
ar
X

iv
:2

20
2.

05
29

5v
1

 [
m

at
h.

N
A

]
 1

0
Fe

b
20

22

Non-stationary Anderson acceleration with optimized

damping ⋆

Kewang Chena,b,∗, Cornelis Vuikb

aCollege of Mathematics and Statistics, Nanjing University of Information Science and

Technology, Nanjing, 210044, China.
bDelft Institute of Applied Mathematics, Delft University of Technology, Delft, 2628XE, the

Netherlands.

Abstract

Anderson acceleration (AA) has a long history of use and a strong recent inter-

est due to its potential ability to dramatically improve the linear convergence

of the fixed-point iteration. Most authors are simply using and analyzing the

stationary version of Anderson acceleration (sAA) with a constant damping

factor or without damping. Little attention has been paid to nonstationary

algorithms. However, damping can be useful and is sometimes crucial for simu-

lations in which the underlying fixed-point operator is not globally contractive.

The role of this damping factor has not been fully understood. In the present

work, we consider the non-stationary Anderson acceleration algorithm with op-

timized damping (AAoptD) in each iteration to further speed up linear and

nonlinear iterations by applying one extra inexpensive optimization. We an-

alyze this procedure and develop an efficient and inexpensive implementation

scheme. We also show that, compared with the stationary Anderson accelera-

tion with fixed window size sAA(m), optimizing the damping factors is related

to dynamically packaging sAA(m) and sAA(1) in each iteration (alternating

window size m is another direction of producing non-stationary AA). More-

⋆Funding: This work was partially supported by the National Natural Science Foundation
of China [grant number 12001287]; the Startup Foundation for Introducing Talent of Nanjing
University of Information Science and Technology [grant number 2019r106]

∗Corresponding author
Email addresses: kwchen@nuist.edu.cn (Kewang Chen), c.vuik@tudelft.nl (Cornelis

Vuik)
URL: https://homepage.tudelft.nl/d2b4e/ (Cornelis Vuik)

Preprint submitted to Journal of Computational and Applied Mathematics.February 14, 2022

http://arxiv.org/abs/2202.05295v1

over, we show by extensive numerical experiments that, in the case a larger

window size is needed, the proposed non-stationary Anderson acceleration with

optimized damping procedure often converges much faster than stationary AA

with constant damping or without damping. When the window size is very

small (m ≤ 3 was typically used, especially in the early days of application),

AAoptD and AA are comparable. Lastly, we observed that when the system is

overdamped (i.e. the damping factor is close to the lower bound zero), incon-

sistency may occur. So there is some trade-off between stability and speed of

convergence. We successfully solve this problem by further restricting damping

factors bound away from zero.

Keywords: Anderson acceleration, fixed-point iteration, optimal damping.

2010 MSC: 65H10, 65F10

1. Introduction

In this part, we first give a literature review on Anderson Acceleration

method. Then we discuss our main motivations and the structure for the present

paper. To begin with, let us consider the nonlinear acceleration for the following

general fixed-point problem

x = g(x), g : Rn → Rn

or its related nonlinear equations problem

f(x) = x− g(x) = 0.

The associated basical fixed-point iteration is given in Algorithm 1.

Algorithm 1 Picard iteration

Given: x0.

for k = 0, 1, 2, · · · do
Set xk+1 = g(xk).

end for

2

The main concern related to this basic fixed-point iteration is that the it-

erates may not converge or may converge extremely slowly (only linear conver-

gent). Therefore, various acceleration methods are proposed to alleviate this

slow convergence problem. Among these algorithms, one popular acceleration

procedure is called the Anderson acceleration method [1]. For the above basic

Picard iteration, the usual general form of Anderson acceleration with damping

is given in Algorithm 2. In the above algorithm, fk is the residual for the kth

Algorithm 2 Anderson acceleration: AA(m)

Given: x0 and m ≥ 1.

Set: x1 = g(x0).

for k = 0, 1, 2, · · · do
Set: mk = min{m, k}.
Set: Fk = (fk−mk

, · · · , fk), where fi = g(xi)− xi.

Determine: α(k) =
(

α
(k)
0 , · · · , α(k)

mk

)T

that solves

min
α=(α0,··· ,αm

k
)T
‖Fkα‖2 s. t.

mk
∑

i=0

αi = 1.

Set: xk+1 = (1− βk)

mk
∑

i=0

α
(k)
i xk−mk+i + βk

mk
∑

i=0

α
(k)
i g(xk−mk+i).

end for

iteration; m is the window size which indicates how many history residuals will

be used in the algorithm. The value of m is typically no larger than 3 in the

early days of applications and now this value could be as large as up to 100,

see [2]. It is usually a fixed number during the procedure, varying m can also

make the algorithm to be non-stationary. We will come back to this point in

section Section 2; βk ∈ (0, 1] is a damping factor (or a relaxation parameter) at

kth iteration. We have, for a fixed window size m:

βk =























1, no damping,

β, (a constant independent of k) stationary AA,

βk, (depending on k) non-stationary AA.

The constrained optimization problem can also be formulated as an equivalent

3

unconstrained least-squares problem [3, 4]:

min
(ω1,··· ,ωm

k
)T

∥

∥

∥

∥

∥

fk +

mk
∑

i=1

ωi(fk−i − fk)

∥

∥

∥

∥

∥

2

(1)

One can easily recover the original problem by setting

ω0 = 1−
mk
∑

i=1

ωi.

This formulation of the linear least-squares problem is not optimal for imple-

mentation, we will discuss this in more detail in Section 3.

Anderson acceleration method dates back to the 1960s. In 1962, Anderson

[1] developed a technique for accelerating the convergence of the Picard iteration

associated with a fixed-point problem which is called Extrapolation Algorithm.

This technique is now called Anderson Acceleration (AA) in the applied mathe-

matics community and Anderson Mixing in the physics and chemistry commu-

nities. This method is “essentially” (or nearly) similar to the nonlinear GMRES

method or Krylov acceleration [5, 6, 7, 8] and the direct inversion on the itera-

tive subspace method (DIIS) [9, 10, 11]. And it is also in a broad category with

methods based on quasi-Newton updating [12, 13, 14, 15, 16]. However, unlike

Newton-like methods, AA does not require the computation or approximation

of Jacobians or Jacobian-vector products which could be an advantage.

Although the Anderson acceleration method has been around for decades,

convergence analysis has been reported in the literature only recently. Fang

and Saad [14] had clarified a remarkable relationship of AA to quasi-Newton

methods and extended it to define a broader Anderson family method. Later,

Walker and Ni [17] showed that, on linear problems, AA without truncation

is “essentially equivalent” in a certain sense to the GMRES method. For the

linear case, Toth and Kelley [3] first proved the stationary version of AA (sAA)

without damping is locally r-linearly convergent if the fixed point map is a

contraction and the coefficients in the linear combination remain bounded. This

work was later extended by Evens et al. [18] to AA with damping and the

authors proved the new convergence rate is θk((1 − βk−1) + βk−1κ), where κ is

4

the Lipschitz constant for the function g(x) and θk is the ratio quantifying the

convergence gain provided by AA in step k. However, it is not clear how θk

may be evaluated or bounded in practice and how it may translate to improved

asymptotic convergence behavior in general. In 2019, Pollock et al. [19] applied

sAA to the Picard iteration for solving steady incompressible Navier–Stokes

equations (NSE) and proved that the acceleration improves the convergence rate

of the Picard iteration. Then, De Sterck [20] extended the result to more general

fixed-point iteration x = g(x), given knowledge of the spectrum of g′(x) at

fixed-point x∗ and Wang et al. [21] extended the result to study the asymptotic

linear convergence speed of sAA applied to Alternating Direction Method of

Multipliers (ADMM) method. Sharper local convergence results of AA remain

a hot research topic in this area. More recently, Zhang et al. [22] proved a

global convergent result of type-I Anderson acceleration for nonsmooth fixed-

point iterations without resorting to line search or any further assumptions other

than nonexpansiveness. For more related results about Anderson acceleration

and its applications, we refer the interested readers to [2, 23, 24, 25, 26, 27, 28]

and references therein.

As mentioned above, the local convergence rate θk((1 − βk−1) + βk−1κ) at

stage k is closely related to the damping factor βk−1. However, questions like

how to choose those damping values in each iteration [2] and how it will affect

the global convergence of the algorithm have not been deeply studied. Besides,

AA is often combined with globalization methods to safeguard against erratic

convergence away from a fixed point by using damping. One similar idea in

the optimization context for nonlinear GMRES is to use line search strategies

[29]. This is an important strategy but not yet fully explored in the literature.

Moreover, the early days of Anderson Mixing method (the 1980s, for electronic

structure calculations) initially dictated the window size m ≤ 3 due to the

storage limitations and costly g evaluations involving large N . However, in

recent years and a broad range of contexts, the window size m ranging from

20 to 100 has also been considered by many authors. For example, Walker

and Ni [17] used m = 50 in solving the nonlinear Bratu problem. A natural

5

question will be should we try to further steep up Anderson acceleration method

or try to use a larger size of the window? No such comparison results have been

reported. Motivated by the above works, in this paper, we propose, analyze

and numerically study non-stationary Anderson acceleration with optimized

damping to solve fixed-point problems. The goal of this paper is to explore the

role of damping factors in non-stationary Anderson acceleration.

The paper is organized as follows. Our new algorithms and analysis are in

Section 2, the implementation of the new algorithm is in Section 3, experimental

results and discussion are in Section 4. Conclusions follow in Section 5.

2. Anderson acceleration with optimized dampings

In this section, we focus on developing the algorithm for Anderson acceler-

ation with optimized dampings at each iteration and studying its convergence

rate explicitly.

xk+1 = (1− βk)

mk
∑

i=0

α
(k)
i xk−mk+i + βk

mk
∑

i=0

α
(k)
i g(xk−mk+i)

=

mk
∑

i=0

α
(k)
i xk−mk+i + βk

(

mk
∑

i=0

α
(k)
i g(xk−mk+i)−

mk
∑

i=0

α
(k)
i xk−mk+i

)

.(2)

Define the following averages given by the solution αk to the optimization prob-

lem by

xα
k =

mk
∑

i=0

α
(k)
i xk−mk+i, x̃α

k =

mk
∑

i=0

α
(k)
i g(xk−mk+i). (3)

Then (2) becomes

xk+1 = xα
k + βk(x̃

α
k − xα

k). (4)

A natural way to choose “best” βk at this stage is that choosing βk such that

xk+1 gives a minimal residual. This is similar to the original idea of Anderson

acceleration with window size equal to one. So we just need to solve the following

unconstrained optimization problem:

min
βk

‖xk+1 − g(xk+1)‖2 = min
βk

‖xα
k + βk(x̃

α
k − xα

k)− g(xα
k + βk(x̃

α
k − xα

k))‖2. (5)

6

Noting the fact that

g(xα
k + βk(x̃

α
k − xα

k)) ≈ g(xα
k) + βk

∂g

∂x

∣

∣

∣

xα

k

(x̃α
k − xα

k)

≈ g(xα
k) + βk (g(x̃

α
k)− g(xα

k)) . (6)

Therefore, (5) becomes

min
βk

‖xk+1 − g(xk+1)‖2

= min
βk

‖xα
k + βk(x̃

α
k − xα

k)− g(xα
k + βk(x̃

α
k − xα

k))‖2

≈ min
βk

‖xα
k + βk(x̃

α
k − xα

k)− [g(xα
k) + βk(g(x̃

α
k)− g(xα

k))] ‖2

≈ min
βk

‖ (xα
k − g(xα

k))− βk [(g(x̃
α
k)− g(xα

k))− (x̃α
k − xα

k)] ‖2. (7)

Thus, we just need to calculate the projection

βk =
∣

∣

∣

(xα
k − g(xα

k)) · [(xα
k − g(xα

k))− (x̃α
k − g(x̃α

k))]

‖ [(xα
k − g(xα

k))− (x̃α
k − g(x̃α

k))] ‖2

∣

∣

∣. (8)

Set

rp = (xα
k − g(xα

k)) , rq = (x̃α
k − g(x̃α

k)) ,

we have

βk =

∣

∣

∣

∣

(rp − rq)
T rp

‖rp − rq‖2

∣

∣

∣

∣

. (9)

We will discuss how much work is needed to calculate this βk in Section 3.

Finally, our analysis leads to the following non-stationary Anderson acceleration

algorithm with optimized damping: AAoptD(m).

Remark 2.1. As mentioned in Section 1, changing the window size m at each

iteration can also make a stationary Anderson acceleration to be non-stationary.

Comparing with the stationary Anderson acceleration with fixed window sAA(m),

our proposed nonstationary procedure (AAoptD(m)) of choosing optimal βk is

somewhat related to packaging sAA(m) and sAA(1) in each iteration in a cheap

way. Combining sAA(m) with sAA(1) can provide really good outcomes, espe-

cially in the case when larger m is needed. We will discuss this in detail for the

numerical results in Section 4.

7

Algorithm 3 Anderson acceleration with optimized dampings: AAoptD(m)

Given: x0 and m ≥ 1.

Set: x1 = g(x0).

for k = 0, 1, 2, · · · do
Set: mk = min{m, k}.
Set: Fk = (fk−mk

, · · · , fk), where fi = g(xi)− xi.

Determine: α(k) =
(

α
(k
0 , · · · , α(k)

mk

)T

that solves

min
α=(α0,··· ,αm

k
)T
‖Fkα‖2 s. t.

mk
∑

i=0

αi = 1.

Set: xα
k =

mk
∑

i=0

α
(k)
i xk−mk+i, x̃α

k =

mk
∑

i=0

α
(k)
i g(xk−mk+i).

Set: rp = (xα
k − g(xα

k)) , rq = (x̃α
k − g(x̃α

k)).

Set: βk =
(rp − rq)

T rp
‖rp − rq‖2

.

Set: xk+1 = xα
k + βk(x̃

α
k − xα

k).

end for

Remark 2.2. Here this optimized damping step is a “local optimal” strategy at

kth iteration. It usually will speed up the convergence rate compared with an

undamped one, but not always. Because in (k + 1)th iteration, it uses a combi-

nation of all previous m history information. Moreover, when βk is very close

to zero, the system is over-damped, which, sometimes, may also slow down the

convergence speed. We may need to further modify our βk. See more discussion

in our numerical results in Section 4.

Lastly, we summarize the convergence results with damping in Theorem 2.1.

The proof of this theorem can be found in [18].

Theorem 2.1. [18] Assume that g : Rn → Rn is uniformly Lipschitz con-

tinuously differentiable and there exists κ ∈ (0, 1) such that ‖g(y) − g(x)‖2 ≤
κ‖y − x‖2 for all x, y ∈ Rn. Suppose also that ∃M and ǫ > 0 such that for all

k > m,
∑m−1

i=0 |αi| < M and |αm| ≥ ǫ. Then

‖f(xk+1)‖2 ≤ θk+1 [(1− βk) + κβk] ‖f(xk)‖2 +
m
∑

i=0

O(‖f(xk−m+i)‖22), (10)

8

where

θk+1 =
‖∑m

i=0 αif(xk−m+i)‖2
‖f(xk)‖2

.

3. Implementation

For implementation, we mainly follow the path in [4] and modify it as needed.

We first briefly review the implementation of AA without damping. Then we

focus on how to implement the optimized damping problem efficiently and ac-

curately.

The constrained linear least-squares problem in Algorithm 2 can be solved

in many ways. Here we rewrite it into an equivalent unconstrained form which

can be solved efficiently by using QR factorizations. We define ∆fi = fi+1 − fi

for each i and set Fk = (∆fk−mk
, · · · ,∆fk−1), then the least-squares problem

is equivalent to

min
γ=(γ0,··· ,γm

k−1
)T
‖fk −Fkγ‖2,

where α and γ are related by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1, and

αmk
= 1− γmk−1. We assume F has a thin QR decomposition i.e., Fk = QkRk

with Qk ∈ Rn×mk and Rk ∈ Rmk×mk , for which the solution of the least-squares

problem is obtained by solving the mk ×mk triangular system Rkγ = QT
k fk.

As the algorithm proceeds, the successive least-squares problems can be solved

efficiently by updating the factors in the decomposition.

Assume that γk = (γk
0 , · · · , γk

mk−1)
T is the solution to the above modified

form of Anderson acceleration, we have

xk+1 = g(xk)−
mk−1
∑

i=0

γk
i [g(xk−mk+i+1)− g(xk−mk+i)] = g(xk)− Gkγk,

where Gk = (∆ggk−m
k
, · · · ,∆gk−1) with ∆gi = g(xi+1 − g(xi)) for each i. For

Anderson acceleration with damping

xk+1 = (1− βk)

mk
∑

i=0

α
(k)
i xk−mk+i + βk

mk
∑

i=0

α
(k)
i g(xk−mk+i)

=

mk
∑

i=0

α
(k)
i xk−mk+i + βk

(

mk
∑

i=0

α
(k)
i g(xk−mk+i)−

mk
∑

i=0

α
(k)
i xk−mk+i

)

.

9

Follow the idea in [4], we have

mk
∑

i=0

α
(k)
i g(xk−mk+i) = g(xk)− Gkγk, (11)

mk
∑

i=0

α
(k)
i xk−mk+i =

(

g(xk)− Gkγk
)

−
(

fk −Fkγ
k
)

. (12)

Then this can be achieved equivalently using the following strategy:

Step 1: Compute the undamped iterate xk+1 = g(xk)− Gkγk.

Step 2: Update xk+1 again by

xk+1 ← xk+1 − (1− βk)
(

fk −QRγk
)

.

Now we talk about how to efficiently calculate βk as described in Algorithm 3.

Taking benefit of the QR decomposition in the first optimization problem and

noting (11) and (12), we have

x̃α
k =

mk
∑

i=0

α
(k)
i g(xk−mk+i) = g(xk)− Gkγk,

xα
k =

mk
∑

i=0

α
(k)
i xk−mk+i = x̃α

k −
(

fk −Fkγ
k
)

.

Then we could calculate optimized βk by doing two extra function evaluations

and two dot products, which are not very expensive:

rp = (xα
k − g(xα

k)) , rq = (x̃α
k − g(x̃α

k)) , βk =

∣

∣

∣

∣

(rp − rq)
T rp

‖rp − rq‖2

∣

∣

∣

∣

.

In practice, when xk is very close to the fixed-point x∗, scientific computing

errors may arise in calculating these two high dimension vectors rp and rp − rq.

Thus we normalize these two vectors first, then calculate βk by simply doing a

dot product.

4. Experimental results and discussion

In this section, we numerically compare the performance of this non-stationary

AAoptD with sAA (with constant damping or without damping). The first part

10

contains examples where larger window sizes m are needed in order to accelerate

the iteration. The second part consists of some examples where small window

sizes are working very well. All these experiments are done in MATLAB 2021b

environment. MATLAB codes are available upon request to the authors.

This first example is from Walker and Ni’s [17] paper, where a stationary

Anderson acceleration with window size m = 50 is used to solve the Bratu

problem. This problem has a long history, we refer the reader to Glowinski et

al. [30] and Pernice and Walker [31], and the references in those papers. It is

not a difficult problem for Newton-like solvers.

Problem 4.1. The Bratu problem. The Bratu problem is a nonlinear PDE

boundary value problem as follows:

∆u + λ eu = 0, in D = [0, 1]× [0, 1],

u = 0, on ∂D.

In this experiment, we used a centered-difference discretization on a 32 × 32,

64×64 and 128×128 grid, respectively. We take λ = 6 in the Bratu problem and

use the zero initial approximate solution in all cases. We also applied precon-

ditioning such that the basic Picard iteration still works. The preconditioning

matrix that we used here is the diagonal inverse of the matrix A, where A is a

matrix for the discrete Laplace operator.

The results are shown in the following figures. In Fig. 1, we plot the results of

applying AA(m) and AAoptD(m) to accelerate Picard iteration with m = 5 and

m = 10 on a grid of 32×32. As we see from the picture, AA(5) and AA(10) does

not accelerate the convergence speed very much. AAoptD(5) and AAoptD(10)

perform much better than AA(5) and AA(10). However, we also notice that

there are some inconsistencies and stagnations in AAoptD(m). Thus we go

further to plot the βk values that are used in each iteration, see Fig. 2. From

Fig. 2 we see that: for AAoptD(10), some optimized damping factors are below

0.3 (see the dashed line). As we know, the damping factor βk ∈ (0, 1] and βk = 1

means no damping. Thus small βk may cause an over-damping phenomenon,

11

0 20 40 60 80 100 120 140 160 180 200
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
si

du
al

AA(5)

AA(10)

AAoptD(5)

AAoptD(10)

Figure 1: Compare AA and AoptD for solving nonlinear Bratu problems.

which might be the reason for small inconsistencies observed in Fig. 1; Similarly,

we see that the residual of AAoptD(10) in Fig. 1 is not decreasing consistently

around 10th iteration (see the read dashed square region in Fig. 1), where the

corresponding βk values are super close to zero as shown in Fig. 2.

To balance the over-damping effect, we bound these βk away from zero. The

first strategy we propose is to use

β̂k = max{βk, η}, (13)

where η is a small positive number such that 0 < η < 0.5. For example, to

reduce the over-damping effect, we take η = 0.3 in (13) as a lower bound. We

plot the new βk values at each iteration in Fig. 3. There are no βk values less

than 0.3 anymore. The corresponding results are in Fig. 4. Compared with the

results in Fig. 1, we see that there is less stagnation (see the red dashed square

region in Fig. 4) and onvergence is also faster. We also note that the βk values

in Fig. 3 differs a lot from the values of βk in Fig. 2. Because changing βk in

12

0 10 20 30 40 50 60 70 80 90
iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

Figure 2: Optimal damping factors in each iteration for m = 10.

previous iterations will affect the later ones.

0 10 20 30 40 50 60 70 80
iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

Figure 3: Modified optimal damping factors: β̂k = max{βk, η} with η = 0.3

Although the results in Fig. 4 are better than those in Fig. 1, we notice that

there are still some inconsistencies in the red dashed square region. To further

smooth out these inconsistencies, we change these “bad” βk values further away

from zero. Therefore, we propose our second strategy:

β̂k =











βk if βk ≥ η,

1− βk if βk < η.

(14)

We note here that there is some trade-off between stability and speed of conver-

gence. This does not mean that larger βk work better, since larger βk may not

speed up the convergence if it is not appropriate. Therefore, damping is good,

13

0 20 40 60 80 100 120 140 160 180 200
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
si

du
al

AA(5)

AA(10)

AAoptD(5)

AAoptD(10)

Figure 4: Solving nonlinear Bratu problems: β̂k = max{βk, η} with η = 0.3

but over-damping may cause inconsistencies and stagnation. In our numerical

experiment, we take η = 0.3 in (14) as an example. The results are in Fig. 5.

Compared with the results in Fig. 1 and Fig. 4, it becomes better. We see that

there are almost no inconsistencies and there is faster convergence. We also plot

the new βk in Fig. 5.

To compare with the results provided in [17], we go further to increase the

windows until m = 50. Again, without bounding away from zero, there are

some stagnations and inconsistencies. To avoid strong over-damping, we apply

(14) again with η = 0.3 and obtain our new results in Fig. 7. We easily see that

AAoptD(20) works as well as AA(50). Moreover, to test its scaling properties,

we also solve the Bratu problem on larger grids. In Fig. 8, for a grid size 64×64,

we see that AAoptD(10) is already comparable with AA(60) and AAoptD(30)

performs better than AA(60). Similarly, for a grid size 128× 128, Fig. 9 shows

that AAoptD(40) performs much better than AA(80).

14

0 20 40 60 80 100 120 140 160 180 200
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
re

si
du

al

AA(5)

AA(10)

AAoptD(5)

AAoptD(10)

Figure 5: Solving nonlinear Bratu problems: β̂k = 1− βk when βk < 0.3.

0 10 20 30 40 50 60 70 80 90 100
iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

Figure 6: Modified optimal damping factors: β̂k = 1− βk when βk < 0.3.

15

0 20 40 60 80 100 120 140 160 180 200
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
si

du
al

Picard

AA(10)

AA(20)

AA(30)

AA(40)

AA(50)

AAoptD(10)

AAoptD(20)

Figure 7: Using larger size windows and bounding the damping factor away from zero.

0 50 100 150 200 250 300
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
si

du
al

64x64

Picard
AA(10)
AA(20)
AA(30)
AA(50)
AA(60)
AAoptD(10)
AAoptD(20)
AAoptD(30)

Figure 8: Scaling: solve the Bratu problem on a 64× 64 gird.

16

0 50 100 150 200 250 300 350 400 450 500
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
si

du
al

128x128

Picard

AA(20)

AA(40)

AA(60)

AA(80)

AAoptD(20)

AAoptD(40)

Figure 9: Scaling: solve the Bratu problem on a 128 × 128 grid.

Problem 4.2. The nonlinear convection-diffusion problem. Use AA and

AAoptD to solve the following 2D nonlinear convection-diffusion equation in a

square region:

(−uxx − uyy) + (ux + uy) + ku2 = f(x, y), (x, y) ∈ D = [0, 1]× [0, 1]

with the source term

f(x, y) = 2π2 sin(πx) sin(πy)

and zero boundary conditions: u(x, y) = 0 on ∂D.

In this numerical experiment, we use a centered-difference discretization on

32 × 32 and 64 × 64 grids, respectively. We take k = 3 in the above problem

and use u0 = (1, 1, · · · , 1)T as an initial approximate solution in all cases. As

in solving the Bratu problem, the same preconditioning strategy is used here so

that the basic Picard iteration still works. To bound βk away from zero, we use

(14) with η = 0.25. The results are shown in Fig. 10 and Fig. 11 for n = 32×32

17

and n = 64× 64, respectively. From Fig. 10, we see that AAoptD(5) is already

better than AA(15); From Fig. 11, we also observe that AAoptD(20) is better

than AA(50). In both cases, AAoptD(m) does a much better job than AA(m),

which is consistent with our previous example.

0 100 200 300 400 500
iteration

10-10

10-8

10-6

10-4

10-2

100

102

re
si

du
al

32 32

Picard
AA(5)
AA(10)
AA(15)
AAoptD(5)
AAoptD(10)
AAoptD(15)

Figure 10: Solving the nonlinear convection-diffusion problem on a 32 × 32 gird.

Our next example is about solving a linear system Ax = b. As proved by

Walker and Ni in [17], AA without truncation is “essentially equivalent” in a

certain sense to the GMRES method for linear problems.

Problem 4.3. The linear equations. Apply AA and AAoptD to solve the

following linear system Ax = b, where A is

A =























2 −1 · · · 0 0

−1 2 · · · 0 0

...
...

. . .
...

...

0 0 · · · 2 −1
0 0 · · · −1 2























, A ∈ Rn×n

18

0 100 200 300 400 500 600
iteration

10-10

10-8

10-6

10-4

10-2

100

102

re
si

du
al

64 64

Picard

AA(10)

AA(20)

AA(30)

AA(50)

AAoptD(10)

AAoptD(20)

AAoptD(30)

Figure 11: Solving the nonlinear convection-diffusion problem on a 64 × 64 gird.

and

b = (1, · · · , 1)T .

Choose n = 10 and n = 100, respectively. Here, we choose a large n so that

a large window size m is needed in Anderson Acceleration. We also note that

the Picard iteration does not work for this problem.

The initial guess is x0 = (0, · · · , 0)T . Without bounding βk away from zero,

the results are shown in Fig. 12 and Fig. 13. For small m, AA(1) does not work,

but AAoptD(1) works. Moreover, we obtain from Fig. 12 that AAoptD(m) still

does better than AA(m). When n = 100, we need larger m values. In this case,

as shown in Fig. 13, AAoptD(5) already performs much better than AA(25).

This example shows that AAoptD can also be used to solve linear problems.

Finally, we consider cases where very small m works. Our example is from

Toth and Kelley’s paper [3], where AA is applied to solve the Chandrasekhar

H-equation.

19

0 50 100 150 200 250 300
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

re
si

du
al

n=10

AA(2)

AA(3)

AA(4)

AAoptD(1)

AAoptD(2)

AAoptD(3)

AAoptD(4)

Figure 12: Small m: solving a linear problem Ax = b with n = 10.

0 50 100 150 200 250 300 350 400 450 500
iteration

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

re
si

du
al

n=100

AA(5)

AA(10)

AA(15)

AA(20)

AA(50)

AAoptD(5)

AAoptD(10)

AAoptD(15)

AAoptD(20)

Figure 13: Large m: solving a linear problem Ax = b with n = 100.

20

Problem 4.4. the Chandrasekhar H-equation, arising in Radiative Heat Trans-

fer theory, is a nonlinear integral equation:

H(µ) = G(H) =

(

1− c

2

∫ 1

0

µ

µ+ v
H(v)dv

)−1

,

where c ∈ [0, 1) is a physical parameter.

We will discretize the equation with the composite midpoint rule. Here we

approximate integrals on [0, 1] by

∫ 1

0

f(µ)dµ ≈ 1

N

N
∑

j=1

f(µj)

where µj = (i− 1/2)/N for 1 ≤ i ≤ N . The resulting discrete problem is

F (x)i = xi −



1− c

2N

N
∑

j=1

µixj

µi + µj





−1

,

which is a fully nonlinear system.

It is known [32] both for the continuous problem and its following midpoint

rule discretization, that if c < 1

ρ(G′(H∗)) ≤ 1−
√
1− c < 1,

where ρ denotes spectral radius. Hence the local convergence theory and Picard

iteration works.

In our numerical experiment, we choose N = 500, c = 0.5, c = 0.99 and

c = 1. The case c = 1 is a critical value (Picard does not work in this case, but

AA does). The numerical results are in Fig. 14 to Fig. 16. Firstly, AA(m) and

AAoptD(m), with very small m(≤ 3) values, work for all cases including the

critical case c = 1 and their performances are comparable. Secondly, increasing

m does not always increase the performance. Thirdly, AAoptD may not always

have advantages over AA for small window size m. This result is reasonable

since AAoptD(m) is kind of like packaging AA(m) and AA(1). If m is small,

there is almost no difference between AA(m) and AA(1), thus packaging them

(varying window sizes) may not give better results.

21

0 1 2 3 4 5 6 7 8 9 10
iteration

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

re
si

du
al

Picard

AA(1)

AA(2)

AA(3)

AAoptD(1)

AAoptD(2)

AAoptD(3)

Figure 14: Solving Chandrasekhar H-equation with AA and AAoptD: c = 0.5

0 5 10 15 20 25 30 35 40 45 50
iteration

10-10

10-8

10-6

10-4

10-2

100

102

re
si

du
al

Picard

AA(1)

AA(2)

AA(3)

AAopt(1)

AAoptD(2)

AAoptD(3)

Figure 15: Solving Chandrasekhar H-equation with AA and AAoptD: c = 0.99

22

0 5 10 15 20 25 30 35 40 45 50
iteration

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

re
si

du
al

Picard

AA(1)

AA(2)

AAoptD(1)

AAoptD(2)

Figure 16: Solving Chandrasekhar H-equation with AA and AAoptD: c = 1

5. Conclusions

We proposed a non-stationary Anderson acceleration algorithm with an opti-

mized damping factor in each iteration to further speed up linear and nonlinear

iterations by applying one extra optimization. This procedure has a strong con-

nection to another perspective of generating non-stationary AA (i.e. varying the

window size m at different iterations). It turns out that choosing optimal βk

is somewhat similar to packaging sAA(m) and sAA(1) within a single iteration

in a cheap way. Moreover, by taking benefit of the QR decomposition in the

first optimization problem, the calculation of optimized βk at each iteration is

cheap if two extra function evaluations are relatively inexpensive. Our numer-

ical results show that the gain of doing this extra optimized step on βk could

be large. Moreover, damping is good but over damping is not good because it

may slow down the convergence rate. Therefore, when the stationary AA is not

working well or a larger size of the window is needed in AA, we recommend to

23

use AAoptD proposed in the present work.

Acknowledgments

This work was partially supported by the National Natural Science Founda-

tion of China [grant number 12001287]; the Startup Foundation for Introduc-

ing Talent of Nanjing University of Information Science and Technology [grant

number 2019r106]; The first author Kewang Chen also gratefully acknowledge

the financial support for his doctoral study provided by the China Scholarship

Council (No. 202008320191).

References

[1] D. G. Anderson, Iterative procedures for nonlinear integral equations, J.

Assoc. Comput. Mach. 12 (1965) 547–560. doi:10.1145/321296.321305.

[2] D. G. M. Anderson, Comments on “Anderson acceleration, mix-

ing and extrapolation”, Numer. Algorithms 80 (1) (2019) 135–234.

doi:10.1007/s11075-018-0549-4.

[3] A. Toth, C. T. Kelley, Convergence analysis for Anderson acceleration,

SIAM J. Numer. Anal. 53 (2) (2015) 805–819. doi:10.1137/130919398.

[4] H. F. Walker, Anderson acceleration: Algorithms and implementations,

WPI Math. Sciences Dept. Report MS-6-15-50.

URL https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf

[5] N. N. Carlson, K. Miller, Design and application of a gradient-weighted

moving finite element code. I. In one dimension, SIAM J. Sci. Comput.

19 (3) (1998) 728–765. doi:10.1137/S106482759426955X.

[6] K. Miller, Nonlinear Krylov and moving nodes in the method

of lines, J. Comput. Appl. Math. 183 (2) (2005) 275–287.

doi:10.1016/j.cam.2004.12.032.

24

http://dx.doi.org/10.1145/321296.321305
http://dx.doi.org/10.1007/s11075-018-0549-4
http://dx.doi.org/10.1137/130919398
https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf
https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf
http://dx.doi.org/10.1137/S106482759426955X
http://dx.doi.org/10.1016/j.cam.2004.12.032

[7] C. W. Oosterlee, T. Washio, Krylov subspace acceleration of nonlinear

multigrid with application to recirculating flows, SIAM J. Sci. Comput.

21 (5) (2000) 1670–1690. doi:10.1137/S1064827598338093.

[8] T. Washio, C. W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes,

Electron. Trans. Numer. Anal. 6 (Dec.) (1997) 271–290.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3799

[9] L. Lin, C. Yang, Elliptic preconditioner for accelerating the self-consistent

field iteration in Kohn-Sham density functional theory, SIAM J. Sci. Com-

put. 35 (5) (2013) S277–S298. doi:10.1137/120880604.

[10] P. Pulay, Convergence acceleration of iterative sequences. the case

of SCF iteration, Chemical Physics Letters 73 (2) (1980) 393–398.

doi:https://doi.org/10.1016/0009-2614(80)80396-4.

[11] P. Pulay, Improved SCF convergence acceleration, Journal of Computa-

tional Chemistry 3 (4) (1982) 556–560. doi:10.1002/jcc.540030413.

[12] T. Eirola, O. Nevanlinna, Accelerating with rank-one updates, Linear Al-

gebra Appl. 121 (1989) 511–520. doi:10.1016/0024-3795(89)90719-2.

[13] V. Eyert, A comparative study on methods for convergence acceleration

of iterative vector sequences, J. Comput. Phys. 124 (2) (1996) 271–285.

doi:10.1006/jcph.1996.0059.

[14] H.-r. Fang, Y. Saad, Two classes of multisecant methods for nonlin-

ear acceleration, Numer. Linear Algebra Appl. 16 (3) (2009) 197–221.

doi:10.1002/nla.617.

[15] R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, On the similar-

ities between the quasi-Newton inverse least squares method and GMRES,

SIAM J. Numer. Anal. 47 (6) (2010) 4660–4679. doi:10.1137/090750354.

[16] C. Yang, J. C. Meza, B. Lee, L.-W. Wang, KSSOLV—a MATLAB toolbox

for solving the Kohn-Sham equations, ACM Trans. Math. Software 36 (2)

(2009) Art. 10, 35. doi:10.1145/1499096.1499099.

25

http://dx.doi.org/10.1137/S1064827598338093
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3799
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3799
http://dx.doi.org/10.1137/120880604
http://dx.doi.org/https://doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1002/jcc.540030413
http://dx.doi.org/10.1016/0024-3795(89)90719-2
http://dx.doi.org/10.1006/jcph.1996.0059
http://dx.doi.org/10.1002/nla.617
http://dx.doi.org/10.1137/090750354
http://dx.doi.org/10.1145/1499096.1499099

[17] H. F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM

J. Numer. Anal. 49 (4) (2011) 1715–1735. doi:10.1137/10078356X.

[18] C. Evans, S. Pollock, L. G. Rebholz, M. Xiao, A proof that Anderson

acceleration improves the convergence rate in linearly converging fixed-

point methods (but not in those converging quadratically), SIAM J. Numer.

Anal. 58 (1) (2020) 788–810. doi:10.1137/19M1245384.

[19] S. Pollock, L. G. Rebholz, M. Xiao, Anderson-accelerated convergence of

Picard iterations for incompressible Navier-Stokes equations, SIAM J. Nu-

mer. Anal. 57 (2) (2019) 615–637. doi:10.1137/18M1206151.

[20] H. De Sterck, Y. He, On the asymptotic linear convergence speed of An-

derson acceleration, Nesterov acceleration, and nonlinear GMRES, SIAM

J. Sci. Comput. 43 (5) (2021) S21–S46. doi:10.1137/20M1347139.

[21] D. Wang, Y. He, H. De Sterck, On the asymptotic linear convergence speed

of Anderson acceleration applied to ADMM, J. Sci. Comput. 88 (2) (2021)

Paper No. 38, 35. doi:10.1007/s10915-021-01548-2.

[22] J. Zhang, B. O’Donoghue, S. Boyd, Globally convergent type-I Anderson

acceleration for nonsmooth fixed-point iterations, SIAM J. Optim. 30 (4)

(2020) 3170–3197. doi:10.1137/18M1232772.

[23] W. Bian, X. Chen, C. T. Kelley, Anderson acceleration for a class of nons-

mooth fixed-point problems, SIAM J. Sci. Comput. 43 (5) (2021) S1–S20.

doi:10.1137/20M132938X.

[24] P. R. Brune, M. G. Knepley, B. F. Smith, X. Tu, Composing scal-

able nonlinear algebraic solvers, SIAM Rev. 57 (4) (2015) 535–565.

doi:10.1137/130936725.

[25] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, L. Liu, Anderson acceleration

for geometry optimization and physics simulation, ACM Transactions on

Graphics (TOG) 37 (4) (2018) 1–14. doi:10.1145/3197517.3201290.

26

http://dx.doi.org/10.1137/10078356X
http://dx.doi.org/10.1137/19M1245384
http://dx.doi.org/10.1137/18M1206151
http://dx.doi.org/10.1137/20M1347139
http://dx.doi.org/10.1007/s10915-021-01548-2
http://dx.doi.org/10.1137/18M1232772
http://dx.doi.org/10.1137/20M132938X
http://dx.doi.org/10.1137/130936725
http://dx.doi.org/10.1145/3197517.3201290

[26] A. Toth, J. A. Ellis, T. Evans, S. Hamilton, C. T. Kelley, R. Pawlowski,

S. Slattery, Local improvement results for Anderson acceleration with inac-

curate function evaluations, SIAM J. Sci. Comput. 39 (5) (2017) S47–S65.

doi:10.1137/16M1080677.

[27] W. Shi, S. Song, H. Wu, Y.-C. Hsu, C. Wu, G. Huang,

Regularized Anderson acceleration for off-policy deep reinforcement learning,

arXiv preprint arXiv:1909.03245.

URL https://arxiv.org/abs/1909.03245

[28] Y. Yang, Anderson acceleration for seismic inversion, Geophysics 86 (1)

(2021) R99–R108. doi:10.1190/geo2020-0462.1.

[29] H. De Sterck, A nonlinear GMRES optimization algorithm for canonical

tensor decomposition, SIAM J. Sci. Comput. 34 (3) (2012) A1351–A1379.

doi:10.1137/110835530.

[30] R. Glowinski, H. B. Keller, L. Reinhart, Continuation-conjugate gra-

dient methods for the least squares solution of nonlinear boundary

value problems, SIAM J. Sci. Statist. Comput. 6 (4) (1985) 793–832.

doi:10.1137/0906055.

[31] M. Pernice, H. F. Walker, NITSOL: a Newton iterative solver for

nonlinear systems, SIAM J. Sci. Comput. 19 (1) (1998) 302–318.

doi:10.1137/S1064827596303843.

[32] C. T. Kelley, T. W. Mullikin, Solution by iteration of H-equations in multi-

group neutron transport, J. Mathematical Phys. 19 (2) (1978) 500–501.

doi:10.1063/1.523673.

27

http://dx.doi.org/10.1137/16M1080677
https://arxiv.org/abs/1909.03245
https://arxiv.org/abs/1909.03245
http://dx.doi.org/10.1190/geo2020-0462.1
http://dx.doi.org/10.1137/110835530
http://dx.doi.org/10.1137/0906055
http://dx.doi.org/10.1137/S1064827596303843
http://dx.doi.org/10.1063/1.523673

	1 Introduction
	2 Anderson acceleration with optimized dampings
	3 Implementation
	4 Experimental results and discussion
	5 Conclusions

