on TCP port

4444 and instructs them to download and execute the file MSBLAST.EXE from a

remote system via the Trivial File Transfer Protocol (TFTP) running over UDP port 69

to the %WinDir%\system32 directory of the infected system [238].

The Experiment

In order to implement a Blaster worm experiment, a different testbed, shown in Figure

8.17, was built. As one is dealing with an internal attack, during 30 minutes, as many as

60 computers of GPRT laboratory, where nine (9) computers, running Linux

distribution, were “prepared” to makeup this experiment. One of these was selected to

act as the attacker machine whereas the other emulated Windows machines.

147

PC1
PC4

(Attacker)

Switch

Switch

PC25 PC27

Firewall/Gateway

...

PC2 PC3 PC21 PC22 PC23 PC24

PC26 PC27 PC60 PC62PC61 PC63

FIGURE 8.17: Blaster worm testbed scenario

Based on the Blaster worm operational steps described above, the experiment

had the following behavior. First, the attacker was activated and it began a scanning

process in the network, looking for open port 135 TCP to explore DCOM RPC

vulnerability in Microsoft Windows. For this, a port scan script (pscan.py) with

192.168.0.0/24 as target and 192.168.0.96 as source IP address was used.

The second step consisted in exploring the vulnerability on TCP port 135. In

order to emulate this step, the attacker executed a script (blaster.py) whereas each one of

the 8 “vulnerable” computers executed other script (blaster_client.py) to communicate

with the attacker. Basically, the attacker sent a message instructing the vulnerable

computers to open a backdoor on port 4444 TCP. As a proof of concept, the attacker

script tried to next to connect to the vulnerable computers on port 4444 TCP and get an

image file, called BLASTER.jpg. A specific Snort rule to detect this communication, as

shown in Figure 8.18, was developed.

alert tcp $HOME_NET any -> $HOME_NET 4444 (msg:“Blaster Worm Simulation 4444”;

flow:established; uricontent:“BLASTER.jpg”; nocase; sid:1000001; rev:1);

FIGURE 8.18: Specific Snort rule to detect Blaster worm simulation

At a third step, the vulnerable computer makes a TFTP connection to the

attacker, to get the file MSBLAST.EXE. In order to turn viable this step, the TFTPy

API [240] was used to implement all TFTP communication between attacker and

vulnerable computers. After this step, the attacker closes its activities.

To finish the attack, all vulnerable computers tried to establish connections with

Web sites where this Storm worm [22][86] can be found, in order to create a new

infection. For this, each one of them has a list containing 10 Web site addresses

recognizably related with this worm, and chooses only 2 to try a connection. After this

step, as the attacker, the vulnerable computers also close their activities.

It is interesting to observe that multi-step attack scenarios must be observed by

different detectors, like signature-based network IDS, ADS and file integrity checker.

However, in this scenario only Snort detectors were used due to the fact that they are

more prepared, regarding the existence of rules. In addition, both ChkModel as Profiling

are not adequate in this case, since this experiment does not generate differences

148

between ingress and egress TCP packet (what discards the use of ChkModel) nether

does it generate huge amount of traffic, hence discarding the use of Profiling to detect it.

For such reasons, only Snort detector versions 2.8.3.2 and 2.8.6 are used.

Analysis

The Blaster worm experiment was started at 10:00 of July 26 2010. After the first

minute, the Alert Pre-Processor received three alert files from Snort Firewall/Gateway

(version 2.8.6) and Snort‟s PC 1 and PC 25 (version 2.8.3.2), containing 240, 193, and

194 alerts, respectively.

These alerts represent all attack steps and were classified by Snort‟s as

“PSNG_TCP_Portsweep” (551 alerts), “Blaster worm simulation 4444” (24 alerts),

“TFTP Get” (24 alerts), and “Storm worm phone address” (48 alerts). The first

represents the port scan activity. The second one represents TCP connection opening to

port 4444 in vulnerable computers. The third represents the TFTP connection to get

MBLASTER.exe file. The last alerts show the attempt to connect to Web sites related to

the Storm worm.

With regard to the orchestration analysis (according to Algorithm 8.1), the alerts

are evaluated using the significant cluster extraction process. As a result, all alerts of

“PSNG_TCP_PORTSWEEP” type are considered relevant (of

class and of srcIP). Next, they are forwarded to the Decision

Service, which decides to block any packet sent by IP address 192.168.0.96, destined to

192.168.0.0/24, as shown in this simple IPTables example (IPTABLES -A INPUT -s

192.168.0.96 -d 192.168.0.0/24 –j DROP).

One must emphasize that although an enforcement action is taken by the

Decision Service, it has no effect. The reason is simple. In this testbed, the attack is

totally inside the network (internal to the network) making the first point of

enforcement, namely, the Firewall/Gateway computer useless in such case. This way,

although an explicit order was issued to block all packets from this source, their

presence continues in the network.

Nonetheless, there are still other alerts to be analyzed. Those alerts that were

considered as irrelevant at step 2 of the orchestration algorithm may still be used. The

next step is to verify if these alerts can be evaluated by the FER analyzer. As the

number of alerts is greater than fer_threshold (96 > 50), the discovery of frequent

episodes is applied.

Consequently, all alerts are translated into events. Table 8.7 exemplifies some

alerts and event types in this scenario.

TABLE 8.7: Example of event types and event names for Blaster worm scenario

Event

Type
Event Name Source IP/Port Destination IP/Port

A Blaster worm simulation 4444 192.168.0.96:34521 192.168.0.50:4444

B Blaster worm simulation 4444 192.168.0.96:50674 192.168.0.51:4444

H Blaster worm simulation 4444 192.168.0.96:12543 192.168.0.57:4444

I TFTP Get 192.168.0.50: 5643 192.168.0.96:69

J TFTP Get 192.168.0.51: 3027 192.168.0.96:69

149

P TFTP Get 192.168.0.57: 3027 192.168.0.96:69

Q Storm worm phone address 192.168.0.50: 64267 222.252.232.184:22861

R Storm worm phone address 192.168.0.50: 4530 216.139.142.17:10788

F1 Storm worm phone address 192.168.0.57: 1155 217.77.54.253:12358

G1 Storm worm phone address 192.168.0.57: 7897 222.33.177.224:12555

Next, using the established parameters from Table 8.1 (window size 10,

frequency threshold 0.01, and confidence threshold 0.8), the computation of frequent

episodes is made and the following values (Table 8.8) are discovered.

TABLE 8.8: Performance for Blaster worm scenario

Window

Size
Candidates

Frequent

Episodes

Level of

Participation (%)

1 32 32 100.00%

2 289 153 52.94%

3 1376 612 44.47%

4 3468 1428 41.17%

5 5712 2142 37.50%

6 6426 2142 33.33%

7 4998 1428 28.57%

8 2652 612 23.07%

9 918 153 16.66%

10 187 32 17.11%

Note that the presence of a low number of alerts generating a more focused

number of frequent episodes. Such affirmation is proved by the final number of frequent

episodes found (32) for a maximum value window size.

The next step of FER analysis has to do with episode rules generation. FER

generates 4334 normal rules and 137 reduced rules, respectively, using frequency

threshold of 0.01 and confidence level of 0.8 (Table 8.1). Among the reduced rules, it is

possible to find representations of the multi-step attack. For instance, the rules A  AI

with confidence 1.00 and I  IQR with confidence 1.00 allow deducting that in 100% of

the cases of event A (Blaster worm simulation on port 4444, from 192.168.0.96:34521

to 192.168.0.50:4444) occurs, the event sequence AIQR (Blaster worm, TFTP Get,

Storm worm and Storm worm) also occurs.

The processing time including frequent episodes calculation and episodes rule

generation was around 67 seconds.

Since the episodes rules were generated, the next step is sending these rules (and

event tables) to the Decision Service. After validation, a series of decisions is taken to

block the communication between the attacker (192.168.0.96) and the vulnerable

computers (192.168.0.50-57). Note that these decisions have no effect. Once again,

these decisions will be applied in Firewall/Gateway computer, but all communication

between attacker and vulnerable computers actually do not pass through this network

point of ingress/egress traffic.

150

As such, all this described process is repeated until the attack scripts stop

working. A solution would be achieved through the use of an automatic access control

mechanism as proposed in [241], where the authors employ 802.1x [242] to implement

access control based on physical access device ports. This way, specific user traffic may

be filtered out at the access switches.

8.4.6. Experimenting with real traces

In order to evaluate the OADS approach, some actual traffic traces were used.

The first one was CAIDA‟s 2007 DDoS Attack Dataset [243], obtained from

CAIDA (Cooperative Association for Internet Data Analysis [139]). This trace contains

approximately one hour of anonymized traffic traces from a DDoS attack that took

place on August 4
th

, 2007 (20:50:08 UTC to 21:56:16 UTC). This type of denial-of-

service attack attempts to block access to the targeted server by consuming computing

resources on the server and by consuming all of the bandwidth of the network

connecting the server to the Internet. The total size of the dataset is 21 GB, where only

attack traffic to the victim and responses to the attack from the victim are included.

Although this trace contains bidirectional traffic, none of the detectors used in

testbed topology was able to identify any attack. The reason is simple. Since the

payload was removed from all packets in this trace, Snort detectors would hardly find

any signature. Regarding ChkModel and Profling, there was no satisfactory explanation

of why they did not detect anything. There is the possibility that the anonymization

process may have affected the trace data.

The second trace is CAIDA‟s Backscatter 2008 Datasets [244]. It consists of

quarterly week-long collections of responses to spoofed traffic sent by denial-of-service

attack victims and received by the UCSD Network Telescope. Data was collected

quarterly in February, May, August and November. In addition to the quarterly

collections, data was also collected on March 18 and 19 for the Day in The Life of the

Internet (DITL) project. Only this last one was experimented with.

Since this trace is a backscatter from DoS victims (responses), only the Profiling

detector can use them to look for anomalies (the ChkModel needs requests and

responses to perform analysis and the Snort needs a payload). This way, it was decided

not to use this trace since, according to Algorithm 8.1, the final result will be getting

Profiling alerts (one each five minutes) and simply forwarding these to the Decision

Service.

The third and fourth traces are UMass Gateway Link 3 Trace, obtained from

Umass Trace Repository [245], and MAWI 2006 samplepoint B, obtained from MAWI

Working Group Traffic Archive [246]. The former is a collection of traces taken at the

UMASS OIT gateway router. The traces are collected every morning from 9:30 to

10:30 from July 9
th

, 2004 to July 22
nd

, 2004. They are in DAG format. All the IP

addresses have been anonymized with prefix preserving algorithms. The latter is

collected from trans-Pacific line (18Mbps CAR on 100Mbps link) during the six first

months of 2006. The traces of June 1
st
, 2006 were used as discussed next.

Regarding these two traces, both were injecting into the OADS prototype

(separately), but none of them generates any type of alert. The MAWI trace not

indicates if there is or not attacks and anomalies in its data. On the other hand, UMass

trace is listed as containing anomalous traffic. But a simple evaluation using

http://www.caida.org/data/passive/network_telescope.xml
http://www.caida.org/projects/ditl/
http://www.caida.org/projects/ditl/
http://traces.cs.umass.edu/
http://traces.cs.umass.edu/

151

TCPDump
31

 and WireShark
32

 tools show that there is not unwanted traffic in its data,

the reason because nothing was found.

8.5. Chapter Discussion

This chapter has presented and described the implementation and evaluation of the

OADS approach conducted as part of this study to show the effectiveness of the

proposed ideas. A key feature of the implementation was the use of a simple heuristic

(represented by Algorithm 8.1) instead of more complex solutions, allowing that OADS

approach be more agile and flexible.

In order to evaluate the OASD prototype, different experiments in a controllable

environment (GPRT laboratory) were conducted, proving that the proposal is very

capable to identify and stop unwanted traffic. Unfortunately, the many attempts to

execute OADS approach with public and real traffic traces were not well successful.

Basically, the presence of backscatter traffic (only the traffic from the victim(s) to the

attacker(s) is recorded) restraints that the used detectors discovery some kind of attack

or anomaly.

Although early, it is fair to state that the approach may be seen as a significant

step towards building sound security and unwanted traffic detection and mitigation

unified platforms.

31

 http://www.tcpdump.org
32

 http://www.wireshark.com

152

Chapter 9

Conclusions

A key contribution of this Thesis is to allow that network operators and IT managers be

free of everyday and cumbersome tasks of evaluating security events, alerts, and

incidents provided by the numerous network security software and services. For this

goal, a generic, open and flexible approach to deal with unwanted Internet traffic was

designed and implemented. It is generic, because its components may be organized to

detect a large and varied range of intrusions, attacks and anomalies, spanning from a

traditional LAN access control service to large high-speed ISPs and backbones. It is

openness stems from employing open source languages, standard protocols, and tools. It

is flexible in that allows the update or seamless insertion of new detection techniques.

Our approach is a holistic view of the orchestration concept applied in intrusion

and anomaly detection. Named Orchestration Anomaly Detection System (OADS), it

offers support for collaboration and harmonization of different detectors, increasing the

power of perception (detection) of anomalies and consequently turning the network

more and more secure. In practical terms, OADS is a complete unified framework for

unwanted traffic identification able to deal with different detectors and their multitude

of alerts, employing different techniques and methods for analysis to confirm or deny

the presence of intrusions, attacks and anomalies and indicate some type of enforcement

action.

The rest of this chapter is organized as follows. We begin our conclusions by

summarizing the main contributions of this Thesis. Then, we take a look back and

report on the key lessons learnt in this research. Next, we show some perspectives,

contexts and points to directions for future works. Finally, we provide concluding

remarks.

9.1. Summary of Contributions

In this Thesis, we have advocated that the collaboration and harmonization among

different anomaly detectors is a good step to achieve a desired result in security area.

Motivated by this view, we proceeded to design and develop a complete unified

framework for unwanted Internet traffic. We then applied this framework in different

scenarios, aiming to validate it and consequently point out where and how it could be

improved.

In particular, this Thesis makes the following contributions:

 Unwanted Internet Traffic Survey: In order to better understand the issues

involving this traffic, we made an ample review of the subject. Our research

began by surveying the unwanted Internet traffic (Chapter 2). We presented

different definitions and formulated a new one that summarizes the other and

includes aspects as the characterization of legitimate and illegitimate traffic

as unwanted. It also discussed about context, classifications, and the possible

reasons to explain its increase on recent years, followed by the presentation

of many examples of unwanted traffic. Next, we made a survey

153

contemplating the most varied solutions employed against this traffic

(Chapter 1). It includes strategies ranging from as simple as the used of anti-

virus software to more advanced research tools for anomaly traffic detection.

 Orchestration Approach for Unwanted Internet Traffic Identification.

The finding that collaborative unified solutions are needed to efficiently deal

with the problem of unwanted traffic was instrumental in the direction of the

adopted solutions. Our second contribution is the proposal of a new approach

based on the orchestration of different security components for unwanted

traffic identification (Chapter 4). In practical terms, the Orchestration

Anomaly Detection System (OADS) specifies a unified framework capable

of receiving multiples inputs (alerts) from different anomaly detectors,

evaluating them and warming about possible problems. Enforcement actions

can be taken, but they are not considered at depth by this Thesis.

 OADS Miner (ARAPONGA). Information is the key to any efficient

solution. As such, network administrators and IT managers must rely on

Web sites to get this information. Our third contribution is a tool capable of

gathering information about vulnerability reports, security events and

Internet traffic statistics, consolidating and indexing them into a single place.

The result is a practical, simple, fast, useful and straightforward information

source for users (Chapter 5). ARAPONGA contributes by applying the

concepts of WIRSS and ISSS to provide functionalities support that go

beyond a traditional system of searching and indexing. In addition, it uses

data mining techniques and templates to expand the capability of indexing

information about security and therefore allow different and more focused

queries.

 OADS Alert Pre-Processor tool. In order to deal with the multitude of

alerts from different detector, our fourth contribution is a solution for the

aggregation and extraction of significant alerts (Chapter 6). Based on the

clustering approach, the Alert Pre-Processer tool receives multi-source alerts,

aggregates them and extracts the most relevant ones. Furthermore, in order to

reduce the computational load at the (centralized) server and decrease the

false negative rate, it can also be used in learning about attack strategies.

 OADS FER Analyzer. Our fifth contribution is in the form of a statistical

module based on the frequent episodes discovery technique capable of

correlating alerts, discovering sequences of events that represent strategies or

phases of attacks and enabling the prediction of future alerts (Chapter 7).

Moreover, as part of its analysis result, this tool generates probabilistic rules

that can be used in the enforcement actions.

9.2. Lessons Learned

We now draw out some lessons that we learned through the development of the OADS

approach.

9.2.1. Content Selection vs. Crawler Tool (OADS Miner)

There was a high level of difficulty encountered with the implementation of „OADS

Miner. In particular, there was a difficult decision to be taken when choosing between

154

obtain all the information possible versus respecting the limits set by the visited Web

sites for Crawlers. As previously mentioned (Section 7.3.1), we choose dozens of Web

sites as point of gathering reliable security information and has to sometimes ignore the

limits imposed by these sites for the purpose of building a useful database of events.

Unfortunately, around a dozens of important security information sites were

discarded due to their limiting access policies to the content. More specifically, two

issues were registered. The first one is related to robots.txt, a file found at the root page

of each domain and created to control the actions of search robots, dictating their search

behavior. Typically, robots.txt files are generated to hide all content of robots. They

have the following settings: User-agent: * and disallow: /, which restricts any agent

(robot) from accessing any content inside their directory. The second issue is related to

the META-TAGs, HTML reserved keywords (labels) that among other functions

describe what contents a robot can see. A typical example of anti-crawling META-

TAGS has the following format (<meta name="robots" content="index,nofollow">),

where index and nofollow fields indicate that permission is given to index only the

initial page of Web site.

This Thesis seeks to offer mechanisms for gathering information for the combat

of attacks and anomalies. For this, we should be change Nutch configuration (good

behavior policies) to ignore robots.txt and META-TAGS restrictions, modifying the

source code of Nutch. By definition, a Crawler tool that does not respect these policies

is known as Malware Crawler. We opted for not to follow this line of thinking. So, we

tried to contact many Web sites, explaining the Thesis intentions and the need to obtain

the advertized information.

Many Web contacted sites did not respond to our solicitations and consequently

they were not used. Fortunately other, like Atlas [63], made available special accounts

with full access for their data.

9.2.2. Detectors and IDMEF

Although we have presented some interesting unwanted traffic strategies in Chapter 2, it

was a hard task, in terms of implementation and adequacy to the work, to define and test

anomaly detectors.

Among all presented academic strategies, we could only use two: ChkModel

[158] and Profiling [151]. The former because it was originally designed and developed

by GPRT team (as part of undergraduate work) whereas the latter was implemented

following the original specifications. Both are used in the RobustIP project [173].

Regarding the other academic strategies, when requested, the authors could not make

available their code due to privacy issues in their projects. In addition, as described in

Chapter 4 and 6, we had to develop a parser to convert the outputs of detector or sensors

such the ChkModel and Profiling into the IDMEF format. This simple tool was written

in Java.

Regarding commercial detectors, we tested three tools: Snort [163], Bro [164]

and Prelude IDS [165]. Although all of them seem to be similar in their objectives, we

choose Snort (version 2.8.3.2) due to its easier installation and simpler update rules.

Another point in favor of Snort is the existence of the Snort-IDMEF plugin [178] is

used to translate Snort logs into IDMEF alerts. However, after isolated tests, we

discovered that: (i) Snort 2.8.3.2 does not support the most recent rules, due to

155

incompatibility of implementations; (ii) Snort-IDMEF plugin only works with Snort

version 2.8.3.2.

As result, we opted for using Snort 2.8.6 (the most recent version) and use Java

code that translates Snort logs to the IDMEF format.

9.2.3. Real traffic traces

Despite the OADS evaluation being performed using attack scenarios (originated from

four experiments), further evaluations may be conducted to better prove the

effectiveness of the approach.

An interesting, problematic and further point to be studied is the use of real

traffic traces. Despite the increased interest in security, especially after the increased use

of social networks, it is practically impossible to find traces that allow us consistently to

test any solution. On the other hand, the strategy to use attack descriptions to recreate

multi-step scenarios depends of what to exploit and demands an extra effort in terms of

requirements.

9.3. Future Directions

This thesis introduced a unified approach for unwanted Internet traffic mitigation,

composed by distinct components and designed to be modular. However, this approach

can be further extended and applied in other contexts as well. We now explore some

avenues for future research based on the contributions in this Thesis.

9.3.1. Distributed support and cooperation

The collaboration between detection systems is extremely necessary to increase, in both

quality and quantity, the detection process of anomalies, suspicious events, and security

incidents and, for this reason, it is an important aspect that must be studied. This

collaboration must be based on information exchange (data and control) between local

and remote detection systems. Standard message formats and protocols such as IDMEF

[88], IODEF [89], and IDXP [90] can be used for this purpose. Recently, the use of

description languages as WSDL (Web Service Description Language) [247] and OWL

(Web Ontology Language) [248] has been practiced in the context of IDS collaboration.

9.3.2. Secure and trusty relationship

Another possible future work is related with some security and trust relationship

requirements. The first one is data privacy. It aims to deal with the unwillingness, by the

most different reasons, of the participant in to share security alerts and information

about their domains and users. Some works have been proposed to address this issue.

Lincoln et al. [249] proposes a set of sanitization techniques to obscure sensitive fields

(IP addresses and data) and sensitive associations (the configuration and defense

coverage of a network site). Xu and Ning [250] proposed the use of concept hierarchies

to balance privacy requirements and the need for intrusion analysis. Already Gross et al.

[251] proposed a privacy-preserving mechanism using Bloom filters for use in a CIDS.

Other security aspect is the use of authentication and data integrity to prevent that

wrong or forged information to be injected as part of the generated messages by the

elements of CAIDSs. The works described in [252] and [253] use certificates to

authenticate the messages and thus to guarantee the security of alerts and participants. In

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib87
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib32
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8G-4WPTXJ2-1&_user=686475&_coverDate=07%2F08%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5870&_sort=d&_docanchor=&view=c&_searchStrId=1046722470&_rerunOrigin=google&_acct=C000037678&_version=1&_urlVersion=0&_userid=686475&md5=8dcf33e43e64460efb684a2018c55904#bib32

156

addition, these approaches use a central certificate authority unit that can cause

scalability problems. The proposal of Brandão et al. [92] describes a framework to

integrate IDS, called IDS Composition, based on Web Service technology, where a

security service is established using WS-Security standard [254], XML-Encryption

[255], and XML-Signature [256] to deal with authentication and access control of

elements and to exchange IDMEF messages.

9.3.3. Studies on distribution of the OADS orchestration

An interesting work would be to study the feasibility of distributing the orchestration

functionality. Since the collected traffic can easily exceed the processing capacity of a

server, especially in broadband networks, OADS orchestration can be quickly flooded

by hundreds or thousands of alerts and diagnosis in a short time.

Intuitively, we can point out two solutions to solve the problem. The first one is

to use more than one OADS orchestration engine to share the responsibility for the

analysis and decisions. The second one (more interesting, but more complex) exploits

the concept of parallelism to harmonize multiple OADS orchestration. This

harmonization requires cooperation based on the use of fixed time intervals for making

an analysis and the same dictionary of decisions.

9.3.4. Improvements in Orchestration algorithm

Other further work would be to study more attack scenarios to identify new and

affective orchestration sequences. Although the proposed orchestration algorithm has

been efficient, the current implementation may be seen as a proof of concept only. So, it

is possible to design other scenarios and experiments, i.e., the current heuristic cannot

be sufficiently prepared to detect all types of unwanted traffic. For this reason, extensive

studies and tests are required to build orchestration sequences that are more effective

and able to reduce the time taken to detect unwanted traffic.

9.3.5. Design and implementation of an inter-domain advertisement

service

Another possible future work is the design and implementation of an advertisement

service. In OADS approach, we advocated that the collaboration concept can and must

be extended to external elements, systems or networks (Chapter 4), allowing that all

participating domains of some type of collaboration must publically advertize the

detection scope and types of defenses that they offer, opening opportunities for possible

cooperation with others domains or similar systems.

The kickoff to address this issue begins by making available our information

bases, including alert (received and pre-processed), analysis of OADS component (FER

Analyzer and ADS-Fusion, for example), history of decisions and vulnerabilities reports

and Internet traffic statistics (gathered by OADS Miner), in a shared storage space.

9.3.6. Information bases

In order to help on the anomaly detection process and attempt the advertisement scope

requirement, we believe that the use of distinct information bases to store available and

useful data about alerts and traffic summaries (anomaly detectors output),

vulnerabilities and Internet anomalies, and history data is very interesting. The idea

157

behind the information bases is to offer for the orchestration approach a variety of

knowledge about network state, allowing that it can take more satisfactory and correct

decisions.

In OADS approach, for example, two data structure (information bases) to help

on the orchestration tasks would be deployed. They are:

 Alert base contains the outputs of the analysis or traffic summaries

performed by anomaly detectors. The idea is keeping processed network

traffic while respecting its specificities. These information can used by

OADS as important feedback for improving collaborative activities, taking

decisions or looking for new anomaly patterns based on these observed

results. For instance, the OADS approach can determine that a detector

specialized in spam uses the generated alerts by the profiling [151] detector

to evaluate further those results considered suspicious and not yet confirmed

involving TCP port 25 (SMTP protocol). Such feedback procedure increases

the chance of discovering unperceived and new anomalies and consequently

enhancing the network security level.

 History base contains all previous historical decisions taken by the OADS

approach for possible future processing. This way, when similar network

situations happen, including the same network behavior and anomaly

detectors being involved, the OADS approach can be compared or even take

the same old decision.

9.4. Final Remarks

Unwanted Internet traffic can and must be considered a plague. Although the types and

their consequences are known, issues such as the definition and ways to minimize its

effects are still under discussion and study. The existence of an “evil industry”

motivated and evolved, coupled with the emergence of new services and applications,

the constant technological evolution and the population boom of new (and often

unskilled) users imposes new challenges in the activity of detection and limitation of

unwanted traffic.

This Thesis has made the case for studying unwanted Internet traffic and

proposed an orchestration oriented anomaly detection system (OADS) approach for

unwanted Internet traffic identification. It has also demonstrated the effectiveness of the

OADS approach in the identification and mitigation of the unwanted Internet traffic

through different scenarios and experiments.

To conclude this Thesis, it is notorious that the problem of the unwanted Internet

traffic identification is still far from being solved, that one is dealing with an evolving

problem and that only the tip of the iceberg was touched. However, there is also a

general agreement both in academic as well as industry that the most promising results

will be achieved. The expectation is that this Thesis had contributed by giving the

interested reader some starting background and stimulated new research for the design

of new effective approaches for unwanted traffic identification. The hope is to see other

more advanced approaches for the protection of the Internet emerging in the near future.

158

References

[1] CSI. Computer Security Institute. Available from http://www.gocsi.com.

[2] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Rich. 2005 CSI/FBI Computer

Crime Survey. In 10
th

 Annual Computer Crime and Security, 2005.

[3] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Rich. 2006 CSI/FBI Computer

Crime Survey. In 11
th

 Annual Computer Crime and Security, 2006.

[4] R. Richardson. 2007 CSI/FBI Computer Crime Survey. In 12
th

 Annual Computer

Crime and Security, 2007.

[5] Gartner. Gartner. Available from http://www.gartner.com.

[6] Radicati Group. Corporate Email Market 2006-2010. Available from

http://www.radicati.com.

[7] F. Ricciato. Unwanted traffic in 3G Network. SIGCOMM Computer

Communications Review, 36(2):53-56, April 2006.

[8] CERT.br. Computer Emergency Response Team Brazil. Available from

http://www.cert.br.

[9] CAIS. RNP's Security Incident Response Team. Available from

http://www.rnp.br/cais.

[10] L. Anderson, E. Davies, and L. Zhang. Report from the IAB workshop on

Unwanted Traffic March 9-10 2006. IETF, Internet informational RFC 4948,

2007.

[11] B. Krishnamurthy. Unwanted traffic: Important problems, research approaches.In

Internet Architecture Board Workshop, 2006.

[12] E. Davies. Unwanted Traffic. IETF Journal, December 2007.

[13] E. H. Spafford. The internet worm program: an analysis. SIGCOMM Computer

Communications Review, 19(1):17-57, January 1989.

[14] CNN. Cyber-attacks batter Web heavyweights. Available from

http://www.cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/index.html

[15] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics

of internet background radiation. In Proceedings of the 4th ACM SIGCOMM

Conference on Internet Measurement, pages 27-40, 2004.

[16] P. Soto. Identifying and Modeling Unwanted Traffic on the Internet.

Massachusetts Institute of Technology, M.Sc. Thesis, 2005.

[17] K. Xu, Z-L. Zhang, and S. Bhattacharyya. Reducing unwanted traffic in a

backbone Network. In Steps of Reducing Unwanted Traffic on the Internet

Workshop (SRUTI), 2005.

http://www.gocsi.com/
http://www.gartner.com/
http://www.radicati.com/
http://www.cert.br/
http://www.rnp.br/cais
http://www.cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/index.html

159

[18] J. Yarden. Case study: How much does unwanted Internet traffic really cost an

organization? Available from http://articles.techrepublic.com.com/5100-

10878_11-5967393.html.

[19] E. L. Feitosa, E. Souto, and D. Sadok. Unwanted Internet Traffic: Concepts,

Characterization, and Solutions. In Text-Book of Mini courses of the VIII of the

Brazilian Symposium on Information Security and Computing Systems

(SBSeg’08). Porto Alegre, Brasil: SBC, 2008, ch. 3.

[20] Skype. Available from http://www.skype.com.

[21] A. Brodsky. Comcast Case Is A Victory for the Internet. Available from

http://www.publicknowledge.org/node/1686.

[22] F-Secure. F-Secure Malware Information Pages: Small.DAM. Available from

http://www.f-secure.com/v-descs/small_dam.shtml.

[23] H. Schulze and K. Mochalski. Ipoque Internet Study 2008/2009. Available from

http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009.

[24] Wikipedia. Samy (XSS). Available from

http://en.wikipedia.org/wiki/Samy_(XSS).

[25] D. Clark. The design philosophy of the DARPA internet protocols. In Symposium

Proceedings on Communications Architectures and Protocols, pages 106-114,

1988.

[26] B. Carpenter. Architectural principles of the Internet. IETF, Internet informational

RFC1958, 1996.

[27] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

[28] R. Bush and D. Meyer. Some Internet Architectural Guidelines and Philosophy.

IETF, Internet informational RFC 3439, 2002.

[29] RIPE NCC. YouTube Hijacking: A RIPE NCC RIS case study. Available from

http://www.ripe.net/news/study-youtube-hijacking.html.

[30] M. S. Blumenthal and D. D. Clark. Rethinking the design of the Internet: the end-

to-end arguments vs. the brave new world. ACM Transactions on Internet

Technology, 1(1):70-109, August 2001.

[31] Kaspersky. Kaspersky Lab. Available from http://www.kaspersky.com.

[32] P. Mockapetris. Domain Names - Concepts and Facilities. IETF, Internet standard

RFC 1034, 1987.

[33] P. Mockapetris. Domain Names - Implementation and Specification. IETF,

Internet standard RFC 1035, 1987.

[34] G. Lawton. Stronger Domain Name System Thwarts Root-Server Attacks. IEEE

Computer Society, 40(5):14-17, 2007.

[35] J. Fontana. Network World Fusion. Available from

http://www.networkworld.com/news/2001/0125mshacked.html.

[36] RIPE. RIPE Mail Archive. Available from

https://www.ripe.net/ripe/maillists/archives/eof-list/2002/msg00009.html.

http://articles.techrepublic.com.com/5100-10878_11-5967393.html
http://articles.techrepublic.com.com/5100-10878_11-5967393.html
http://www.skype.com/
http://www.publicknowledge.org/node/1686
http://www.f-secure.com/v-descs/small_dam.shtml.
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://en.wikipedia.org/wiki/Samy_(XSS)
http://www.ripe.net/news/study-youtube-hijacking.html
http://www.kaspersky.com/
http://www.networkworld.com/news/2001/0125mshacked.html
https://www.ripe.net/ripe/maillists/archives/eof-list/2002/msg00009.html

160

[37] J. Vijayan. Akamai Attack Reveals Increased Sophistication. Available from

http://www.landfield.com/isn/mail-archive/2004/Jun/0088.html.

[38] B. Krebs. Blue Security Kicked While It's Down. Available from

http://blog.washingtonpost.com/securityfix/2006/05/blue_security_surrenders_but

_s.html.

[39] M. Olney, P. Mullen, and K. Miklavcic. Dan Kaminsky‟s 2008 DNS

Vulnerability. Available from

http://www.snort.org/vrt/docs/white_papers/DNS_Vulnerability.pdf.

[40] R. McMillan. DNS Trouble Knocks NSA off Internet. Available from

http://www.cio.com/article/358513/DNS_Trouble_Knocks_NSA_Off_Internet.

[41] R. Naraine. Websense reports China Netcom DNS cache poisoning. Available

from http://blogs.zdnet.com/security/?p=1776#more-1776.

[42] Honeynet Project. Know Your Enemy: Fast-Flux Service Networks. Available

from http://www.honeynet.org/papers/ff/. 2007.

[43] F-Secure. F-Secure Malware Information Pages: Warezov. Available from

http://www.f-secure.com/v-descs/warezov.shtml. 2006

[44] Y. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels. Strider Typo-Patrol:

Discovery and Analysis of Systematic Typo-Squatting. In 2
nd

 Workshop on Steps

to Reducing Unwanted Traffic on the Internet (SRUTI’06), pages 5-10, 2006

[45] D. Kravets. Google Profits From Typo Squatting, Report Charges. Available from

http://blog.wired.com/27bstroke6/2008/10/google-profitin.html. 2008.

[46] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting Browsers from

DNS Rebinding Attacks. ACM Transactions on the Web (TWEB), 3(1):1-26,

January 2009.

[47] B. Zdrnja, N. Brownlee, and D. Wessels. Passive Monitoring of DNS Anomalies.

In 4
th

 Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA), pages 129–39, 2007.

[48] Rekhter, Y., Li, T., and Hares, S. A Border Gateway Protocol 4 (BGP-4). IETF,

Internet draft standard RFC 4271, January 2006.

[49] Arbor Networks. Worldwide ISP Security Report. Available from

http://www.arbornetworks.com. 2005.

[50] R. Kuhn, K. Sriram, and D. Montgomery. Border Gateway Protocol Security.

Available from http://csrc.nist.gov/publications/nistpubs/800-54/SP800-54.pdf.

2007.

[51] O. Nordström and C. Dovrolis. Beware of BGP attacks. SIGCOMM Computer

Communications Review, 34(2):1-8, April 2004.

[52] R. Farrow. Network Defense, Routing Instability, Border Gateway Protocol, the

routing glue of the Internet, Lacks Strong Security. Available from

http://www.spirit.com/Network/net0102.html. 2002.

[53] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and L. Zhang. An

analysis of BGP multiple origin AS (MOAS) conflicts. In 1
st
 ACM SIGCOMM

Workshop on internet Measurement, pages 31-35, 2001.

http://www.landfield.com/isn/mail-archive/2004/Jun/0088.html
http://blog.washingtonpost.com/securityfix/2006/05/blue_security_surrenders_but_s.html
http://blog.washingtonpost.com/securityfix/2006/05/blue_security_surrenders_but_s.html
http://www.snort.org/vrt/docs/white_papers/DNS_Vulnerability.pdf
http://www.cio.com/article/358513/DNS_Trouble_Knocks_NSA_Off_Internet
http://blogs.zdnet.com/security/?p=1776#more-1776
http://www.honeynet.org/papers/ff/
http://www.f-secure.com/v-descs/warezov.shtml
http://blog.wired.com/27bstroke6/2008/10/google-profitin.html
http://www.arbornetworks.com/
http://csrc.nist.gov/publications/nistpubs/800-54/SP800-54.pdf
http://www.spirit.com/Network/net0102.html

161

[54] M. Kassner. BGP: Yet another Internet time bomb. Available from

http://blogs.techrepublic.com.com/networking/?p=663. 2008.

[55] D. Kaminsky. The emergency of a theme. Available from

http://www.doxpara.com/?p=1231. 2008.

[56] MAAWG. Email Metrics Program: The Network Operators‟ Perspective.

Available from

http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf. 2006.

[57] ENISA. Survey on Industry Measures taken to comply with National Measures

implementing Provisions of the Regulatory Framework for Electronic

Communications relating to the Security of Services. Available from

http://www.enisa.eu.int/doc/pdf/deliverables/enisa_security_spam.pdf/. 2006.

[58] APWG. Phishing Activity Trends Report. Available from

http://www.antiphishing.org/reports/apwg_report_feb_06.pdf. 2006.

[59] P. D. Kretkowski. Brace Yourself: VoIP Spam Is Coming. Available from

http://www.voip-news.com/feature/voip-spam-spit-021207. 2007

[60] S. Ahson and M. Ilyas. SIP Handbook: Services, Technologies, and Security of

Session Initiation Protocol: CRC Press, 2008.

[61] M. Desantis. Understanding Voice over Internet Protocol (VoIP). Available from

http://www.us-cert.gov/reading_room/understanding_voip.pdf. 2008.

[62] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF, Internet

proposed standard RFC 3261, 2002.

[63] Arbor Networks. Atlas. Available from http://atlas.arbor.net. 2009.

[64] Shadowserver Foundation. Available from http://www.shadowserver.org. 2009.

[65] New York Time. Facebook, Inc. News. Available from

http://topics.nytimes.com/top/news/business/companies/facebook_inc/index.html.

June, 21 2010.

[66] ENISA. Security Issues and Recommendations for Online Social Networks.

Available from

http://www.enisa.europa.eu/doc/pdf/deliverables/enisa_pp_social_networks.pdf.

2007.

[67] FriendBot. MySpace friend adder. Available from http://www.friendbot.com.

2008.

[68] Wikipedia. Cross site scripting. Available from

http://en.wikipedia.org/wiki/Cross-site_scripting. 2008.

[69] J. Grossman. Cross-Site scripting worms and viruses. Available from

http://www.whitehatsec.com/downloads/WHXSSThreats.pdf. 2006.

[70] F-Secure. F-Secure Malware Information Pages: JS/Quickspace.A. Available

from http://www.f-secure.com/v-descs/js_quickspace_a.sttml. 2007.

[71] PACKETEER. Keeping an Eye on Recreational Traffic. Available from

http://networkthatthinks.com/downloads/PKTR-ProbTraffic-LifeCycle-vA.pdf.

2007.

http://blogs.techrepublic.com.com/networking/?p=663
http://www.doxpara.com/?p=1231
http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf
http://www.enisa.eu.int/doc/pdf/deliverables/enisa_security_spam.pdf/
http://www.antiphishing.org/reports/apwg_report_feb_06.pdf
http://www.voip-news.com/feature/voip-spam-spit-021207
http://www.us-cert.gov/reading_room/understanding_voip.pdf
http://atlas.arbor.net/
http://www.shadowserver.org/
http://www.enisa.europa.eu/doc/pdf/deliverables/enisa_pp_social_networks.pdf
http://www.friendbot.com/
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf
http://www.f-secure.com/v-descs/js_quickspace_a.sttml
http://networkthatthinks.com/downloads/PKTR-ProbTraffic-LifeCycle-vA.pdf

162

[72] E. Hjelmvik and W. John. Breaking and Improving Protocol Obfuscation.

Department of Computer Science and Engineering, Chalmers University of

Technology, Technical Report No. 2010-05, ISSN 1652-926X, 2010.

[73] R. Zhang and M. Bartell. BGP Design and Implementation. Cisco Press, 2004

[74] M. Wu, R. C. Miller, and G. Little. Web Wallet: Preventing Phishing Attacks by

Revealing User Intentions. In Symposium on Usable Privacy and Security

(SOUPS), pages 102-113, 2006.

[75] N. Provos. Honeyd. Available from http://www.honeyd.org. 2009.

[76] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service

Attacks which employs IP Source Address Spoofing. IETF, Internet best currency

practices RFC 2827, 2000.

[77] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. IETF,

Internet best currency practices RFC 3704, 2004.

[78] W. Kumari and D. McPherson. Remote Triggered Black Hole filtering with

uRPF. IETF, Internet draft, 2009.

[79] Cisco. Remotely Triggered Black Hole Filtering – Destination Based and Source

Based. Cisco System, White Paper Available from

http://www.cisco.com/web/about/security/intelligence/blackhole.pdf. 2005.

[80] E. Cooke, M. Bailey, D. Watson, F. Jahanian, and J. Nazario. The Internet Motion

Sensor: A Distributed Blackhole Monitoring System. University of Michigan,

Technical Report CSE-TR-491-04, 2004.

[81] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion

Sensor: A Distributed Blackhole Monitoring System. In 12
th

 Annual Network and

Distributed System Security Symposium (NDSS’05), pages 167-179, 2005.

[82] D. Moore. Network Telescopes: Observing Small or Distant Security Events. In

11
th

 USENIX Security Symposium, 2002.

[83] D. Moore, C. Shannon, G. M. Voelkery, and S. Savage. Network Telescopes:

Technical Report. Cooperative Association for Internet Data Analysis (CAIDA),

Technical Report tr-2004-04, 2004.

[84] J. Roschelle and S. D. Teasley. The construction of shared knowledge in

collaborative problem solving. In C. O'Malley, editor, Computer Supported

Collaborative Learning, pages 67-97. Berlin: Springer. 1995.

[85] D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside

the slammer worm. IEEE Security & Privacy Magazine, 1(4): 33-39, 2003.

[86] Symantec. Outbreak alert: storm trojan. Available from

http://www.symantec.com/outbreak/storm_trojan.html. 2007.

[87] D. McPherson. 2% of Internet traffic raw sewage. Available from

http://asert.arbornetworks.com/2008/03/2-of-internet-traffic-raw-sewage. 2008.

[88] H., Curry, D., Feinstein, B. Debar. The Intrusion Detection Message Exchange

Format (IDMEF). IETF, Internet Experimental RFC 4765, 2007.

[89] R. Danyliw, J. Meijer, and Y. Demchenko. The Incident Object Description

Exchange Format. IETF, Internet proposed standard RFC 5070, 2007.

http://www.honeyd.org/

163

[90] B. Feinstein and G. Matthews. The Intrusion Detection Exchange Protocol. IETF,

Internet experimental RFC 4767, 2007.

[91] J. Yu, Y. V. Ramana Reddy, S. Selliah, S. Kankanahalli, S. Reddy, and V.

Bharadwaj. TRINETR: an intrusion detection alert management systems. In 13
th

IEEE International Workshops on Enabling Technologies, pages. 235-240, 2004.

[92] J. E. M. S. Brandão, J. S. Fraga, P. M. Mafra, and R. R. Obelheiro. A WS-Based

Infrastructure for Integrating Intrusion Detection Systems in Large-Scale

Environments. In CoopIS/DOA/ODBASE/GADA, 2006.

[93] R. Sadoddin and A. Ghorbani. Alert correlation survey: framework and

techniques. In 2006 international Conference on Privacy, Security and Trust -

PST ’06, 2006.

[94] A. Valdes and K. Skinner, Probabilistc Alert Correlation. In Recent Advances in

Intrusion Detection (RAID), 2001.

[95] K. Julicsh. Mining Alarm Clusters to Improve Alarm Handling Efficiency. In 17
th

Annual Conference on Computer Security Applications, 2003.

[96] F Cuppens. Managing alerts in a multi-intrusion detection environment. In 17
th

Annual Conference on Computer Security Applications (ACSAC), pages 22-31,

2001.

[97] B. Morin, L. Me, H. Debar, and M. Ducasse. M2D2: a formal data model for IDS

alert correlation. In Recent Advances in Intrusion Detection (RAID), pages 15-37,

2002.

[98] Y. Xie, H. Kim, D. O. Hallaron, M. Reiter, and H. Zhang. Seurat: a point list

approach to anomaly detection. In 7
th

 International Symposium on Recent

Advances in Intrusion Detection (RAID), 2004.

[99] C. V. Zhou, C. Leckie, and S. Karunasekera. A survey of coordinated attacks and

collaborative intrusion detection. Computer & Security, 2009.

[100] R. Yusof, S. R. Selamat, and S. Sahib. Intrusion Alert Correlation Technique

Analysis for Heterogeneous Log. International Journal of Computer Science and

Network Security, 8(9), September 2008.

[101] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling

responses to anomalous live disturbances. In 20
th

 National Information System

Security Conference, pages 353-357, 1997.

[102] H. Debar and A. Wespi. Aggregation and Correlation of Intrusion-Detection

Alerts. In Recent Advances in Intrusion Detection (RAID), 2001.

[103] B. Zhu and A. A. Ghorbani. Alert correlation for extracting attacks strategies.

International Journal of Network Security, 3(2):244-258, 2006.

[104] B. Morin and H. Debar. Correlation of Intrusion Symptoms: an Application of

Chronicles. In 6
th

 International Symposium on Recent Advances in Intrusion

Detection (RAID), pages 94-112, 2003.

[105] C Dousson. Suivi d‟évolutions et reconnaissance de chroniques. PhD Thesis,

1994.

164

[106] F. Cuppens and R. Ortalo. LAMBDA: A language to model a database for

detection attacks. In 3
th

 International Symposium on Recent Advances in Intrusion

Detection (RAID), pages. 197-216, 2000.

[107] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack language for state-

based intrusion detection, 2002.

[108] R. Vankamamidi. ASL: A specification language for intrusion detection and

network monitoring. Iowa State University, M.Sc. Thesis, 1998.

[109] S. Templeton and L. Levitt. A requires/provides model for computer attacks. In

New security paradigms workshop, pages 31-38, 2000.

[110] E. Totel, B. Vivinis, and L. Mé. A language driven ids for event and alert

correlation. In SEC, pages 209-224, 2004.

[111] O. Dain and R. Cunningham. Fusing a heterogeneous alert stream into scenarios.

In 2001 ACM workshop on data mining for security applications, pages 1-13,

2001.

[112] P. Ning, Y. Cui, and D. Reeves. Constructing attack scenarios through correlation

of intrusion alerts. In ACM Conference of Computer and Communications

Security, pages 245-254, 2002.

[113] X. Qui and W. Le. Statistical Causality of INFOSEC Alert Data. In 6
th

International Symposium on Recent Advances in Intrusion Detection (RAID),

2003.

[114] X. Qui. A Probabilistic-Based Framework for INFOSEC Alert Correlation.

Georgia Institute of Technology, PhD Thesis, 2005.

[115] M. Almgren, U. Lindqvist, and E. Jonsson. A multi-sensor model to improve

automated attack detection. In 11
th

 International Symposium on Recent Advances

in Intrusion Detection (RAID), pages 291-310, 2008.

[116] A. Alharby and H. Imai. IDS false alarm reduction using continuous and

discontinuous patterns. In ACNS, pages 192-205, 2005.

[117] J. Viinikka and H. Debar. Monitoring IDS background noise using EWMA

control charts and alert information, pages 166-187, 2004.

[118] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz. A data mining analysis

of rtid alarms. Computer Networks, 34(4):517-524, 2000.

[119] H. Mannila and H. Toivinen. Discovering Generalized Episodes using Minimal

Occurrences. In Second International Conference on Knowledge Discovery and

Datamaning, 1996.

[120] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of Frequent

Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259-

289, January 1997.

[121] C. Clifton and G. Gengoo. Developing custom intrusion detection filters using

data mining. In 21
st
 century military communications MILCOM, pages 440-442,

2000.

[122] D. Yu and D. A. Fincke. Alert correlation fusion in intrusion detection system

with extended dempster-shafer theory. In IEEE Symposium on Security and

Privacy, 2005.

165

[123] H. Svensson and A. Josang. Correlation intrusion alarms with subjective logic. In

Proceedings of the 6
th

 Nordic Workshop on Secure IT systems (NordSec2001),

Copenhagen, Denmark, November 2001.

[124] T. Pietraszek. Using adaptive alert classification to reduce false positives in

intrusion detection. In Symposium on Recent Advances in Intrusion Detection

(RAID’04), pages 102–124, 2004.

[125] T. Pietraszek and A. Tanner. Data mining and machine learning - towards

reducing false positives in intrusion detection. Information Security Tech Rep,

10(3):169–183, 2005.

[126] Z. Tian, W. Zhang, J. Ye, X. Yu, and H. Zhang. Reduction of false positives in

intrusion detection via adaptive alert classifier. In International Conference on

Information and Automation (ICIA), pages 1599–1602, 2008.

[127] R. Alshammari, S. Sonamthiang, M. Teimouri, and D. Riordan. Using neuro-

fuzzy approach to reduce false positive alerts. In 5
th

 annual conference on

communication networks and services research, pages 345-349, 2007.

[128] E. Hooper. An intelligent detection and response strategy to false positives and

network attacks. In 4
th

 IEEE International Workshop on Information Assurance

(IWIA 2006),pages 20–31, 2006.

[129] P. A. Porras, M. W. Fong, and A. Valdes. A Mission-Impact-Based Approach to

INFOSEC Alarm Correlation. In 5
th

 International Symposium on Recent Advances

in Intrusion Detection (RAID 2002), pages 95–114, 2002.

[130] K. Alsubhi, E. Al-Shaer, and R. Boutaba. Alert Prioritization in Intrusion

Detection Systems. In IEEE/IFIP Network Operations and Management

Symposium: Pervasive Management for Ubioquitous Networks and Services

(NOMS 2008), Salvador, Brasil, pages 7-11, 2008.

[131] N. Ye, Q. Chen, and C. M. Borror. EWMA Forecast of Normal System Activity

for Computer Intrusion Detection. IEEE Transactions on Reliability, 53(4):557–

566, December 2004.

[132] P. Z. Hu and M. I. Heywood. Predicting intrusions with local linear model. In

Proceedings of the International Joint Conference on Neural Networks, 3:1780–

1785, July 2003.

[133] L. Wang, A. Liu, and S. Jajodia. Using attack graphs for correlating,

hypothesizing, and predicting intrusion alerts. Computer Communications,

29:2917-2933, 2006.

[134] P. Kannadiga, M. Zulkernine, and A. Haqu. E-NIPS: An Event-Based Network

Intrusion Prediction System. In ISC, pages 37-52, 2007.

[135] A. Scherrer, N. Larrieu, P. Owezarski, and P. Borgnat. Non-Gaussian and Long

Memory Statistical Characterizations for Internet Traffic with Anomalies. IEEE

Transactions on Dependable and Secure Computing, 4(1):56-70, 2007.

[136] A. Scherrer, N. Larrieu, P. Borgnat, P. Owezarski, and P. Abry. Non Gaussian and

Long Memory Statistical Modeling of Internet Traffic. In 4
th

 International

Workshop on Internet Performance, Simulation, Monitoring and Measurement

(IPS-MoMe), Salzburg, Austria, 2006.

166

[137] Lawrence Berkeley National Laboratory. The Internet Traffic Archive. Available

from http://ita.ee.lbl.gov. 2009.

[138] WAND. WAND Network Resource Group. Available from

http://wand.cs.waikato.ac.nz/wits/auck/4. 2009.

[139] CAIDA. Available from http://www.caida.org/data. 2009.

[140] UNC/FORTH. UNC/FORTH Archive of Wireless Traces, Models, and Tools.

Available from http://netserver.ics.forth.gr/datatraces. 2009.

[141] GIP Renater. Available from http://www.renater.fr. 2009.

[142] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting hidden

anomalies using sketch and non Gaussian multiresolution statistical detection

procedures. In 2007 Workshop on Large Scale Attack Defense, Kyoto, Japan,

pages 145-152, 2007.

[143] P. C. Mahalanobis. On tests and measures of groups divergence. Journal of the

Asiatic Society of Bengal, vol. 26, 1930.

[144] P. Abry, P. Borgnat, and G. Dewaele. Sketch based anomaly detection,

identification and performance evaluation. In IEEE/IPSJ SAINT Measurement

Workshop, 2007.

[145] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at the WIDE project . In

Annual Conference on USENIX, San Diego, California, 2000.

[146] O. Salem, S. Vaton, and A. Gravey. A Novel Approach for Anomaly Detection

for High-Speed Networks. In 3
th

 European Conference on Computer Network

Defense, 2007.

[147] R. Schweller, L. Zhichun; Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. A. K. Ming-

Yang, and G. Memik. Reversible sketches: enabling monitoring and analysis over

high-speed data streams. IEEE/ACM Transactions Network, 15(5):1059-1072,

2007.

[148] S. Fluhrer and D. McGrew. Statistical analysis of the alleged RC4 keystream

generator. In 7
th

 International Workshop on Fast Software Encryption, London,

UK, pages 19-30, 2001.

[149] Endace. Endace DAG 3.6ET. Available from http://www.endace.com/dag-

network-monitoring-cards.html. 2008.

[150] J. Gao, G. Hu, X. Yao, and R. Chang. Anomaly Detection of Network Traffic

Based on Wavelet Packet. In Asia-Pacific Conference, 2006.

[151] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet backbone traffic:

behavior models and applications. In 2005 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications

(SIGCOMM '05), Philadelphia, Pennsylvania, USA, pages 169-180, 2005.

[152] C. E. Shannon and T. Weaver. The Mathematic Theory of Communication.

University of Illinois Press, 1949.

[153] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature

distributions. In 2005 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications (SIGCOMM '05), Philadelphia,

Pennsylvania, USA, pages 217-228, 2005.

http://ita.ee.lbl.gov/
http://www.caida.org/data/
http://netserver.ics.forth.gr/datatraces/
http://www.renater.fr/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Schweller,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Zhichun%20Li.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yan%20Gao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Gupta,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ming-Yang%20Kao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ming-Yang%20Kao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ming-Yang%20Kao.QT.&newsearch=partialPref
http://www.endace.com/dag-network-monitoring-cards.html
http://www.endace.com/dag-network-monitoring-cards.html

167

[154] R. Dunia and S. J. Qin. A subspace approach to multidimensional fault

identification and reconstruction. In American Institute of Chemical Engineers

(AIChE) Journal, pages 1813–1831, 1998.

[155] A. Lakhina, M. Crovella, and C. Diot, Diagnosing network-wide traffic

anomalies. In 2004 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications (SIGCOMM'04), Portland, Oregon,

USA, pages 219-230, 2004.

[156] Abilene Global Research Network Operations Center. Available from

http://www.abilene.iu.edu.

[157] GEANT Project. Available from http://www.geant.net/pages/home.aspx.

[158] R. R. Aschoff. ChkModel: Um Mecanismo de Defesa Contra Ataques DDoS.

Federal University of Pernambuco, Undergraduate Thesis, 2007.

[159] R. W. Stevens. UNIX Network Programming. Second Edition: Networking APIs:

Sockets and XTI. Prentice Hall, 1998.

[160] Force10 Networks. P-Series Overview. Available from

http://www.force10networks.com/products/pseries.asp. 2008.

[161] Cetacea Networks. OrcaFlow: Terabit-Class Network Traffic Anomaly Detection.

Available from http://www.orcaflow.ca/orcaflow-ca. 2008.

[162] CloudShield Technologies. Hardware Solutions. Available from

http://www.cloudshield.com/platform/hardware.asp. 2008.

[163] Snort. Available from http://www.snort.org. 2009.

[164] NFS. Bro Intrusion Detection System. Available from http://bro-ids.org. 2009.

[165] Prelude-IDS Technologies. Prelude-IDS. Available from http://www.prelude-

ids.com. 2009.

[166] Nephentes. Available from http://nepenthes.carnivore.it. 2009.

[167] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel traffic

classification in the dark. In Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, Philadelphia,

Pennsylvania, USA, pages 229-240, 2005.

[168] OASIS. UDDI Version 3.0.2. Available from http://www.oasis-

open.org/specs/index.php#uddiv3. 2005.

[169] L. Zhi-tang, L. Yao, and W. Li. A Novel Fuzzy Anomaly Detection Algorithm

Based on Artificial Immune System. In 8
th

 International Conference on High-

Performance Computing in Asia-Pacific Region, Washington, DC, 2005.

[170] G. Xiang, W. Min, and Z. Rongchun. Application of Fuzzy ART for

Unsupervised Anomaly Detection System. In International Conference on

Computational Intelligence and Security, pages 621-624, 2006.

[171] C. Siaterlis, B. Maglaris, and P. Roris. A novel approach for a Distributed Denial

of Service Detection Engine. National Technical University of Athens., Technical

Report, 2003.

http://www.force10networks.com/products/pseries.asp
http://www.orcaflow.ca/orcaflow-ca
http://www.cloudshield.com/platform/hardware.asp
http://www.snort.org/
http://bro-ids.org/
http://www.prelude-ids.com/
http://www.prelude-ids.com/
http://nepenthes.carnivore.it/
http://www.oasis-open.org/specs/index.php#uddiv3
http://www.oasis-open.org/specs/index.php#uddiv3

168

[172] Y. Chen, K. Hwang, and W. Ku. Collaborative Detection of DDoS Attacks over

Multiple Network Domains. IEEE Transactions on Parallel and Distributed

Systems, 18(12):1649-1662, December 2007.

[173] D. Sadok, E. Souto, E. Feitosa, J. Kelner, L. Westberg. RIP – A robust IP access

architecture. Computers & Security, 28(6):359-380, 2009.

[174] A. Westerinen, J. Schnizlein, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M.

Carlson, J. Perry, and S. Waldbusser. Terminology for Policy-Based Management.

IETF, Internet informational RFC 3198, 2001.

[175] D. C. Verma. Policy-Based Networking: Architecture and Algorithms. New

Riders Publishing, 2000.

[176] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software

Engineering, 13(2):222-232, February 1987.

[177] EJ-Technologies. JProfiler. Available from http://www.ej-

technologies.com/products/jprofiler/overview.html. 2010.

[178] Snort IDMEF Plugin. Available from http://sourceforge.net/projects/snort-idmef.

2010.

[179] MIT Lincoln Laboratory. Darpa Intrusion Detection Scenario Specific Data Sets.

Available from

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html.

2000.

[180] C. V. Zhou, C. Leckie and S. Karunasekera. Decentralized multi-dimensional alert

correlation for collaborative intrusion detection. In Journal of Network and

Computer Applications, 32:1106–1123, 2009.

[181] W. Lee, S. J. Stolfo, and K. Mok. Adaptive Intrusion Detection: A Data Mining

Approach. Artificial Intelligence Reviews, 14(6):533-567, December 2000.

[182] J. Luo and S. M. Bridges. Mining fuzzy association rules and fuzzy frequent

episodes for intrusion detection. International Journal of Intelligent Systems,

15(8):687–703, 2000.

[183] J. Luo, M. S. Bridges, and B. R. Vaughn. Fuzzy frequent episodes for real-time

intrusion detection. In Proceedings of the IEEE international conference on fuzzy

systems, 1:368–371, 2001.

[184] M. Qin and K. Hwang. Frequent Episode Rules for Intrusive Anomaly Detection

with Internet Datamining. In USENIX Security Symposium, 2004.

[185] K. Hwang, M. Cai, Y. Chen, and M. Qin. Hybrid Intrusion Detection with

Weighted Signature Generation over Anomalous Internet Episodes. IEEE

Transactions on Dependable and Secure Computing, 4(1):41-55, 2007.

[186] M. Soleimani and A. A. Ghorbani. Critical Episode Mining in Intrusion Detection

Alerts. In CNSR, pages 157-164, 2008.

[187] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, New York, 1999.

[188] Y. Yao. Information Retrival Support System. In IEEE World Congress on

Computational Intelligence, pages 773-778, 2002.

169

[189] J. Yao and Y. Yao. Web-based Information Retrieval Support System: Building

Research Tools for Scientists in the New Information Age. In IEEE/WIC

International Conference on Web Intelligence, pages 570-573, 2003.

[190] J. Yao and Y. Yao. Information granulation for Web based information retrieval

support systems. In Proceedings of SPIE, 5098:138-146, 2003.

[191] O Hoeber. Web Information Retrieval Support Systems: The Future of Web

Search. In 2008 International Workshop on Web Information Retrieval Support

Systems, pages 29-32, 2008.

[192] Google. Google Maps. Available from http://maps.google.com. 2009.

[193] AllInOneNews. Available from http://www.allinonenews.com. 2009.

[194] Y. Zeng, Y. Yao, and N. Zhong. DBLP-SSE: A DBLP Search Support Engine. In

IEEE/WIC/ACM International Conference on Web Intelligence, 2009.

[195] G. Marchionini and R. W. White. Information Seeking Support System. IEEE

Computer, 42(3):30-32, March 2009.

[196] M. Ley, "The DBLP computer science bibliography: Evolution, research issues,

perspectives. In 9
th

 International Symposium of String Processing and Information

Retrieval, 2002, pp. 1-10.

[197] M. Tilsner, O. Hoeber, and A. Fiech. CubanSea: Cluster-Based Visualization of

Search Results. IEEE Computer, 42(3):108-112, March 2009.

[198] C. Shah. ContextMiner: Explore Globally, Aggregate Locally. IEEE Computer,

42(3):94, March 2009.

[199] WolframAlpha. Available from http://www.wolframalhpa.com. 2009.

[200] R. Capra and G. Marchionini. Faceted Exploratory Search Using the Relation

Browser. In NSF Workshop on Information Seeking Support Systems, pages 81-

83, 2009.

[201] R. Capra and G. Marchionini. Faceted Browsing, Dynamic Interfaces, and

Exploratory Search: Experiences and Challenges. In Workshop on Human-

Computer Interaction and Information Retrieval (HCIR 07), pages 7-9, 2007.

[202] P. Hayes and B. McBride. RDF semantics. Available from

http://www.w3.org/TR/rdf-mt. 2004.

[203] Secunia. Secunia Advisories. Available from http://secunia.com/advisories. 2009.

[204] NIST. National Vulnerability Database (NVD). Available from

http://nvd.nist.gov. 2009.

[205] US-CERT. Available from http://www.us-cert.gov. 2009.

[206] US-CERT. KB-CERT. Available from https://www.kb.cert.org/vuls. 2009.

[207] OSVDB. Open Source Vulnerabilities Database. Available from

http://www.osvdb.org. 2009.

[208] IBM. ISS - Threat List. Available from http://www.iss.net/threats/ThreatList.php.

2009.

[209] DragonSoft. DragonSoft Vulnerability DataBase. Available from

http://vdb.dragonsoft.com. 2009.

http://maps.google.com/
http://www.allinonenews.com/
http://www.wolframalhpa.com/
http://secunia.com/advisories/
http://nvd.nist.gov/
http://www.us-cert.gov/
https://www.kb.cert.org/vuls
http://www.osvdb.org/
http://www.iss.net/threats/ThreatList.php
http://vdb.dragonsoft.com/

170

[210] SecurityFocus. Available from http://www.securityfocus.com/vulnerabilities.

2009.

[211] CISCO. Cisco IronPort SenderBase Security Network. Available from

http://www.senderbase.org. 2009.

[212] ThreatExpert. ThreatExpert - Automated Threat Analysis. Available from

http://www.threatexpert.com. 2009.

[213] Team Cymru. Internet Security Research and Insight - Team Cymru. Available

from http://www.team-cymru.org. 2009.

[214] Luis. O. C. Borba. Um esquema de divulgação sobre informações de

vulnerabilidades. Federal University of Pernambuco, Undergraduate Thesis, 2009.

[215] C. Castilho and R. Baeza-Yates. WIRE: an Open Source Web Information

Retrieval Environment. In Workshop on Open Source Web Information Retrieval

(OSWIR), pages 27-30, 2005.

[216] Cwr.cl. Web Information Retrieval Environment - WIRE. Available from

http://www.cwr.cl/projects/WIRE. 2009.

[217] Internet ArchiveHeritrix. Available from http://crawler.archive.org. 2009.

[218] Apache. Nutch. Available from http://lucene.apache.org/nutch. 2009.

[219] Apache. Lucene Java. Available from http://lucene.apache.org. 2009.

[220] S. Osinski and D. Weiss. The Carrot2 project. Available from

http://www.carrot2.org. 2009.

[221] Apache. Hadoop. Available from http://hadoop.apache.org. 2009.

[222] Jericho HTML Parser. Available from

http://jericho.htmlparser.net/docs/index.html. 2009.

[223] C. W. Cleverdon. Report on testing and analysis of investigation into comparative

efficiency of indexing systems. Aslib-Cranfield Research Report, Cranfield

England, 1962.

[224] B. F. O. Lins. ADS-Fusion: Fusão de dados para detecção de anomalias baseada

na teoria da evidencia de Dempster-Shafer. Federal University of Pernambuco,

Undergraduate Thesis, 2008.

[225] B. Lins, E. L. Feitosa, D. Sadok. Aplicando a Teoria da Evidência na Detecção de

Anomalias. In XXVII Brazilian Symposium of Computer Networks and Distributed

Systems (SBRC’09). Recife, Brasil: SBC, pages 583-596, May 2009.

[226] A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued

Mapping. Annals Mathematics Statistics. 38:325-339, 1967.

[227] A. P. Dempster. Upper and Lower Probability Inferences Based on a Sample from

a Finite Univariate Population. Biometrika. 54:515-528, 1967.

[228] G. Shafer. A mathematical theory of evidence. Princeton, Princeton University

Press, 1976.

[229] T. Reineking. Java Dempster Shafer Library. Available from

http://sourceforge.net/projects/jds. 2009.

http://www.securityfocus.com/vulnerabilities
http://www.senderbase.org/
http://www.threatexpert.com/
http://www.team-cymru.org/
http://www.cwr.cl/projects/WIRE/
http://crawler.archive.org/
http://lucene.apache.org/nutch/
http://www.carrot2.org/
http://hadoop.apache.org/
http://www.cin.ufpe.br/~tg/2008-2/bfol.pdf
http://www.cin.ufpe.br/~tg/2008-2/bfol.pdf

171

[230] OASIS. Web Services Business Process Execution Language Version 2.0.

Available from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

2007.

[231] T. Erl. Service-Oriented Architecture: a Field Guide to Integrating XML and Web

Services. Prentice Hall PTR, 2004.

[232] Emerging Threates. Available from http://www.emergingthreates.net. 2010.

[233] Intrusense Packit. Network injection and capture. Available from

http://www.intrusense.com/software/packit. 2010.

[234] Scapy. Available from http://www.secdev.org/projects/scapy. 2010.

[235] Ha.ckers. Slowloris HTTP DoS. Available from http://ha.ckers.org/slowloris.

2010.

[236] R. Hyatt. Keeping DNS trustworthy. ISSA Journal, pages 37-38, January 2006.

[237] L. E. Oliveira, R. Aschoff, B. Lins, E. L. Feitosa, D. Sadok. Avaliação de

Proteção contra Ataques de Negação de Serviço Distribuídos (DDoS) utilizando

Lista de IPs Confiáveis,”. In 7
th

 Brazilian Symposium of Information Security and

Computer Systems (SBSeg 2007). Rio de Janeiro, Brasil: SBC, 2007.

[238] Y. Robiah, S. Siti Rahayu, S. Shahrin, M. A. Faizal, M. Mohd Zaki, and R.

Marliza. New Multi-Step Worm Attack Model. Journal of Computing, 2(1),

January 2010.

[239] CERT. CERT Advisory CA-2003-20 W32/Blaster worm. Available from

http://www.cert.org/advisories/CA-2003-20.html. 2003.

[240] TFTPy. TFTPy - A Pure Python TFTP Implementation. Available from

http://tftpy.sourceforge.net. 2010.

[241] E. L. Feitosa, L. E. Oliveira, B. Lins, A. Carvalho Jr., R. Melo, D. Sadok, and U.

Carmo. Security Information Architecture for Automation and Control Networks.

In 8
th

 Brazilian Symposium of Information Security and Computer Systems, Rio

Grande do Sul, Brasil: SBC, pages 17-30, 2008.

[242] IEEE. Standards for Local and Metropolitan Area Networks: Port based Network

Access Control. IEEE Standard 802.1X-2001, June 2001.

[243] CAIDA. The CAIDA "DDoS Attack 2007" Dataset. Available from

http://www.caida.org/data/passive/ddos-20070804_dataset.xml. 2010.

[244] CAIDA. UCSD Network Telescope -- The Backscatter-2008 Dataset. Available

from http://www.caida.org/data/passive/ backscatter_2008_dataset.xml. 2010.

[245] UMASS Trace Repository. UMASS Trace Repository. Available from

http://trace.cs.umass.edu. 2010.

[246] MAWI. MAWI Working Group Traffic Archive. Available from

http://mawi.wide.ad.jp/mawi. 2010.

[247] W3C. WSDL W3C Recommendation. Available from

http://www.w3.org/TR/wsdl20-primer. 2007.

[248] W3C. OWL W3C Recommendation. Available from http://www.w3.org/TR/owl-

features. 2004.

http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-features

172

[249] P. Lincoln, P. Porra, and V. Shmatikov. Privacy-preserving sharing and

correlation of security alert. In 13
th

 USENIX security symposium, pages 239–254,

2004.

[250] D. Xu and P. Ning. Privacy-preserving alert correlation: A concept hierarchy

based approach. In 21
st
 annual computer security applications conference

(ACSAC),pages 489–498, 2005.

[251] P. Gross, J. Parekh, and G. Kaiser. Secure selecticast for collaborative intrusion

detection systems. In 3
rd

 international workshop on distributed event-based

systems (DEBS), 2004.

[252] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A Peer-to-Peer Approach to

Network Intrusion Detection and Prevention. In IEEE WETICE 2003 Workshop

on Enterprise Security, Linz, Austria, pages 226-231, 2003.

[253] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the

DOMINO overlay system. In Network and Distributed Security Symposium

(NDSS), 2004.

[254] OASIS. Web services security: SOAP message security 1.0. Available from

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-

1.0.pfd. 2009.

[255] T. Imamura, B. Dillaway, and E. Simon. XML Encryption syntax and processing.

W3C recommendation, 2002.

[256] D. Eastlake, J. Reagle, and D. Solo. XML-Signature syntax and processing. IETF,

Standards Track RFC 3275, 2002.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pfd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pfd

