
Bivariate collocation for computing R0 in epidemic
models with two structures

Dimitri Bredaa,∗, Simone De Reggia, Francesca Scarabela,b,c, Rossana
Vermiglioa, Jianhong Wub

aCDLab – Computational Dynamics Laboratory
Department of Mathematics, Computer Science and Physics – University of Udine

Via delle Scienze 206, 33100, Italy
bLIAM – Laboratory for Industrial and Applied Mathematics
Department of Mathematics and Statistics – York University

4700 Keele Street, Toronto, ON M3J 1P3, Canada
cDepartment of Mathematics, The University of Manchester, Oxford Rd, M13 9PL,

Manchester (UK), Joint UNIversities Pandemic and Epidemiological Research,
https: // maths. org/ juniper/

Abstract

Structured epidemic models can be formulated as first-order hyperbolic PDEs,
where the “spatial” variables represent individual traits, called structures. For
models with two structures, we propose a numerical technique to approximate
R0, which measures the transmissibility of an infectious disease and, rigorously,
is defined as the dominant eigenvalue of a next-generation operator. Via bi-
variate collocation and cubature on tensor grids, the latter is approximated
with a finite-dimensional matrix, so that its dominant eigenvalue can easily be
computed with standard techniques. We use test examples to investigate ex-
perimentally the behavior of the approximation: the convergence order appears
to be infinite when the corresponding eigenfunction is smooth, and finite for
less regular eigenfunctions. To demonstrate the effectiveness of the technique
for more realistic applications, we present a new epidemic model structured by
demographic age and immunity, and study the approximation of R0 in some
particular cases of interest.
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1. Introduction

In the mathematical modeling of epidemics, the basic reproduction number
R0 measures the average number of secondary cases produced by a typical in-
fected individual in a fully susceptible population. As such, it is widely used to
evaluate the potential of the spread of an infectious disease outbreak, the speed
of the spread of the disease if an outbreak does occur and its controllability
through public health interventions. Its estimation is thus a primary objective
and, in this respect, the case of coronavirus disease 2019 (COVID-19) is a recent
example of the essential role played by this key quantity [1, 2, 3, 4].

On the one hand, from the dynamical systems point of view, the threshold
value R0 = 1 represents a transcritical bifurcation of the disease-free equilib-
rium (absence of infected) from being locally asymptotically stable to unstable,
with the emergence of an equilibrium in which part of the population has been
infected. The standard analysis of the dynamic behaviors is based on linearizing
the nonlinear model at hands around the disease-free equilibrium to investigate
the local stability of the latter, typically through an eigenvalue-based approach.

On the other hand, in an attempt to capture a more realistic portrait of
the infection transmission, some modern population models account for indi-
vidual variability by introducing continuous structuring variables, or, briefly,
structures. These represent physical or physiological traits that determine the
epidemiological or vital properties of the individuals [5, 6]. The mathematical
description is mostly based on Partial Differential Equations (PDEs) in time
and a second variable, that we call “space” in short, that collects all the (con-
tinuous) structuring variables. Notable instances of structures are chronological
age, time since infection, some immunity level or even proper spatial position
and distancing.

The combination of both aforementioned aspects results in the study of a
linear evolution equation on an abstract space of functions depending on each
structuring variable. This evolution can be suitably described by means of two
operators, say B and M , where the former describes the “birth” process of newly
infected individuals, whereas the latter collects all the other possible processes
including, e.g., death, recovery, evolution of the individual trait, or transfer to
other classes (for instance quarantine). Then, under mild and classical hypothe-
ses, one can define the so-called Next Generation Operator (NGO) – which maps
a given composition of the population to the composition after one generation
of infection – as BM−1 and characterize R0 as its spectral radius [7].

The latter characterization can be favorably exploited for numerical pur-
poses. Indeed, any reasonable finite-dimensional approximation of the NGO
provides a matrix whose eigenvalues allow in principle to estimate R0. This
general idea has been first proposed in [8] in terms of discretizing separately B
and M . Therein, an approach based on pseudospectral collocation for popula-
tions with a single structure has been thoroughly investigated by experimenting
on several models from either epidemiology or ecology. A proper rigorous analy-
sis of the convergence of this methodology has been carried out in [9], confirming
the expected spectral accuracy [10] in the presence of smooth coefficients, as well
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as promising behaviors even in the absence of full regularity or of compactness of
the NGO. The outcome is a quite reliable tool, with convergence potentially of
infinite order1, thus more efficient than the only other two methods available in
the literature [11, 12], based respectively on θ- and Euler discretization schemes.
Rather than for the accuracy itself, the advantage is that of working with much
smaller matrices, reducing the computational burden and thus allowing for sta-
bility and bifurcation analyses, which are typically performed in a continuation
framework [13]. This is particularly valuable in the presence of varying or un-
certain model parameters, as typically happens in realistic contexts.

The current work extends from the numerical and experimental points of
view the pseudospectral approach of [8, 9] to population models with two struc-
tures, by resorting to bivariate collocation and cubature on tensor grids.

Models including more than one structure have long been suggested in the
literature, see, e.g., [14] and the reference therein, as they allow to better de-
scribe real phenomena. Nevertheless, it is only very recently that a systematic
mathematical investigation has gained renovated interest [15, 16], providing also
the theoretical background essential to numerical developments. To the best of
the authors’ knowledge, the resulting technique is the first available numerical
method for computing R0 in the case of two structures, thus providing modelers
with a tool to study applications in more complex and realistic settings. More-
over, it is designed to tackle a quite versatile class of models, which includes
instances from both [14] and [15, 16].

The extension to the case of two structures is not completely straightforward
from the numerical point of view due to, e.g., the necessity of resorting to cuba-
ture and vectorization for the sake of implementation. Moreover, we anticipate
that a straightforward extension to the case of two structures of the conver-
gence analysis developed in [9] is not immediate (and hence out of the scope of
the present work), as the search for a characteristic equation relies on tools for
PDEs rather than on more standard tools for ordinary differential equations as
those used in [9].

The contents are organized as follows. In Section 2 we first resume from [7]
the main aspects leading to the definition of R0 and then introduce the class of
models of interest, i.e., first-order hyperbolic PDEs with two “spatial” variables
and nonlocal boundary conditions of integral type. The numerical approach is
presented in Section 3. A thorough experimental study of convergence is per-
formed in Section 4. In Section 5 we apply the method to an age-immunity
model we introduced for studying childhood diseases and the relevant immu-
nization programs. Some concluding remarks are given in Section 6. Matlab
demos are freely available at http://cdlab.uniud.it/software.

1By “convergence of infinite order” we mean that the error decays faster than any finite
polynomial order (or even exponentially): this is the case in general of (pseudo)spectral meth-
ods when applied to functions C∞ (or analytic), see, e.g., [10].
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2. Linear evolution, R0 and models

Let X be a Banach lattice of real functions representing the density of in-
dividuals of a population depending on some structuring variables. Following
[7] and what anticipated in the introduction, we consider a linear evolution
equation of the form

v′(t) = Bv(t)−Mv(t), t ≥ 0, (1)

where B : X → X is a linear operator representing the birth process of the
population and M : D(M) ⊆ X → X is a linear operator representing all
the other processes. Typically, D(M) is a subspace characterized by some de-
gree of smoothness of M and additional linear constraints, B is positive and
bounded and −M generates a strongly-continuous semigroup {T (t)}t≥0 of pos-
itive linear operators, with strictly negative spectral bound. The latter guar-
antees extinction in the absence of birth, as well as the invertibility of M with
M−1 =

∫∞
0
T (t) dt. Then the NGO BM−1 : X → X is well defined, positive

and bounded, and one can characterize R0 as its spectral radius. R0 is actually
a non-negative spectral value [17] and if, in addition, BM−1 is also compact
with positive spectral radius, then the Krein-Rutman theorem [18] ensures that
R0 is a positive eigenvalue, i.e., a solution λ > 0 of

BM−1ψ = λψ (2)

for some positive eigenfunction ψ. Equivalently, λ satisfies

Bφ = λMφ (3)

with φ = M−1ψ ∈ D(M).

After linearization around the trivial steady state, several dynamical models
of structured populations can be recast as (1), independently of them being
based on ordinary, partial or delay differential equations, or even renewal equa-
tions. In this work we focus our attention on populations with two structures.
As a reference we consider from [16] the initial-boundary value problem for a
first-order linear hyperbolic PDE

∂tu(t, x, y) + ∂xu(t, x, y) + ∂yu(t, x, y) =

− µ(x, y)u(t, x, y) +

∫ x̄

x0

∫ ȳ

y0

K(x, y, ξ, σ)u(t, ξ, σ) dσ dξ,

u(t, x, y0) =

∫ x̄

x0

∫ ȳ

y0

α(x, ξ, σ)u(t, ξ, σ) dσ dξ,

u(t, x0, y) =

∫ x̄

x0

∫ ȳ

y0

β(y, ξ, σ)u(t, ξ, σ) dσ dξ,

u(0, x, y) = u0(x, y),

(4)
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where u(t, x, y) is the density of the given population at time t ≥ 0 depending on
the two structuring variables x ∈ [x0, x̄] and y ∈ [y0, ȳ] with x0 < x̄ and y0 < ȳ
for given x0, x̄, y0, ȳ ∈ R. Above, µ, K, α, β and u0 are given functions, non-
negative in their domain and satisfying the required conditions for existence
and uniqueness, see [16, Assumption 2.1]. We also assume the compatibility
condition∫ x̄

x0

∫ ȳ

y0

α(x0, ξ, σ)u(t, ξ, σ) dσ dξ =

∫ x̄

x0

∫ ȳ

y0

β(y0, ξ, σ)u(t, ξ, σ) dσ dξ (5)

to hold true.

Model (4) can be cast into (1) by considering X := L1([x0, x̄] × [y0, ȳ],R)
and by defining v(t) := u(t, ·, ·) for t ≥ 0, as well as

(Bφ)(x, y) :=

∫ x̄

x0

∫ ȳ

y0

K(x, y, ξ, σ)φ(ξ, σ) dσ dξ

and
(Mφ)(x, y) := ∂xφ(x, y) + ∂yφ(x, y) + µ(x, y)φ(x, y)

with domain

D(M) :=

{
φ ∈ X : ∂xφ+ ∂yφ ∈ X,

φ(x, y0) =

∫ x̄

x0

∫ ȳ

y0

α(x, ξ, σ)φ(ξ, σ) dσ dξ for x ∈ [x0, x̄] and

φ(x0, y) =

∫ x̄

x0

∫ ȳ

y0

β(y, ξ, σ)φ(ξ, σ) dσ dξ for y ∈ [y0, ȳ]

}
.

The resulting NGO BM−1 is compact, see [16, Lemma 5.4] (where the NGO is
denoted by F0). Moreover, R0 = ρ(BM−1) is a simple positive eigenvalue [16,
Proposition 5.6] and the classical threshold stability theorem holds [16, Theorem
5.11]2.

The compactness of the NGO is an essential working hypothesis in view of the
numerical treatment we propose in Section 3. Indeed, the general idea we wish
to follow is that of reducing (3) to a standard (generalized) eigenvalue problem
for matrices through discretization. Then, the resulting dominant eigenvalue is
a candidate to approximate R0. Actually, in [8, 9] test cases of lack of compact-
ness are reported for which the methodology is still able to provide accurate
approximations.

2Actually [16] considers the case K ≡ 0, but it is not difficult to argue that the same results
still hold by assuming mild conditions on the kernel K given the linearity of the additional
term.
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On the other hand, the literature (see, e.g., [14]) offers also other models
of populations with two structures that do not necessarily belong to the class
(4), but are still described by first-order hyperbolic PDEs and differ from (4)
just for additional features that we believe are still amenable of the theoretical
analysis concerning the semigroup approach developed in [16] at the price of
an increased technicality. Although the latter analysis is out of the scope of
the present work, by considering also the potential applicability of an approach
based on discretization, in the sequel we take as a reference the following general
problem:

∂tu(t, x, y) + a(x, y)∂x[b(x, y)u(t, x, y)] + c(x, y)∂y[d(x, y)u(t, x, y)]

=−µ(x, y)u(t, x, y) +

∫ x̄

x0

∫ ȳ

y0

K(x, y, ξ, σ)u(t, ξ, σ) dσ dξ,

u(t, x, y0) =

∫ x̄

x0

∫ ȳ

y0

α(x, ξ, σ)u(t, ξ, σ) dσ dξ,

u(t, x0, y) =

∫ x̄

x0

∫ ȳ

y0

β(y, ξ, σ)u(t, ξ, σ) dσ dξ,

u(0, x, y) = u0(x, y).

(6)

Note that (6) differs from (4) just for the presence of the coefficients a, b, c and
d, which are assumed to be non-negative functions3. In any case, (6) can be
recast as (1) with the same choices of X and B, but redefining M as

(Mφ)(x, y) := a(x, y)∂x[b(x, y)φ(x, y)] + c(x, y)∂y[d(x, y)φ(x, y)]

+µ(x, y)φ(x, y)
(7)

with domain

D(M) :=

{
φ ∈ X : a∂x(bφ) + c∂y(dφ) ∈ X,

φ(x, y0) =

∫ x̄

x0

∫ ȳ

y0

α(x, ξ, σ)φ(ξ, σ) dσ dξ, x ∈ [x0, x̄], and

φ(x0, y) =

∫ x̄

x0

∫ ȳ

y0

β(y, ξ, σ)φ(ξ, σ) dσ dξ, y ∈ [y0, ȳ]

}
.

(8)

3. The numerical approach

Following [8, 9], we use collocation to discretize (6) in order to get a finite-
dimensional version of (3). As we deal with models with two structures, we
necessarily resort to bivariate collocation on [x0, x̄] × [y0, ȳ]. In particular, we

3b can be also non-positive if the relevant boundary condition is prescribed at x̄ (and
similarly for d).
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adopt the standard approach based on tensor grids, leaving to Section 6 com-
ments relevant to other choices.

For n and m positive integers, let x0 < x1 < · · · < xn = x̄ be n+ 1 points in
[x0, x̄], y0 < y1 < · · · < ym = ȳ be m+ 1 points in [y0, ȳ] and Πn,m be the space
of bivariate polynomials on [x0, x̄]×[y0, ȳ] of degree at most n in the first variable
and at most m in the second variable. Let, moreover, Xn,m := R(n+1)(m+1) be
the discrete counterpart of X, meaning that an element φ ∈ X is thought as
approximated by an element Φ ∈ Xn,m according to4

φ(xi, yj) ≈ Φi,j , i = 0, 1, . . . , n, j = 0, 1, . . . ,m,

where the components of Φ are ordered according to the sequence of double
indexes (0, 0), . . . , (0,m), (1, 0), . . . , (1,m), . . . , (n, 0), . . . , (n,m)5.

Now we construct in Xn,m a finite-dimensional version

Bn,mΦ = λMn,mΦ, (9)

of (3) as follows. Consider φn,m ∈ Πn,m collocating (6) as

(Bφn,m)(xi, yj) = λ(Mφn,m)(xi, yj), i = 1, . . . , n, j = 1, . . . ,m,

φn,m(xi, y0) =

∫ x̄

x0

∫ ȳ

y0

α(xi, ξ, σ)φn,m(ξ, σ) dσ dξ, i = 1, . . . , n

φn,m(x0, yj) =

∫ x̄

x0

∫ ȳ

y0

β(yj , ξ, σ)φn,m(ξ, σ) dσ dξ, j = 0, 1, . . . ,m,

(10)
which suitably takes into account the boundary conditions characterizing D(M)
in (8). Note that, given (5), either one of the two conditions can be imposed
at the node (x0, y0), and we choose the second one without loss of generality.
Then (9) is recovered by setting

Φi,j := φn,m(xi, yj), i = 0, 1, . . . , n, j = 0, 1, . . . ,m,

and by introducing the finite-dimensional counterparts Bn,m,Mn,m : Xn,m →
Xn,m of B and M respectively as[Bn,mΦ]i,j := (Bφn,m)(xi, yj), i = 1, . . . , n, j = 1, . . . ,m,

[Bn,mΦ]i,j = 0, otherwise,
(11)

4We observe that although pointwise evaluation is meaningless in L1, the elements φ that
we are going to approximate are eigenfunctions, which are in general regular enough.

5In place of (i, j) one can use a single index k = 0, 1, . . . , (n+1)(m+1) with k = i(m+1)+j.
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and

[Mn,mΦ]i,j := (Mφn,m)(xi, yj), i = 1, . . . , n, j = 1, . . . ,m,

[Mn,mΦ]0,j := φn,m(x0, yj)

−
∫ x̄

x0

∫ ȳ

y0

β(yj , ξ, σ)φn,m(ξ, σ) dσ dξ, j = 1, . . . ,m,

[Mn,mΦ]i,0 := φn,m(xi, y0)

−
∫ x̄

x0

∫ ȳ

y0

α(xi, ξ, σ)φn,m(ξ, σ) dσ dξ, i = 1, . . . , n

[Mn,mΦ]0,0 := φn,m(x0, y0)

−
∫ x̄

x0

∫ ȳ

y0

β(y0, ξ, σ)φn,m(ξ, σ) dσ dξ.

(12)
Note that the boundary conditions are implemented as zero conditions in Mn,m

and by annihilating the corresponding rows of Bn,m.
Once we have the matrix representations of the operators Bn,m and Mn,m,

an approximation R0,n,m of R0 is computed as6

R0,n,m := max {|λ| ∈ C : ∃ Φ ∈ Xn,m such that Bn,mΦ = λMn,mΦ}.

Of course, to get these matrices one has to consider to compute the action of
both B and M on φn,m which, together with the boundary conditions, also
requires to compute, e.g., double integrals. We leave a short discussion on these
implementation aspects to Section 4.

4. Implementation and testing

We first discuss in Section 4.1 some implementation choices resuming from
Section 3 and then perform a series of experiments in Section 4.2 to investigate
experimentally the convergence properties of the proposed method.

4.1. Discretization matrices

Let us write φn,m in (10) by using the bivariate Lagrange representation

φn,m(x, y) =

n∑
i=0

m∑
j=0

`x,i(x)`y,j(y)Φi,j ,

6Alternatively, one can solve the standard eigenvalue problem Bn,mM
−1
n,mΨ = λΨ as a

discretization of (2). The analysis in [8] shows that there is no particular advantage in doing
so.
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where {`x,0, `x,1, . . . , `x,n} is the Lagrange basis relevant to the collocation
points in [x0, x̄] and {`y,0, `y,1, . . . , `y,m} is the Lagrange basis relevant to the
collocation points in [y0, ȳ]. Starting from (11), we get

(Bφn,m)(xi, yj) =

∫ x̄

x0

∫ ȳ

y0

K(xi, yj , ξ, σ)φn,m(ξ, σ) dσ dξ

=

n∑
k=0

m∑
h=0

Φk,h

∫ x̄

x0

∫ ȳ

y0

K(xi, yj , ξ, σ)`x,k(ξ)`y,h(σ) dσ dξ.

In general, the double integral at the right-hand side above is not computable
exactly. Therefore, for the sake of implementation, we resort to a cubature
formula. In view of efficiency, it is convenient to adopt the formula based on
the same points used for collocation. Let wx,i, i = 0, 1, . . . , n and wy,j , j =
0, 1, . . . ,m, be the quadrature weights associated to the collocation points in
[x0, x̄] and [y0, ȳ], respectively. Then we replace [Bn,mΦ]i,j in (11) for i =
1, . . . , n and j = 1, . . . ,m with

[B̃n,mΦ]i,j :=

n∑
k=0

m∑
h=0

wx,kwy,hK(xi, yj , xk, yh)Φk,h.

As far as Mn,m in (12) is concerned, the same cubature above leads to similar

approximations [M̃n,mΦ]i,j of [Mn,mΦ]i,j for the choices of i and j involving the
boundary conditions. In the remaining cases, i.e., i = 1, . . . , n and j = 1, . . . ,m,
the action of M on φn,m requires the use of the differentiation matrices relevant
to the collocation points. As an illustration, we consider just the term involving
the partial derivative with respect to the first variable. Then, starting from (7)
and resorting to the bivariate interpolant of bφn,m we write

∂x[b(x, y)φn,m(x, y)]|(x,y)=(xi,yj) ≈
n∑
k=0

m∑
h=0

∂x[`x,k(x)`y,h(y)]|(x,y)=(xi,yj) b(xk, yh)Φk,h

=
n∑
k=0

`′x,k(xi)b(xk, yj)Φk,j ,

where we used the fact that `y,h(yj) = δh,j . Eventually, we replace [Mn,mΦ]i,j
for i = 1, . . . , n and j = 1, . . . ,m with

[M̃n,mΦ]i,j := a(xi, yj)

n∑
k=0

`′x,k(xi)b(xk, yj)Φk,j

+c(xi, yj)

m∑
h=0

`′y,h(yj)d(xi, yh)Φi,h + µ(xi, yj)Φi,j .

As far as the collocation points are concerned, we make the choice of Cheby-
shev extremal nodes in both variables. Indeed, they include x0 and y0 and thus
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allow for an easy handling of the boundary conditions as described in Section
3. Yet more importantly, they are shown to be near-optimal points also in the
bivariate case [19], with relevant Lebesgue constant growing as O(log n · logm)
in uniform norm. Finally, the relevant univariate differentiation matrices can
be computed explicitly [10] and the associated quadrature, known as Clenshaw-
Curtis formula, is spectrally accurate [20]7.

As a final remark, concerning the convergence of the spectrum and, in turn,
of R0, we expect a spectrally accurate behavior, i.e., an order of convergence
proportional to the degree of smoothness of the concerned eigenfunctions and,
therefore, of the model coefficients. Although a detailed analysis with rigorous
proofs is out of the scope of this computational and experimental work, to
support our expectation we mention [21, Theorem 1], from which

‖f − p∗N‖∞ ≤
C

Nκ
· ωf,κ

(
1

N

)
,

holds for the best uniform approximation p∗N of f ∈ Cκ with N := min{n,m}
and C a positive constant, where

ωf,κ(δ) := sup
|γ|=κ

(
sup

‖ν−η‖≤δ
‖Dγf(ν)−Dγf(η)‖

)

for δ > 0 and ‖ · ‖ any norm on R2. Then estimates of both the interpolation
and cubature errors follow similarly as for the univariate case, where also the
Lebesgue constant of the collocation points appears.

4.2. Numerical tests

In order to test the convergence properties of the proposed method, we
use three benchmark instances of (6) for which both R0 and the associated
eigenfunction φ can be computed exactly, see Table 1 for the relevant data and
coefficients. The latter are selected in such a way to obtain eigenfunctions φ of
different regularity. Moreover, all the resulting eigenfunctions can be written in
the form φ(x, y) = f(x)g(y). As a consequence, also the collocation polynomial
can be written as the product φn,m(x, y) = pn(x)qm(y), leading to express the
bivariate error as a function of the univariate errors, viz.

φ− φn,m = en(f)g + fem(g) + en(f)em(g) (13)

for en(f) := f − pn and em(g) := g − qm. It follows that the bivariate order is
determined by the least univariate order.

7The mentioned results refers to uniform norm. In our context ‖f‖X ≤ (x̄ − x0)(ȳ −
y0)‖f‖∞ trivially holds for sufficiently smooth f (as eigenfunctions are in general) and X =
L1([x0, x̄]× [y0, ȳ],R).
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Example 1 Example 2 Example 3
x0 0 0 0

x̄ 1 1 1

y0 π/6 0 0

ȳ π/4 1 2

a(x, y) (cos y)/3 2x/15 1

b(x, y) 1 1 1

c(x, y) (sin y)/3 y/8 2y/7

d(x, y) 1 1 1

µ(x, y) (cos y)/3 1/3 1

K(x, y, ξ, σ) ex cos y sin y x5/2y8/3 e−xy7/2

α(x, ξ, σ) Cex/2 0 0

β(y, ξ, σ) C sin y 0 Cy7/2

C 2
(e−1)(

√
3−
√

2)
− 9e

211/2(e−1)

Table 1: Data and coefficients of model (6) for the numerical tests of Section 4.2.

Example 1. For the choices listed in the second column of Table 1, (3) gives

R0 =
1

C
≈ 0.273066981413697, φ(x, y) = ex sin y.

The trend of the errors for increasing n = m on both R0 and φ are reported in
Figure 1 (left). Convergence of infinite order is observed, which is reasonably
expected being φ analytic.

Example 2. For the choices listed in the third column of Table 1, (3) gives

R0 = 6/77 ≈ 0.077922077922078, φ(x, y) = x5/2y8/3.

1 5 10 15
10-16

10-12

10-8

10-4

100

1 5 10 50
10-16

10-12

10-8

10-4

100

Figure 1: Errors relevant to Example 1 (left) and Example 2 (right, the dashed lines indicate
order 5 and 7), see Table 1 and the text for more details.
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Figure 2: Errors relevant to Example 3 (the dashed lines indicate order 7 and 9), see Table 1
and the text for more details.

The trend of the errors for increasing n = m on both R0 and φ are reported in
Figure 1 (right). Convergence of order 5 is observed for the error on φ, order 7
for the error on R0. We believe that this could come from the specific forms of
B and M , indeed we have

(Bφ)(x, y) = φ(x, y)

∫ x̄

x0

∫ ȳ

y0

φ(ξ, σ) dσ dξ

and Mφ = φ, which give the eigenfunction φ and

R0 =

∫ x̄

x0

∫ ȳ

y0

φ(ξ, σ) dσ dξ.

Of course a full explanation requires a rigorous error analysis as, e.g., the one
developed in [9] for the case of single structure. As already remarked, such
analysis is out of the scope of the current investigation.

Example 3. For the choices listed in the fourth column of Table 1, (3) gives

R0 =
1

C
≈ 3.178501217245177, φ(x, y) = e−xy7/2.

The trend of the errors for increasing n = m on both R0 and φ are reported
in Figure 2. Convergence of order 7 is observed for the error on φ, order 9 for
the error on R0. As the forms of B and M are the same of those in Example 2,
this couple of examples experimentally confirm that the rate of convergence is
proportional to the degree of smoothness of the eigenfunction.

5. An age-immunity model

We first present in Section 5.1 an epidemic model structured by age and
immunity, introduced with the goal to set a framework to investigate childhood
diseases (e.g., pertussis) and their vaccination programs. After computing the
disease-free equilibrium and linearizing around the latter in Section 5.2, we

12



derive explicit expressions for the operators B and M and prove the compactness
of the NGO BM−1 in Section 5.3. Finally, in Section 5.4 we apply the proposed
method to approximate R0 and the relevant eigenfunction φ in cases for which
these quantities can be computed analytically, as well as in cases for which this
is unattainable.

5.1. The model

We consider the transmission of a disease in a closed population where indi-
viduals are characterized by two different structures, namely demographic age
a ∈ [0, ā] and immunity level w ∈ [0, 1]. The former determines for instance
the natural mortality of individuals, say µ(a). The latter determines the epi-
demiological properties of individuals: in particular, w = 0 corresponds to fully
susceptible individuals while w = 1 corresponds to fully protected ones. Fur-
thermore, in order to model immunity waning in time, we assume that, for a
susceptible individual, w varies according to

w′(t) = −g(w(t))

for some positive differentiable8 function g, whereas we assume that w does not
change during the infectious period of an individual.

The given population is then divided in two classes formed by susceptible
and infected individuals. From the biological point of view, we suppose that,
upon contact with an infectious individual, a susceptible individual can get
infected with probability β(w) or its immune system can be boosted at the
maximal immunity level with probability α(w). To fix ideas, we assume that
α(w) + β(w) = 1. After being infected, an individual becomes immediately
infective with infectivity ν(w) depending on its immunity level w: for instance,
individuals with higher immunity level, once infected, may develop milder symp-
toms thus being less infectious. We furthermore assume that infected individuals
have a constant recovery rate γ > 0 and, upon recovery, they acquire full im-
munity (w = 1), which then wanes in time with rate g. Lastly, for the sake
of simplicity we assume no additional mortality from the disease. We remark
however that, despite the overall fatality rate of childhood diseases is typically
small, the mortality of infants, unable to be vaccinated, is of major concern for
many immunization programs. This information could be easily incorporated
in the equations by adding an age-dependent disease-induced mortality term.

Let s(t, a, w) and i(t, a, w) be respectively the density of susceptible and
infected individuals. The dynamics of the susceptibles is described by
∂ts(t, a, w) + ∂as(t, a, w)− ∂w[g(w)s(t, a, w)] = −[µ(a) + λ(t, w) + η(t, w)]s(t, a, w),

g(1)s(t, a, 1) = γ

∫ 1

0

i(t, a, w) dw +

∫ 1

0

η(t, w)s(t, a, w) dw,

s(t, 0, w) = B(w),

8See, e.g., [14, 22].
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where B(w) is the population birth rate, and

λ(t, w) := β(w)

∫ 1

0

ν(ω)

∫ ā

0

i(t, a, ω) da dω,

η(t, w) := α(w)

∫ 1

0

ν(ω)

∫ ā

0

i(t, a, ω) da dω

are, respectively, the force of infection and, using a similar terminology, the
“force of boosting” acting on a susceptible individual with immunity level w.
The dynamics of the infected individuals is described by


∂ti(t, a, w) + ∂ai(t, a, w) = λ(t, w)s(t, a, w)− µ(a)i(t, w, a)− γi(t, a, w),

i(t, a, 1) = 0,

i(t, 0, w) = 0,

where we assume absence of vertical transmission. Note that the equation for
the infectives has no derivative with respect to w, as we assumed that w does
not change during the infectious period.

5.2. Disease-free equilibrium and linearization

Let us look for a stationary solution s(t, a, w) ≡ s̄(a,w) in the absence of
infected individuals, i.e., i(t, a, w) ≡ ī(a,w) ≡ 0. As the force of infection and
the force of boosting vanish, we are left with

∂as̄(a,w)− ∂w[g(w)s̄(a,w)] = −µ(a)s̄(t, a, w),

g(1)s̄(a, 1) = 0,

s̄(0, w) = B(w),

(14)

which can be solved through the method of characteristics as follows. The
characteristic curves a→ w(a) in the rectangle [0, ā]× [0, 1] are the solutions of
the IVP {

w′(a) = −g(w(a)),

w(a0) = w0,
(15)

which is well defined for all (a0, w0) ∈ [0, ā]× [0, 1] thanks to the differentiability
of g. In particular, g(w) > 0 implies decreasing characteristic curves, so that
they start either from w(0) = w0 for some w0 ∈ [0, 1] or from w(a0) = 1 for
some a0 ∈ [0, ā]. Once that one of such curves is selected, we define

σ(a) := s̄(a,w(a)),

and it is not difficult to see from (14) that

σ′(a) = [g′(w(a))− µ(a)]σ(a) (16)

holds along the curve. The latter is a linear yet scalar nonautonomous ODE,
and the related IVP can be easily solved, assuming that µ and g are smooth
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enough to ensure existence and uniqueness. The initial condition is either σ(0) =
s̄(0, w0) = B(w0) for the solution along the characteristic curve starting at
(0, w0) for any w0 ∈ [0, 1] or σ(a0) = s̄(a0, 1) = 0 for the solution along the
characteristic curve starting at (a0, 1) for any a0 ∈ [0, ā]. A couple of examples
are given below.

Example 4. Let us choose g(w) = γ(c − w) for c ≥ 1, B(w) = (1 − w)2 and
µ(a) = µ̄ > 0. By solving (15) we obtain the characteristic curves starting at
(0, w0) as

w(a) = c+ eγa(w0 − c)
and those starting at (a0, 1) as

w(a) = c+ eγ(a−a0)(1− c).

They both coincide with w∗(a) := c + eγa(1 − c) when (a0, w0) = (0, 1) (note
that w∗(a) ≡ 1 when c = 1). Moreover, since (16) reduces to

σ′(a) = − (γ + µ̄)σ(a),

we get the disease-free equilibrium

s̄(a,w) =

{
B(c+ e−γa(w − c))e−(γ+µ̄)a for w ≤ w∗(a),

0 for w ≥ w∗(a).

See Figure 3 for a couple of instances, viz. c > 1 (top) and c = 1 (bottom).

Example 5. Let us choose g(w) = w, B(w) = (1 − w)2 and µ(a) = 1/(ā − a)2.
By solving (15) we obtain the characteristic curves starting at (0, w0) as

w(a) = e−aw0

and those starting at (a0, 1) as

w(a) = e−(a−a0).

They both coincide with w∗(a) := e−a when (a0, w0) = (0, 1). Moreover, since
(16) reduces to

σ′(a) =

(
1− 1

(ā− a)2

)
σ(a),

we get the disease-free equilibrium

s̄(a,w) =

{
B(wea)eae1/āe−1/(ā−a) for w ≤ w∗(a),

0 for w ≥ w∗(a).
(17)

See Figure 4 for a specific instance.

Now, by defining the local perturbations

u(t, a, w) := s(t, a, w)− s̄(a,w), v(t, a, w) := i(t, a, w)

15



Figure 3: Characteristic curves of (14) (left) and susceptibles at the disease-free equilibrium
(right) for Example 4 with ā = 2, µ̄ = γ = 1 and c = 1.5 (top) or c = 1 (bottom).

Figure 4: Characteristic curves of (14) (left) and susceptibles at the disease-free equilibrium
(right) for Example 5 with ā = 2.
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with respect to the disease-free equilibrium (recall that ī(a,w) ≡ 0), we get the
two linearized PDEs
∂tu(t, a, w) + ∂au(t, a, w)− ∂w(g(w)u(t, a, w)) = −µ(a)u(t, a, w)− [λ̃(t, w) + η̃(t, w)]s̄(a,w),

g(1)u(t, a, 1) = γ

∫ 1

0

v(t, a, w) dw +

∫ 1

0

η̃(t, w)s̄(a,w) dw,

u(t, 0, w) = 0,

and 
∂tv(t, a, w) + ∂av(t, a, w) = λ̃(t, w)s̄(a,w)− [µ(a) + γ]v(t, a, w),

v(t, a, 1) = 0,

v(t, 0, w) = 0,

(18)

where

λ̃(t, w) := β(w)

∫ 1

0

ν(ω)

∫ ā

0

v(t, a, ω) dadω,

η̃(t, w) := α(w)

∫ 1

0

ν(ω)

∫ ā

0

v(t, a, ω) dadω.

Note that the PDE for the infectives v is independent of the susceptibles u.

5.3. Next generation operator, compactness and R0

Set now X := L1 ([0, ā]× [0, 1],R). From (18) we can define

(Bφ)(a,w) := β(w)

(∫ 1

0

ν(ω)

∫ ā

0

φ(ξ, ω) dξ dω

)
s̄(a,w)

and
(Mφ)(a,w) := ∂aφ(a,w) + [µ(a) + γ]φ(a,w),

with
D(M) = {φ ∈ X : ∂aφ ∈ X and φ(0, w) = φ(a, 1) = 0} .

To obtain an explicit expression for the NGO, we begin by observing that M
can be inverted by solving Mφ = ψ for a given ψ ∈ X, i.e., the IVP{

∂aφ(a,w) = −[µ(a) + γ]φ(a,w) + ψ(a,w)

φ(0, w) = 0.

Then we get

(M−1ψ)(a,w) =

∫ a

0

T (a, ξ)ψ(ξ, w) dξ

for

T (a, ξ) := e
−
∫ a

ξ

[µ(σ) + γ] dσ
.
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We can thus define the NGO as

(BM−1ψ)(a,w) := β(w)s̄(a,w)

(∫ 1

0

ν(ω)

∫ ā

0

(M−1ψ)(ξ, ω) dξ dω

)
.

It is evident that the NGO is a positive operator. Next we show that it is also
compact under mild assumptions. We first recall the following result from [23]
(where τhf := f(·+ h)).

Lemma 5.1. Let G ∈ Lq(Rn) with 1 ≤ q < +∞. Then lim‖h‖∗→0 ‖τhG−G‖q =
0 for ‖ · ‖∗ any norm in Rn.

Theorem 5.2. If β, ν ∈ L∞([0, 1],R), µ ∈ L1
+([0, ā],R) and s̄ ∈ X then the

NGO is compact.

Proof. Set K := BM−1 for brevity. We begin by observing that being µ ∈ X+

we have that T (a, b) is continuous in [0, ā]2 and hence bounded, say by a constant
C > 0. Furthermore we observe that under the above assumptions Kψ ∈ X
for all ψ ∈ X and that, being [0, ā]× [0, 1] a set of finite Lebesgue-measure, we
have that βs̄ ∈ X. In view of applying the Kolmogorov-Riesz-Fréchet Theorem
to prove compactness, we extend all the functions by zero outside [0, ā]× [0, 1].
Then we fix m > 0, consider the set U := {ψ ∈ X : ‖ψ‖X ≤ m} and prove
that

lim
(h1,h2)→(0,0)

∫
R

∫
R
|(Kψ)(a+ h1, w + h2)− (Kψ)(a,w)|dw da = 0 (19)

uniformly with respect to ψ ∈ U . By defining

k(ψ) :=

∫ 1

0

ν(ω)

∫ ā

o

(M−1ψ)(ξ, ω) dξ dω, ψ ∈ X, (20)

we have

|k(ψ)| ≤
∫ 1

0

∫ ā

0

∫ ξ

0

∣∣T (ξ, b)
∣∣∣∣ψ(b, ω)

∣∣∣∣ν(ω)
∣∣dbdξ dω

≤Cā
∫ ā

0

∫ 1

0

∣∣ψ(b, ω)
∣∣∣∣ν(ω)

∣∣dω db

≤Cā‖ν‖L∞([0,1],R)‖ψ‖X .

Then, by defining H := Cā‖ν‖L∞([0,1],R) we arrive at∫
R

∫
R

∣∣(Kψ)(a+ h1, w + h2)− (Kψ)(a,w)
∣∣dw da

≤Hm
∫
R

∫
R

∣∣β(w + h2)s̄(a+ h1, w + h2)

−β(w)s̄(a,w)
∣∣ dw da,

which converges to 0 uniformly with respect to ψ as (h1, h2)→ (0, 0) thanks to
Lemma 5.1.
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Figure 5: Errors relevant to Example 6 (left) and Example 7 (right), see the text for more
details.

Finally, we are able to get an explicit expression for R0. To this aim, it is
better to resort to (2), which becomes

λψ(a,w) = β(w)s̄(a,w)

(∫ 1

0

ν(ω)

∫ ā

0

∫ ξ

0

T (ξ, b)ψ(b, ω) dbdξ dω

)
.

Then observe that the term between parentheses corresponds to k in (20), which
is a constant, yet depending (linearly) on ψ. Therefore, ψ(a,w) = β(w)s̄(a,w)
is an eigenfunction (modulo normalization) with corresponding eigenvalue

λ = k(βs̄). (21)

In particular, this is the only eigenvalue and the compactness of the NGO en-
sures that R0 = λ. Eventually, we observe from (20) that R0 is in fact positive
if ν, β and s̄ are positive.

5.4. Computation of R0

Example 6. Let us consider again Example 4. By choosing ā = 2, c = γ = µ̄ = 1
and β(w) = ν(w) = 1− w, it is not difficult to recover explicitly

R0 =
1

20

[
1

2
e−8 − e−4 +

1

2

]
≈ 0.024092604621261

with corresponding eigenfunction

φ(a,w) =
1

2
(1− w)3e−2a

[
1− e−2a

]
.

The trend of the errors for increasing n = m on both R0 and φ are reported in
Figure 5 (left). Convergence of infinite order is observed as expected.

Example 7. Let us consider again Example 5, with ā = 2, γ = 1 and β(w) =
ν(w) = 1 − w. In this case it is not straightforward to compute explicitly R0
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(nor the corresponding eigenfunction). We thus assume as a reference value for
R0 the one computed with n = m = 100, which reads

R0 ≈ 0.111258187908847.

The trend of the error for increasing n = m on R0 is reported in Figure 5 (right).
Convergence of finite order occurs, which indicates lack of smoothness. In fact,
by recalling (21) and (17), we observe that by taking the second derivative of
s̄ with respect to w along any line with constant a at w = e−a from above we
are left with ∂wws̄(a,w) = 2e3ae1/āe−1/(ā−a) 6= 0, while from below it obviously
vanishes.

6. Concluding remarks

We have proposed a numerical method, based on bivariate collocation and
cubature on tensor grids, to approximate R0 in epidemic models with two struc-
turing variables. Essentially, the abstract linear equation describing the dynam-
ics of the perturbations around the disease-free equilibrium is approximated with
a finite-dimensional system, and the corresponding NGO is approximated with
a matrix. R0, which is the dominant eigenvalue of the NGO (when the latter is
compact), is then approximated by the dominant eigenvalue of the approximat-
ing matrix.

We have provided several examples in which the corresponding eigenfunc-
tion is smooth and the experimental convergence to R0 is of infinite order. For
less regular eigenfunctions, the observed convergence is of finite order, as typ-
ically expected from polynomial-based approximations. The potential infinite
order of convergence is fundamental to obtain good approximations with low-
dimensional matrices.

Structured population models allow to incorporate more realistic features
than, for instance, simpler ODE models. However, it is reasonable to say that
the higher complexity and the lack of numerical tools to handle this type of
systems hamper their use in real applications. Due to the importance of R0

in response to epidemic outbreaks, this work is of major relevance to provide
modelers with numerical tools to analyze structured epidemic models, thus pro-
moting their use in realistic applications. In view of this, we have proposed a
simple model structured by age and immunity that incorporates some of the
essential features of childhood diseases, like waning and boosting of immunity.
Having numerical methods at hand, this framework can become an effective
support to study issues of public health relevance, like immunization programs.

Encouraged by the numerical investigations included in this paper, a funda-
mental next step will be to provide a rigorous proof of convergence, following
the lines of [9]. In this spirit, the numerical convergence observed here not only
confirms that the order of convergence depends on the regularity of the eigen-
functions, but also supports the conjecture that no spurious eigenvalues of large
modulus arise in the approximation.
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We plan to expand this work along several directions. One first question
relates to multivariate polynomial approximation: here, we have considered
models with two structures and we have used tensor products to construct the
two-dimensional grid, the polynomials and the resulting differentiation matrices
and cubature formulas. Having set the framework for models with two struc-
tures, it would be interesting to extend the technique to similar problems with
more structures and provide a general computing framework. We do not expect
theoretical complications from the numerical point of view (e.g., resorting to new
approaches), despite the more involved discretization procedure. But a multi-
variate polynomial approximation of tensored form quickly becomes expensive.
Alternative choices of discretization nodes constructed directly on the multi-
dimensional domain may improve the computational cost required for cubature
formulas and differentiation matrices. The Padua points in two dimensions
[24, 25] and their generalizations to higher dimension [26, 27] are well-suited to
this aim.

Finally, we have here restricted to first-order hyperbolic PDEs, as they are
the natural framework to treat variables that are characterized by a specific evo-
lution in time. An interesting next step would be to consider models with more
general “spatial” variables, including for instance diffusion processes. Also, in
this paper we have restricted to the case of structuring variables belonging to
bounded intervals. However, unbounded domains arise naturally in applications,
for instance if variables are assumed to follow a normal or Gamma distribution.
This case involves further numerical difficulties that could be addressed in fu-
ture work. While in some situation it could be possible to apply a variable
transformation to map the unbounded domain to a bounded one, an alternative
approach could involve discretization and interpolation techniques specific to
unbounded domains (e.g., [28, 29]).
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