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Abstract

We consider acoustic waves propagating in an inviscid fluid interacting with a rigid peri-
odically perforated plate in the presence of permanent flows. The paper presents a model
of an acoustic interface obtained by the asymptotic homogenization of a thin transmission
layer in which the plate is embedded. To account for the flow, a decomposition of the
fluid pressure and velocity in the steady and fluctuating parts is employed. This enables
for a linearization and an efficient use of the homogenization method which leads to a
model order reduction effect. The dependence of an extended Helmholtz equation on the
permanent flow introduces a locally periodic velocity field in the perforated plate vicinity,
so that the coefficients of the homogenized interface depend on the flow. The derived
model extended by natural coupling conditions provides an implicit Dirichlet-to-Neumann
operator. Numerical simulations of wave propagation in a waveguide illustrate the flow
speed influence on the acoustic transmission. Also some geometrical aspects are explored.

Keywords: homogenization, acoustic waves in fluid, extended Helmholtz equation,
transmission conditions, porous interface, multiscale modelling

1. Introduction

The problem studied in this paper is motivated by various industrial applications where
designed structures incorporate perforated plates, or panels which enable for cooling, or
ventilation by fluid flow through the apertures, and simultaneously should reduce the noise
transmission. The permanent flow can be a quite important phenomenon influencing the
acoustic field.

We consider fluid acoustics in a waveguide in which a rigid periodically perforated
plate is fitted. As the new ingredient of the modelling, the steady fluid flow is respected.
The aim is to derive a homogenized model of acoustic waves propagating in a thin layer
Ωδ ⊂ R3 occupied by a fluid interacting with the plate. The layer is embedded in a
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waveguide where it separates two fluid-filled subdomains. The derived homogenized model
constitutes interface transmission conditions on the “homogenized acoustic metasurface”
Γ0 ⊂ R2×{0} replacing the problem of the fluid acoustics in a complex 3D geometry of the
periodically perforated plate. This modelling approach was proposed in [1], and further
elaborated in [2, 3] for elastic plates. Its usefulness for efficient solving optimum design
problems was shown in [4, 5]. To account for the advection effects related to the permanent
flow which is assumed to be independent of the acoustic perturbations, a linearization is
employed to establish approximate models of acoustic waves. For further treatment by
the homogenization method, the pressure formulation derived in [6] while respecting the
advection in an inviscid barotropic fluid is employed. Up to our knowledge, the acoustic
transmission in a nonstationary fluid flowing through a periodically perforated interfaces
has not been treated by the homogenization so far in the published literature. Numerical
aspects of the acoustic waves in a uniform flow were reported in [7] where the applied
Lorentz transformation yields the Helmholtz equation. Another study [8] employed the
Galbrun equation.

Our paper contributes to the research in the two-scale modelling of periodically het-
erogeneous interfaces. In our previous studies [1, 2, 3] we were concerned with waves in
standing fluid. For this, the homogenization strategy has been applied in situations when
thin rigid, or elastic perforated plate represented by interface Γ0 is characterized by the
thickness ≈ δ which is proportional to the size of the perforating holes ε ≈ δ. We developed
homogenized models of a layer of the thickness δ, containing a perforated plate. Using an
approximation respecting a given finite scale ε0 > 0, non-local transmission conditions of
the acoustic field interacting with the rigid, or elastic plate were obtained as the two-scale
homogenization limit ε→ 0. The same modelling strategy is pursued in this paper.

Analogous problems with thin perforated interfaces have been studied using different
approaches in a number of works, e.g. [9, 10] showing that the first order homogenization
ε → 0 leads to totally transparent interfaces without any effects of the finite thickness.
Besides the acoustic problems with a standing fluid, similar treatment was employed to
study the electromagnetic field [11]. Using higher order approximation involving the cor-
rectors at order o(ε1), nontrivial interface conditions capturing acoustic impedance of the
thin interfaces have been obtained in [12, 13] using an approach based on the so-called
inner and outer asymptotic expansions which enable to treat rather general shapes of the
perforations, or other heterogeneities.

The paper is organized, as follows. The acoustic problem in the waveguide containing a
transmission layer is introduced in Section 2, where all the geometrical objects are defined
and the decomposition of the problem in two-subproblems is established. Then we focus
on the acoustic subproblem imposed in the layer; its weak formulation is treated by the
asymptotic homogenization in Section 3, where the limit problem is presented, all auxil-
iary local autonomous corrector problems, and the macroscopic model of the homogenized
acoustic layer are introduced. Expressions for the effective model coefficients involved in
the macroscopic model are derived in the Appendix A. In Section 4, the homogenized
model serving the acoustic transmission condition in the global problem is illustrated us-
ing numerical examples which show the influence of the flow on the acoustic properties of
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the perforated plate. Concluding remarks and research perspectives follow in Section 5.

1.1. Notation

The spatial position x in the medium is specified through the coordinates (x1, x2, x3)
with respect to a Cartesian reference frame R(O;~e1, ~e2, ~e3) specified by an orthonormal
basis vectors ~ek. The boldface notation for vectors, a = (ai), and for tensors, b = (bij), is
used. The gradient and divergence operators applied to a vector a are denoted by ∇a and
∇ · a , respectively. Alternatively the notation ∇y = (∂yi ) = ∂

∂yi
is used in a generic sense.

Throughout the paper, x denotes the global (“macroscopic”) coordinates, while the “local”
coordinates y describe positions within the representative unit cell Y ⊂ R3 where R is the
set of real numbers. By Latin subscripts i, j, k, l ∈ {1, 2, 3} we refer to vectorial/tensorial
components in R3. Subscripts α, β ∈ {1, 2} are reserved for the tangential components
with respect to the plate midsurface, i.e. coordinates xα of vector represented by x′ =
(x1, x2) = (xα) are associated with directions (~e1, ~e2). Moreover, ∇x = (∂α) is the “in-
plane” gradient. By n = (ni) we denote the unit normal vector. The standard notation
for Lebesgue Lk, and Sobolev W 1,2 = H1,W 1,2

0 = H1
0 functional spaces is adhered.

2. Problem formulation and decomposition in subproblems

We find a representation of the acoustic interaction on a perforated plate under the
steady fluid flow. For this, we perform the asymptotic homogenization of the flow and
acoustic fields in a transmission layer involving the plate. Desired homogenized acous-
tic transmission conditions replacing the layer are derived using the asymptotic analysis
w.r.t. a scale parameter ε which describes the layer thickness and also the size and spacing
of holes (general perforations) periodically drilled in the plate structure. In this paper we
focus on the homogenization of the acoustic field in the layer. The resulting model is then
used to serve the transmission conditions for the interface replacing the layer in the global
acoustic problem imposed in a waveguide.

2.1. Flow and acoustics decomposition

Following the approach employed in [6] to analyze the acoustic waves propagating in
rigid scaffolds, the total fluid fields w , p and the mass density of the fluid, ρ, are split into
the “stationary flow” parts w̄ , ρ̄ and p̄ and the “acoustic fluctuation” parts w̃ , ρ̃ and p̃, so
that

w = w̄ + w̃ , p = p̄+ p̃ , ρ = ρ̄+ ρ̃ . (1)

The fluid is assumed to be homogeneous and under the stationary flow described by
(w̄ , p̄, ρ̄) is considered as incompressible, so that a constant reference density ρ̄ = ρ0 can be
introduced. The acoustic perturbations are governed by the barotropic response denoting
by p0 and ρ0 reference state variables, it holds that p − p0 = c2(ρ − ρ0), where c2 is the
squared acoustic velocity c =

√
kf/ρ0 with the bulk stiffness kf = 1/γf , thus, γf is the
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fluid compressibility for the reference state. Upon substituting (1) in the Navier–Stokes
equations, we obtain

ρ0

(
∂

∂t
ũ + w̄ · ∇ũ + ũ · ∇w̄

)
= −∇p̃+∇ · τ̃ vis ,

∂

∂t
p̃+ w · ∇p̃ = −kf∇ · ũ , (2)

while (w̄ , p̄) describing the stationary flow in the periodic scaffolds satisfy

ρ0w̄ · ∇w̄ +∇p̄− µ∇2w̄ = f̄ , ∇ · w̄ = 0 , (3)

where τ̃ vis is the viscous stress associated with the velocity fluctuations and f̄ is the volume
force.

In this paper, we consider further simplifying assumptions. Namely, the viscous effects
are neglected, thereby τ̃ vis ≈ 0 in (2)1 and the steady flow (3) is treated as a potential flow,
i.e. w̄ = −∇Ψ where the potential Ψ satisfies −∇2Ψ = 0 in the fluid domain and ν · ∇Ψ
on the plate surface. The issue of the flow problem homogenization is beyond the scope
of the present paper, however, for the potential flow the homogenization procedure follows
the one developed for the Helmholtz equation in the layer. In fact, the homogenized model
can be derived relatively easily as an exercise using the theoretical results reported in [2],
or [1].

Regarding the acoustic equations (2), for stationary fluids, i.e. when w̄ ≡ 0, these can
be converted in the wave equation governing the pressure p̃. When steady advection is
respected, w̄ 6≡ 0, it is not straightforward to eliminate the velocity in order to obtain a
pressure formulation. Let us apply the divergence operator in (2)1; this yields,

ρ0

(
∇ · ˙̃u + 2∂kw̄i∂iũk + w̄ · ∇(∇ · ũ) + ũ · ∇(∇ · w̄)

)
= −∇2p̃ , (4)

where the second l.h.s. term can be approximated, as suggested in [6], ∂iw̄k∂kũi ≈ w̄ ·
∇(∇ · ũ). By the consequence, (2) governing the acoustic waves is approximated by the
following equation, (

∂

∂t
+ τw̄ · ∇

)(
∂

∂t
p̃+ w̄ · ∇p̃

)
= c2

f∇2p̃ , (5)

where τ = 3 and cf =
√
kf/ρ0. Further we define θ = (1 + τ)/2, thus, θ = 2. We prefer to

keep the abstract notation τ and θ in what follows. In the frequency domain, with
∼
p being

considered as the Fourier image of p̃, (5) becomes an extension of the Helmholtz equation,

c2
f∇2

∼
p+ ω2

∼
p− iω(1 + τ)∂w

∼
p− τ∂2

w∼
p = 0 , ∂w

∼
p = w̄ · ∇

∼
p , ∂2

w∼
p = ∂w(∂w

∼
p) , (6)

where ω is the frequency of incident waves, i =
√
−1. The standard Helmholtz equation

is obtained for w̄ ≡ 0. Below, rather than
∼
p we simply use p to refer to the acoustic

fluctuations in the frequency domain. The notation ∂w and ∂2
w for the advective derivatives

are employed throughout the next sections.
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2.2. Geometrical decomposition and the layer subproblem

Although we are interested in modelling the acoustic field in a waveguide represented
by a domain ΩG ⊂ R3 in which the perforated plate is embedded, we shall consider a
decomposition of the “global problem” into two subproblems: the acoustic interaction in
the layer Ωδ and the outer acoustic problems in ΩG \ Ωδ, where δ = κε, with κ > 0 being
fixed, is the layer thickness while ε characterizes the size of the plate perforations. The two
subproblems are coupled by natural transmission conditions on the “fictitious” interfaces
Γ±δ , see Fig. 1. The asymptotic analysis δ ≈ ε→ 0 is considered for the problem in Ωδ with
the Neumann type boundary conditions on Γ±δ . As the result of the dimensional reduction
“3D-to-2D”, the homogenized acoustic transmission layer is transformed in a problem
defined on Γ0. The global problem for the acoustic waves in the fluid interacting with
the homogenized perforated plate represented by Γ0 is completed by a coupling condition
which enables to introduce an implicit Dirichlet-to-Neumann operator.

2.2.1. Decomposition of the global problem

Let Γ0 ⊂ R2 be an open bounded domain spanned by coordinates xα, α = 1, 2, con-
stituting a planar manifold in R3. Further let Γ+

δ and Γ−δ be equidistant to Γ0 with the
distance δ/2 = dist(Γ0,Γ

+
δ ) = dist(Γ0,Γ

−
δ ). We introduce Ωδ = Γ0×] − δ/2, δ/2[⊂ R3, an

open domain representing the transmission layer bounded by ∂Ωδ which is split as follows

∂Ωδ = Γ+
δ ∪ Γ−δ ∪ ∂extΩδ , Γ±δ = Γ0 ±

δ

2
~e3 , ∂extΩδ = ∂Γ0×]− δ/2, δ/2[ , (7)

where δ > 0 is the layer thickness and ~e3 = (0, 0, 1), see Fig. 1.
In the waveguide ΩG, the fluid occupies domain ΩG,ε

δ = Ω+
δ ∪Ω−δ ∪Ω∗ε, where Ω∗ε ⊂ Ωδ is

the fluid-saturated part of the the “transmission layer” Ωδ containing the fluid and the rigid
perforated plate Σε ⊂ Ωδ. According to the decomposition, the acoustic fields represented
by P δ in Ω±δ and pε in Ω∗ε both satisfy the extended Helmholtz equation (6), being coupled
on Γ±δ by

Dw,ωP
δ

Dn
= iωgε± on Γ±δ , P δ = pε on Γ±δ , (8)

where Dw,ω

Dn
is the advection normal derivative depending on ω and w̄ ,

Dw,ωq

D n
= ∂nq − w̄n(iωθq + τ∂wq) , (9)

involving projections ∂n = n · ∇, wn = n ·w , and gε± represents the acoustic momentum
flux involved in the definition of the layer subproblem (10). The definition of Dw,ω

Dn
is

obtained when deriving the weak formulation of the acoustic problem featured by the fluid
advection. Without loss of generality, when dealing with the unit normal vector n on Γ±δ ,
we consider its orientation outward to layer Ωδ.
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The acoustic potential pε in the layer satisfies

c2
f∇2pε + ω2pε − iω(1 + τ)∂wp

ε − τ∂2
wp

ε = 0 in Ωε
δ ,

interface conditions
Dw,ωp

ε

Dn
= −iωgε± on Γ±δ ,

pε = P δ on Γ±δ ,

zero velocity of solid structure,
∂pε

∂n
= 0 on ∂Σε ,

∂pε

∂n
= 0 on ∂extΩδ ,

(10)

where c is the speed of sound propagation. Note that ∂
∂n

= n ·∇ = Dw,ω

Dn
on the solid walls,

since there w̄n = 0.
Although we do not specify the outer problem in Ω+

δ ∪Ω−δ , the advection normal deriva-
tive must be taken into account when dealing with the open waveguide boundary conditions
(incident waves, or non-reflective boundaries).

2.2.2. Periodic microstructure in the layer

The microstructure of the perforation is periodic, being generated by the representative
periodic cell Yκ = Ξ × κ]− 1/2,+1/2], where Ξ = ]0, b1[ × ]0, b2[. We can assume |Ξ| =
b1b2 ≈ 1, hence |Yκ| ≈ κ. The surface of the hexahedron Yκ is decomposed into the upper
and lower sides, I+

Y and I−Y , and the “periodicity” sides ∂#Yκ, thus ∂Yκ = I+
Y ∪ I

−
Y ∪ ∂#Yκ.

The solid (plate) is introduced by a representative solid obstacle Sh ⊂ Ξ×h]− 1/2,+1/2],
where h << κ is the plate thickness, i.e. the maximum thickness of the obstacle (measured
transversally to the layer thickness).

The fluid domain Ω∗ε is generated using Y ∗κ = Yκ \ Sh as a Ξ-periodic lattice,

Ω∗ε =
⋃
ζ′∈Z2

ε(ζ + Y ∗κ ) ∩ Ωδ . ζ = (ζ ′, 0) . (11)

In what follows, we refer to Ξ-periodic functions: any such function, say f(x, y) where
x ∈ Ω, y ∈ Y , satisfies f(·, y) = f(·, y + w) for w = k1b1~e1 + k2b2~e2 with k1, k2 ∈ Z. By
H1

#(Y ) ⊂ H1(Y ) we denote the subspace of Ξ-periodic functions. We shall also simplify

the notation Y ≡ Yκ, since κ is a fixed constant.

3. The layer homogenization

In this section, we introduce the limit two-scale equations of the acoustic problem
imposed in the transmission layer. We employed the asymptotic analysis based on the
unfolding method [14] which uses the standard convergence results. For this, a priori
estimations on the acoustic pressure are needed; theses can be obtained in analogy with
the treatment of the vibroacoustic problem [2]. In our setting, the unfolding operator
Tε : L2(Ωδ;R) → L2(Γ0 × Y ;R) transforms a function f(x) defined in Ωδ into a function
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of two variables, x′ ∈ Γ0 and y ∈ Y . For any f ∈ L1(Y ), the cell average involved in all
unfolding integration formulae will be abbreviated by

1

|Ξ|

ˆ
Ξ

f =

 
Ξ

f ,
1

|Ξ|

ˆ
D

f =:

 
D

f , (12)

whatever the domain D ⊂ Y of the the integral is (i.e. volume, or surface). In what follows,
all variables depending on the scale ε are labelled by ε.

In contrast with previous studies of the acoustic transmission, where a static fluid was
considered, the flow phenomenon not only modifies the acoustic wave model, but also
requires to account for a locally periodic structures. Independently of the flow model used
to analyze and compute the advection velocity filed w ε, we assume that such a model
provides a bounded unfolded velocity field, such that for a real β ≥ 0

εβTε(w ε) ⇀ w(x′, y) weakly in L2(Γ0 × Y ∗) , w is bounded in L∞(Γ0 × Y ∗) . (13)

This assumption on the advection velocity ensures that convergence results reported below
can be obtained in much similar way as in the cases of a static fluid when the standard
Helmholtz equation is employed instead of (6). However, by the consequence, the “micro-
configurations” are only locally periodic being featured by w(x′, ·) depending on x′ ∈ Γ0

and constituting the differential operator.

3.1. Variational formulation and the convergence results

When deriving the weak formulation of the layer subproblem (10), the advection deriva-
tive (9) is obtained, being substituted by the interface coupling condition involving gε±.
The acoustic pressure pε ∈ H1(Ω∗ε) is a weak solution of (10), iff

c2

ˆ
Ω∗ε
∇pε · ∇qε − ω2

ˆ
Ω∗ε

pεqε+iωθ

ˆ
Ω∗ε

(qε∂wp
ε − ∂wqεpε)− τ

ˆ
Ω∗ε

∂wq
ε∂wp

ε

= −iωc2

(ˆ
Γ±ε

gε±qε dΓ

)
, for all qε ∈ H1(Ω∗ε) .

(14)

The r.h.s. terms depending on the acoustic momentum fluxes must be specified. Let
g0 ∈ L2(Γ0) and g1±(x′, y′) ∈ L2(Γ0 × R2), whereby g1±(x′, ·) being Ξ-periodic in the
second variable. For

ĝε+(x′) = g0(x′) + εg1+(x′,
x′

ε
) , ĝε−(x′) = −g0(x′)− εg1−(x′,

x′

ε
) , (15)

the following convergence results hold

pε ⇀ p0 weakly in L2(Ω̂) , ∂zp
ε ⇀ 0 weakly in L2(Ω̂) , (16)

thus, ∂zp
0 = 0. Moreover, the classical results of the homogenization yield

Tε(pε) ⇀ p0 weakly in L2(Γ0 × Y ∗) ,
Tε
(
∇pε

)
⇀ ∇x′p

0 +∇y′p
1 weakly in L2(Γ0 × Y ∗) ,

1

ε
Tε(∂zpε) ⇀ ∂zp

1 weakly in L2(Γ0 × Y ∗) .
(17)
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3.2. Limit two-scale equations

These can be obtained rigorously using the convergence results (16)-(17) enabling the
asymptotic analysis to be applied directly in (14). Formal procedure simplifying the deriva-
tion of limit equations is based on the matched asymptotic expansions which require the
use of the recovery sequences constructed in accordance with (16)-(17). Neglecting the
higher order terms in ε, we consider the following approximate expansions for unfolded
unknown pε and the test function qε,

Tε(pε) = p0(x′) + εp1(x′, y) , Tε(qε) = q0(x′) + εq1(x′, y) , (18)

where x′ ∈ Γ0, y′ ∈ Ξ and y = (y′, z) ∈ Y ; in (18), recalling that all the two-scale functions
are Ξ-periodic in the second variable. The detailed derivation of the limit problem equations
is skipped in this paper, since the resulting equations can be obtained in analogy with the
treatment reported in [2], or [3].

For this technical procedure and the result presentation the following notation is needed,

∇xp = (∂xαp) = (∂x1 , ∂
x
2 )p

∂̄xwp = w · ∇xp = w ′ · ∇xp = (w1∂
x
1 , w2∂

x
2 )p

∂̄ywp = w · ∇yp = w ′ · ∇yp = (w1∂
y
1 , w2∂

y
2 )p

∂ywp = w · ∇yp = (w1∂
y
1 , w2∂

y
2 , w3∂

y
3 )p = (w1∂

y
1 , w2∂

y
2 , w3∂z)p

∂ywyα = (δ1α, δ2α, 0)

∂ywπ
α = w · ∇yπ

α ,

(19)

where w = (w ′, w3) = (w1, w2, w3). In the expressions presented below, a product of
a ∈ R3 and b ∈ R2 is correct a · b =

∑
α aαbα when a3 = 0, which justifies the writing in

(19)2,3.
The two-scale asymptotic homogenization method applied to (14) yields the limit two-

scale variational equation

c2

ˆ
Γ0

 
Y ∗

(∇xp
0 +∇yp

1) · (∇xq
0 +∇yq

1) + c2

ˆ
Γ0

 
Y ∗
∂zp

1∂zq
1 − ω2

ˆ
Γ0

 
Y ∗
p0q0

−τ
ˆ

Γ0

 
Y ∗

(∂̄xwp
0 + ∂ywp

1)(∂̄xwq
0 + ∂ywq

1)

+iωθ

ˆ
Γ0

 
Y ∗

(
q0(∂̄xwp

0 + ∂ywp
1)− p0(∂̄xwq

0 + ∂ywq
1)
)

= −iωc2

ˆ
Γ0

[
q0

 
Ξ

∆g1 + g0

( 
I+y

q1 −
 
I−y

q1

)]
(20)

for all q0 ∈ V0(Γ0), q1 ∈ H1
#(Y ∗). Thus, the fluid flow modifies the limit problem by the

two integrals involving the advection derivatives.
The limit model of the layer is coupled with the outer acoustic fields P δ due to conditions

(8); to respect (8)2, we consider its weak form, see the identity (61) in [2]. Its approximation
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for a given finite heterogeneity scale ε0, which is related to a finite layer thickness δ0 =
κε0 > 0, yields the following limit condition

1

ε0

ˆ
Γ0

ψ(P̂+ − P̂−) =

ˆ
Γ0

ψ

( 
I+y

p1 −
 
I−y

p1

)
∀ψ ∈ L2(Γ0) , (21)

where P̂+/− are the limit traces of P δ on Γ
+/−
δ for δ → 0.

Figure 1: Left – a waveguide and its domain decomposition in the layer Ωδ and the outer parts Ω+
δ and

Ω−
δ ; right – the representative cell.

3.2.1. Autonomous problems

When testing the limit equation (20) with q1 6= 0 while q0 = 0, the local problem
in the fluid part is obtained. It provides characteristic responses and thereby also the
homogenized coefficients constituting the macroscopic model of the homogenized layer. p1

depends on the “macroscopic” functions ∂xαp
0, p0 and g0. Therefore, due to the linearity,

we can introduce the following split

p1(x′, y) = πβ(y)∂xβp
0(x′) + iω

(
ξ(y)g0(x′) + πP (y)p0

)
. (22)

Define the operator Aw and the inner product for any functions p, q ∈ H1
#(Y ∗),

(Awp, q)Y ∗ := (∇yp, ∇yq)Y ∗ −
τ

c2
(∂ywp, ∂

y
wq)Y ∗ . (23)

Due to the involvement of w(x′, ·) in (23), Aw is parameterized by x′ ∈ Γ0. Using the split
form substituted in (20), three local problems are distinguished.

Their solutions provide local characteristic responses of the layer microstructure w.r.t. macro-
scopic quantities ∇xp

0, g0 and p0

• Find πβ ∈ H1
#(Y ∗), such that(

Awπ
β, q
)
Y ∗

= −
(
∇yyβ, ∇yq

)
Y ∗

+
τ

c2
(∂ywyβ, ∂

y
wq)Y ∗ ,∀q ∈ H

1
#(Y ∗) . (24)
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• Find ξ ∈ H1
#(Y ∗), such that

(Awξ, q)Y ∗ = −

( 
I+y

q −
 
I−y

q

)
, ∀q ∈ H1

#(Y ∗) . (25)

• Find πP ∈ H1
#(Y ∗), such that(

Awπ
P , q

)
Y ∗

=
θ

c2
f

ˆ
Y ∗

w · ∇yq , ∀q ∈ H1
#(Y ∗) . (26)

Remark 1. Note that problem (26) appears only for nonvanishing flow, i.e. if w 6≡ 0,
while the other two problems are relevant also in the static fluid acoustics. Since, in general,
w(x′, y) is merely locally periodic, all the three local problems are specific to a vicinity of
the macroscopic position x′ ∈ Γ0.

4

3.3. Macroscopic transmission layer model

Upon substituting the split forms (22) in the limit equation (20), the macroscopic
equation expressed in terms of the homogenized coefficients A,B ,Mw, Tw,W̄

′, and W̄
can be obtained:

c2

ˆ
Γ0

(A∇xp
0) · ∇xq

0 − ω2(ζ∗ +Mw)

ˆ
Γ0

p0q0 + iωc2

ˆ
Γ0

g0B · ∇xq
0

− ω2θ

ˆ
Γ0

q0Twg
0 + iωθ

ˆ
Γ0

(
q0W̄ · ∇xp

0 +∇xq
0W̄ ′)p0

)
+ iωc2

ˆ
Γ0

q0∆G1 = 0 ,

(27)

for all q0 ∈ H1(Γ0), where ζ∗ = |Y ∗|/|Y |, and ∆G1 :=
ffl

Ξ
(g1+ − g1−). In addition, the

coupling equation involving further coefficients B ′, T ′w and F is derived in the similar way
from (21),

ˆ
Γ0

ψ
(
B ′ · ∇xp

0 − iωFg0 + iωT ′wp
0
)

=
1

ε0

ˆ
Γ0

ψ(∆P δ0) ∀ψ ∈ L2(Γ0) . (28)

where ∆P δ0 = P δ0+−P δ0− is the jump of the solution in the outer part Ωδ0 . In Appendix A,
we give expressions for all the homogenized coefficients satisfying the following symmetry
relationships,

Aαβ = Aβα , Bα = B′α , T ′w = − θ
c2
Tw , W̄ ′ = −W̄ . (29)

This property leads to the Hermitean symmetry of the discretized system (27)-(28) pre-
sented in the matrix form. Besides the effective advection flow velocity W̄ , also other
coefficients labelled by subscript w vanish for a static fluid.
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4. Numerical simulations

In this section we illustrate the influence of the flowing fluid on acoustic waves prop-
agating in a waveguide fitted with the perforated rigid plate. Recall that the acoustic
problem (27)-(28) imposed in the layer involves variables p0, g0, ∆G1 and ∆P δ0 . How-
ever, as explained in [2], p0 and g0 can be replaced by G+, G− and P δ0+, P δ0−, such
that p0 = (P δ0+ + P δ0−)/2, and g0 = (G+ + G−)/2, whereas ∆P̂ = P δ0+ − P δ0− and
∆G1 = (G+−G−)/ε0 depending on scale ε0 > 0 determining the layer thickness δ0 = κε0.
The global model of the waveguide consists of the following three parts:

(i) The outer part model, eq. (6) governing P δ0 in Ω±δ0 := Ω+
δ0
∪ Ω−δ0 complemented

by boundary conditions on ∂extΩ
±
δ0

:= ∂Ω±δ0 \ Γ±δ0 .

(ii) The homogenized layer model, (27)-(28), where the above substitutions of p0 and
g0 are used.

(iii) The interface conditions (8)1 applied at Γ±δ0 , where gε± is replaced by g0.

These three coupled parts constitute the problem for P δ0 and G+, G−. Its numerical
solutions are computed by a monolithic approach using the finite element (FE) method
implemented in the Python based package SfePy: Simple Finite Elements in Python. Note
that the homogenized model (27)-(28) depend on the microscopic autonomous problems
which are well decoupled from the global problem solution, as described in Sections 3.2
and 3.3. This is the main advantage of the homogenized interface model, since the cell
problems are cheap to solve independently of the global solutions. Discretization of the
finite scale layer involving the perforated plate is avoided. All the unknown fields defined
in Ω, on Γ0 and in Y ∗ are approximated by linear Lagrangian finite elements.

In the examples reported below, we consider plates perforated by cylindrical holes
characterized by the diameter d = 0.24 ε0 m and the axis slope ϕ, see Fig. 2. The acoustic
fluid occupying domain Y ∗ is characterized by its density %0 = 1.55 kg/m3 and by the
sound speed c = 343 m/s.

Figure 2: Periodic unit cell Y – a rigid plate perforated by a cylindrical hole declined by angle ϕ.
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4.1. Homogenized acoustic coefficients – dependence on the flow velocity

In addition to the geometry of the perforations, as represented by domain Y ∗, the
homogenized acoustic coefficients (A.5)–(A.9) of the macroscopic equations (27)-(28) also
depend on the flow velocity which is involved in the local problems (24)–(26). Fig. 3 shows
the dependence of the coefficients on the velocity w and on the angle parametrizing the
hole slope, ϕ = 0◦, 30◦, 60◦, see Fig. 2. At the microlevel, velocity field w is obtained due to
the reconstruction of macroscopic flow velocity, in general; this issue is beyond the scope of
the present paper, although, in the example of the global acoustic filed in a waveguide, the
homogenized model of the potential flow is employed. However, in this study, it is sufficient
to solve an auxiliary potential flow problem for a Ξ-periodic velocity w ∈ H1

#(Y ∗) which

is a weak solution of

w = −∇Φ, ∇ ·w = 0 in Y ∗ , w · n = ±U3 on I±Y

with a prescribed velocity U3 varying in range from 0 m/s to 5.5 m/s.

Figure 3: Dependence of the homogenized coefficients A11, B1, and F on the prescribed boundary velocity
U3 and on the geometrical parameter ϕ.

4.2. Wave propagation in a waveguide with the homogenized interface layer

We consider an acoustic waveguide consisting of two equally shaped parts, separated
by the perforated plate. According to the global problem decomposition, as announced

12



Figure 4: Potential flow: top – the macroscopic flow velocity; bottom – the reconstructed velocity field at
the microscopic level in two distinct macroscopic points.

in Section 2.2.1, the acoustic field P δ0 is defined in domains Ω+
δ0

and Ω−δ0 , whereas the
transmission layer Ωδ0 of the thickness δ0 = ε0 = 0.025 separating the two domains is
represented by the homogenized interface Γ0. see Fig. 5. The waveguide is characterized by
dimensions lm = 0.3 m, hm = lio = 0.2 m, hio = 0.0625 m, and w = 0.01 m. For simplicity,
in the x2-direction, we apply the periodic boundary conditions on the faces orthogonal to
the x2-axis, which yields a homogeneous distribution of the macroscopic fields w.r.t. x2.
Hence the macroscopic problem is quasi 2D, which also facilitate the visualization and
interpretation of obtained results.

Figure 5: Waveguide – decomposition of the macroscopic domain.

The periodic interface is represented by a periodic unit cell in which the rigid plate
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(domain S) of thickness t̄ = 0.25 ε0 m serves an obstacle for the flow and the acoustic
waves. The scaling parameter is chosen as ε = 0.3/12 which corresponds to a perforated
interface formed of 12 periodic cells in the x1-direction. In Fig. 4, we display a solution
of the potential flow problem imposed in the waveguide for the uniform inlet velocity
Uin = −Uout = 20 m/s on Γin. This was computed using a two-scale model derived by
the homogenization of the transmission layer Ωδ using an analogical procedure to the one
employed in the acoustic problem homogenization. By virtue of the unfolding procedure,
the local flow field at the microlevel can be reconstructed. Using the flow velocities so
obtained we solve the microscopic subproblems (24)–(25) and evaluate the homogenized
acoustic coefficients which are employed in the layer problem (27)–(28). Its solution, thus,
the acoustic pressure in the waveguide is depicted in Fig. 5. Because the flow field is not
completely uniform, local flow problems must be solved either in all quadrature points of the
discretized domain Γ0 or in all FE elements when assuming them constant in elements. By
the consequence, the homogenized coefficients need to be evaluated at the same positions.
The acoustic pressure distribution, obtained for an incident wave with amplitude p̃ =
300 Pa imposed on Γin and for an anechoic condition applied on Γout, is shown in Fig. 6.

The dependence of the global acoustic field on the flow velocity is shown in Fig. 7 left
where the transmission loss TL(ω) = 10 log10

´
Γout
|p|2/

´
Γin
|p|2 is compared for different

input and output velocities prescribed on boundaries Γin and Γout: Uin = −Uout = 5, 15, 25
m/s. The global response depends also on the geometrical arrangement of the perforations
which is characterized by the hole slope ϕ in our example. The effect of various ϕ on the
transmission loss is illustrated in Fig. 7 right.

5. Conclusion

The derived model of the homogenized acoustic transmission layer serves coupling con-
ditions for the acoustic pressure fields in domains separated by the perforated plate. As
the new contribution, we extended the model reported in [1] to describe the acoustic waves
in flowing fluid. We explored the flow influence on the homogenized coefficients of the
homogenized interface model, namely the acoustic impedance. It has been demonstrated,
how the flow affects the transmission loss coefficient characterizing the acoustic response of
waveguides equipped by the perforated plates. Although the background flow increases the
computational expenses of the homogenized interface model, as compared to the no-flow
case, it enables for a remarkable reduction of the computational effort associated with the
numerical simulations of the acoustic field. For small variations of the flow on the interface,
the sensitivity analysis of the homogenized coefficients will enable to decrease further the
number of the local problems needed to provide a sufficiently accurate numerical approxi-
mation of the homogenized flow-dependent interface. Although, in the numerical examples,
the potential flow model was employed, the further research is aimed to employ a viscous
flow model.

Acknowledgement. The research has been supported by the grant project GA 2116406S of
the Czech Science Foundation.
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Figure 6: Magnitude of the acoustic pressure: top – pressure in section of Ω; middle – acoustic pressure
p0 in Γ0; bottom – the pressure fields reconstructed at the microscopic level in two distinct macroscopic
points.

Appendix A. Homogenized coefficients

Here we specify the homogenized coefficients (HC) identified in (20), when deriving
the macroscopic equation (27) with a nonvanishing test function q0, and in (21). The
expressions for the HC are obtained by collecting all terms coupling specific unknown and
test functions, as listed below. The symmetry relationships (29) are proved in (A.1), (A.7)
and (A.9) using the local autonomous problems (24)-(26).

Terms coupling ∇xp
0 and ∇xq

0, where the symmetric expression is due to (24),

Aαβ = (∇y(yα + πα), ∇yyβ)Y ∗ −
τ

c2

 
Y ∗

w · ∇y(yα + πα)w · ∇yyβ

=
(
∇y(yα + πα), ∇y(yβ + πβ)

)
Y ∗
− τ

c2

(
∂yw(yα + πα), ∂yw(yβ + πβ)

)
Y ∗

.

(A.1)

Terms coupling ∇xp
0 and q0,

iωq0W̄ · ∇xp
0 = iωθq0

 
Y ∗

w · ∇y(yβ + πβ)∂xβp
0 , W̄β = θ

 
Y ∗

w · ∇y(yβ + πβ) . (A.2)

15



Figure 7: Left – transmission loss (TL) curves calculated for ϕ = 30◦ and given input and output
velocities: Uin = −Uout = 5, 15, 25 m/s; right – TL curves for Uin = −Uout = 25 m/s and ϕ = −30, 0, 30◦.

Terms coupling p0 and ∇xq
0,

iωp0Q̄w∇xq
0 = iωp0

(
c2
f

 
Y ∗
∇yπ

P − τ
 
Y ∗

(w · ∇yπ
P )w̄ − θ

 
Y ∗

w

)
∇xq

0 ,

Q̄w = c2
f

 
Y ∗
∇yπ

P − θ
 
Y ∗

w̄ − τ
 
Y ∗

(w · ∇yπ
P )w ,

(A.3)

where w = (wα), α = 1, 2 is the in-plane restriction of the advection velocity.
Terms coupling p0 and q0,

iωq0Mwp
0 = iωθq0

 
Y ∗

w · ∇yπ
Pp0 , Mw = θ

 
Y ∗

w · ∇yπ
P . (A.4)

Terms coupling g0 and ∇xq
0,

iωc2
f∇xq

0Bg0 = iω∇xq
0 ·
(
c2
f

 
Y ∗
∇yξ · ∇yy − τ

 
Y ∗

w ⊗w · ∇yξ

)
g0 ,

B =

 
Y ∗
∇yξ · ∇yy −

τ

c2
f

 
Y ∗

w ⊗w · ∇yξ .

(A.5)

Terms coupling g0 and q0,

− ω2θq0Twg
0 = −ω2θq0

 
Y ∗

w · ∇yξg
0 , Tw =

 
Y ∗

w · ∇yξ . (A.6)

The coupling equation (28) involves the following homogenized coefficients,

F = −
 
I+y

ξ +

 
I−y

ξ ,

B′α =

 
I+y

πα −
 
I−y

πα = (Awξ, π
α)Y ∗ = −

 
Y ∗κ

∂yαξ +
τ

c2
f

 
Y ∗
wα∂

y
αξ = Bα , α = 1, 2 ,

T ′w =

 
I+y

πP −
 
I−y

πP = −
(
Awπ

P , ξ
)
Y ∗

= − θ

c2
f

 
Y ∗

w · ∇yξ = − θ

c2
f

Tw ,

(A.7)

16



where (25)-(26) was employed
Finally, to show W̄ = −W̄ ′, we employ the following identity obtained due to (24)

and (26),

c2
f

 
Y ∗
∇yπ

P − τ
 
Y ∗

(w · ∇yπ
P )w̄ = c2

f

(
∇yπ

P , ∇yyβ
)
Y ∗
− τ

(
∂ywyβ, ∂

y
wπ

P
)
Y ∗

= −c2
f

(
Awπ

β, πP
)
Y ∗

= −θc2
f

 
Y ∗

w · ∇yπ
β ,

(A.8)

hence

W̄ ′
β = c2

f

 
Y ∗
∇yπ

P − τ
 
Y ∗

(w · ∇yπ
P )wβ − θ

 
Y ∗
w̄β

= θ

 
Y ∗

w · ∇yπ
β − θ

 
Y ∗

w̄ = −θ
 
Y ∗

w · ∇y(yβ + πβ) = −W̄β .

(A.9)
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