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Abstract

In this paper, we prove that a particular nondegenerate, nonlinear, autonomous parabolic

partial differential equation with a nonlocal mass transfer admits the local existence of classical

solutions. The equation was developed to qualitatively describe temporal changes in popu-

lation densities over space through accounting for location desirability and fast, long-range

travel. Beginning with sufficiently regular initial conditions, through smoothing the PDE and

employing energy arguments, we obtain a sequence of approximators converging to a classical

solution.

Keywords: local existence, nonlocal operator, nonlinear diffusion, non-degenerate parabolic
PDE, autonomous PDE

1 Introduction

Partial differential equations (PDEs) are a valuable means of modelling physical and biological
systems. These models help in understanding key qualitative features and in making quantitative
predictions. PDE models are often derived from consideration of physical principles, but it is
not always clear if solutions even exist; or, if they do exist, what properties they enjoy such as
smoothness, uniqueness, etc. The canonical example of this is the Navier Stokes Equations [1, 2]
in fluid dynamics where global existence of solutions is still unknown [3]. If a PDE is to be studied
numerically, knowing an appropriate solution space is then helpful in selecting a suitable numerical
method — see for example books addressing numerical schemes for different classes of PDE [4, 5, 6].

In this paper, we confirm that, under suitable hypotheses, there exist classical solutions to a
particular nonlinear parabolic integro-differential equation model. The model of interest [7] was
derived to describe populations of people experiencing homelessness. The model is ecological in
nature, taking into consideration the desirability of a location (such that individuals may be more
likely to stay at a location when it is more desirable), nonlocal travel (over a short time, an individual
can travel a large distance), and that desirability decreases as the local population in an area
increases (due to reduced available resources per individual). The domain itself imposes additional
data on the PDE through spatiotemporal variations in entry and exit rates. The understanding
of this model is important as it was the first of its kind, to the author’s knowledge, PDE model
describing homelessness. While many important properties have been proven on solutions to the
model [7] assuming their existence, the existence of solutions has not been explored. This paper
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thus establishes that the model previously derived is a theoretically reasonable framework — from
a mathematical standpoint — through which to study homelessness. Understanding this model
mathematically, and the types of solutions that exist, can provide a solid foundation for it being
used to better understand the dynamics of homelessness, for extending the model by incorporating
more details, for adapting the model suitably to other applications, and even to fitting the model
to real-world data.

Nonlocal parabolic PDEs arise in many settings including mathematical finance [8], models
of lieukemia [9], and population dynamics [10]. The use of PDEs to study populations is quite
extensive. Some examples include the classical Keller-Segel model for a mobile population in the
presence of a chemo-attractant [11], the Fisher PDE to model populations undergoing dispersion
and logistic growth [10], Lotka-Volterra systems for competition [10, 12], models of pedestrians in
crowds [13], biological aggregation [14], and models of crime dynamics [15, 16, 17].

Rigorous analysis has proved that Patlak-Keller-Segel models with degenerate diffusion are lo-
cally well-posed in 2 dimensions and globally well-posed in 3 dimensions [18]. The Patlak-Keller-
Segel models are nonlocal in space, like the model studied here. Beyond mathematical models
themselves, solutions are known to exist for quite a broad range of nonlocal parabolic PDEs [19, 20],
but our system violates some hypotheses used to establish these results, such as monotonicity in
the dependent variable or derivatives of nonlinear terms appearing. For simplicity, we assume the
data in our system are smooth, but other authors also study PDEs with nonregular data [21]. Two
somewhat distinguishing features of our model include that the highest derivative is acting on a
nonlinear function of the dependent variable and the nonlocal operator in our model is not a convo-
lution. The work of [17, 22] that establish existence of solutions to their respective models are local
and have the highest derivative acting on a linear function of the dependent variable. Although
our PDE of interest has a high degree of nonlinearity, methodologically, we proceed to prove local
existence through reasonably similar means: establishing local existence of smoothed solutions and
extracting a subsequence that tends to a valid solution. The use of Lyapunov-type methods to
establish existence of solutions to PDEs is another common strategy [23].

With our work placed in context, the remaining paper is organized as follows: the PDE model,
the main theorems, and the key steps of their proofs are provided in Section 2; important results
for the proofs are given in Section 3; we prove the main results through a series of smaller steps
in Section 4; lastly, in Section 5, we conclude our work and contemplate further directions. In
Section A of the Appendix, key definitions and nomenclature are explained, and proofs of various
supporting results used in this paper are given. A transcription of proofs of important mollifier
results is given in Section B of the Appendix.

2 Background

2.1 Model Equation and Background

In [7], a nonlinear PDE was derived to describe the mean field dynamics of agents on a lattice
with a nonlocal travel term. The original equation was developed as a first attempt to use PDEs to
qualitatively describe homeless population densities. Over a bounded, d-dimensional spatial domain
Ω ⊂ R

d, we consider the evolution of a density field ρ(t, x) at time t ≥ 0 and position x ∈ Ω given
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by

ρt = δ∆(ρu) + η − ωρ+ I[γρu]− γρu (1)

u := (κ(t, x), ρ(t, x)) 7→ u+ − κ
u−

1 + ρ/ρ̃
(2)

I[q](t, x) :=

∫

Ω

τ(t, y, x)q(t, y)dy, ∀x ∈ Ω, t ≥ 0 (3)
∫

Ω

τ(t, y, x)dx = 1, ∀y ∈ Ω, t ≥ 0, (4)

with a prescribed initial density at t = 0 and suitable boundary conditions on ∂Ω. Depending on
scalings chosen, the system as such can be dimensional or dimensionless.

We assume that

Hypothesis 1 (General Hypotheses).

1. For x, y ∈ Ω and t ≥ 0: 0 ≤ κ(t, x) ≤ 1, η(t, x) ≥ 0, ω(t, x) ≥ 0, γ(t, x) ≥ 0, and
τ(t, y, x) ≥ 0;

2. All of κ, η, ω, γ, and τ are C∞-smooth functions in all time and space arguments with mixed
partial derivatives of all orders also C∞-smooth;

3. For each m = 0, 1, 2, ..., there is a constant Ξm so that the L∞(Ω)-norm of all mth-order
derivatives of κ, η, ω, γ, and τ are bounded by Ξm <∞ for all t ≥ 0; and

4. δ, u−, u+, and ρ̃ are constants such that 0 < δ, 0 < u− < u+ < 1, and ρ̃ > 0.

The terms in the model, in the case of homelessness and in a dimensional framework, can be
explained as follows:

• η is an entry rate: it is the mean number of people entering the population of people experi-
encing homelessness per unit area per unit time. Local factors such as increases in rent could
increase η.

• ω is an exit rate: it is the rate that a person experiencing homelessness ceases to be homeless.
Local features such as more affordable housing units or job placement could increase ω.

• γ is a rate of long distance travel: it is the rate that a person who is homeless and wishes to
relocate will travel a long distance in the city. Local features such as the number of public
transit options affect γ.

• τ models the probability (density) in moving from one region to another over a long distance
at any given time. Factors such as routes of public transit or general knowledge about what
is happening in different parts of the city affect τ . The fact that

∫

Ω
τ(t, y, x)dx = 1 amounts

to the fact that, starting from y (getting on a bus, say) at time t, the probability of going
somewhere must be 1.

• I is a nonlocal operator that moves the density between points with a transfer kernel τ :
I[γρu](t, x) is the number of people experiencing homelessness moving to a given location per
unit area per unit time through all long-range travel over Ω. From the interpretations of τ
and γ, we note that τ is likely heavily influenced by both public transit and general knowledge
of how different parts of the city are changing.
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• u is an “unattractiveness” term and it represents the probability a person who is homeless
wishes to leave their current location, either by walking to a nearby location or by travelling
long-range in the city. It takes into account the effects of competition/crowding, since u
increases with ρ. While ρ is the local population density, the probability a given individual
wishes to relocate is u, giving an effective quantity ρu to diffuse/move.

• κ describes the amount of resources in a location: for larger κ values, the unattractiveness is
smaller.

The constants also have meaning as follows:

• δ is a diffusivity: by assuming the local movement is roughly random and taking a diffusive
limit, there is diffusion.

• u+ is the maximum possible unattractiveness of any location: we assume u+ < 1 because,
observationally, we note that individuals experiencing homelessness may be found in all parts
of a city, even areas with limited or no resources.

• u+ − u− is the minimum possible unattractiveness of any location: we assume that u− < u+

so u+ − u− is strictly positive. Because u is representing the probability a person experienc-
ing homelessness will leave the area, we do not allow u to be 0 because that would be too
deterministic and not allow a person to move about.

• ρ̃ controls how sensitive the unattractiveness is to the population density: as ρ̃ increases, the
unattractiveness u is affected less and less by changes in ρ.

We note that the unattractiveness can never reach zero for any ρ and the equation is nondegenerate.
The model does not directly account for aggregation effects whereby individuals who are home-

less may choose to group together, nor does it account for how the homeless population itself may
affect the features of the city. In a sense, it is a “leading order” model to describe homelessness in
PDE fashion, where additional effects could be added.

We remark that some of the terms in this model may be relevant in other settings, too. Models of
foraging do take into account tendencies of species leaving a patch of resources after some time [24],
which is what u effectively describes. In the case of models for locusts, the population density does
affect the dispersion [25]. Some species living in the ocean are heavily influenced and dispersed by
ocean currents [26], which may provide nonlocal-like behaviour similar to I by rapidly moving the
species around. A nonlocal operator I could even be relevant for describing the general population
where long-range movement occurs in commuting to/from work or between cities.

Various qualitative properties of solutions were proven in [7], assuming the existence of classical
solutions, with Ω = T

d. In this paper, we show that classical solutions do exist on the torus. The
torus, owing to the empty boundary, makes preliminary analysis simpler, without having to deal
with complex geometries or boundary conditions. However, large cities often do have repeated
pockets of residential and commercial districts, which gives a loosely periodic pattern, and thus the
model could still be insightful.

For completeness, we state the uniqueness result for classical solutions already proven [7].

Lemma 1 (Uniqueness of Smooth Solutions). Let T > 0 and suppose
ρ1, ρ2 ∈ C0([0, T ], C2(Td)) ∩ C1([0, T ], C0(Td)) are two solutions to Eqs. 1-4 under Hypothesis 1. If
ρ1 and ρ2 have identical and strictly positive C2(Td) initial conditions at t = 0, then ρ1 = ρ2 on
0 ≤ t ≤ T .
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2.2 Main Results and Proof Structure

The notation we use throughout this manuscript is quite standard but section A of the Appendix
defines much of our notation and various function spaces.

While we do obtain a preliminary result for the system equations (1)-(4) under Hypothesis 1,
our focus is on the autonomous system, i.e., Eq. (1) where

u := (κ(x), ρ(t, x)) 7→ u+ − κ
u−

1 + ρ/ρ̃
(5)

I[q](t, x) :=

∫

Ω

τ(y, x)q(t, y)dy, ∀x ∈ Ω, t ≥ 0 (6)
∫

Ω

τ(y, x)dx = 1, ∀y ∈ Ω, (7)

with

Hypothesis 2 (Autonomous Hypotheses).

1. For x, y ∈ Ω: 0 ≤ κ(x) ≤ 1, η(x) ≥ 0, ω(x) ≥ 0, γ(x) ≥ 0, and τ(y, x) ≥ 0;

2. All of κ, η, ω, γ, and τ are C∞-smooth functions in their arguments with mixed partial
derivatives of all orders also C∞-smooth;

3. For each m = 0, 1, 2, ..., there is a constant Ξm so that the L∞(Ω)-norm of all mth-order
derivatives of κ, η, ω, γ, and τ are bounded by Ξm <∞; and

4. δ, u−, u+, and ρ̃ are constants such that 0 < δ, 0 < u− < u+ < 1, and ρ̃ > 0.

In other words, the data are time-independent. Our main result will be Theorem 1 below:

Theorem 1 (Local Existence). Let d ∈ N. Let ρ0 ∈ Hm(Td) with ρ0 > 0 a.e. and m ∈ Z with
m > d∗ := 3 + d. Then there exists a Tm > 0 such that ρ∗(t, x) is the unique C0([0, Tm];H

m(Td)) ∩
C1([0, Tm];H

m−2(Td)) solution to equations (1) and (5)-(7) with ρ∗(0, ·) = ρ0. Moreover, ρ∗ is a
classical solution, namely ρ∗ ∈ C0([0, Tm]; C2(Td)) ∩ C1([0, Tm]; C0(Td)).

Establishing these results follows the steps below. See also Table 1 for a more detailed summary.

1. We prove that regularized versions of equations (1) and (5)-(7), smoothed by a parameter
ǫ > 0, have solutions ρ(ǫ) that exist locally in time for an interval that could depend on ǫ.

2. For large enough m we then prove that the energy 1
2
||ρ(ǫ)||2Hm(Td) is bounded by a function

Em(t), which exists independently of ρ(ǫ) on some interval [0, ̟m] where ̟m does not depend
upon ǫ. Additionally, we show that an interval [0, Tm], with Tm > 0 independent of ǫ, exists
such that all solutions ρ(ǫ) ∈ C1([0, Tm];H

m(Td)).

3. From the bounded energy, the Aubin-Lions-Dubinskĭı lemma guarantees there is a subsequence
converging strongly in C0([0, Tm];H

m′
(Td)) for m′ < m, m and m′ large enough. We also

establish a subsequence that converges weakly to an element of L∞([0, Tm];H
m(Td)).

4. From density and continuity arguments, we find a subsequence converging to some ρ∗ ∈
C0([0, Tm];H

m(Td)).
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Step Result Purpose

1 Proposition 1 establishes time derivative operator for regularized solutions ρ(ǫ)

parameterized by ǫ is locally Lipschitz from Hm(Td) → Hm(Td)
Theorem 2 proves regularized solutions exist locally in time for initial data

ρ0 ∈ Hm(Td) with m > d/2, where that time could depend on ǫ
and m

2 Proposition 2 shows that for all ǫ > 0, the energy 1
2
||ρ(ǫ)||2Hm(Td) is uniformly

bounded on a time interval
Proposition 3 shows all regularized solutions exist up to a time Tm independent

of ǫ

3 Lemma 14 shows the sequence ρ(ǫ) has a subsequence converging weakly in
L2([0, Tm];H

m(Td)) to a function ρ∗ in L∞([0, Tm];H
m(Td))

Lemma 15 shows the sequence ρ(ǫ) also has a subsequence converging
strongly in L∞([0, Tm];H

m′
(Td)) for all m′ < m

4 Proposition 4 shows the limit of the subsequence of ρ(ǫ), ρ∗ ∈
L∞([0, Tm];H

m(Td))

5 Proposition 5 shows the sequence of derivatives ρ
(ǫ)
t converges uniformly

(needed to exchange limit and derivative)
Theorem 1 gives the main result, that for m > d + 3, classical solu-

tions exist locally in time and they are in C0([0, Tm];H
m(Td)) ∩

C1([0, Tm];H
m−2(Td))

Table 1: Summary of key stages in the proof of Theorem 1.

5. Through convergence analysis, we show the limit does in fact solve equations (1) and (5)-(7)
with appropriate initial conditions and belongs to suitable solution spaces.

Remark 1. While we establish local existence of classical solutions, proving global existence of solu-
tions is beyond the scope of our work. Proving global existence would likely require first establishing
global existence to the regularized systems and then showing this global existence is preserved in
the limit. Through our work, we only establish local existence of the regularized solutions, with an
interval of existence that may depend upon the initial condition (and solution regularity imposed)
and we don’t identify a natural way to “glue” local regularized solutions together to establish global
regularized solutions.

3 Theoretical Background

This section provides some key definitions of tools (such as mollifiers) that are used in the proofs;
states key results from known literature; and, for the case of our particular model system, various
minor lemmas and computations are presented. Additional results relevant in establishing these
results and the definitions of different solution spaces, etc., can be found in Appendix A. A reader
more focused on the main steps in proving Theorem 1 can move to Section 4 but may wish to refer
back to this section to fill in some details.

6



3.1 Key Tools

The two theorems below [2] are useful for establishing existence of regularized solutions and in
extending those solutions.

Lemma 2 (Picard-Lindeloff for Autonomous ODE in Banach Space). Let O ⊂ B be an open subset
of a Banach space B and let f : O → B be a mapping that is locally Lipschitz, i.e., for any
v0 ∈ O, there is L > 0 and a neighborhood U0 of v0 so that ||f(v1)− f(v2)||X ≤ L||v1 − v2||X for all
v1, v2 ∈ U0. Then for any v0 ∈ O, there is a time T > 0 so that the initial value problem v′(t) = f(v)
with v(0) = v0 has a unique solution v ∈ C1([0, T );O).

Lemma 3 (Autonomous Extension). Let O ⊂ B be an open subset of a Banach space B and let
f : O → B be a locally Lipschitz operator. Let v ∈ C1([0, T );O) be the unique solution to the initial
value problem v′(t) = f(v) with v(0) = v0 found by Lemma 2. Then either the solution v(t) exists
globally in time or T <∞ and v leaves the open set O as t ↑ T.

The Aubin-Lions-Dubinskĭı Lemma is used in extracting a strongly convergent subsequence of
approximators [27].

Lemma 4 (Aubin-Lions-Dubinskĭı). Let X, B, and Y be Banach spaces with X ⊂⊂ B (compact
embedding) and B →֒ Y (continuous embedding). For T > 0, let U ⊂ Lp([0, T ];X) and let V =
{u̇|u ∈ U} be bounded in Lp([0, T ];X) and Lq([0, T ]; Y ), respectively. Then if 1 < p <∞ and q = 1
or p = ∞ and q > 1, U ⊂⊂ Lp([0, T ];B).

We also require the extraction of weakly convergent subsequences [28]:

Lemma 5 (Weak Convergence of Bounded Sequences on Reflexive Banach Spaces). Assume that
E is a reflexive Banach space and let {fn} be a bounded sequence in E for n = 0, 1, 2, .... Then
there is a subsequence of {fn} converging in the weak topology of E.

Remark 2. In our application, we will be working primarily with Hilbert spaces, which are reflexive.

3.2 Basic Tools

Let ǫ > 0. For 1 ≤ p ≤ ∞, we define the mollification operator J (ǫ) acting on a function f ∈ Lp(Td)
via

(J (ǫ)[f ])(x) =
∑

k∈Zd

e−ǫ|k|2+2πik·xf̂(k) (8)

where the discrete Fourier transform of f at k ∈ Z
d is

f̂(k) =

∫

Td

e−2πik·xf(x)dx. (9)

The mollifier J (ǫ) has many useful properties. We summarize important properties below [22]
and transcribe proofs in section B of the Appendix.

Lemma 6 (Mollifier Properties). Let d be the number of spatial dimensions. Given the J (ǫ) operator
defined in equation (8) we have:

1. Let ℓ > d/2. Then for all v ∈ Cℓ(Td), J (ǫ)[v] → v uniformly and
||J (ǫ)[v]||L∞(Td) ≤ ||v||L∞(Td).
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2. Mollifiers commute with weak derivatives: ∀m ∈ N ∪ {0}, ∀v ∈ Hm, ∀|α| ≤ m,

∂α(J (ǫ)[v]) = J (ǫ)[∂αv].

3. For all v, w ∈ L2(Td),
∫

Td

(J (ǫ)[v])wdx =

∫

Td

(J (ǫ)[w])vdx.

4. For all f ∈ Hm(Td),

lim
ǫ↓0

||J (ǫ)[f ]− f ||Hm(Td) = 0

||J (ǫ)[f ]− f ||Hm−1(Td) ≤ ǫ||f ||Hm(Td).

5. Let m > d/2. For all f ∈ Hm(Td), ν ∈ N ∪ {0}, ℓ ∈ {0, 1, ..., ν}, ǫ > 0,

||J (ǫ)[f ]||Hm+ν(Td) .m,ν ǫ
−ν ||f ||Hm(Td)

||J (ǫ)[Dνf ]||L∞(Td) .ν ǫ
m−ν−d/2||f ||Hℓ(Td).

Often intermediate calculations make use of Sobolev spaces [17, 29]:

Lemma 7 (Sobolev Inequalities and Lp properties). Let Ω be a subset of Rd.

1. For all m > d/2, Hm(Ω) is a Banach algebra, i.e., for all u, v ∈ Hm(Ω):

||uv||Hm(Ω) . ||u||Hm(Ω)||v||Hm(Ω).

2. (Gagliardo-Nirenberg Interpolation Inequality): let f : Ω → R and let 1 ≤ q, r ≤ ∞. Let α be
a real number and j ∈ N such that

1

p
=
j

d
+ (

1

r
− m

d
)α +

1− α

q
j

m
≤ α ≤ 1.

Then there exists C > 0 so that

||Djf ||Lp(Ω) ≤ C||Dmf ||αLr(Ω)||f ||1−α
Lq(Ω).

3. (Generalized Hölder’s inequality): if fi ∈ Lpi(Ω) for i = 1, ..., N and 1
r
=
∑N

i=1
1
pi

then

||
∏N

i=1 fi||Lr(Ω) ≤
∏N

i=1 ||fi||Lpi(Ω).

4. When m > m′, we have that Hm(Ω) ⊂⊂ Hm′
(Ω) is a compact embedding, i.e., every bounded

sequence in Hm(Ω) has an Hm′
(Ω)-convergent subsequence.

5. (Hölder Embedding) The space Hm(Ω) ⊂ Ck,α(Ω) for m ≥ α + k + d/2.

Lemma 8. Let K > 0. Let f : D ⊂ R → R and g : Ω ⊂ R
d → D with f ∈ Cm(D), ||f ||Cm(D) ≤ K,

Ω bounded, and g ∈ Hm(Ω) for an integer m > d/2. Suppose that f(0) = 0 then

8



1.
||f ◦ g||Hm(Ω) .f ||g||Hm(Ω) + ||g||mHm(Ω).

2. Furthermore, if m > d+ 2, then

||f ◦ g||Hm(Ω) .f (1 +B)||g||Hm(Ω) . (1 + B̄)||g||Hm(Td)

where B = ||g||m−1
Cb∗(Ω)

. ||g||m−1
Hm(Ω) < ∞, B̄ = ||g||m+1

Cb∗(Ω)
. ||g||m+1

Hm(Ω) < ∞, and b∗ is the largest

integer less than or equal to m/2 + 1.

The following lemma becomes quite useful in handling the Hm(Td)-energy of approximating
solutions.

Lemma 9. Let m > d + 3 be an integer, α be a multi-index with |α| ≤ m, and Q(·, ·) be bounded
and continuous. Furthermore, let κ either be the empty set or the set containing a single order 1
multi-index and let σ be a nonempty set of multi-indices whereby

• maxζ∈σ |ζ | ≤ |α|, and

•

∑

µ∈κ |µ|+
∑

ζ∈σ |ζ | ≤ |α|+ 2.

Lastly, define b∗ to be the largest integer not exceeding m/2 + 1 with B̄ = ||g||m+1
Cb∗(Ω)

. Then for all

g ∈ Hm(Td),

|
∫

Td

Q(g, x)∂αg(x)
∏

µ∈κ

∂µg(x)
∏

ζ∈σ

∂ζg(x)dx| . (1 + B̄)||g||2Hm(Td).

Remark 3. While m > d+ 2 could have worked, this assumption on m is useful in Lemma 13.

3.3 Specialized Results for Our System

For simplicity, we adopt the notation that ρu = u+ρ− κM(ρ) where

M(ρ) :=
u−ρ

1 + ρ/ρ̃
.

With this, we calculate

∇(ρu) = u+∇ρ−∇κM(ρ) − κM ′(ρ)∇ρ (10)

∆(ρu) = u+∆ρ−∆κM(ρ) − 2M ′(ρ)∇κ · ∇ρ− κM ′(ρ)∆ρ− κM ′′(ρ)|∇ρ|2 (11)

We note other authors have studied similar equations with some monotonicity restrictions and
established local existence via fixed point methods [19]. Owing to the unknown and possibly time-
dependent sign of ∆κ, Equation (11) may fail to be monotonic in ρ.

Lemma 10 (Sobolev Bounds on Model). Let ρ and u be as in Equations equations (1)-(4) with
m > d/2, ρ > 0. Then:

1. ||ρu||Hm(Td) .m ||ρ||Hm(Td) + ||ρ||mHm(Td),

2. ||∆(ρu)||Hm(Td) .m ||ρ||Hm+2(Td) + ||ρ||m+2
Hm+2(Td)

,

9



3. ||ωρ||Hm(Td) .m ||ρ||Hm(Td),

4. ||I[γρu]||Hm(Td) .m ||ρ||L2(Td) ≤ ||ρ||Hm(Td), and

5. ||γρu||Hm(Td) .m ||ρ||Hm(Td) + ||ρ||mHm(Td).

Part of our work in showing local existence will require Lipschitz properties of the evolution of
the model. For this we use the following lemma.

Lemma 11 (Lipschitz Bounds). For i = 1, 2, let ρi > 0 and ui represent a density and unattrac-
tiveness as in Equations (1)-(2) with m > d/2. Suppose that ρ1 and ρ2 are also both in a bounded
set Λ in Hm(Td) with supρ∈Λ ||ρ||Hm(Td) = U . We observe M and all its derivatives are bounded for
positive arguments. Then:

1. ||M(ρ1)−M(ρ2)||Hm(Td) .m,U ||ρ1 − ρ2||Hm(Td) +O(||ρ1 − ρ2||2Hm(Td)),

2. ||ρ1u1 − ρ2u2||Hm(Td) .m,U ||ρ1 − ρ2||Hm(Td) +O(||ρ1 − ρ2||2Hm(Td)),

3. ||ω(ρ1 − ρ2)||Hm(Td) .m ||ρ1 − ρ2||Hm(Td),

4. ||γ(ρ1u1 − ρ2u2)||Hm(Td) .m,U ||ρ1 − ρ2||Hm(Td) +O(||ρ1 − ρ2||2Hm(Td)
), and

5. ||I[γ(ρ1u1 − ρ2u2)]||Hm(Td) .m,||ρ1||Hm(Td)
||ρ1 − ρ2||Hm(Td) +O(||ρ1 − ρ2||2Hm(Td)).

Remark 4. Lemmas 10 and 11 apply equally well to the autonomous system.

Remark 5. For the bounds we establish in our results throughout this paper, we will not be concerned
with dependencies upon δ, u−, u+, or ρ̃.

4 Intermediate Results and Proof of Main Result

Our proof is now done in stages.

4.1 Step 1: Local Existence for Regularized Problem

As a first step towards proving solution existence, we consider regularized equations. The regular-
ized equations ensure that even with the differential operator, we map from Hm(Td)-functions to
Hm(Td)-functions so that Picard can be used. We first state some results that apply equally well
to the autonomous and nonautonomous systems, before restricting ourselves to the autonomous
hypotheses.

Proposition 1. Let ǫ > 0 and m > d/2 and define A(ǫ)
t : Hm(Td) → Hm(Td) to be the nonlinear

operator
A(ǫ)

t [ρ] = δJ (ǫ)[∆(u+J (ǫ)[ρ]− κM(J (ǫ)[ρ]))] + η − ωρ+ (I[γρu]− γρu).

Then for all t > 0 where 0 < ρ1, ρ2 a.e., 0 < J (ǫ)ρ1,J (ǫ)ρ2 with ρ1 and ρ2 in a bounded set
Λ ⊂ Hm(Td), we have

||A(ǫ)
t [ρ1]−A(ǫ)

t [ρ2]||Hm(Ω) .m,ǫ,U ||ρ1−ρ2||Hm(Ω)+
1

ǫ2
O(||ρ1−ρ2||2Hm(Ω)), (||ρ1−ρ2||Hm(Td) ↓ 0)

where supρ∈Λ ||ρ||Hm(Td) = U

10



Proof. We examine the difference

A(ǫ)
t [ρ1]−A(ǫ)

t [ρ2] = δJ (ǫ)[∆(u+J (ǫ)[ρ1 − ρ2] + κ(J (ǫ)[M(J (ǫ)[ρ1])−M(J (ǫ)[ρ2])]))]

− ω(ρ1 − ρ2) + I[γ(ρ1u1 − ρ2u2)]− γ(ρ1u1 − ρ2u2)

and consider each term. Each of the terms on the right-hand side have previously been studied in
Lemma 11 except for the Laplacian term. For that, from Lemma 6, we have

||J (ǫ)[∆J (ǫ)[ρ1 − ρ2]]||Hm(Td) ≤ ||∆J (ǫ)[ρ1 − ρ2]||Hm(Td)

≤ ||J (ǫ)[ρ1 − ρ2]||Hm+2(Td)

.m
1

ǫ2
||ρ1 − ρ2||Hm(Td)

and

∣
∣
∣

∣
∣
∣J (ǫ)

[

∆
(

κ(M(J (ǫ)[ρ1])−M(J (ǫ)[ρ2]))
)]∣
∣
∣

∣
∣
∣
Hm(Td)

. ||M(J (ǫ)[ρ1])−M(J (ǫ)[ρ2])||Hm+2(Td)

.m,U ||J (ǫ)[ρ1 − ρ2]||Hm+2(Td) +O(||J (ǫ)[ρ1 − ρ2]||2Hm+2(Td))

.
1

ǫ2
||ρ1 − ρ2||Hm(Td) +

1

ǫ4
O(||J (ǫ)[ρ1 − ρ2]||2Hm(Td)).

In moving between the lines we decreased from Hm+2(Td) to Hm(Td) at the expense of acquiring
an ǫ−2 prefactor (Lemma 6). The U -dependence stems from Lemma 11.

As

||A(ǫ)
t [ρ1]−A(ǫ)

t [ρ2]||Hm(Td) ≤ ||δJ (ǫ)[∆(u+J (ǫ)[ρ1 − ρ2])]||Hm(Td)

+ ||δJ (ǫ)[∆(κ(J (ǫ)[M(J (ǫ)[ρ1])−M(J (ǫ)[ρ2])]))]||Hm(Td)

+ ||ω(ρ1 − ρ2)||Hm(Td) + ||I[γ(ρ1u1 − ρ2u2)]||Hm(Td)

+ ||γ(ρ1u1 − ρ2u2)||Hm(Td),

we are done.

Remark 6. While studying our model, it is sometimes convenient to view ρ(t, x) as a function of
t, taking values in a suitable space such as Hm(Td). We may then write ρ(t) to represent ρ(t, ·) and
similarly with ρ(ǫ) for a regularized solution, etc.

Remark 7. We also have

||Aǫ
t[ρ]||Hm(Td) . ||η||Hm(Td) + ||ρ(ǫ)||Hm(Td) + ||ρ(ǫ)||mHm(Td) + ||J (ǫ)[ρ(ǫ)]||Hm+2(Td) + ||J (ǫ)[ρ(ǫ)]||m+2

Hm+2(Td)

.ǫ ||η||Hm(Td) +
1

ǫ2
||ρ(ǫ)||Hm(Td) +

1

ǫ2(m+2)
||ρ(ǫ)||m+2

Hm(Td)
.

for ρ,J (ǫ)ρ > 0 a.e. belonging to Hm(Td).

At this point, we focus on the autonomous system and state a theorem on local existence to
regularized problems.
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Theorem 2 (Local Existence and Uniqueness for Regularized Autonomous Problem). Let ǫ > 0,
m > d/2 be an integer, and ρ0(x) ∈ Hm(Td) be given with ess infTd ρ0 = ρ

0
> 0. For K > ||ρ0||Hm(Td)

arbitrary, define the open set OK = {ρ ∈ Hm(Td)| ||1
ρ
||L∞(Td) <

2
ρ
0

, ||ρ||Hm(Td) < K}. Then the

regularized version of the autonomous system (equations (1) and (5)-(7)) given by

ρ
(ǫ)
t = δJ (ǫ)[∆

(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
] + η − ωρ(ǫ) + I[γρ(ǫ)u(ǫ)]− γρ(ǫ)u(ǫ), (12)

with ρ(0) = ρ0 and where u(ǫ) := u(κ, ρ(ǫ)) has a unique solution ρ(ǫ) ∈ C1([0, TK,ǫ,m);Ok) for some
TK,ǫ,m > 0.

Proof. By Proposition 1, the autonomous version of A(ǫ)
t ,A(ǫ), will be locally Lipschitz on OK .

Then by Theorem 2, there exists TK,ǫ,m > 0 so that the initial value problem ρ(ǫ)
′
(t) = A(ǫ)[ρ(ǫ)],

ρ(ǫ)(0) = ρ0 has a solution ρ(ǫ) ∈ C1([0, TK,ǫ,m);OK).

Remark 8. It is possible to establish such local existence for the nonautonomous system as well.
Details appear in Appendix Section A.

4.2 Step 2: Hm(Td)-Energy Bounded Independent of ǫ

What we previously established is that for each ǫ > 0, regularized solutions exist and either stay
in OK forever or leave the set as t ↑ TK,ǫ,m (Lemma 3). Unfortunately those times could depend
on ǫ and K. In this step, we show it is actually possible to find an interval of existence [0, Tm],
independent of K and ǫ, on which all solutions ρ(ǫ) exist and stay in OK . As an additional bonus,
we will show solutions are a.e. more regular than at t = 0. In this section, several times are defined
and Table 2 helps to clarify their meaning.

Time Meaning

TK,ǫ,m interval of local solutions: depends on ǫ, the set OK , and m

̟m guaranteed interval of existence for Em(t) satisfying a differential inequality
for the Hm(Td)-energy, where Em(t) treated as independent of ρ(ǫ)

T̃K,ǫ,m minimum of Tk,ǫ,m and ̟m

T̃0,m time where solution is guaranteed to be bounded below suitably

Tm the minimum of ̟m and T̃0,m after suitable K chosen

Table 2: List of times in analysis.

Our first main result is Proposition 2.

Proposition 2 (Control of Energy). Let ρ(ǫ) be defined as in Theorem 2 and let m > d∗ := 3 + d
be an integer. Then there exists a time ̟m > 0 and a continuous function Em(t) defined on [0, ̟m]
with ξm := ||Em||L∞([0,̟m]) <∞ whereby

1. for all ǫ > 0, 1
2
||ρ(ǫ)||2Hm(Td) ≤ Em(t) on [0,min{̟m, TK,ǫ,m}) and

12



2. 1
2
||ρ(ǫ)||2Hm(Td)+

∫ t

0
||Dm+1J (ǫ)[ρ(ǫ)]||2L2(Td)ds . ξm+(ξ

1/2
m +ξ

(m+3)/2
m )t <∞ for t ∈ [0,min{̟m, TK,ǫ,m}).

Moreover,

3. on [0,min{̟m, TK,ǫ,m}), E(ǫ)
m (t) := 1

2
||ρ(ǫ)||2Hm(Td) satisfies

E(ǫ)
m

′
(t) .m E(ǫ)

m

1/2
+ (1 + B̄)E(ǫ)

m

. (E(ǫ)
m

1/2
+ E(ǫ)

m

(m+3)/2
),

where B̄ ∼ ||ρ(ǫ)||m+1
Cb∗(Td)

and b∗ is the largest integer not exceeding m/2 + 1.

4. We also have that for some C > 0, for all ǫ > 0,

E(ǫ)
m (t) ≤ Em(t) =

{

(E
(ǫ)
m (0)1/2 + 2Ct)2, E

(ǫ)
m (0) < 1

(E
(ǫ)
m (0)

−(m+1)/2
− (m+ 1)Ct)−2/(m+1), E

(ǫ)
m (0) ≥ 1

≤ ξm <∞ (13)

on [0,min{̟m, TK,ǫ,m}). Also, E(ǫ)
m (0) = Em(0) =

1
2
||ρ0||2Hm(Td).

Proof of Proposition 2. We first note that if m > d + 3 and ρ(ǫ) ∈ Hm(Td). We define σ∗(m) =
m/2 + 1 and note that all derivative orders j with j ≤ σ∗(m) for J (ǫ)[ρ(ǫ)] and ρ(ǫ) are in
L∞(Td) and bounded by ||ρ(ǫ)||Hm(Td) — from Lemma 6, ||DjJ (ǫ)[ρ(ǫ)]||L∞(Td) . ||J (ǫ)[ρ(ǫ)]||Hm(Td) .

||ρ(ǫ)||Hm(Td). We shall denote b∗ to be the largest integer less than or equal to σ∗ and B =

||ρ(ǫ)||m−1
Cb∗(Td)

.

We define E
(ǫ)
m (t) = 1

2
||ρ(ǫ)||2Hm(Td) and consider E

(ǫ)
m

′
(t) =

∑

|α|≤m

∫

Td ∂
αρ(ǫ)∂αρ

(ǫ)
t dx. Let α be a

multi-index. We use Lemmas 8 and 10 and to find

E(ǫ)
m

′
(t) =

∑

|α|≤m

∫

Td

∂αρ(ǫ)∂αρ
(ǫ)
t dx

=
∑

|α|≤m

∫

Td

∂αρ(ǫ)∂α
(

J (ǫ)
[

δ∆(u+J (ǫ)[ρ(ǫ)]

− κM(J (ǫ)[ρ(ǫ)]))
]

+ η − ωρ(ǫ) + I[γρ(ǫ)u(ǫ)]− γρu(ǫ)
)

dx

≤
∑

|α|≤m

δ

∫

Td

∂αρ(ǫ)∂αJ (ǫ)[∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))]dx

+ ||ρ(ǫ)||Hm(Td)

(

||η||Hm(Td) + ||ωρ(ǫ)||Hm(Td)

+ ||I[γρ(ǫ)u(ǫ)]||Hm(Td) + ||γρ(ǫ)u(ǫ)||Hm(Td)

)

. ||ρ(ǫ)||Hm(Td) + (1 +B)||ρ(ǫ)||2Hm(Td)

+
∑

|α|≤m

δ

∫

Td

∂αρ(ǫ)∂αJ (ǫ)[∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))]dx (14)

.m

∑

|α|≤m

∫

Td

∂αρ(ǫ)∂αJ (ǫ)[∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))]dx

+ ||ρ(ǫ)||Hm(Td) + ||ρ(ǫ)||m+1
Hm(Td)

. (15)
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We used that ||γρ(ǫ)u(ǫ)||Hm(Td) ≤ ||γ||Hm(Td)||ρ(ǫ)u+ − κM(ρ(ǫ))||Hm(Td) . ||ρ(ǫ)||Hm(Td) + (1 +

B)||ρ(ǫ)||Hm(Td).
We need to focus our attention on the term

X =
∑

|α|≤m

∫

Td

∂αρ(ǫ)∂αJ (ǫ)[∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))]dx

=
∑

|α|≤m

∫

Td

∂αρ(ǫ)J (ǫ)[∂α
(
∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))

)
]dx

=
∑

|α|≤m

∫

Td

J (ǫ)[∂αρ(ǫ)]∂α
(
∆(u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))

)
dx

=
∑

|α|≤m

∫

Td

∂αJ (ǫ)[ρ(ǫ)]∇ · ∇∂α
(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
dx

= −
∑

|α|≤m

∫

Td

∇∂αJ (ǫ)[ρ(ǫ)] · ∇∂α
(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
dx (16)

We made use of the argument of the outer J (ǫ) being in H∞(Td) (i.e. in Hm(Td) for all m), the
L2(Td)-properties of the factors, and ρ(ǫ) ∈ Hm(Td).

For any |α| < m we have the terms of X are

≤ ||J (ǫ)[ρ(ǫ)]||Hm(Td) × (u+||J (ǫ)[ρ(ǫ)]||Hm(Td) + ||κM(J (ǫ)[ρ(ǫ)])||Hm(Td))

≤ ||J (ǫ)[ρ(ǫ)]||Hm(Td) × (u+||J (ǫ)[ρ(ǫ)]||Hm(Td) + ||κ||Hm(Td)||M(J (ǫ)[ρ(ǫ)])||Hm(Td))

. ||J (ǫ)[ρ(ǫ)]||2Hm(Td) + (1 +B)||J (ǫ)[ρ(ǫ)]||2Hm(Td)

. ||ρ(ǫ)||2Hm(Td) + (1 +B)||ρ(ǫ)||2Hm(Td)

. ||ρ||2Hm(Td) + ||ρ||m+1
Hm(Td)

.

And so we only need to concern ourselves with the case |α| = m. Then

−
∫

Td

∇∂αJ (ǫ)[ρ(ǫ)] · ∇∂α
(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
dx

= −
∑

i

∫

Td

∂α+eiJ (ǫ)[ρ(ǫ)]∂α+ei
(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
dx

= −
∑

i

∫

Td

[

∂α+eiJ (ǫ)[ρ(ǫ)]



u+∂α+eiJ (ǫ)[ρ(ǫ)]

−
∑

β≤α+ei

(
α+ ei
β

)

∂βκ




∑

σ∈P(α+ei−β)

M (|σ|)(J (ǫ)[ρ(ǫ)])
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)]









]

dx.

At this point, we consider multiple cases upon the terms of the integrand being summed over β and
σ. The form, F , of many of the terms being summed can be represented as

F =

∫

Td

Q(J (ǫ)[ρ(ǫ)], x)∂α+eiJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)],

where
∑

ζ∈σ |ζ | = m+ 1− |β|.
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• case 1: all terms being summed where |β| ≥ 2, after a single integration by parts, take the
form

C1 :=

∫

Td

Q1(J (ǫ)ρ(ǫ), x)∂αJ (ǫ)[ρ(ǫ)]∂eiJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)]dx

+

∫

Td

Q2(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)]dx

+

∫

Td

Q3(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ̃

∂ζJ (ǫ)[ρ(ǫ)]dx,

where |α| = m,
∑

ζ∈σ̃ |ζ | ≤ m, |σ̃| ≤ m − 1, and Q1, Q2, and Q3 denote smooth functions in
their arguments. Then, by Lemma 9, we conclude that

C1 . (1 + B̄)||ρ(ǫ)||2Hm(Td) . ||ρ(ǫ)||2Hm(Td) + ||ρ(ǫ)||m+3
Hm(Td)

.

• case 2: all terms being summed where |β| = 1 and |σ| = 1 take the form

C2 :=

∫

Td

∂α+eiJ (ǫ)[ρ(ǫ)]∂ejκM ′(J (ǫ)[ρ(ǫ)])∂α+ei−ejJ (ǫ)[ρ(ǫ)]dx,

where j is some value in {1, 2, ..., d}.
The terms can be integrated by parts once to furnish

C2 =

∫

Td

1

2
(∂α+ei−ejJ (ǫ)ρ(ǫ))2

(
∂2ejκM ′(J (ǫ)ρ(ǫ)) + ∂ejκM ′′(J (ǫ)ρ(ǫ))∂ejρ(ǫ)

)
dx

≤ 1

2
||∂2ejκM ′(J (ǫ)ρ(ǫ)) + ∂ejκM ′′(J (ǫ)ρ(ǫ))∂ejρ(ǫ)||L∞(Td)

×
∫

Td

(∂α+ei−ejJ (ǫ)ρ(ǫ))2dx

. (1 + B̄1/(m+1))||ρ(ǫ)||2Hm(Td)

. (1 + ||ρ(ǫ)||Hm(Td))||ρ(ǫ)||2Hm(Td)

= ||ρ(ǫ)||2Hm(Td) + ||ρ(ǫ)||3Hm(Td),

where the B̄-term comes from the boundedness of the terms in the norm, with D1ρ(ǫ) bounded
by B̄1/(m+1).

• case 3: all terms being summed where |β| = 1 and m ≥ |σ| ≥ 2 after a single integration by
parts take the form

C3 :=

∫

Td

Q1(J (ǫ)ρ(ǫ), x)∂αJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)]dx

+

∫

Td

Q2(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]∂eiJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ(ǫ)]dx

+

∫

Td

Q3(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ̃

∂ζJ (ǫ)[ρ(ǫ)]dx,
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where |α| = m,
∑

ζ∈σ̃ |ζ | = m + 1, |σ̃| ≤ m, and Q1, Q2, and Q3 denote smooth functions in
their arguments. Then by Lemma 9, we conclude that

C3 . (1 + B̄)||ρ(ǫ)||2Hm(Td) . ||ρ(ǫ)||2Hm(Td) + ||ρ(ǫ)||m+3
Hm(Td)

.

• case 4: the terms where |β| = 0 and |σ| = 1 can be grouped with the term involving no
summation over β or σ to obtain

C4 := −
∫

Td

∂α+eiJ (ǫ)[ρ(ǫ)](u+∂α+eiJ (ǫ)[ρ(ǫ)]− κM ′(J (ǫ)[ρ(ǫ)])

× ∂α+eiJ (ǫ)[ρ(ǫ)])dx.

The terms can be rearranged in a more transparent fashion:

C4 = −
∫

Td

(u+ − κM ′(J (ǫ)[ρ(ǫ)]))(∂α+eiJ (ǫ)[ρ(ǫ)])2dx ≤ 0

since u+ − κM ′ > 0.

• case 5: the terms where |β| = 0, maxζ∈σ |ζ | = m (so that |σ| = 2) take the form

C5 :=

∫

Td

∂α+eiJ (ǫ)[ρ(ǫ)]κM ′′(J (ǫ)[ρ(ǫ)])∂α+ei−ejJ (ǫ)[ρ(ǫ)]∂ejJ (ǫ)[ρ(ǫ)]dx,

for some j ∈ {1, 2, ..., d}.
We integrate by parts to obtain terms of form

C5 =

∫

Td

1

2
(∂α+ei−ejJ (ǫ)[ρ(ǫ)])2

×
(
∂ejκM ′′(J (ǫ)[ρ(ǫ)])∂ejJ (ǫ)[ρ(ǫ)] + κM ′′′(J (ǫ)[ρ(ǫ)])(∂ejJ (ǫ)[ρ(ǫ)])2

+ κM ′′(J (ǫ)[ρ(ǫ)])∂2ejJ (ǫ)[ρ(ǫ)]
)
dx

≤ 1

2
||∂ejκM ′′(J (ǫ)[ρ(ǫ)])∂ejJ (ǫ)[ρ(ǫ)] + κM ′′′(J (ǫ)[ρ(ǫ)])(∂ejJ (ǫ)[ρ(ǫ)])2

+ κM ′′(J (ǫ)[ρ(ǫ)])∂2ejJ (ǫ)[ρ(ǫ)]||L∞(Td) ×
∫

Td

(∂α+ei−ejJ (ǫ)[ρ(ǫ)])2dx

. (B̄1/(m+1) + B̄2/(m+1))||ρ(ǫ)||2Hm(Td)

. (||ρ(ǫ)||Hm(Td) + ||ρ(ǫ)||2Hm(Td))||ρ(ǫ)||2Hm(Td)

= ||ρ(ǫ)||3Hm(Td) + ||ρ(ǫ)||4Hm(Td).

• case 6: the terms where |β| = 0, maxζ∈σ |ζ | ≤ m− 1 (so that |σ| ≥ 2 and
∑

ζ∈σ |ζ | = m+ 1)
after a single integration by parts take the form

C6 :=

∫

Td

Q1(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζρdx

+

∫

Td

Q2(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)[ρ(ǫ)]∂eiJ (ǫ)[ρ(ǫ)]
∏

ζ∈σ

∂ζJ (ǫ)[ρ]dx

+

∫

Td

Q3(J (ǫ)[ρ(ǫ)], x)∂αJ (ǫ)ρ(ǫ)
∏

ζ∈σ̃

∂ζJ (ǫ)[ρ(ǫ)]dx,
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where
∑

ζ∈σ̃ |ζ | = m + 2, |σ̃| = |σ|, and Q1, Q2, and Q3 are smooth functions in their
arguments. In this case, through Lemma 9, we find

C6 . (1 + B̄)||ρ(ǫ)||2Hm(Td) . ||ρ(ǫ)||2Hm(Td) + ||ρ(ǫ)||m+3
Hm(Td)

.

From all preceding cases, we conclude

E(ǫ)
m

′
(t) . ||ρ(ǫ)||Hm(Td) + (1 + B̄)||ρ(ǫ)||2Hm(Td) (17)

. ||ρ(ǫ)||Hm(Td) + ||ρ(ǫ)||m+3
Hm(Td)

(18)

so that there is a C > 0, independent of ǫ, where

E(ǫ)
m

′
(t) ≤ C

(

E(ǫ)
m

1/2
+ E(ǫ)

m

(m+3)/2
)

. (19)

We used 1 +B . 1 + B̄.

While E
(ǫ)
m was originally defined in terms of the Hm(Td)-norm of ρ(ǫ), we can also consider it

a function in isolation evolving according to the differential inequality (19). For the rest of the

analysis, we treat E
(ǫ)
m as such.

We note that if E
(ǫ)
m (0) < 1 then until E

(ǫ)
m reaches 1 (if it does),

E(ǫ)
m

′
(t) ≤ 2CE(ǫ)

m

1/2
.

Also, if E
(ǫ)
m (0) ≥ 1 then (in the worst case where it stays at or above 1)

E(ǫ)
m

′
(t) ≤ 2CE(ǫ)

m

(m+3)/2
.

Thus,

E(ǫ)
m (t) ≤ Em(t) :=

{

(E
(ǫ)
m (0)1/2 + 2Ct)2, E

(ǫ)
m (0) < 1

(E
(ǫ)
m (0)

−(m+1)/2
− (m+ 1)Ct)−2/(m+1), E

(ǫ)
m (0) ≥ 1

<∞ (20)

over [0, TE) where

TE =







1−Eǫ
m(0)1/2

2C
, E

(ǫ)
m (0) < 1

E
(ǫ)
m (0)

−(m+1)/2

(m+1)C
, E

(ǫ)
m (0) ≥ 1.

(21)

Choosing 0 < ̟m < TE completes the proof of (1), (3), and (4), and while E
(ǫ)
m could blow up

in finite time, it is finite over [0, ̟m]. The time ̟m may depend upon m but not ǫ.

By moving the terms of case 4 to the left side of the overall inequality we built for E
(ǫ)
m

′
(t), we

can actually show that E
(ǫ)
m

′
(t) + ||Dm+1J (ǫ)[ρ(ǫ)]||2

L2(Td)
. E

(ǫ)
m

1/2
+ E

(ǫ)
m

(m+3)/2
. Then integrating,

we have E
(ǫ)
m (t)+

∫ t

0
||Dm+1J (ǫ)[ρ(ǫ)]||2L2(Td)ds . ξm+(ξ

1/2
m +ξ

(m+3)/2
m )t <∞ on [0,min{̟m, TK,ǫ,m}).

This comes from the fact that u+ − κM ′ is strictly bounded below by a positive constant. Thus
item (2) is established.

Remark 9. The function Em(t) obtained may depend upon m. As the regularity we enforce upon
the solutions increases, the shorter the interval over which a bound exists may become. The initial
condition may in fact be more regular than Hm(Td).
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Remark 10. The min{̟m, TK,ǫ,m} is necessary here because at present we do now know whether
the solution ρ(ǫ) leaves the set OK before ̟m. It’s also possible the function Em(t) ceases to exist (it
is a worst case upper bound) but solutions themselves still exist up to t = TK,ǫ,m.

Corollary 1. Let ρ(ǫ), ξm, and Em be defined as in Proposition 2 with m > d∗ := 3 + d an integer.
Then ρ(ǫ) ∈ L2([0, T̃K,ǫ,m];H

m+1(Td)) where T̃K,ǫ,m := min{̟m, TK,ǫ,m}. Also, ||ρ(ǫ)||Hm+1(Td)(t) <∞
for a.e. t ∈ [0, T̃K,ǫ,m].

Proof. The L2([0, T̃K,ǫ,m];H
m+1(Td))-part part can be gleaned from Proposition 2. In particular it

follows that
∫ T̃K,ǫ,m

0
||Dm+1J (ǫ)[ρ(ǫ)]||2

L2(Td)
ds ≤ ξm + (ξ

1/2
m + ξ

(m+3)/2
m )T̃K,ǫ,m < ∞. Taking ǫ ↓ 0, we

see that indeed, Dm+1ρ(ǫ) ∈ L2([0, T̃K,ǫ,m];L
2(Td)), which means ρ(ǫ) ∈ L2([0, T̃K,ǫ,m];H

m+1(Td)) or
else the bound could not be independent of ǫ. Then, we must have that ρ(ǫ) ∈ Hm+1(Td) for a.e.
0 ≤ t ≤ T̃K,ǫ,m.

With parameters like T̃K,ǫ,m, there are a lot of dependencies. The next proposition allows us to
break those dependencies.

Proposition 3 (Reducing Dependencies). Consider the setup of Theorem 2 where m > d∗ := 3+ d
is an integer, Em is the function found in Proposition 2 with ξm = ||Em||L∞([0,̟m]), and choose
K ∼

√
ξm so that even if a solution lasted in OK up to time ̟m, ||ρ(ǫ)||Hm(Td) < K/2. Let the

solutions ρ(ǫ) ∈ C1([0, TK,ǫ,m);OK) have a maximal interval of existence, [0, TK,ǫ,m) with ǫ > 0
arbitrary. Then

• There is a K∗, depending on K, so that on [0, TK,ǫ,m), ||ρ(ǫ)t ||L∞(Td) < K∗ and the minimum

value of ρ(ǫ) is bigger than or equal to ρ
0
−K∗t.

• For the maximal interval of existence of solutions ρ(ǫ) ∈ C1([0, TK,ǫ,m);OK) we have TK,ǫ,m >
Tm := min{̟m, T̃0,m} where T̃0,m :=

ρ
0

4K∗ .

Proof. By Theorem 2, we have a solution ρ(ǫ) ∈ C1([0, TK,ǫ,m);H
m(Td)) with ρ(ǫ)(t) ∈ Hm(Td) ⊂

C2(Td). We study the operator A(ǫ) and note that

||A(ǫ)[ρ(ǫ)]||L∞(Td) = ||δJ (ǫ)∆(J (ǫ)[u+ρ(ǫ) − κM(J (ǫ)[ρ(ǫ)])]) + η − ωρ(ǫ)

+ (I[γρ(ǫ)u(ǫ)]− γρ(ǫ)u(ǫ))||L∞(Td)

. ||η||L∞(Td) + ||ωρ(ǫ)||Hm(Td) + ||γρ(ǫ)u(ǫ)||Hm(Td) + ||I[γρ(ǫ)u(ǫ)]||Hm(Td)

+ ||∆(J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)]))||L∞(Td)

. ||η||L∞(Td) + ||ωρ(ǫ)||Hm(Td) + ||γρ(ǫ)u(ǫ)||Hm(Td) + ||I[γρ(ǫ)u(ǫ)]||Hm(Td)

+ ||J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])||Hm(Td)

. 1 + ||ρ(ǫ)||Hm(Td) + ||ρ(ǫ)||mHm(Td).

The first inequality comes from the Triangle Inequality and bounding || · ||L∞(Td) of a smooth
argument by the || · ||L∞(Td) of that argument; the next inequality follows from Sobolev embedding

with m > d/2 + 2. Then with ρ(ǫ) ∈ Hm(Td), along with Lemmas 6, 8 and 10, the final inequality
follows.

On [0, TK,ǫ,m), ||ρ(ǫ)||Hm(Td) < K and so we have some K∗ > 0 so that ||A(ǫ)||L∞(Td) ≤ K∗. Then

for x ∈ T
d, |ρ(ǫ)t (t, x)| ≤ K∗ and thus ρ(ǫ)(t, x) ≥ ρ

0
−K∗t, which yields item 1.
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To handle item 2, suppose, by way of contradiction, that TK,ǫ,m ≤ Tm. We first note that on
[0, TK,ǫ,m) the solutions are in OK and thus 1

ρ(ǫ)
≤ 1

ρ
0
−K∗t

≤ 1
ρ
0
−K∗TK,ǫ,m

≤ 1
ρ
0
−K∗T̃0,m

≤ 4
3ρ

0

. Also by

choice of K, since TK,ǫ,m ≤ ̟m, we have ||ρ(ǫ)||Hm(Td) < K/2.

By the Extension Lemma (Lemma 3), with finite TK,ǫ,m, either limt↑TK,ǫ,m
||ρ(ǫ)||Hm(Td) = K or

limt↑TK,ǫ,m
|| 1
ρ(ǫ)

||L∞(Td) =
2
ρ
0

. Neither is possible given the bounds above, whence TK,ǫ,m > Tm.

The remaining two lemmas in this step can be used to gain one more order of regularity in
solutions after t = 0.

Lemma 12. Let ρ(ǫ), B̄, E
(ǫ)
m , and b∗ be defined as in Proposition 2 with m > d∗ := 3+d an integer.

Then as long as ||ρ(ǫ)||Cb∗(Td) <∞, E
(ǫ)
m remains finite.

Proof. If E
(ǫ)
m ≤ 1 then there is nothing to prove. Otherwise, if E

(ǫ)
m > 1, we have that E

(ǫ)
m

′
(t) ≤

2C(1 + B̄)E
(ǫ)
m for some C > 0. While E

(ǫ)
m > 1, we have from Grönwall that

E(ǫ)
m (t) ≤ E(ǫ)

m (0) exp(

∫ t

0

2C(1 + B̄(s))ds).

Thus, as long as B̄ remains finite, we are guaranteed a finite energy.

Lemma 13. Let ρ(ǫ) and Tm defined as in Proposition 3 (note that m > d∗ := 3 + d). Then
ρ(ǫ) ∈ C((0, Tm];Hm+1(Td)).

Proof. From ρ(ǫ) ∈ Hm+1(Td) a.e. on [0, Tm] (Corollary 1) we can see that for each time point
s ∈ (0, Tm] (where ρ

(ǫ) ∈ Hm(Td)), there is a time s′ < s where ρ(ǫ)(s′) ∈ Hm+1(Td). Consider
the ODE system for a function ̺ with ̺(t = s′) = ρ(ǫ)(s′) ∈ Hm+1(Td) as an initial condition.
Then the same analysis can be done to find a solution ̺ ∈ C1([s′, s′′];Hm+1(Td)) for some s′′ > s′.

Furthermore, the energy E
(ǫ)
m+1 is bounded provided ||ρ(ǫ)||Cb∗∗ is finite, where b∗∗ is the largest integer

not exceeding (m+1)/2+1. Since m > 3+d, ||ρ(ǫ)||Cb∗∗ is finite on [0, Tm]. This stems from the fact
that ||ρ(ǫ)||Hm(Td) is finite on [0, Tm]. Also, the solution stays bounded below by ρ

0
/2. By uniqueness

of solutions, ̺ = ρ(ǫ) on [s′, s′′] with s′′ ≥ Tm and we have ρ(ǫ) ∈ C1((0, Tm];H
m+1(Td)).

4.3 Step 3: Extracting a Convergent Subsequence in Weaker Space

We ultimately wish to take a subsequence of ρ(ǫ) converging to a solution with our desired properties.
Through Lemma 14, we firstly show that a subsequence can be extracted that converges weakly to
an element of L∞([0, Tm];H

m(Td)). The weak convegence on its own is insufficient and we thus also
find a subsequence that converges strongly, but in a weaker space. Owing to the nonlinearities in
the derivative terms, maneuvering the equations in such a way as to prove ρ(ǫ) is Cauchy in some
weaker space as ǫ ↓ 0 is difficult. However, we really only require that a subsequence converges and
for that we can use Aubin-Lions-Dubinskĭı (Lemma 4).

Lemma 14 (Weakly Convergent Subsequence). Let ρ(ǫ) be defined as in Theorem 2 and let m > 3+d
where m is an integer. Then there is a subsequence of ρ(ǫ) converging weakly in L2([0, Tm];H

m(Td))
to ρ∗ ∈ L∞([0, Tm];H

m(Td)).

Proof. From Proposition 2, ρ(ǫ) is bounded in L∞([0, Tm];H
m(Td)) by some K > 0 for all ǫ > 0 and

thus the sequence is bounded in L2([0, Tm];H
m(Td)). By Lemma 5, there is a weakly convergent

subsequence ρ(ǫ
′) converging to some ρ∗ ∈ L2([0, Tm];H

m(Td)).
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This forces ρ∗ ∈ L∞([0, Tm];H
m(Td)). Were this not the case then let Z > 2K and let the set

TZ = {t| ||ρ∗||Hm(Td) ≥ Z}. We have that |TZ| > 0. Let us denote f(t, x) = χTZ
(t)ρ∗(t, x) ∈

L2([0, Tm];H
m(Td)), where χI denotes the characteristic function on I. Then for all ǫ′ > 0,

|(ρ(ǫ′) − ρ∗, f)L2([0,Tm];Hm(Td))| = |
∫

TZ

(ρ(ǫ
′) − ρ∗, ρ∗)Hm(Td)dt|

= |
∫

TZ

(

(ρ(ǫ
′), ρ∗)Hm(Td) − ||ρ∗||2Hm(Td)

)

dt|

≥ |
∫

TZ

−
||ρ∗||2Hm(Td)

2
dt|

≥ |TZ |Z2/2.

The second last inequality stems from (ρ(ǫ
′), ρ∗)Hm(Td) ≤ ||ρ(ǫ′)||Hm(Td)||ρ∗||Hm(Td) and noting that

on TZ , ||ρ∗||Hm(Td) ≥ Z = 2K > 2||ρ(ǫ′)||Hm(Td). Thus, ρ
(ǫ′) does not converge weakly to ρ∗, a

contradiction.

Lemma 15 (Strongly Convergent Subsequence). Let ρ(ǫ) be the subsequence obtained from Lemma
14 and d/2 < m′ < m. Then there is a subsequence of ρ(ǫ) converging strongly to
ρ∗ ∈ C0([0, Tm];H

m′
(Td)).

Proof. We note that Hm(Td) is compactly embedded in Hm′
(Td), which is continuously embedded

in L∞(Td) (Lemma 7). We also have that ρ(ǫ) is bounded in L∞([0, Tm];H
m(Td)) by Proposition 2.

Thus, if we can show that ρ
(ǫ)
t is bounded in L∞([0, Tm];L

∞(Td)) then, by Aubin-Lions-Dubinskĭı
(Lemma 4), there is a strongly convergent subsequence in L∞([0, T ];Hm′

(Td)). From the proof of
Proposition 3,

||ρ(ǫ)t ||L∞(Td) . 1 + ||ρ(ǫ)||mHm(Td).

With this, we can conclude there is a strongly convergent subsequence of ρ(ǫ) converging to ρ∗ ∈
L∞([0, Tm];H

m′
(Td)) as ǫ ↓ 0. Since each term in the sequence is continuous over [0, Tm] and

the convergence is in the L∞-norm over [0, Tm], by the Uniform Limit Theorem, the limit is also
continuous and hence in ρ∗ ∈ C0([0, Tm];H

m′
(Td)).

4.4 Step 4: Obtaining a Strong Solution in Target Space

To show that the limit ρ∗ ∈ C0([0, Tm];H
m(Td)), we work with the weak topology. The key insight

for this stage is that continuity in the norm plus weak continuity gives strong continuity.

Lemma 16 (Weak Continuity). Let ρ0 ∈ Hm(Td) with integers m > m′ with m > d∗ = 3 + d,
m′ > d/2 and let ρ(ǫ) and ρ∗ be the subsequence and limit found in Lemma 15. Then ∀ǫ > 0, ρ(ǫ) ∈
CW ([0, Tm];H

m(Td)) and ρ(ǫ) → ρ∗ in CW ([0, Tm];H
m(Td)) as ǫ ↓ 0.

Proof. Since ρ(ǫ) ∈ C0([0, Tm];H
m(Td)), we also have ρ(ǫ) ∈ CW ([0, Tm], H

m(Td)). Additionally, from
ρ(ǫ) → ρ∗ uniformly on C0([0, Tm];H

m′
(Td)), we have that for any φ̃ ∈ H−m′

(Td),
∫

Td φ̃(ρ
(ǫ)−ρ∗)dx→

0 as ǫ ↓ 0.
Let max{||ρ∗||L∞([0,Tm];Hm(Td)), supǫ>0 ||ρ(ǫ)||L∞([0,Tm];Hm(Td))} ≤ U.

We next note that for m′ < m, H−m′
(Td) is a dense subset of H−m(Td) so that given any

φ ∈ H−m(Td) and ν > 0, there is φ̃ ∈ H−m′
(Td) with ||φ− φ̃||H−m(Td) < ν/(3U).

20



We wish to prove that for any φ ∈ H−m(Td),
∫

Td φ(ρ
(ǫ)−ρ∗)dx→ 0 as ǫ ↓ 0. Let ν > 0 and choose

φ̃ ∈ H−m′
(Td) so ||φ− φ̃||H−m(Td) < ν/(3U). Choose ǫ′ so that ǫ < ǫ′ gives |

∫

Td φ̃(ρ
(ǫ)−ρ∗)dx| < ν/3.

Then if ǫ < ǫ′,

|
∫

Td

φ(ρ(ǫ) − ρ∗)dx| ≤ |
∫

Td

(φ− φ̃)
︸ ︷︷ ︸

∈H−m(Td)

ρ(ǫ)
︸︷︷︸

∈Hm(Td)

|dx

+ |
∫

Td

φ̃
︸︷︷︸

∈H−m′ (Td)

(ρ(ǫ) − ρ∗)
︸ ︷︷ ︸

weak Hm′ (Td) convergence

dx|

+

∫

Td

(φ̃− φ)
︸ ︷︷ ︸

∈H−m(Td)

ρ∗
︸︷︷︸

∈Hm(Td)

dx|

≤ ||φ− φ̃||H−m(Td)||ρ(ǫ)||Hm(Td) + |
∫

Td

φ̃(ρ(ǫ) − ρ∗)dx|

+ ||φ− φ̃||H−m(Td)||ρ∗||Hm(Td)

≤ ν

3U
U +

ν

3
+

ν

3U
U

= ν.

Lemma 17 (Norm Continuity Plus Weak Continuity Gives Strong Continuity). Suppose f ∈
CW ([0, T ];Hm(Td)) and ||f ||Hm(Td) ∈ C0([0, T ]). Then f ∈ C0([0, T ];Hm(Td)).

Proof. Let t0 ∈ [0, T ]. We wish to show limt→t0 f(t) = f(t0) where the limit is understood to be a
left-/right-sided limit at the right-/left-endpoint. We compute

lim
t→t0

||f(t)− f(t0)||2Hm(Td) = lim
t→t0

(f(t)− f(t0), f(t)− f(t0))Hm(Td)

= lim
t→0

(

||f(t)||2Hm(Td) + ||f(t0)||2Hm(Td)

− (f(t), f(t0))Hm(Td) − (f(t0), f(t))Hm(Td)

)

= lim
t→0

(

||f(t0)||2Hm(Td) + ||f(t0)||2Hm(Td)

− (f(t), f(t0))Hm(Td) − (f(t0), f(t))Hm(Td)

)

= lim
t→0

(

(f(t0), f(t0)− f(t))Hm(Td)

+ (f(t0)− f(t), f(t0))Hm(Td)

)

= 0.

To reach equality 3, we used the continuity of ||f ||Hm(Td). To reach equality 5, we used the weak
continuity and that f(t) converges weakly to f(t0) by testing against f(t0) ∈ Hm(Td).

To obtain our strong solution result, we first prove a proposition asserting that solutions stem-
ming from initial data ρ0 ∈ Hm(Td) in fact stay in Hm(Td) over their interval of existence.

Proposition 4. Let ρ0 ∈ Hm(Td) with m > d∗ : 3 + d an integer and let ρ(ǫ) be the subsquence of
Lemma 15 and ρ∗ and Tm be as in Lemma 15. Then ρ∗ ∈ C0([0, Tm];H

m(Td)).
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To prove Proposition 4, we prove a lemma affirming that ||ρ∗||Hm(Td) is continous at t = 0.

Lemma 18 (Continuity Properties of Solution). Let ρ0 ∈ Hm(Td) with m > d∗ := 3 + d an integer
and let ρ(ǫ) and ρ∗ be defined as in Lemma 15. Then ||ρ∗||Hm(Td) is strongly right-continuous at
t = 0.

Proof. From Eq. (13), for all ǫ > 0, 1
2
||ρ(ǫ)||2Hm(Td) ≤ Em(t) with Em(0) =

1
2
||ρ0||2Hm(Td). Then

limt↓0||ρ∗(t)||Hm(Td) ≤ limt↓0limǫ↓0||ρ(ǫ)(t)||Hm(Td) ≤ limt↓0

√

2Em(t) = ||ρ0||Hm(Td).

Also, since ρ∗ ∈ CW ([0, Tm];H
m(Td)), we have limt↓0||ρ∗(t)||Hm(Td) ≥ ||ρ0||Hm(Td). To see this,

note that with ρ0 ∈ Hm(Td),

||ρ0||2Hm(Td) = lim
t↓0

(ρ∗(t), ρ0)Hm(Td) = limt↓0(ρ
∗(t), ρ0)Hm(Td)

≤ limt↓0(||ρ∗(t)||Hm(Td)||ρ0||Hm(Td)) = ||ρ0||Hm(Td)limt↓0||ρ∗(t)||Hm(Td).

Together these give
lim
t↓0

||ρ∗||Hm(Td) = ||ρ0||Hm(Td) = ||ρ∗(0)||Hm(Td).

Now, we complete the proof of Proposition 4.

Proof of Proposition 4. Let 0 < θ < Tm. Then ρ
(ǫ) ∈ C0((θ, Tm];H

m′
(Td)) for all m′ < m + 1 and,

in particular, ρ(ǫ) has a subsequence (as per Lemma 15) that converges in C0((θ, Tm];H
m(Td)) and

thus we have ρ∗ ∈ C0((0, Tm];H
m(Td)) and ||ρ∗||Hm(Td) is continuous on (0, Tm]. From Lemma 18,

||ρ∗||Hm(Td) is continuous at t = 0 so ||ρ∗||Hm(Td) ∈ C0([0, Tm]). Combined with the weak continuity,
we have ρ∗ ∈ C0([0, Tm];H

m(Td)).

4.5 Step 5: Convergence Analysis

In this final step, we finish proving our main result. The most important element is that the
mollified equation, with its derivatives, in fact converges uniformly to an equation for ρ∗ consistent
with equations (1) and (5)-(7). Before proving Theorem 1, we first prove establish a couple of
helpful results:

Lemma 19 (Limiting Derivatives). Let m > d∗ := 3 + d be an integer and suppose that ρ(ǫ) is the
subsequence of approximators converging to ρ∗ as in Lemma 15. Then for all multi-indices |α| ≤ 2,
limǫ↓0 J (ǫ)[∂αρ(ǫ)] = ∂αρ∗ uniformly on T

d for a.e. t ∈ [0, Tm].

Proof. It is done by computation and bounding an error. We use Lemmas 6 and 7.

J (ǫ)[∂αρ(ǫ)] = J (ǫ)[∂αρ∗] + J (ǫ)[∂α(ρ(ǫ) − ρ∗)].

From ρ∗ ∈ C0([0, Tm];H
m(Td)), we have D2ρ∗(t) ∈ Cℓ(Td) where ℓ > d/2. Thus, for 0 ≤ |α| ≤ 2,

limǫ↓0 J (ǫ)[∂αρ∗(t)] = ∂αρ∗(t) uniformly.
Let m > m′ > 2 + d/2. We have ρ(ǫ) → ρ∗ in Hm′

(Td) on [0, Tm] with ∂
α(ρ(ǫ) − ρ∗) again ∈ Cℓ,

ℓ > d/2. Then with Lemma 6 item 1,

||J (ǫ)[∂α(ρ(ǫ) − ρ∗)]||L∞(Td) ≤ ||∂α(ρ(ǫ) − ρ∗)||L∞(Td)

. ||ρ(ǫ) − ρ∗||Hm′ (Td) → 0.
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Proposition 5 (Uniform Convergence of ρ
(ǫ)
t ). Let m > d∗ := 3 + d and suppose that ρ(ǫ) is the

subsequence of approximators converging to ρ∗ as in Lemma 15. Then the sequence ρ
(ǫ)
t converges

uniformly in C0([0, Tm]; C0(Td)).

Proof. We consider groups of terms for ρ
(ǫ)
t : the terms involving the Laplacian, the nonlocal oper-

ator, and all remaining terms. Denote u∗ = u(κ, ρ∗). We wish to show that all of the spatial terms
and derivatives converge uniformly. We begin with the derivative terms (see Eq. (11)):

δ lim
ǫ↓0

(

J (ǫ)[∆(u+J (ǫ)ρ(ǫ) − κM(J (ǫ)ρ(ǫ)))]
)

= δ lim
ǫ↓0

(

u+J (ǫ)[∆J (ǫ)[ρ(ǫ)]]− J (ǫ)[M(J (ǫ)ρ(ǫ))∆κ + 2M ′(J (ǫ)ρ(ǫ))∇κ · ∇J (ǫ)ρ(ǫ)

+ κM ′(J (ǫ)ρ(ǫ))∆J (ǫ)ρ(ǫ) + κM ′′(J (ǫ)ρ(ǫ))|∇J (ǫ)ρ(ǫ)|2]
)

= δ lim
ǫ↓0

(

u+J (ǫ)∆ρ(ǫ) −M(J (ǫ)ρ(ǫ))∆κ− 2M ′(J (ǫ))∇κ · ∇J (ǫ)ρ(ǫ)

− κM ′(J (ǫ)ρ(ǫ))∆J (ǫ)ρ(ǫ) − κM ′′(J (ǫ)ρ(ǫ))|∇J (ǫ)ρ(ǫ)|2
)

= δ lim
ǫ↓0

(

u+∆ρ∗ −M(J (ǫ)ρ(ǫ))∆κ− 2M ′(J (ǫ)ρǫ)∇κ · ∇ρ∗

− κM ′(J (ǫ)ρ(ǫ))∆ρ∗ − κM ′′(J (ǫ)ρ(ǫ))|J (ǫ)∇ρ(ǫ)|2
)

= δ
(

u+∆ρ∗ −M(ρ∗)∆κ− 2M ′(ρ∗)∇κ · ∇ρ∗ − κM ′(ρ∗)∆ρ∗ − κM ′′(ρ∗)|∇ρ∗|2
)

= δ∆(ρ∗u∗).

Above, the second equality came from J (ǫ)[f ] converging uniformly to f when f ∈ Cℓ(Td) and
ℓ > d/2. Each expression is in fact in C∞(Td) due to the smooth functions and further mollifications.
The third inequality comes from Lemma 19 and from selecting 2 +m′ < m and noting that

||∆J (ǫ)[ρ(ǫ)]−∆ρ∗||L∞(Td) . ||∆J (ǫ)[ρ(ǫ)]−∆ρ∗||Hm′ (Td)

≤ ||J (ǫ)[ρ(ǫ)]− ρ∗||Hm′+2(Td)

≤ ||J (ǫ)[ρ(ǫ)]− J (ǫ)[ρ∗]||Hm′+2(Td) + ||J (ǫ)[ρ∗]− ρ∗||Hm′+2(Td).

Both terms go to zero: the first from ρ(ǫ) → ρ∗ in Hm′+2(Td) (since d/2 < m′ + 2 < m) and the
second from ρ∗ ∈ Hm(Td) (item 4 of Lemma 6). Similar logic applies to the ∇J (ǫ)[ρ(ǫ)] → ∇ρ∗. The
fourth equality stems from J (ǫ)[∂αρ(ǫ)] converging uniformly to ∂αρ∗ for 0 ≤ |α| ≤ 2 by Lemma 19
and making use of the Lipschitz properties of M , M ′ and M ′′.

The local terms work out trivially since, for each t, ρ(ǫ) converges uniformly to ρ∗:

lim
ǫ↓0

(

η − ωρ(ǫ) − γ(u+ρ(ǫ) − κM(ρ(ǫ))
)

= η − ωρ∗ − γ(u+ρ∗ − κM(ρ∗)).

Finally, the nonlocal operator can be handled by the Dominated Convergence Theorem [30]. We
have that |τ(y, x)γ(y)ρ(ǫ)(t, y)u(κ, ρ(ǫ))| . ||ρ(ǫ)||∞ which is finite on [0, Tm] due to Proposition 3
and Sobolev Embedding. Thus, for each x ∈ T

d, the integrand of the nonlocal operator is bounded
by an L1(Td) constant function and from the convergence of ρ(ǫ), we conclude

lim
ǫ↓0

∫

Td

τ(y, x)γ(y)ρ(ǫ)(t, y)u(κ(y), ρ(ǫ)(t, y))dy =

∫

Td

τ(y, x)γ(y)ρ∗(t, y)u(κ(y)ρ∗(t, y))dy.
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To see that the convergence is uniform, let

G(ǫ)(x) =

∫

Td

|τ(y, x)γ(y)(ρ(ǫ)(t, y)u(κ(y), ρ(ǫ)(t, y))− ρ∗(t, y)u∗(κ(y), ρ∗(t, y)))|dy.

Then with |τ |, |γ| ≤ Ξ0, we have

|G(ǫ)(x)| ≤ Ξ2
0

∫

Td

|ρ(ǫ)(t, y)u(κ(y), ρ(ǫ)(t, y))− ρ∗(t, y)u(κ(y), ρ∗(t, y))|dy → 0 as ǫ ↓ 0

since ρ(ǫ) → ρ∗ uniformly and |Td| = 1.

Proof of Theorem 1. We have m > d∗ := 3 + d so that Hm(Td) ⊂ C2(Td) and Hm−2(Td) ⊂
C0(Td) from Lemma 7. From Proposition 4, we have the existence of a sequence ρ(ǫ) → ρ∗ ∈
C0([0, Tm];H

m(Td)).
We first verify that ρ∗ is a classical solution. Since ρ∗ ∈ C0([0, Tm];H

m(Td)), it is also in

C0([0, Tm]; C2(Td)). From Proposition 5, the sequence ρ
(ǫ)
t converges uniformly over C0([0, Tm]; C0(Td)).

Additionally, limǫ↓0 ρ
(ǫ)(0) = ρ0 (there is pointwise convergence at t = 0). Therefore limǫ↓0 ρ

(ǫ)
t =

∂t limǫ↓0 ρ
(ǫ) = ρ∗t and we conclude ρ∗(t, x) : [0, Tm]× T

d → R≥0 satisfies

ρ∗t = δ∆(ρ∗u∗) + η − ωρ∗ + I[γρ∗u∗]− γρ∗u∗.

Since ρ∗t ∈ C0(Td), we also have ρ∗ ∈ C1([0, Tm]; C0(Td)).
Upon examination, ρ∗t ∈ Hm−2(Td) since ρ∗ ∈ Hm(Td) with D2ρ∗ ∈ Hm−2(Td) on [0, Tm], all the

data are smooth, and m− 2 > d/2. Thus ρ∗ ∈ C0([0, Tm];H
m(Td)) ∩ C1([0, Tm];H

m−2(Td)).

Remark 11. From Lemma 15 we could have already established a classical solution since m > m′ >
d∗ is sufficient for the uniform convergence of ρ

(ǫ)
t .

5 Conclusions and Future Work

We have proven the local existence of classical solutions to a particular nonlocal, nonlinear parabolic
PDE with time-independent data. We did so through parameterizing a family of regularized so-
lutions with smoothing parameter ǫ and establishing an interval of local existence for the family
independent of ǫ. By passing to a subsequence, we obtained strong convergence to a solution of
the PDE. This methodology is quite broadly applicable to nonlinear PDEs, but from these steps,
we did not obtain global existence. However, given the smoothing properties of parabolic PDEs,
the nondegeneracy condition in u, and the fact the limiting behaviours of the diffusion term are
well-behaved as ρ ↓ 0 and ρ ↑ ∞, we speculate that a stronger result holds: that there exists a
unique solution, smooth in all its arguments, that exists globally in time.

The original model allowed for time-dependent data. However, Picard’s Theorem does not
generalize well to nonautonomous ODEs in Banach spaces. While we can establish local existence
of regularized solutions, the continuation result does not hold. This prevented our obtaining a
limiting solution as ǫ ↓ 0 with time-dependent data. It would be of interest to find other means
of establishing existence of solutions with time-dependent data. One perspective is that for many
applications, piecewise constant data may be useful. Thus, assuming the solutions do exist long
enough, piecewise constant data can be combined sequentially.
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Other useful future directions include studying the PDE with initial conditions in a fractional
Sobolev space (primarily of mathematical interest). Our proofs in bounding the energy of Step 2,
for example, were done for integer values of m. As an additional consideration, the model could
be studied with fractional diffusion. Buildings and roads in a city effectively make for a porous
medium and we take note that fractional diffusion equations [31] can be used in such settings to
more accurately model dispersion.

Acknowledgments

The author thanks Andrea Bertozzi for general guidance in the analysis of nonlinear PDEs, and for
her illuminating discussions and elaborations on the more technical analytic tools needed in this
work (especially in Step 4). The author also thanks Terence Tao and Inwon Kim for taking the
time to discuss this work and providing valuable suggestions and the reviewers for their detailed
constructive feedback in revising this manuscript.

The author acknowledges funding from the Natural Sciences and Engineering Research Council
of Canada (NSERC) [PDF-502-479-2017]. Cette recherche a été financée par le Conseil de recherches
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A Background and Further Proofs

A.1 Background

Derivatives: We will use both Dm and ∂α to denote spatial derivatives in x. For an integer
m ≥ 0, we denote

Dmf

to be all mth-order x-derivatives of f . So writing |D2f | ≤ C we mean that all second-order spatial
derivatives of f are bounded by C. For a multi-index α, we denote

∂αf

to be the single |α|th-order x-derivative of f specified by α.

Hilbert Space Hm(Ω): for a domain Ω, m ∈ N ∪ {0}, and f, g : Ω → R, we define an inner
product

(f, g)Hm(Ω) :=
∑

0≤|α|≤m

∫

Ω

∂αf∂αgdx

with induced norm
||f ||Hm(Ω) = (f, f)

1/2
Hm(Ω).

Then we define
Hm(Ω) = {f : Ω → R| ||f ||Hm(Ω) <∞}.
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If Ω = T
d then an equivalent norm upon Hm(Td) for real-valued m can be defined via

||f ||Hm(Ω) =
∑

k∈Zd

(1 + |k|2)m/2|f̂(k)|2.

Banach Space Lp(Ω): for a domain Ω, 1 ≤ p ≤ ∞, and f : Ω → R, we define the norm

||f ||Lp(Ω) =

{(∫

Ω
|f |pdx

)1/p
, 1 ≤ p <∞

ess supΩ|f |, p = ∞.

Then we define
Lp(Ω) = {f : Ω → R|f is measurable and ||f ||Lp(Ω) <∞}.

Naturally H0(Ω) = L2(Ω).

Hölder Space Cn,α(Ω): for a domain Ω, n ∈ N ∪ {0} and 0 < α ≤ 1 we define the norm

||f ||Cn,α(Ω) = sup
|β|≤n

||∂βf ||L∞(Ω) + sup
x,y∈Ω,x 6=y

|β|=n

|f (β)(x)− f (β)(y)|
|x− y|α .

Then
Cn,α(Ω) = {f | ||f ||Cn,α(Ω) <∞}.

As a convention, we will sometimes use Cℓ(Ω) to indicate a Hölder space. For ℓ ∈ {0, 1, ...} the
notation represents the number of continuous derivatives. But for fractional ℓ, let ℓ = ⌊ℓ⌋ + {ℓ}
decompose ℓ into a whole number part and a fractional part. We then define Cℓ(Ω) := C⌊ℓ⌋,{ℓ}(Ω).

Banach Space Lp(I;X): for an interval I ⊂ R, let X be a Banach space and 1 ≤ p ≤ ∞. For
f : I → X , we define the norm

||f ||Lp(I;X) =
∣
∣
∣

∣
∣
∣

(

||f(t, ·)||X
)∣
∣
∣

∣
∣
∣
Lp(I)

.

Then we define

Lp(I;X) = {f : I → X|f is Bochner integrable and ||f ||Lp(I;X) <∞}.

A reader may refer to a book such as that of Ladas and Lakshmikantham [32] for a definition of
the Bochner integral.

Remark 12. If p = 2 and X = H is a Hilbert space then L2(I;H) is also a Hilbert space with
inner product (f, g)L2(I;H) =

∫

I
(f, g)Hdt.

Banach Space Cn(I;X): for an interval I ⊂ R, let X be a Banach space and n ≥ 0 be an integer.
We define

Cn(I;X) = {f : I → X|f is continuously differentiable up to order n}.

For a function f ∈ Cn(I;X), we denote ḟ = f ′(t) as the derivative of the map f : I → X.
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Space of Continuous Functions in the Weak Topology of Hm(Ω),
CW (I;Hm(Ω)): for an interval I, we define

CW (I;Hm(Ω)) = {f : I → Hm(Td)|∀φ ∈ H−m(Td),

∫

Ω

f(·)φdx ∈ C0(I)}.

We can equivalently define

CW (I;Hm(Ω)) = {f : I → Hm(Td)|∀Φ ∈ Hm(Td), (Φ, f(·))Hm(Td) ∈ C0(I)}.

Inequalities: We will write
f . g

if f, g ≥ 0 and f ≤ Cg for some constant C > 0. In general, the constant C could depend upon
model parameters. When this dependence is important, we will write

f .a,b,c g

to indicate, for instance, if the constant C depends on a, b, c, and possibly other parameters that
are not relevant.

In a like fashion, we write f ∼ g if f, g ≥ 0 and C1f ≤ g ≤ C2f for some C1, C2 > 0.

Chain Rule:

Lemma 20 (Faà di Bruno’s Formula [33]). Let f : R → R and g : Rn → R. Let α be a multi-index
with order at least 1. Then

∂αf(g(x)) =
∑

β∈P(α)

f (|β|)(g(x))
∏

σ∈β

∂σg(x)

where P(α) represents all partitions of α allowing for multiplicity.

Notationally there are many ways of writing Faà di Bruno’s Formula and we have adopted one
that is useful for our computations. To clarify any ambiguities in the statement of the equation, we
consider a concrete example below.

Let f : R → R, g : R2 → R, and consider computing ∂3

∂2x1∂x2
f(g(x)). We have α = (2, 1) which

we identify with the multiset {11, 12, 2} that tracks the derivatives of each component (the subscipts
are added for clarity). This multiset of 3 elements can (allowing for multiplicity) be split into 5
partitions:

{11, 12, 2} i.e. ∂x1x1x2g

{11, 12}, {2} i.e. ∂x1x1g × ∂x2g

{11}, {12, 2} i.e. ∂x1g × ∂x1x2g

{12}, {11, 2} i.e. ∂x1g × ∂x1x2g

{11}, {12}, {2} i.e. ∂x1g × ∂x1g × ∂x2g

Thus, the set

P(α) = {{(2, 1)},
{(2, 0), (0, 1)},
{(1, 0), (1, 1)},
{(1, 0), (1, 1)},
{(1, 0), (1, 0), (0, 1)}}.
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The first element of P(α) corresponds to |β| = 1, the next three elements correspond to |β| = 2,
and the last element corresponds to |β| = 3. Summing all of this up, keeping each term distinct:

∂3

∂2x1∂x2
f(g(x)) = f ′(g(x))

∂3g

∂2x1∂x2
+ f ′′(g(x))

∂2g

∂x21

∂g

∂x2
+ f ′′(g(x))

∂g

∂x1

∂2g

∂x1∂x2

+ f ′′(g(x))
∂g

∂x1

∂2g

∂x1∂x2
+ f ′′′(g(x))

∂g

∂x1

∂g

∂x1

∂g

∂x2
.

Nonautonomous PDEs We require the version of Picard-Lindeloff in a Banach space below to
establish local existence of the approximators to the nonautonomous system. See Theorem 5.1.1 of
[32].

Lemma 21 (Picard-Lindeloff for Nonautonomous ODE in Banach Space). Let (X, || · ||X) be a
Banach space with v0 ∈ X and define the rectangle R0 = {(t, v) ∈ R×X | |t− t0| ≤ α, ||v− v0||X ≤
β}. Let f : R0 → X be continuous in t for each fixed v. Assume that ||f(t, v)|| ≤ M on R0

(uniformly bounded) and that for (t, v1), (t, v2) ∈ R0 we have ||f(t, v1)− f(t, v2)||X ≤ K||v1 − v2||X
(uniformly Lipschitz in t) for nonnegative constants M and K. Let α and β be positive constants
such that αM ≤ β. Then there exists a unique strongly continuously differentiable function v(t)
satisfying

v′(t) = f(t, v(t)), |t− t0| ≤ α

v(t0) = v0.

For a nonautonomous ODE, it is very difficult to say more, such as extending solutions [32].

A.2 Ancillary Results and Proofs

Minor results used to establish the main results of this manuscript are included here. We begin
with Corollaries to Lemma 7.

Corollary 2. Let Ω ⊂ R
d. Let m > d/2 be an integer and v ∈ Hm(Ω). Then for all j ≤ m,

||Djv||L2m/j(Ω) . ||v||Hm(Ω) <∞.

Proof. Choose q = ∞, r = 2, and α = j/m in the Gagliardo-Nirenberg interpolation inequality of
Lemma 7 yielding p = 2m/j so that

||Djv||L2m/j(Ω) . ||v||1−j/m
L∞(Ω)||Dmv||j/mL2(Ω)

≤ ||v||1−j/m
L∞(Ω)||v||

j/m
Hm(Ω)

. ||v||Hm(Ω).

In arriving at the last line we used that m > d/2 so that ||v||L∞(Ω) . ||v||Hm(Ω).

Corollary 3. Let m > d/2 be an integer and v ∈ Hm(Td). Suppose S is a set of multi-indices such
that

∑

s∈S |s| ≤ 2m. Then
∣
∣
∣
∣
∣

∫

Td

∏

s∈S

∂svdx

∣
∣
∣
∣
∣
. ||v|||S|

Hm(Td)
<∞.
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Furthermore, if maxs∈S{|s|} ≤ m then

∫

Td

|
∏

s∈S

∂sv|dx . ||v|||S|
Hm(Td)

.

Proof. First assume that maxS |s| ≤ m. By corollary 2, for s ∈ S, ∂sv ∈ L2m/|s|(Td). Also,

∑

s∈S

1

2m/|s| :=
1

r
≤ 1.

We will use the the generalized Hölder’s inequality in Lemma 7 (item 3). We have

|
∫

Td

∏

s∈S

∂svdx| ≤
∫

Td

|
∏

s∈S

∂sv|dx

. ||
∏

s∈S

∂sv||Lr(Td)

≤
∏

s∈S

||∂sv||L2m/|s|(Td)

.
∏

s∈S

||v||Hm(Td)

= ||v|||S|
Hm(Td)

.

The second line comes from noting that r ≥ 1 so that the L1(Td)-norm in the first line is controlled
by the Lr(Td)-norm. The third line comes from the Generalized Hölder’s inequality and the fourth
line comes from Corollary 2.

If there is s ∈ S such that |s| = m+N for some N > 0 then the sum of all remaining derivative
orders cannot exceed m−N . By applying integration by parts N times, without boundary terms, we
can arrange a sum of terms on which the largest order derivative is m and the sum of all remaining
derivative orders is no larger than m. Then the preceding argument holds.

Lemma 22 (Expanding Products in Differences). Let S be a finite index set of size |S| and place
an (arbitrary) strong ordering ≺ on its elements so S = {s1, s2, ..., s|S|} where si ≺ si+1 for i =
1, ..., |S| − 1. Suppose that we enumerate {fs}s∈S and {gs}s∈S in such a manner. Then

|S|
∏

i=1

fsi −
|S|
∏

i=1

gsi =

|S|
∑

i=1

(fsi − gsi)




∏

1≤j<i

fsj
∏

|S|≥k>i

gsk



 .

Proof. We proceed by induction on |S| and assume without loss of generality that S = {1, 2, ..., n}.
If |S| = 1 then we only have f1 − g1 so that both products are empty and the sum is just f1 − g1.
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Otherwise, suppose the identity holds for |S| = n. Then

f1...fn+1 − g1...gn+1 = f1...fn(fn+1 − gn+1) +
(
f1...fn − g1...gn

)
gn+1

= f1...fn(fn+1 − gn+1) +
n∑

i=1

(

(fi − gi)
∏

1≤j<i

fj
∏

n≥k>i

gk

)

gn+1

= (fn+1 − gn+1)
∏

1≤j<n+1

fj

=1
︷ ︸︸ ︷
∏

n+1≥k>n+1

gk

+

n∑

i=1

(

(fi − gi)
∏

1≤j<i

fj
∏

n+1≥k>i

gk

)

=

n+1∑

i=1

(

(fi − gi)
∏

1≤j<i

fj
∏

n+1≥k>i

gk

)

.

Lemma 23. Let Ω ⊂ R
d be bounded. Let f ∈ Cm(Ω) and g ∈ Hm(Ω) for an integer m ≥ 0. Then

||fg||Hm(Ω) . ||g||Hm(Ω).

Remark 13. If m > d/2 then since f ∈ Cm(Ω), we have f ∈ Hm(Ω), too. The Banach algebra
property for m > d/2 makes the proof trivial.

Proof of Lemma 23.

||fg||2Hm(Ω) =
∑

|α|≤m

∫

Ω

|∂α(fg)|2dx

=
∑

|α|≤m

∫

Ω

∣
∣
∣
∣
∣

∑

β≤α

(
α

β

)

∂βf∂α−βg

∣
∣
∣
∣
∣

2

dx

≤
∑

|α|≤m

|α|!2( sup
|β|≤|α|
x∈Ω

|∂βf |2)
∫

Ω

∑

β≤α

|∂α−βg|2dx

.f,m ||g||2Hm(Ω).

Proposition 6. Let f : D ⊂ R → R and g1, g2 : Ω ⊂ R
d → D be such that f ∈ Cm(D) and

g1, g2 ∈ Hm(Ω) for an integer m > d/2. If f(0) = 0 and f has bounded derivatives on D up to order
m then

||f ◦ g1 − f ◦ g2||Hm(Ω) .m,||g1||Hm(Ω)
||g1− g2||Hm(Ω) +O(||g1− g2||2Hm(Ω)), (||g1− g2||Hm(Ω) ↓ 0).

Remark 14. In other words f ◦ g is locally Lipschitz in Hm(Ω) when acting upon functions of
Hm(Ω). We also note that in examining the proof, that the corresponding Lipschitz constant can be
expressed as a continuous function of ||g1||Hm(Ω) where the constant .m (1 + ||g1||mHm(Ω)).
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Proof of Proposition 6. For convenience we denote Km to be the bound on the absolute value of
the mth derivative of f .

We need to compute
∑

0≤|α|≤m

∫

Ω

|∂α(f ◦ g1 − f ◦ g2)|2dx.

Note that when α = 0 we have |∂α(f ◦ g1 − f ◦ g2)| = |f ◦ g1 − f ◦ g2| ≤ K1|g1 − g2|. Thus,
∫

Ω
|∂α(f ◦ g1 − f ◦ g2)|2dx ≤ K2

1 ||g1 − g2||2H0(Ω) ≤ K2
1 ||g1 − g2||2Hm(Ω). For |α| > 0, we begin by

examining

|∂α(f ◦ g1 − f ◦ g2)|2 =




∑

β∈P(α)

(

f (|β|)(g1)
∏

σ∈β

∂σg1 − f (|β|)(g2)
∏

σ∈β

∂σg2

)



2

=
∑

β,β′∈P(α)

(

f (|β|)(g1)
∏

σ∈β

∂σg1 − f (|β|)(g2)
∏

σ∈β

∂σg2

)

×
(

f (|β′|)(g1)
∏

σ′∈β′

∂σ
′

g1 − f (|β′|)(g2)
∏

σ′∈β′

∂σ
′

g2

)

. (22)

Thus, the squared α-th derivative is a sum of products of two factors of the form

(

f (|β|)(g1)
∏

σ∈β

∂σg1 − f (|β|)(g2)
∏

σ∈β

∂σg2

)

.

We now attempt to prove each of such factors are in L2(Ω) so that Cauchy-Schwarz can be utilized.
Assuming this can be done,

||f (|β|)(g1)
∏

σ∈β

∂σg1 − f (|β|)(g2)
∏

σ∈β

∂σg2||L2(Ω)

≤

T1
︷ ︸︸ ︷

||f (|β|)(g1)

(
∏

σ∈β

∂σg1 −
∏

σ∈β

∂σg2

)

||L2(Ω)

+

T2
︷ ︸︸ ︷

||(f (|β|)(g1)− f (|β|)(g2))
∏

σ∈β

∂σg2||L2(Ω) .

Now we must justify that both terms on the right-hand side are in fact in L2(Ω) and, more
importantly, with a nice dependence upon ||g1 − g2||Hm(Ω). We commence with T2 noting that from
Corollary 2, each ∂σg2 ∈ L2|α|/|σ|(Ω) and, furthermore,

∑

σ∈β |σ| = |α| ≤ m. Thus, by the generalized

Hölder’s inequality with
∑

σ∈β
1

2|α|/|σ|
= 1

2
, the product must be in L2(Ω). As the difference term in
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T2 is bounded by K|β|||g1 − g2||L∞(Ω) . ||g1 − g2||Hm(Ω), we have

T2 . ||g1 − g2||Hm(Ω)||
∏

σ∈β

∂σg2||L2(Ω)

≤ ||g1 − g2||Hm(Ω)

∏

σ∈β

||∂σg2||L2|α|/|σ|(Ω)

≤ ||g1 − g2||Hm(Ω)

∏

σ∈β

||g2||Hm(Ω)

≤ ||g1 − g2||Hm(Ω)(||g1||Hm(Ω) + ||g2 − g1||Hm(Ω))
|β|

. ||g1|||β|Hm(Ω)||g1 − g2||Hm(Ω) +O(||g1 − g2||2Hm(Ω)).

To manage T1 we need Lemma 22, assuming an ordering on the multi-indices with L(σ) = {ψ ∈
β|ψ ≺ σ} and G(σ) = {ψ ∈ β|σ ≺ ψ} (≺ denotes the ordering of the multi-indices in β), and
employ similar logic as for T2:

T1 =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

f (|β|)(g1)




∑

σ∈β

(∂σg1 − ∂σg2)
∏

σ′∈L(σ)

∂σ
′

g1
∏

σ′′∈G(σ)

∂σ
′′

g2





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
L2(Ω)

≤ K|β|

∑

σ∈β

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(∂σg1 − ∂σg2)
∏

σ′∈L(σ)

∂σ
′

g1
∏

σ′′∈G(σ)

∂σ
′′

g2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
L2(Ω)

≤ K|β|

∑

σ∈β

||∂σ(g1 − g2)||L2|α|/|σ|

∏

σ′∈L(σ)

||∂σ′

g1||L2|α|/|σ′|

∏

σ′′∈G(σ)

||∂σ′′

g2||L2|α|/|σ′′|

≤ K|β|

∑

σ∈β

||g1 − g2||Hm(Ω) max(||g1||Hm(Ω), ||g2||Hm(Ω))
|β|−1

≤ K|β|

∑

σ∈β

||g1 − g2||Hm(Ω)(||g1||Hm(Ω) + ||g2 − g1||Hm(Ω))
|β|−1

. ||g1 − g2||Hm(Ω)||g1|||β|−1
Hm(Ω) +O(||g1 − g2||2Hm(Ω)).

Here, we again used that 1
2|α|/σ

+
∑

σ′∈L(σ)
1

2|α|/σ′ +
∑

σ′′∈G(σ)
1

2|α|/σ′′ = 1/2 so that the overall product

is in L2(Ω) and by Lemma 7, we can multiply the terms. We again remark that this bound has an
O(||g1 − g2||Hm(Ω)) dependence.

The result of analyzing T1 and T2 and the α = 0 case is that

||f ◦ g1 − f ◦ g2||2Hm(Ω) . (1 + ||g1||2m)||g1 − g2||2Hm(Ω) +O(||g1 − g2||3Hm(Td)).
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A.3 Proofs of Major Results not Included in Main Body

A.3.1 Proof of Lemma 8

Proof of Lemma 8. We compute as follows:

||f ◦ g||2Hm(Ω) =

∫

Ω

f(g(x))2dx+
∑

0<|α|≤m

∫

Ω

|∂α(f ◦ g)|2dx

≤ K2

∫

Ω

g(x)2dx+
∑

0<|α|≤m

∫

Ω

|
∑

β∈P(α)

f (|β|)(g)
∏

σ∈β

∂σg|2dx

. ||g||2Hm(Ω) +
∑

0<|α|≤m

∑

β,β′∈P(α)

∫

Ω

|f (|β|)(g)f (|β′|)(g)
∏

σ∈β

∂σg
∏

σ′∈β′

∂σ
′

g|dx

. ||g||2Hm(Ω) +
∑

0<|α|≤m

∑

β,β′∈P(α)

∫

Ω

|
∏

σ∈β

∂σg
∏

σ′∈β′

∂σ
′

g|dx.

At this point, we note that for each α,
∑

σ∈β |σ| = |α| ≤ m with 1 ≤ |β| ≤ |α| and likewise for

the primes. Using Corollary 3: for each α, the terms in the summand are . ||g||2Hm(Ω) + ||g||2|α|Hm(Ω)

(there are at least 1 and no more than |α| factors in each
∏
-product). Whence, summing over α,

and taking square roots, we obtain the first desideratum.
From here on, we assume thatm > d+2 and we define σ∗(m) = m/2+1. By Sobolev embedding,

all derivative orders j with j ≤ σ∗(m) are in L∞(Ω).
We also define L∗(α) = {β ∈ P(α)| maxσ∈β |σ| ≤ σ∗(m)}, and

U∗(α) = {β ∈ P(α)| maxσ∈β |σ| > σ∗(m)}. This separates a partition into sets of multiindices
where the maximum order is “small” or “not small.” Note then that P(α) = L∗(α) ∪ U∗(α) and
|U∗(α)| ≤ 1. To see this, note that

∑

σ∈U∗(α) |σ| ≥ |U∗(α)|(m/2 + 1). Then if |U∗(α)| ≥ 2 then
∑

σ∈U∗(α) |σ| ≥ m+2 > m and this is a contradiction as the sum of derivative orders cannot exceed
m. Continuing from before,

||f ◦ g||2Hm(Ω) . ||g||2Hm(Ω) +
∑

0<|α|≤m

∑

β,β′∈P(α)

∫

Ω

|
∏

σ∈β

∂σg
∏

σ′∈β′

∂σ
′

g|dx

. ||g||2Hm(Ω) +

T1
︷ ︸︸ ︷
∑

0<|α|≤m

∑

β∈L∗(α)
β′∈L∗(α)

∏

σ∈β

||∂σg||L∞(Ω)

∏

σ′∈β′

||∂σ′

g||L∞(Ω)

+ 2

T2
︷ ︸︸ ︷
∑

0<|α|≤m

∑

β∈L∗(α)
β′∈U∗(α)

∏

σ∈β

||∂σg||L∞(Ω)

∏

σ′∈β′

|σ′|≤σ∗(m)

||∂σ′

g||L∞(Ω)

∫

Ω

|∂β̄′

g|dx

+

T3
︷ ︸︸ ︷
∑

0<|α|≤m

∑

β∈U∗(α)
β′∈U∗(α)

∏

σ∈β
|σ|≤σ∗(m)

||∂σg||L∞(Ω)

∏

σ′∈β′

|σ′|≤σ∗(m)

||∂σ′

g||L∞(Ω)

∫

Ω

|∂β̄g∂β̄′

g|dx,

where β̄ and β̄ ′ denote the single derivative of maximum order in those sets β and β ′. By con-
struction, the L∞(Ω)-norms of the derivatives in the L∗ sets are controlled by ||g||Hm(Ω). We denote
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C = ||g||Cb∗ where b∗ is the largest integer not exceeding σ∗. Then

T1, T2, T3 . ||g||2Hm(Ω)(1 + C2m−2),

which we can see by bounding each term of T1-T3 by a factor with ||g||2Hm(Ω) times a remaining

factor that has zero factors at minimum (the 1) or 2m − 2 factors at maximum (the C2m−2). We
also used that the integrand in T2 is in L2(Ω) and both factors in the integrand of T3 are in L2(Ω).
We therefore have that

||f ◦ g||2Hm(Ω) . ||g||2Hm(Ω)(1 +B2) =⇒
||f ◦ g||Hm(Ω) . ||g||Hm(Ω)(1 +B)

where and B2 ∼ C2m−2.

A.3.2 Proof of Lemma 9

Proof of Lemma 9. We first note that with m > d + 3, then derivative orders up to and including
m/2 + 3/2 are controlled by ||g||Hm(Td) (in particular, derivatives of orders up to and including

m/2 + 1 are controlled) and thereby B̄1/(m+1) . ||g||Hm(Td). Above m/2 + 3/2, derivatives are in
L2(Td) up to orderm. The set σ can have no more than 1 element of order larger than σ∗ = m/2+1.

If |κ| = 0 then
∑

ζ∈σ |ζ | ≤ |α|+ 2 and maxζ∈σ |ζ | ≤ |α|. We seek to bound

|
∫

Td

Q
∏

ζ∈σ

∂ζgdx|.

If there is one ζ ∈ σ with |ζ | > σ∗, it can be pulled out into an L2-product with ∂α with the
remaining 0 to |α|+1 g-factors bounded in L∞(Td) by B̄1/(m+1) along with Q being bounded itself.
If there are no such ζ , any one can be chosen for an L2-product with ∂α and the remaining factors
again bounded. The resulting bound would be . ||g||Hm(Td)(1 + B̄(|α|+1)/(m+1)).

If |κ| = 1 then
∑

ζ∈σ |ζ | ≤ |α|+ 1 and maxζ∈σ |ζ | ≤ |α|. Suppose κ = {e}. We seek to bound

|
∫

Td

Q∂eg
∏

ζ∈σ

∂ζgdx|.

If there is a single ζ ∈ σ where |ζ | > σ∗, it can be pulled out with an L2-product with ∂α and the
remaining 1 to |α| g-factors along with Q bounded. If there are no such ζ then ∂αg∂eg can form
an L2-product with the remaining 1 to |α| + 1 g-factors and Q bounded. This results in a bound
. ||g||2Hm(Td)(B̄

1/(m+1) + B̄(|α|+1)/(m+1)).

Combining both results, we bound with (1 + B̄)||g||2Hm(Td).

A.3.3 Proof of Lemma 10

Proof of Lemma 10. 1. We have

||ρu||Hm(Td) = ||u+ρ− κM(ρ)||Hm(Td)

. u+||ρ||Hm(Td) + ||κ||Hm(Td)||M(ρ)||Hm(Td)

.m ||ρ||Hm(Td) + ||ρ||mHm(Td).
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We used Lemma 8.
2. ||∆(ρu)||Hm(Td) ≤ ||ρu||Hm+2(Td).
3. Trivial: ||ωρ||Hm(Td) . ||ω||Hm(Td)||ρ||Hm(Td).
4. We compute

||I[γρu]||2Hm(Td) =
∑

|α|≤m

∫

Td

∣
∣
∣
∣
∂αx (

∫

Td

τ(y, x, t)γρu|ydy)
∣
∣
∣
∣

2

dx

=
∑

|α|≤m

∫

Td

∣
∣
∣
∣

∫

Td

∂αx τ(y, x, t)γρu|ydy
∣
∣
∣
∣

2

dx

≤ Ξ2
m

∫

Td

∣
∣
∣
∣

∫

Td

γρu|ydy
∣
∣
∣
∣

2

dx

.m

∫

Td

||ρ||2L2(Td)dx.

We used that u ∈ (0, 1) and that γ is bounded.
5. This is also trivial: ||γρu||Hm(Td) . ||γ||Hm(Td)||ρu||Hm(Td).

A.3.4 Proof of Lemma 11

Proof of Lemma 11. Most proofs are trivial. Item 3 is obvious from Lemma 10. Item 1 follows
directly from proposition 6 taking into account Remark 14. Items 2, 4, and 5 follow from it. For
example:

||ρ1u1 − ρ2u2||Hm(Td) = ||u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2)||Hm(Td)

≤ u+||ρ1 − ρ2||Hm(Td) + ||κ||Hm(Td)||M(ρ1)−M(ρ2)||Hm(Td).

A.3.5 Local Existence and Uniqueness for Regularized Nonautonomous Problem

Theorem 3 (Local Existence and Uniqueness for Regularized Nonautonomous Problem). For any
ǫ > 0 and initial condition ρ0(x) ∈ Hm(Td) with integer m > d/2 and ρ0 ≥ ess infTd ρ0 > 0
a.e., there exists a unique positive solution ρ(ǫ) ∈ C1([0, Tǫ,m];H

m(Td)) for some Tǫ,m > 0 to the
regularized version of equations (1)-(4):

ρ
(ǫ)
t = δJ (ǫ)[∆

(
u+J (ǫ)[ρ(ǫ)]− κM(J (ǫ)[ρ(ǫ)])

)
] + η − ωρ(ǫ) + I[γρ(ǫ)u(ǫ)]− γρ(ǫ)u(ǫ), (23)

where u(ǫ) := u(κ, ρ(ǫ)).

Proof of Theorem 3. We need to verify the conditions of Lemma 21. With A(ǫ)
t defined as in propo-

sition 1 we have

||A(ǫ)
t [ρ1]−A(ǫ)

t [ρ2]||Hm(Td) ≤ K||ρ1 − ρ2||Hm(Td) +
1

ǫ2
O(||ρ1 − ρ2||2Hm(Td))

for a Lipschitz constant K that is independent of t.
Define

ρ
0
= ess inf

Td
ρ0
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and choose β1(ǫ) > 0 so that when ||ρ− ρ0||Hm(Td) ≤ β1, we have

||ρ− ρ0||L∞(Td) . ||ρ− ρ0||Hm(Td) < ρ
0
/2

and
||J (ǫ)[ρ]− J (ǫ)[ρ0]||L∞(Td) ≤ ||ρ− ρ0||L∞(Td) . ||ρ− ρ0||Hm(Td) < ρ

0
/2.

Now we choose 0 < β(ǫ) ≤ β1(ǫ) so that when ρ1, ρ2 ∈ {ρ| ||ρ− ρ0||Hm(Td) < β1},
||ρ1 − ρ2||Hm(Td) ≤ β implies ||A(ǫ)

t [ρ1]−A(ǫ)
t [ρ2]||Hm(Td) ≤ 2K||ρ1 − ρ2||Hm(Td). This gives a uniform

Lipschitz condition.
We have that if ||ρ− ρ0||Hm(Td) ≤ β then ρ,J (ǫ)ρ > 0 a.e. (positivity stems from the maximum

principle observation given in the proof of Lemma 6). Then, by Remark 7, A(ǫ)
t is bounded for

ρ in this bounded set by a constant we call M . If we choose α = β/M , then on the rectangle

R0 = {(t, ρ)||t| ≤ α, ||ρ− ρ0||Hm(Td) ≤ β}, we have that A(ǫ)
t is uniformly bounded and uniformly

Lipschitz in t. We therefore have a unique, strongly continuously differentiable solution ρ(ǫ) to the
regularized system valid for some time interval 0 ≤ t ≤ Tǫ,m.

B Mollifiers on T
d

We present here proofs of various mollifier properties on T
d, originally presented in Greer’s thesis

[34]. Some details have been added and some corrections have been made.

Proof of Lemma 6.
1. We note that J (ǫ)[f ] is the solution to the heat equation

ut = ∆u

u(x, 0) = f(x)

on T
d at t = ǫ. The inequality follows from the maximum principle.

To prove the uniform convergence, let ν > 0. We have that the Fourier series of f is absolutely
convergent [35] so K > 0 can be chosen so that

∑

k∈Zd,|k|≥K

|f̂(k)| ≤ ν/2.

We have

|J (ǫ)[f ]− f | = |
∑

k∈Zd

f̂(k)e2πik·x(1− e−ǫ2|k|2)| ≤
∑

k∈Zd

|f̂(k)|(1− e−ǫ2|k|2)

≤
∑

k∈Zd,|k|≤K

|f̂(k)|(1− e−ǫ2|k|2) +
ν

2
≤ (1− e−ǫ2K2

)
∑

k∈Zd,|k|≤K

|f̂(k)|+ ν

2
≤ ν

for small enough ǫ.
3. By Parseval’s formula,

(J (ǫ)f, g)L2(Td) = ( ˆJ (ǫ)f, ĝ)ℓ2(Zd) =
∑

k∈Zd

f̂(k)e−ǫ2|k|2ĝ(k)

=
∑

k∈Zd

f̂(k)ĝ(k)e−ǫ2|k|2 = (f̂ , ˆJ (ǫ)g)ℓ2(Zd) = (f,J (ǫ)g)L2(Td).
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2. Let Φ be any test function in C∞(Td). We have

(∂αJ (ǫ)f,Φ)L2(Td) = (−1)|α|(J (ǫ)f, ∂αΦ)L2(Td) = (−1)|α|(f,J (ǫ)∂αΦ)L2(Td)

= (−1)|α|
∑

k∈Zd

f̂(k)(2πik)αΦ̂(k)e−ǫ2|k|2 = (−1)|α|(f, ∂αJ (ǫ)Φ)L2(Td)

= (∂αf,J (ǫ)Φ)L2(Td) = (J (ǫ)∂αf,Φ)L2(Td)

and thus distributional derivatives commute with mollifiers.
4. Let ν > 0. Since f ∈ Hs(Td), there is K > 0 so that

∑

k∈Zd,|k|>K

(1 + |k|2)s|f̂(k)|2 < ν/2.

Picking ǫ small enough, we have

||J (ǫ)f − f ||2Hs(Td) ≤
∑

k∈Zd

(1 + |k|2)s(1− e−ǫ2|k|2)2|f̂(k)|2

≤
∑

k∈Zd,|k|≤K

(1 + |k|2)s(1− e−ǫ2|k|2)2|f̂(k)|2

+
∑

k∈Zd,|k|>K

(1 + |k|2)s|f̂(k)|2

<
ν

2
+
ν

2
.

Thus there is convergence in Hs(Td). To observe the rate of convergence in Hs−1(Td) is linear in ǫ,
we use

1− e−θ2 ≤ θ2.

This leads to the bounds

|(1− e−ǫ2|k|2)2

1 + |k|2 | < ǫ4λ2, |k| < λ

|(1− e−ǫ2|k|2)2

1 + |k|2 | < 1

λ2
, |k| ≥ λ

so if λ = 1/ǫ,

||J (ǫ)f − f ||2Hs−1(Td) =
∑

k∈Zd

(1 + |k|2)s−1(1− e−ǫ2|k|2)2|f̂(k)|2

≤
(

sup
k∈Zd

|(1− e−ǫ2|k|2)2

1 + |k|2 |
)

||f ||2Hs(Td) ≤ ǫ2||f ||2Hs(Td).

5. We first observe that the function q(x) = (1 + x)νe−ǫ2x has a global maximum at x = ν/ǫ2 − 1
with value ( ν

ǫ2
)νe−(ν−ǫ2). Thus, for ν > 0 and 1 > ǫ > 0,

q(|k|2) = (1 + |k|2)νe−ǫ2|k|2 ≤ (
ν

ǫ2
)νe−ν+ǫ2 ≤ Cǫ−2ν ,
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for a C depending on ν, and ||J (ǫ)f ||Hm+ν(Td) . ǫ−ν ||f ||Hm(Td). Next, we estimate the representation

of J (ǫ)∂νf(x) in terms of its Fourier series. Let ν̃ be a multi-index with |ν̃| = ν.

|J (ǫ)∂ν̃f(x)| = |
∑

k∈Zd

e−ǫ2|k|2(2πik)ν̃e−2πik·xf̂(k)|

= |
∑

k∈Zd

(e−
ǫ2|k|2

2 )

(

(2πik)ν̃e2πik·xe−
ǫ2|k|2

2 f̂(k)

)

|

≤
(
∑

k∈Zd

e−ǫ2|k|2

)1/2(
∑

k∈Zd

|(2πik)2ν̃e−ǫ2|k|2|f̂(k)|2
)1/2

≤
(
∑

k∈Zd

e−ǫ2|k|2

)1/2

||J (ǫ)∂ν̃f ||H0(Td)

.

(
∑

k∈Zd

e−ǫ2|k|2

)1/2
1

ǫν−m
||f ||Hm(Td).

Now we examine the last inequality:

∑

k∈Zd

e−ǫ2|k|2 =
∑

k∈Zd

d∏

i=1

e−ǫ2k2i ≤ 2d
∑

k∈Zd
≥0

d∏

i=1

e−ǫ2k2i

= 2d
∞∑

k1=0

(e−ǫ2k21(

∞∑

k2=0

e−ǫ2k22(...

∞∑

kd=0

e−ǫ2k2d)...))

= 2d
d∏

i=1

∞∑

ki=0

e−ǫ2k2i

≤ 2d(

∞∑

ki=0

e−ǫ2ki)d = 2d(
1

1− e−ǫ2
)d

≤ 2dǫ−d.

This gives the desired bound.
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