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Abstract

In this paper, we consider the capacitated three-level lot-sizing and replenishment problem with a
distribution structure (3LSPD-C), recently proposed in the literature. In 3LSPD-C, a single production
plant delivers items to the warehouses from where they are distributed to their corresponding retailers.
There is a capacity on the total amount the plant can produce in each period, whereas there are no ca-
pacities on transportation. The goal of this optimization problem consists in determining an integrated
three-echelon production and distribution plan minimizing the total cost, which is composed of fixed
costs for production and transportation setups as well as variable inventory holding costs. Addition-
ally, we consider a generalization of the problem which also establishes storage capacities (or inventory
bounds) on the warehouses and/or retailers, given the importance of such characteristics in practical
industrial and commercial environments. Such extension is denoted generalized capacitated three-level
lot-sizing and replenishment problem with a distribution structure (G3LSPD-C). We propose a hybrid
mixed integer programming (MIP) heuristic consisting of a relax-and-fix approach to generate initial fea-
sible solutions and a fix-and-optimize improvement procedure grounded on varying-size neighborhoods
to obtain high-quality solutions. Computational experiments are performed to analyze the potential cost
reductions achieved using the new hybrid heuristic when compared with a state-of-the-art MIP formu-
lation. The results show that the proposed hybrid heuristic can match or improve the solution quality
obtained by the MIP formulation for the majority of the 3LSPD-C instances within a specified time
limit. Additionally, such superior behavior remains valid when the approaches are applied to the more
general G3LSPD-C. Furthermore, we investigate the economic impacts of the storage capacities and how
they affect the performance of our newly proposed hybrid heuristic.

Keywords: supply chain management; logistics; three-echelon supply chain; MIP heuristic; fix-and-
optimize; storage capacity.

1 Introduction

Supply chain optimization plays a key role in the competitiveness of enterprises nowadays. An important
matter that can considerably increase effectiveness and reduce costs is an integrated optimization of the
production and transportation plannings, a common need in companies with decentralized markets. In this
direction, we consider the capacitated three-level lot-sizing and replenishment problem with a distribution
structure (3LSPD-C), introduced in Gruson, Bazrafshan, Cordeau, and Jans (2019). In this three-echelon
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supply chain optimization problem, a single production plant produces items to replenish multiple ware-
houses, from where they are sent to fulfill the time-varying deterministic demands of several retailers over a
finite planning horizon. Additionally, there is a restriction on the quantity of items the plant can produce
in each period. The goal consists in determining an integrated production, inventory, and distribution plan
which minimizes the total costs, consisting of fixed production and transportation setups together with per
unit inventory holding costs. Figure 1 exemplifies the layout of a three-level lot-sizing and replenishment
problem with a distribution structure. Notice that, in practical industrial and commercial settings, it is very
natural that the storage facilities have capacity restrictions. In this regard, we also introduce the generalized
capacitated three-level lot-sizing and replenishment problem with a distribution structure (G3LSPD-C), in
which capacities on storage can occur at the warehouses and/or retailers.

Figure 1: Example of a three-level supply chain with a distribution structure.

Several problems involving integrated production and transportation have been studied in the literature.
Among these, we can highlight multi-level lot-sizing problems (Eppen & Martin, 1987; Slama, Ben-Ammar,
Dolgui, & Masmoudi, 2020), one-warehouse multi-retailer problems (Solyalı & Süral, 2012; Cunha & Melo,
2016) and some of its generalizations (Park, 2005; Melo & Wolsey, 2012; Li & Hai, 2019), problems in the
context of production and transportation by third-party logistic companies (Stecke & Zhao, 2007; Melo &
Wolsey, 2010), and supply chain optimization problems involving multiple plants in which items can be
transferred between the plants (Tanksale & Jha, 2017; Carvalho & Nascimento, 2018; Cunha, Kramer, &
Melo, 2021).

Recently, the optimization of three-echelon supply chains has received considerable attention. Cárdenas-
Barrón and Treviño-Garza (2014) propose an integer programming formulation for a multi-product three-level
supply chain problem. Zhang and Song (2018) present an integer programming approach to tackle a practical
three-level problem arising in a case study at Danone Waters China Division. Gruson et al. (2019) intro-
duce the uncapacitated and capacitated three-level lot-sizing and replenishment problem with a distribution
structure (3LSPD-U and 3LSPD-C, respectively). The authors propose and compare, both theoretically
and computationally, several formulations for both variants. Gruson, Cordeau, and Jans (2020) describe a
method based on Benders decomposition for a stochastic three-level lot-sizing and replenishment problem
with a distribution structure. Cunha and Melo (2021) tackle 3LSPD-U and propose valid inequalities, pre-
processing, and a multi-start randomized bottom-up dynamic programming-based heuristic. The authors
managed to solve to optimality all the benchmark instances for the problem by combining the proposed
heuristic with a preprocessed multicommodity formulation.

Production planning problems with storage capacities have appeared in several contexts. It is notice-
able, however, that most of the works related to storage capacities are very recent when compared to those
considering production capacities (Bitran & Yanasse, 1982; Trigeiro, Thomas, & McClain, 1989; Buschkühl,
Sahling, Helber, & Tempelmeier, 2010; Vincent, Duhamel, Ren, & Tchernev, 2020; Tavaghof-Gigloo & Min-
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ner, 2020). Akbalik, Penz, and Rapine (2015a) study capacitated lot-sizing problems with storage capacities.
The authors propose polynomial-time algorithms for the single-item variant of the problem and show NP-
hardness results for the multi-item variation. Akbalik, Penz, and Rapine (2015b) establish NP-hardness
results for the multi-item uncapacitated lot-sizing with storage capacities under different scenarios of costs
and capacities. Brahimi, Absi, Dauzère-Pérès, and Kedad-Sidhoum (2015) propose integer programming
formulations and a Lagrangian relaxation-based heuristic for an uncapacitated two-level lot-sizing problem
with storage capacities. Melo and Ribeiro (2017) describe mixed integer programming (MIP) formulations
and MIP heuristics for the multi-item uncapacitated lot-sizing problem with storage capacities. Jing and Mu
(2020) tackle a lot-sizing problem with perishable items, product substitution, and storage capacities. The
authors provide a dynamic programming algorithm for the problem and analyze the effects of the different
characteristics on the costs of the solutions.

1.1 Main contributions and organization

The main contribution of this paper is an effective hybrid heuristic for the capacitated three-level lot-sizing
and replenishment problem with a distribution structure (3LSPD-C), which to the best of our knowledge
is the first heuristic for the problem. The proposed hybrid heuristic combines a relax-and-fix approach
with a fix-and-optimize improvement procedure which relies on varying-size neighborhoods to improve the
local search mechanism and overcome local optima solutions. Computational experiments evidence the
effectiveness of the heuristic, as it outperforms a state-of-the-art formulation available for the problem. The
heuristic is flexible and can be easily extended to tackle more general variants of the problem, such as
the generalized capacitated three-level lot-sizing and replenishment problem with a distribution structure
(G3LSPD-C) that we introduce in our work. G3LSPD-C considers storage capacities on the warehouses
and/or retailers, which are very relevant characteristics as they often arise in commercial and industrial
settings. Last but not least, we analyze the economic impacts (in terms of the increase in the solutions’
costs) of storage capacities on the warehouses and retailers.

The remainder of this paper is organized as follows. Section 2 formally defines the considered capacitated
three-level lot-sizing and replenishment problems with a distribution structure. Section 3 describes the
proposed hybrid heuristic. Section 4 summarizes the performed computational experiments. Section 5
concludes the paper with final remarks.

2 Capacitated three-level lot-sizing and replenishment problems
with a distribution structure

In this section, we define two capacitated three-level lot-sizing and replenishment problems with a dis-
tribution structure. Section 2.1 formalizes the capacitated three-level lot-sizing and replenishment problem
with a distribution structure (3LSPD-C) studied in Gruson et al. (2019). An available standard mixed integer
programming formulation for the problem is also described. Section 2.2 introduces the generalized capac-
itated three-level lot-sizing and replenishment problem with a distribution structure (G3LSPD-C), which
extends 3LSPD-C by considering storage capacities on the warehouses and/or retailers.

2.1 The capacitated three-level lot-sizing and replenishment problem with a
distribution structure

3LSPD-C can be formally stated as follows. There is a set F = P ∪W ∪ R of facilities composed of a
single plant, P = {p}, a set W of warehouses, and a set R of retailers. Each retailer r ∈ R has a time-varying
deterministic demand drt for a single item for each period t ∈ T . There is a capacity Cpt on the amount
that can be produced at the production plant in period t ∈ T . Each warehouse w ∈ W attends a set of
retailers δ(w) and each retailer r ∈ R has a unique associated warehouse δw(r) from which it receives its
items. Each facility i ∈ F has corresponding setup costs scit and holding costs hcit for each period t ∈ T . The
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problem consists in encountering a feasible production/distribution plan which attends to all the demands
without backlogging while minimizing the total cost. Denote the demand in period t ∈ T of the plant as
dpt =

∑
r∈R d

r
t and that of a warehouse w ∈W as dwt =

∑
r∈δ(w) d

r
t . In addition, let the cumulative demand

of facility i ∈ F for periods 1 ≤ t ≤ k ≤ |T | be ditk =
∑k
l=t d

i
l.

Consider the decision variable xit to be the amount produced in the production plant in period t ∈ T if
i = p and to be equal to the amount transported to facility i from its predecessor in period t if i ∈ W ∪ R.
Besides, let the variable sit represent the amount of inventory in facility i ∈ F in period t ∈ T . Additionally,
define variable yit for i ∈ F and t ∈ T to be equal to one if xit > 0 and to be equal to zero otherwise.
3LSPD-C can be cast as the following standard MIP formulation (Gruson et al., 2019):

(3LSPD-C) min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
i∈F

hcits
i
t

)
(1)

sit−1 + xit =
∑
j∈δ(i)

xjt + sit, for i ∈ P ∪W, t ∈ T, (2)

srt−1 + xrt = drt + srt , for r ∈ R, t ∈ T, (3)

xit ≤ dit|T |y
i
t, for i ∈W ∪R, t ∈ T, (4)

xpt ≤ min{Cpt , d
p
t|T |}y

p
t , for t ∈ T, (5)

xit, s
i
t ≥ 0, for i ∈ F, t ∈ T, (6)

yit ∈ {0, 1}, for i ∈ F, t ∈ T. (7)

The objective function (1) minimizes the total cost, composed of setup and storage costs. Constraints (2) and (3)
define inventory balance constraints for each of the facilities. Constraints (4) and (5) are setup enforcing
constraints, with (5) also guaranteeing the plant’s production capacities are not violated. Constraints (6)
and (7) define, respectively, nonnegativity and integrality requirements on the variables.

2.2 The generalized capacitated three-level lot-sizing and replenishment prob-
lem with a distribution structure

G3LSPD-C generalizes 3LSPD-C by considering the fact that the warehouses and/or retailers can have
a limit on the amount that can be held in storage in any given period. Define Ĉit to be the storage capacity
at facility i ∈W ∪R in period t ∈ T .

G3LSPD-C can be formulated as the following MIP:

(G3LSPD-C) min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
i∈F

hcits
i
t

)
(8)

(2)− (7),

sit ≤ min{Ĉit , dit|T |}, for i ∈W ∪R, t ∈ T. (9)

The objective function (8) is the same as (1). Constraints (9) ensure the total inventory at each facility
i ∈W ∪R at the end of each period does not exceed the storage capacity.

3 The hybrid heuristic

In this section, we detail the hybrid heuristic combining a relax-and-fix approach with a fix-and-optimize
improvement procedure, both based on rolling horizon schemes. This hybrid heuristic is motivated by the fact
that MIP heuristics using these concepts have been successfully applied to many supply chain optimization
problems (Helber & Sahling, 2010; Chen, 2015; Toledo, da Silva Arantes, Hossomi, França, & Akartunalı,
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2015; Melo & Ribeiro, 2017; Cunha, Kramer, & Melo, 2019). The proposed heuristic aims at providing
good quality solutions while allowing flexibility to be easily adapted to variants of the problem. Section 3.1
describes the relax-and-fix approach to obtain an initial feasible solution. Section 3.2 explains the fix-and-
optimize improvement procedure. The complete hybrid heuristic is presented in Section 3.3.

In what follows, we say that a variable belongs to an interval [α, β] if it corresponds to a period t ∈ [α, β].

3.1 Relax-and-fix approach

The proposed relax-and-fix approach consists of progressively building a solution by solving a series of
subproblems in which a subset of the variables is fixed and another subset has its integrality requirements
relaxed. It follows a rolling horizon mechanism, which works as follows. Consider integer values αRF and
βRF to determine three (possibly empty) intervals, corresponding to how the integer variables are treated
when solving the mixed integer programs. The interval [1, αRF − 1] corresponds to variables to be fixed, the
interval [αRF , βRF ] determines the variables to be optimized with the integrality preserved, and the interval
[βRF + 1, |T |] defines the interval for which the integrality requirements on the variables are relaxed. The
approach initiates with [αRF , βRF ] starting at the beginning of the planning horizon, and it progressively
shifts towards the end of the horizon. The relax-and-fix approach is described in Algorithm 1. It takes as
inputs a mixed integer programming formulation FORM, an integer kRF defining the size of the horizon of
the subproblems, an integer kRFf representing the size of the interval to be fixed after solving a subproblem,

and the maximum allowed time maxtRF for the approach.

Algorithm 1: Relax-and-Fix (FORM, kRF , kRFf , maxtRF )

1 Φ← ∅;

2 αRF ← 1, βRF ← αRF + kRF − 1;

3 maxtRFsub ← maxtRF

d|T |/kRF
fixe

;

4 while complete horizon was not yet treated do
5 (ŝ, x̂, ŷ)← Solve MIPRF (FORM, αRF , βRF , Φ, maxtRFsub);

6 Update Φ with the fixings for the variables in the interval [αRF , αRF + kRF − 1] according to the
values of ŷ ;

7 αRF ← αRF + kRF , βRF ← min{αRF + kRFfix − 1, |T |};
8 return solution S = (ŝ, x̂, ŷ) determined by the fixings in Φ, elaptRF ;

The set of fixings imposed on the integer y variables, Φ, which defines a partial solution being built,
is initialized as empty in line 1. The values of αRF and βRF are initialized in line 2. The time limit for
each subproblem, maxtRFsub, is determined in line 3. The loop of lines 4-7 is executed while the complete
horizon was not yet treated, i.e., a complete integer feasible solution was not yet obtained. Line 5 solves
MIPRF (FORM, αRF , βRF , Φ, maxtRFsub), in which the integer variables related to the periods in the interval
[1, αRF − 1] are fixed according to the values determined in the previous rounds, which are defined by Φ,
those related to the periods in the interval [αRF , βRF ] must preserve the integrality, and the integrality
constraints are relaxed for those related to the interval [βRF + 1, |T |]. In line 6, Φ is updated according to
the return of the call to MIPRF in line 5. We consider two possible strategies for determining the fixing of
the variables. The first strategy (S1) consists of adding to S only the fixings of the variables which assume
value 1, which implies that the MIP subproblems to be solved do not necessarily have all the variables in
the interval [1, αRF − 1] fixed. The second one (S2) consists of inserting into S the fixings corresponding to
all the y variables in the interval. The values of αRF and βRF are updated in line 7. The complete solution
S determined according to the fixings in Φ and the elapsed time to run the approach are returned in line 8.
Note that S corresponds to the solution obtained in the last call to MIPRF in line 5.

Observe that strategy S1 ensures a feasible solution can be encountered at the end of the execution of
Algorithm 1 whenever the instance is feasible and enough time is available. This is a consequence of the fact
that there always exists a feasible solution to each call to MIPRF . On the other hand, note that strategy
S2 may lead to infeasible subproblems and, thus, does not ensure obtaining a feasible solution at the end
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of Algorithm 1. We remark, though, that such infeasibilities are more likely to arise in situations with very
strict capacities and/or very high demands concentrated in a few periods.

3.2 Fix-and-optimize improvement procedure

We now propose a multi-round fix-and-optimize improvement procedure with varying-size neighborhoods.
The main intuition behind the varying-size neighborhoods is to improve the search mechanism using the
concepts of variable neighborhood search (Hansen, Mladenović, Brimberg, & Pérez, 2019) and to attempt
turning the approach less parameter-sensitive. It follows a rolling-horizon approach which can restart from
the beginning of the horizon, and its main idea works as follows. Consider values αFO and βFO defining an
interval [αFO, βFO] determining variables which will be optimized. Additionally, define intervals [1, αFO−1]
and [βFO + 1, |T |] corresponding to variables which will be fixed according to an available input solution S.
Similar to the relax-and-fix approach, the procedure initiates with [αFO, βFO] starting at the beginning of
the planning horizon, and it progressively shifts towards the end of the horizon. The difference lies in the fact
that [αFO, βFO] can be restarted at the beginning of the planning horizon and that the size of the intervals
can be dynamically changed during the execution. The procedure is described in Algorithm 2. It receives
as inputs a MIP formulation FORM, an initial feasible solution S, the minimum size for the optimization
horizon kFOh,min, the minimum size for the fixing interval kFOf,min, the length of the increase in the optimization

horizon ∆FO
h , the length of the increase in the fixing horizon ∆FO

f , the minimum number of rounds to be

performed rndFOmin, and a time limit maxtFO. The algorithm assumes that kFOh,min ≥ kFOf,min and ∆FO
h ≥ ∆FO

f .

Algorithm 2: Fix-and-Optimize (FORM, S, kFOh,min, kFOf,min, ∆FO
h , ∆FO

f , rndFOmin, maxtFO)

1 S∗, S′ ← S;

2 kFO ← kFOh,min, kFOf ← kFOf,min ;

3 maxtFOsub ←
maxtFO

rndFOmin ×
⌈
|T |
kFO
min

⌉ ;

4 repeat
5 αFO ← 1, βFO ← min{αFO + kFO − 1, |T |};
6 while elaptFO < maxtFO and complete horizon was not yet treated do
7 S ← MIPFO(FORM, αFO, βFO, S∗, maxtFOsub);
8 if z(S) < z(S∗) then
9 S∗ ← S;

10 αFO ← min{αFO + kFOf , |T |}, βFO ← min{αFO + kFO − 1, |T |};
11 if elaptFO < maxtFO and kFO < |T | then
12 maxtFOsub ← min{maxtFOsub ,maxtFO − elaptFO};

13 if z(S∗) < z(S′) then
14 S′ ← S∗;

15 else if kFO < |T | then
16 kFO ← kFO + ∆FO

h ;

17 kFOf ← kFOf + ∆FO
f ;

18 if kFO ≥ |T | then
19 maxtFOsub ← maxtFO − elaptFO;

20 else
21 stop;

22 until stopping criterion is met ;
23 return best obtained solution S∗;

Initially, line 1 defines the input solution S as both the best and previously best-known solutions (S∗

and S′, respectively). Line 2 initializes the sizes of the optimization and fixing intervals (kFO and kFOf ,
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correspondingly). Line 3 sets the maximum time for solving each subproblem, which ensures that at least
rndFOmin rounds are performed. Each iteration of the repeat loop (lines 4-22) represents one round of the
fix-and-optimize procedure. In each round, the algorithm goes through the whole planning horizon in order
to solve the corresponding subproblems. Firstly, the values αFO and βFO, defining the interval related to
the subproblem to be optimized, are initialized in line 5. The while loop (lines 6-12) represents the iterations
performed in each round. The subproblem corresponding to the interval [αFO, βFO] and solution S∗ is
solved in line 7, and in case the current best solution is improved, it is updated in line 9. After that, the
interval [αFO, βFO] is updated in line 10. Lines 11-12 update the allowed time for solving the subproblems,
whenever appropriate. Next, if the current best solution improves over the previous best, the latter is
updated (lines 13-14). Otherwise, if the size of the fixing interval did not achieve the size of the horizon,
the sizes of the optimization and fixing intervals are updated. In case the size of the optimization interval
reached that of the planning horizon, the remaining allowed time is defined as the time for solving the only
subproblem to be tackled (lines 18-19). If none of the two previous conditions are satisfied, the approach
has reached a stopping criterion. The best-obtained solution S∗ is returned in line 23.

We remark that the choices of the control parameters are crucial for the good behavior of the proposed fix-
and-optimize improvement procedure. Note that kFOh,min should define a reasonable size for the subproblems to

be solved to optimality or near optimality in the first rounds. Besides, the size kFOf,min should allow flexibility

in the reoptimization of latter periods in a given round. Furthermore, rndFOmin should be determined so that
it allows enough time for solving the subproblems.

3.3 The hybrid heuristic

The hybrid heuristic consists of generating an initial feasible solution using the relax-and-fix approach,
described in Section 3.1, followed by a call to the fix-and-optimize improvement procedure, described in
Section 3.2. The heuristic is presented in Algorithm 3 and it takes as inputs the parameters corresponding
to the calls to Relax-and-Fix (Algorithm 1) and Fix-and-Optimize (Algorithm 2), as well as a time limit
maxt.

Algorithm 3: Hybrid-Heuristic (FORM, kRF ,kRFf , maxtRF ,kFOh,min, kFOf,min, ∆FO
h , ∆FO

f , rndFOmin,
maxt)

1 S, elapt← Relax-and-Fix (FORM, kRF , kRFf , maxtRF );

2 S∗ ← Fix-and-Optimize (FORM, S, kFOh,min, kFOf,min, ∆FO
h , ∆FO

f , rndFOmin, maxt− elapt);
3 return S∗;

4 Computational experiments

This section reports the computational experiments conducted to evaluate the performance of the pro-
posed hybrid heuristic. All computational experiments were carried out on a machine running under Ubuntu
GNU/Linux, with an Intel(R) Core(TM) i5-3740 CPU @ 3.20GHz processor and 8Gb of RAM. The algo-
rithms were coded in Julia v1.6.2, using JuMP v0.21.8. The formulations were solved using Gurobi 9.0.2
with the standard configurations, except the relative optimality tolerance gap, which was set to 10−6.

4.1 Benchmark instances

3LSPD-C

The benchmark instances for 3LSPD-C were introduced in Gruson et al. (2019). All instances have a
single plant. For each instance, the number of retailers |R| lies in {50, 100, 200}, while that of warehouses
belongs to {5, 10, 15, 20}. The demand for each period is randomly defined using a uniform distribution
U [5, 100]. Fixed setup costs are defined as follows: scp is uniformly chosen from U [30000, 45000], scw from
U [1500, 4500], and scr from U [5, 100]. The storage costs are defined as hcp = 0.25, hcδw(r) = 0.5, and hcr
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is uniformly chosen from U [0.5, 1]. Instances are classified as unbalanced (in which a few warehouses serve
most of the retailers) or balanced (in which all the warehouses serve nearly the same amount of retailers).
Considering a capacity factor C ∈ {1.50, 1.75, 2.00}, the time-invariant plant capacity for every period t ∈ T
is defined as Cpt = C

|T |
∑
i∈R

∑
t∈T d

i
t. We only consider in our experiments the instances with time-invariant

fixed setups and dynamic demands. For each different combination of these parameters, there are five
instances, giving a total of 360 unbalanced and 360 balanced instances.

G3LSPD-C

For G3LSPD-C, we considered adaptations of the instances for 3LSPD-U and 3LSPD-C (Gruson et al.,
2019). Namely, for each instance of 3LSPD-U and 3LSPD-C, we generated instances considering a storage
capacity factor Cs ∈ {1.50, 1.75, 2.00} to define time-invariant facility storage capacities Ĉit = C

|T |
∑
t∈T d

i
t

for every period t ∈ T . The considered instances either have storage capacities on the warehouses (i ∈W ) or
the retailers (i ∈ R), but never on both. Thus, the benchmark set is composed of 2880 unbalanced instances
and 2880 balanced ones.

4.2 Considered approaches and settings

The following approaches were compared in our experiments:

• the newly proposed hybrid heuristic (RFFO), presented in Section 3;

• the echelon stock formulation (ES-LS), as described in (Gruson et al., 2019).

The comparison of RFFO with ES-LS is because the latter was shown to be amongst the most effective
approaches for 3LSPD-C in Gruson et al. (2019). ES-LS is presented in Appendix A for the sake of com-
pleteness.

Preliminary experiments were carried out to determine the parameters for RFFO. They took into con-
sideration 144 randomly selected instances that are not used as part of the final experiments. Firstly, we
highlight that RFFO employed the echelon stock formulation ES-LS (Gruson et al., 2019). As a general
observation, the fix-and-optimize improvement procedure (FO) was the main ingredient of the heuristic, as
it could considerably improve the results of the relax-and-fix approach (RF), even when initial solutions
with lower quality were obtained. The preliminary experiments allowed us to notice that the performance of
RFFO was not sensitive to the tested parameters for RF (kRF and kRFf ). Besides, it was also not sensitive to

the initial parameters of FO (kFOh,min and kFOf,min) when reasonably small values were used. The results showed

that values of rndFOmin ∈ {2, 3} achieved similar results, which were better than those using other smaller or
larger values. At the end, the parameters for the complete experiments were defined as follows: kRF = 5,
kRFf = 3, kFOh,min = 5, kFOf,min = 3, ∆FO

h = 0, ∆FO
f = 1, and rndFOmin = 2. The time limits for RFFO were set

as maxt = 600 seconds and maxtRF = d0.10×maxte = 60 seconds.
The formulations were executed with a time limit of 600 seconds to allow a direct comparison with RFFO

regarding the quality of the achieved solutions. Besides, for 3LSPD-C they were also executed with a time
limit of 3600 seconds to verify whether additional instances could be solved to optimality.

4.3 Results for 3LSPD-C

The results for 3LSPD-C are summarized in Tables 1-4, where Tables 1-2 compare the results of RFFO
with those of ES-LS running for 600 seconds, while Tables 3-4 compare our results with those running ES-
LS for 3600 seconds. In Tables 1-2, the first three columns identify the instance parameters (param), their
corresponding values (value), and the number of instances with the specified characteristics (#inst). The next
three columns provide, for ES-LS within the time limit of 600 seconds, the average best solution (bestESLS),
the average open optimality gap in percent (gapESLS , calculated for each instance as 100× bestESLS−bbound

bestESLS
,

where bbound denotes the best dual bound achieved by the solver at the end of the time limit), and the
number of instances solved to optimality (#opt). The next eight columns show the average best solution
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achieved by RF with a time limit of 60 seconds (bestRF ), the average best solution obtained at the end
of RFFO within 600 seconds (bestRFFO), the average open optimality gap in percent obtained by RFFO
(gapRFFO, given for each instance by 100 × bestRFFO−bbound

bestRFFO
), the average gain in percent achieved by FO

over RF (imprFO
RF

, calculated for each instance as 100× bestRF−bestRFFO

bestRF
), the average gain in percent achieved

by RFFO over ES-LS (imprRFFO
ESLS

, calculated for each instance as 100 × bestESLS−bestRFFO

bestESLS
), the number of

instances for which RFFO achieved a solution at least as good as that of ES-LS (≤bestESLS), the number
of instances for which RFFO obtained a solution which strictly improves over that encountered by ES-LS
(<bestESLS), and the average number of rounds performed by FO (rndFO). The best average solutions
in each line are highlighted in bold. Tables 3-4 present a subset of these just described columns, with the
difference that those corresponding to ES-LS report information for the formulation with a time limit of
3600 seconds.

Tables 1-2 show the robustness of RFFO, as it obtained lower average best values than ES-LS running with
a time limit of 600 seconds for all the instance configurations. RFFO achieved overall average improvements
over ES-LS of 3.07% and 2.95% for the unbalanced and balanced instances, respectively. One can observe
that the improvements reached values as high as 7.33% and 7.93% for the instances with a larger number
of retailers (|R| = 200). It should also be noticed that the gaps of RFFO are remarkably lower than those
of ES-LS. Additionally, the number of instances for which RFFO at least matched the best solutions of
ES-LS is remarkably high, with an overall value of 303 and 285 out of 360 instances (respectively, 84.17%
and 79.17%). Besides, FO allowed considerable improvements over the solutions obtained by RF, especially
for the larger instances with |T | = 30 and those with |R| = 200. Furthermore, it can be noticed that the
parameter that influenced the most the average number of rounds performed by FO for both unbalanced
and balanced instances was the number of retailers |R|. When we compare the results for the unbalanced
instances (Table 1) with those for the balanced ones (Table 2), we can see that the behaviors of ES-LS and
RFFO do not change much when we analyze the achieved average gaps. In this case, though, it is noteworthy
that RFFO encountered a larger number of solutions at least matching those of ES-LS for the unbalanced
instances, whereas a larger number of strictly improving solutions was obtained for the balanced ones.

The plot in Figure 2 shows the improvements of RFFO over ES-LS for all the 720 instances (both balanced
and unbalanced). It can be seen in the figure that the positive improvements of RFFO over ES-LS can be
very significant as they reach close to 30% in certain cases. On the other hand, the improvements of ES-LS
over RFFO, determined by the negative values, are negligible.

Tables 3-4 show that even running ES-LS for a much larger time (3600 seconds), RFFO still obtained
good comparative numbers even though it was executed for much less time (600 seconds). Note that RFFO
achieved lower average best values for all configurations except for the smaller instances with |T | = 15 and
those with R = 50. Besides, remark that the average open optimality gaps achieved by RFFO are reasonably
low (1.24% and 1.30% for the unbalanced and balanced instances, respectively), and these values reached a
maximum average of 2.39% for |T | = 30 in the unbalanced instances and 2.18% for C = 1.75 in the balanced
ones. We remark that the open optimality gaps for RFFO in these tables are smaller than those reported in
Tables 1-2 as the dual bounds obtained by ES-LS within 3600 seconds are better than those obtained with
a time limit of 600 seconds. When we compare the results for the unbalanced instances (Table 3) with those
for the balanced ones (Table 4), it can be observed that the behavior of ES-LS does not change much for
most of the instance configurations when we consider the achieved average gaps, except for the parameter
|W |. This leads to similar behaviors of RFFO for unbalanced and balanced instances when compared to the
solutions encountered by ES-LS, except for the improvements achieved for the different values of |W |, as
that for |W | = 5 shows a much higher average for the balanced instances.
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Table 1: Results for 3LSPD-C considering the unbalanced instances and ES-LS running for 600 seconds.
Instances ES-LS RFFO

param value #inst bestESLS gapESLS #opt bestRF bestRFFO gapRFFO imprFO
RF

imprRFFO
ESLS

≤bestESLS <bestESLS rndFO

ALL 360 867441.64 4.38 105 888640.79 823577.22 1.41 4.58 3.07 303 204 9.22

|T | 15 180 555507.71 0.28 105 557932.85 555497.91 0.28 0.41 0.00 139 40 11.03
30 180 1179375.57 8.48 0 1219348.72 1091656.53 2.53 8.76 6.14 164 164 7.41

|W | 5 90 752824.44 4.28 32 763302.69 718114.70 1.49 4.01 2.89 89 51 10.91
10 90 839057.40 4.58 32 850736.95 794950.18 1.46 4.12 3.23 73 49 9.50
15 90 888552.48 4.43 22 912060.35 841440.29 1.31 4.80 3.21 75 57 8.53
20 90 989332.25 4.24 19 1028463.18 939803.72 1.36 5.40 2.96 66 47 7.93

|R| 50 120 717586.93 0.94 50 724468.88 717099.07 0.89 0.79 0.06 96 47 11.55
100 120 834384.89 2.97 47 846863.10 813536.51 1.18 3.00 1.83 104 65 9.54
200 120 1050353.10 9.23 8 1094590.39 940096.09 2.15 9.96 7.33 103 92 6.57

C 1.50 120 948724.51 4.49 20 956560.93 891806.31 0.91 4.24 3.66 94 75 8.43
1.75 120 868440.03 5.04 40 890309.50 825931.35 2.19 4.54 2.98 106 68 9.17
2.00 120 785160.39 3.61 45 819051.93 752994.00 1.12 4.97 2.57 103 61 10.07

Table 2: Results for 3LSPD-C considering the balanced instances and ES-LS running for 600 seconds.
Instances ES-LS RFFO

param value #inst bestESLS gapESLS #opt bestRF bestRFFO gapRFFO imprFO
RF

imprRFFO
ESLS

≤bestESLS <bestESLS rndFO

ALL 360 916176.01 4.33 52 936703.77 871189.82 1.47 4.38 2.95 285 237 9.03

|T | 15 180 589491.91 0.76 52 591987.16 589158.03 0.71 0.43 0.05 128 80 10.57
30 180 1242860.10 7.90 0 1281420.39 1153221.61 2.23 8.33 5.85 157 157 7.49

|W | 5 90 809926.18 6.02 17 788994.27 750806.41 1.79 3.32 4.40 81 66 9.81
10 90 893863.57 4.63 13 904856.00 843910.50 1.59 4.30 3.14 77 66 9.36
15 90 944040.67 3.97 12 970783.24 900289.37 1.39 4.55 2.64 70 60 8.86
20 90 1016873.60 2.72 10 1082181.58 989753.00 1.12 5.33 1.63 57 45 8.10

|R| 50 120 736511.85 0.90 43 743821.56 735904.94 0.84 0.82 0.07 88 47 12.05
100 120 870414.42 1.96 9 898640.97 861010.05 1.12 3.11 0.86 89 82 9.40
200 120 1141601.74 10.13 0 1167648.79 1016654.47 2.46 9.19 7.93 108 108 5.64

C 1.50 120 992888.15 4.01 5 1006824.08 939766.40 0.87 4.15 3.21 97 89 8.00
1.75 120 916194.64 4.99 19 937903.20 873496.42 2.28 4.30 2.83 91 73 9.04
2.00 120 839445.23 3.99 28 865384.04 800306.64 1.27 4.68 2.82 97 75 10.05

10



Table 3: Results for 3LSPD-C considering the unbalanced instances and ES-LS running for 3600 seconds.
Instances ES-LS RFFO

param value #inst bestESLS gapESLS #opt bestRFFO gapRFFO imprRFFO
ESLS

≤bestESLS <bestESLS

ALL 360 836685.34 2.11 134 823577.22 1.24 0.90 242 134

|T | 15 180 555336.71 0.07 134 555497.91 0.09 -0.02 115 7
30 180 1118033.98 4.16 0 1091656.53 2.39 1.82 127 127

|W | 5 90 719033.14 1.45 33 718114.70 1.37 0.09 78 37
10 90 814614.99 2.66 35 794950.18 1.32 1.39 63 37
15 90 868882.24 2.93 35 841440.29 1.15 1.83 55 33
20 90 944211.01 1.40 31 939803.72 1.13 0.28 46 27

|R| 50 120 716942.52 0.79 57 717099.07 0.80 -0.01 76 27
100 120 814314.07 1.18 54 813536.51 1.12 0.07 87 46
200 120 978799.44 4.36 23 940096.09 1.80 2.64 79 61

C 1.50 120 910793.00 1.88 34 891806.31 0.73 1.18 69 48
1.75 120 834645.99 2.64 45 825931.35 2.04 0.62 88 46
2.00 120 764617.04 1.81 55 752994.00 0.94 0.90 85 40

Table 4: Results for 3LSPD-C considering the balanced instances and ES-LS running for 3600 seconds.
Instances ES-LS RFFO

param value #inst bestESLS gapESLS #opt bestRFFO gapRFFO imprRFFO
ESLS

≤bestESLS <bestESLS

ALL 360 884173.08 2.18 93 871189.82 1.30 0.92 219 155

|T | 15 180 589045.88 0.42 93 589158.03 0.44 -0.02 101 37
30 180 1179300.27 3.93 0 1153221.61 2.15 1.85 118 118

|W | 5 90 798782.99 4.85 27 750806.41 1.57 3.41 76 54
10 90 845040.99 1.46 24 843910.50 1.39 0.08 60 42
15 90 902055.34 1.30 23 900289.37 1.19 0.11 46 34
20 90 990812.99 1.09 19 989753.00 1.03 0.06 37 25

|R| 50 120 735806.22 0.76 55 735904.94 0.77 -0.01 69 24
100 120 861601.89 1.06 37 861010.05 1.00 0.05 68 52
200 120 1055111.12 4.71 1 1016654.47 2.11 2.70 82 79

C 1.50 120 955254.73 1.70 18 939766.40 0.73 0.99 71 56
1.75 120 887681.20 3.15 36 873496.42 2.18 1.02 78 57
2.00 120 809583.30 1.68 39 800306.64 0.97 0.74 70 42
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4.4 Results for G3LSPD-C

In this section, we assess the performance of our hybrid heuristic when applied to G3LSPD-C and analyze
how it behaves under different capacity configurations. We did not perform any specific parameterization
for RFFO, instead, we used the same parameters which were applied for 3LSPD-C (see Section 4.2). RFFO
is compared against ES-LS, with both approaches executed with a time limit of 600 seconds for each of the
instances.

The results are summarized in Tables 5-6. The first three columns identify the capacity configurations of
the instances, given by the capacity factors at the plant (C), at the warehouses (CWs ), and at the retailers
(CRs ), followed by the number of instances with that specific configuration. A value ∞ indicates that there
is no limited capacity. The remaining columns are similar to those in Tables 1-2. The results show that
RFFO remains very robust for G3LSPD-C. Besides, it clearly outperforms ES-LS when the same time limit
of 600 seconds is available for both approaches. RFFO obtained best average values for all the capacity
configurations but one for the unbalanced instances (C =∞,CWs =∞,CRs = 1.50) and two for the balanced
ones (C =∞,CWs =∞,CRs = 1.50; and C = 2.00,CWs =∞,CRs = 1.50). Overall, a solution at least matching
the best obtained by ES-LS was achieved by RFFO for around 79% of the instances (2272 and 2270 out of
2880, for the unbalanced and balanced, respectively) and strictly better solutions were achieved for around
48% (1374 out of 2880) of the unbalanced instances and around 56% (1607 out of 2880) of the balanced
ones. It can also be noticed that the average optimality gaps of the solutions encountered by RFFO are
reasonably low, with the largest values being 2.60% for the unbalanced instances and 2.77% for the balanced
ones. It is noteworthy that RFFO achieved good average improvements over ES-LS for the great majority
of the capacity configurations, reaching values as high as 10.91% for the unbalanced instances and 12.54%
for the balanced ones.

The plot in Figure 3 shows the improvements of RFFO over ES-LS for all the 5760 instances (both bal-
anced and unbalanced). The plot shows that the positive improvements of RFFO over ES-LS are remarkable,
as they reach values over 50%. This contrasts with the improvements of ES-LS over RFFO, which are very
modest.
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Table 5: Results for G3LSPD-C considering the unbalanced instances and ES-LS running for 600 seconds.
Instances ES-LS RFFO

C CW
s CR

s #inst bestESLS gapESLS #opt bestRF bestRFFO gapRFFO imprFO
RF

imprRFFO
ESLS

≤bestESLS <bestESLS rndFO

ALL ALL ALL 2880 834685.45 6.48 960 816925.90 743460.02 1.34 5.24 5.33 2272 1374 9.83
∞ ∞ 1.50 120 484160.51 0.53 90 543917.91 484311.72 0.55 5.01 -0.02 101 10 15.51
∞ ∞ 1.75 120 541489.87 4.87 76 559477.57 480507.27 0.86 6.10 4.22 110 29 14.76
∞ ∞ 2.00 120 544119.62 5.27 72 559475.95 478024.94 0.98 6.37 4.52 103 29 14.40
∞ 1.50 ∞ 120 607501.86 8.33 49 574476.13 483162.53 1.19 7.00 7.48 102 42 9.33
∞ 1.75 ∞ 120 603603.63 8.18 52 571461.91 482099.47 1.19 6.96 7.31 101 39 9.79
∞ 2.00 ∞ 120 600162.89 7.88 61 572080.80 480906.80 1.12 6.97 7.09 104 40 9.90
1.50 ∞ 1.50 120 902756.38 0.67 34 943362.97 901812.56 0.60 2.70 0.07 84 55 10.74
1.50 ∞ 1.75 120 932684.83 2.89 26 948801.66 898322.14 0.76 3.30 2.17 84 63 10.02
1.50 ∞ 2.00 120 937679.52 3.49 23 951317.95 896930.26 0.89 3.56 2.66 87 71 9.59
1.50 1.50 ∞ 120 1069909.11 10.15 11 994423.41 899323.09 1.10 6.06 9.24 84 73 6.62
1.50 1.75 ∞ 120 1053151.71 9.43 11 985842.44 898659.68 1.09 5.63 8.53 91 79 6.73
1.50 2.00 ∞ 120 1042370.48 8.96 10 985806.15 898482.92 1.14 5.54 8.00 86 74 6.90
1.75 ∞ 1.50 120 837564.78 1.94 51 879762.05 836332.02 1.84 3.02 0.10 93 49 11.13
1.75 ∞ 1.75 120 854492.82 3.49 45 887781.96 832540.36 1.99 3.81 1.56 96 56 10.76
1.75 ∞ 2.00 120 857483.93 3.95 41 887351.69 830461.54 2.06 3.94 1.97 97 64 10.24
1.75 1.50 ∞ 120 1016222.15 12.28 17 919156.36 834238.27 2.60 5.81 10.14 93 77 6.79
1.75 1.75 ∞ 120 1006665.90 11.83 25 915495.80 833203.91 2.56 5.68 9.71 94 75 7.13
1.75 2.00 ∞ 120 988828.15 10.82 24 912322.79 832210.11 2.51 5.47 8.69 97 78 7.09
2.00 ∞ 1.50 120 764183.61 0.84 57 813729.07 762869.21 0.73 3.68 0.12 96 45 12.02
2.00 ∞ 1.75 120 777525.17 2.30 49 822126.56 759860.60 0.96 4.46 1.38 97 56 11.71
2.00 ∞ 2.00 120 778023.04 2.59 46 823774.00 757424.64 1.00 4.77 1.64 95 58 11.09
2.00 1.50 ∞ 120 952165.01 12.05 26 854816.90 761682.45 1.56 6.74 10.86 95 74 7.65
2.00 1.75 ∞ 120 952370.36 12.02 32 850168.55 760366.15 1.45 6.58 10.91 88 68 7.82
2.00 2.00 ∞ 120 927335.35 10.78 32 849291.09 759307.93 1.41 6.54 9.66 94 70 8.08
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Table 6: Results for G3LSPD-C considering the balanced instances and ES-LS running for 600 seconds.
Instances ES-LS RFFO

C Cw
s Cr

s #inst bestESLS gapESLS #opt bestRF bestRFFO gapRFFO imprFO
RF

imprRFFO
ESLS

≤bestESLS <bestESLS rndFO

ALL ALL ALL 2880 890596.63 6.71 600 862395.36 785533.74 1.30 5.25 5.56 2270 1607 9.44
∞ ∞ 1.50 120 508796.98 0.09 96 568798.50 508932.72 0.10 4.57 -0.01 108 3 16.32
∞ ∞ 1.75 120 508272.09 0.58 90 578266.18 504945.44 0.22 5.51 0.38 108 11 16.14
∞ ∞ 2.00 120 529881.64 2.49 84 580879.10 502518.49 0.31 5.83 2.22 112 20 15.84
∞ 1.50 ∞ 120 653862.10 8.30 23 608459.06 507482.72 0.71 7.24 7.77 97 64 7.52
∞ 1.75 ∞ 120 648993.73 8.28 26 600896.58 506415.12 0.65 7.04 7.87 98 63 7.80
∞ 2.00 ∞ 120 632063.21 7.75 31 597312.06 503821.95 0.57 6.88 7.33 102 59 8.33
1.50 ∞ 1.50 120 954138.85 0.75 14 994448.27 953085.25 0.67 2.55 0.08 94 75 9.56
1.50 ∞ 1.75 120 970392.93 2.12 8 1009293.15 949128.89 0.77 3.63 1.38 85 71 9.03
1.50 ∞ 2.00 120 974329.76 2.56 4 1008569.90 946729.74 0.83 3.73 1.77 86 79 8.70
1.50 1.50 ∞ 120 1159592.63 11.40 2 1053885.00 944823.13 1.08 6.69 10.51 98 94 6.21
1.50 1.75 ∞ 120 1153199.16 11.22 3 1044668.72 943657.85 1.02 6.25 10.37 92 88 6.58
1.50 2.00 ∞ 120 1134666.22 10.43 3 1042764.87 943061.71 1.00 6.22 9.59 95 91 6.82
1.75 ∞ 1.50 120 888180.59 2.07 30 927503.39 887447.47 2.02 2.66 0.06 84 56 10.72
1.75 ∞ 1.75 120 900740.97 3.34 24 940859.12 883700.92 2.18 3.77 1.21 89 65 10.11
1.75 ∞ 2.00 120 903605.38 3.78 19 943598.46 881140.81 2.28 4.01 1.56 86 71 10.06
1.75 1.50 ∞ 120 1108148.59 13.85 5 969422.16 878998.97 2.77 6.00 11.55 98 89 6.41
1.75 1.75 ∞ 120 1101883.31 13.69 5 960839.06 878069.47 2.77 5.50 11.37 95 86 6.71
1.75 2.00 ∞ 120 1079585.32 12.69 6 960293.46 877398.22 2.67 5.57 10.44 92 85 6.98
2.00 ∞ 1.50 120 813229.40 0.93 38 861904.13 813603.17 0.95 3.34 -0.02 78 42 11.82
2.00 ∞ 1.75 120 826247.29 2.28 31 872645.82 809700.31 1.06 4.29 1.26 98 68 11.40
2.00 ∞ 2.00 120 830062.05 2.85 26 874807.48 807526.02 1.23 4.61 1.67 94 73 11.09
2.00 1.50 ∞ 120 1053283.81 14.12 6 903104.61 806453.76 1.92 6.90 12.54 95 90 7.08
2.00 1.75 ∞ 120 1034947.27 13.38 11 900283.39 805274.81 1.82 6.72 11.88 96 85 7.47
2.00 2.00 ∞ 120 1006215.81 12.05 15 893986.26 806743.57 1.72 6.47 10.69 90 79 7.90
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Figure 2: Plot with the improvements of RFFO over ES-LS (imprRFFO
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) for all 3LSPD-C instances.
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Figure 3: Plot with the improvements of RFFO over ES-LS (imprRFFO
ESLS

) for all G3LSPD-C instances.
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4.5 Economic impacts of the capacity configurations

In what follows, consider the deviation of a solution for a given capacity configuration from a baseline
problem calculated as 100bestRFFO−bestbase

bestbase
for a specific instance. In this formula, bestRFFO defines the best

solution achieved by RFFO for the given capacity configuration while bestbase denotes the optimal solution
for the baseline problem 3LSPD-U (determined with the approaches described in Cunha and Melo (2021))
or the best solution achieved by RFFO for the baseline problem 3LSPD-C. Note that the deviation indicates
the economical impact (in terms of increase in the objective value) of the given capacity configuration on
the obtained solution.

The boxplots in Figure 4 depict the deviations from the baseline problem 3LSPD-U when there are
production capacities at the plant. It can be seen that median deviations of 96%, 82%, and 67% were incurred
when considering production plant capacity factors of 1.50, 1.75, and 2.00, respectively. It is noteworthy that
the economical impacts can reach values as high as 195% for the tighter capacity factor. The large deviations
can be explained by the need for additional setups, which have high costs in the considered instances, when
the amount that can be produced in a given period is limited.

The boxplots in Figure 5 show the deviations from the baseline problems 3LSPD-U (Subfigure 5(a))
and 3LSPD-C (Subfigures 5(b)-5(d)) when there are limited storage capacities at the warehouses or at
the retailers. Notice that all subfigures use the same scale. Overall, the boxplot in Subfigure 5(a) shows
that when there is no production capacity at the plant, there is a larger variance on the deviations for
the capacity factors at the warehouses, implying reasonably high deviations for several instances. On the
other hand, when the baseline problem is 3LSPD-C, the deviations are more modest and stable, with the
capacity factors at the retailers implying solutions with higher costs. Notice that some negative values occur
in Subfigures 5(b)-5(d), which can be explained by the fact that the hybrid heuristic RFFO can in certain
situations tackle some more restricted subproblems of G3LSPD-C better than those of 3LSPD-C, achieving
solutions that are closer to optimal.
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Figure 4: Boxplot summarizing the deviations from the optimal solutions for the 3LSPD-U when capacities
occur at the plant.
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(a) Baseline problem 3LSPD-U.
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(b) Baseline problem 3LSPD-C with C = 1.5.
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(c) Baseline problem 3LSPD-C with C = 1.75.
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(d) Baseline problem 3LSPD-C with C = 2.00.

Figure 5: Boxplot summarizing the deviations from the best known solutions for the baseline problems when
capacities occur at the warehouses or at the retailers.
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5 Concluding remarks

In this paper, we considered the capacitated three-level lot-sizing and replenishment problem with a
distribution structure (3LSPD-C) and an extension denoted the generalized capacitated three-level lot-sizing
and replenishment problem with a distribution structure (G3LSPD-C) in which storage capacities restrict the
operations on the warehouses and/or retailers. We proposed a very effective hybrid MIP heuristic combining
relax-and-fix and fix-and-optimize based on varying-size neighborhoods (RFFO) that can be applied for both
problems.

Extensive computational experiments showed that RFFO clearly outperforms a state-of-the-art formula-
tion (ES-LS) in terms of solutions quality when both approaches are offered the same time limit. Depending
on the instances’ characteristics, average improvements can reach approximately 8% for 3LSPD-C. For
G3LSPD-C, depending on the capacity configurations, average improvements can come to more than 12%.
Such observed improvements can allow considerable economical impacts in a practical setting. The results
also show that the solutions encountered by RFFO can be very competitive even when compared to ES-LS
running for a much larger time. Overall, RFFO is very robust in that it obtains, for both 3LSPD-C and
G3LSPD-C, solutions whose average optimality gaps are below 3% for all the reported instance configura-
tions.

We remark that our approach can be easily extended to other variants and extensions of the problem,
such as those involving multiple plants, backlogging, retailers that can receive items from multiple ware-
houses, among others. Furthermore, we believe that the concepts used in our fix-and-optimize approach may
bring enhancements when applied to other problems involving supply chains and/or multi-period logistical
optimization problems.
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Appendix A Echelon stock formulation

In this section, we present the echelon stock formulation that is employed in our hybrid heuristic. This
formulation was introduced in Gruson et al. (2019), where more details can be obtained. Define the echelon
stock Iit for facility i ∈ F in period t ∈ T as

Iit =


sit +

∑
w∈W swt +

∑
r∈R s

r
t , if i = p;

sit +
∑
r∈δ(i), if i ∈W ;

sit, if i ∈ R.

The formulation ES-LS can be cast as

zES-LS = min
∑
t∈T

(∑
i∈F

scity
i
t + hcpt I

p
t +

∑
w∈W

(hcwt − hc
p
t )I

w
t +

∑
r∈R

(hcrt − hc
δw(r)
t )Irt

)
(10)

(ES-LS) (4)-(5), (7),

Iit−1 + xit = dit + Iit , for i ∈ F, t ∈ T, (11)

Iit ≥
∑
j∈δ(i)

Ijt , for i ∈ P ∪W, t ∈ T, (12)

Iit−1 ≥
l∑
j=t

dij

(
1−

j∑
u=t

yiu

)
, for i ∈ F, t, l ∈ T, with t ≤ l, (13)

xit, I
i
t ≥ 0, for i ∈ F, t ∈ T. (14)
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