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Laplace spectra as fingerprints for image recognition

Niklas Peinecke, Franz-Erich Wolter∗, Martin Reuter

University of Hannover, Welfenlab, Division of Computer Graphics, D-30167 Hannover, Germany

Received 12 May 2006; accepted 14 January 2007

Abstract

In the area of image retrieval from data bases and for copyright protection of large image collections there is a growing demand for unique but
easily computable fingerprints for images. These fingerprints can be used to quickly identify every image within a larger set of possibly similar
images. This paper introduces a novel method to automatically obtain such fingerprints from an image. It is based on a reinterpretation of an
image as a Riemannian manifold. This representation is feasible for gray value images and color images. We discuss the use of the spectrum of
eigenvalues of different variants of the Laplace operator as a fingerprint and show the usability of this approach in several use cases. Contrary
to existing works in this area we do not only use the discrete Laplacian, but also with a particular emphasis the underlying continuous operator.
This allows better results in comparing the resulting spectra and deeper insights in the problems arising. We show how the well known discrete
Laplacian is related to the continuous Laplace–Beltrami operator. Furthermore, we introduce the new concept of solid height functions to overcome
some potential limitations of the method.
c© 2007 Published by Elsevier Ltd
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1. Introduction

One of the main tasks of computer science is to manage large
collections of data. In general these collections are maintained
using data base management systems. A variety of such systems
exist, as well as different strategies for data base management
systems to keep track of inserted data. All these strategies
require chunks of data to be identified by a unique key, in order
to distinguish them from other items stored in the data base. It
is common practice to refer to such identifiers as fingerprints,
in analogy to the way a human individual is identified by the
prints of its finger tips.

Furthermore, with the area of copyright protection a new
field of applications has developed recently. In order to identify
unlicensed copies of protected material there have been efforts
to develop watermarks intrinsic to the material in question.
In the case of shape models such watermarks should be
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embedded in the geometry of the shape itself and they should be
robust against distortions, caused e.g. by reconstructing shapes
through scan processes. See [29,30] and [37,38] for recent
developments in this area. For images this means that an image
that is printed out and then scanned again is still identifiable
by its fingerprint. Such fingerprints can be used as watermarks,
too.

For some types of data constructing a suitable fingerprint is
rather straightforward: for example, if the data is a collection
of English words, it is sufficient to identify each word by its
representation as an ASCII- or unicode-string. Well known
techniques like tries (cf. [28]) or the like can then be applied
easily. With the data consisting of images there is no such
straightforward representation. A number of obstacles arise
when trying to construct unique fingerprints for images, e.g.:

• Identical images can be represented in different ways.
Even if we require all the images to be given as pixels,
color images can be expressed in different color spaces.
Thus we would need to restrict ourselves to a fixed color
space, i.e. RGB space. For images given in other spaces a
conversion needs to be applied.

• Unlike ASCII-strings, images may contain minor distor-
tions, e.g. resulting from numerical errors during a color
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space conversion or compression artifacts. We would like
our fingerprints to be robust in the presence of such distor-
tions.

• Pixel images can be given in different resolutions. For some
applications it would be desirable that the same image in a
different resolution would be identified by the same (or a
very similar) fingerprint.

• Sometimes the content of an image is independent of
the colors chosen, i.e. color rotation or inversion does
not change the meaning of an image. For example, the
negative of a photograph still represents the same content
(although it may look strange). Thus we would need
identical fingerprints in those situations.

It is an intricate task to construct fingerprints suitable for
image collections. In general it is impossible to take the image
itself in its RGB-representation as its fingerprint. Even for a
rather tiny image with 200×200 pixels the resulting fingerprint
would be a vector with 40 000 entries. There is no efficient
way to search a 40 000-dimensional space of objects. There has
been some effort to overcome these dimensional restrictions
recently; however, generally speaking the fewer dimensions
that are involved, the more efficient the search that can be
carried out. See [20] for a survey of search methods on higher
dimensional spaces, and see [4] or [3] for examples of efficient
data structures for such applications. Furthermore, there is the
possibility to reduce the dimensionality of a feature space
afterwards using multi-dimensional scaling (MDS); see [2] for
an overview on different methods.

In other words we need to find a map from the space of
images to a much lower dimensional space without losing
information that is relevant for the content. It should be noted,
that there are different approaches to automatically construct
such a map from a given training set of images, e.g. by MDS.
Apart from that, we are looking for fingerprints that are suitable
for different setups without having prior training sets.

There have been different approaches to construct finger-
prints, the best known of which are feature vectors. These vec-
tors are constructed from a number of features that can be ex-
tracted from an image, including:

• brightness (i.e. mean pixel value) of an image
• contrast (i.e. variance of the pixel values) of an image (see

e.g. [32] for an overview of these features and more)
• overall roundness of contained shapes
• approximate fractal dimension (see [36])
• Fourier transform and wavelet transform (see [41])
• skeletal transforms (e.g. discrete medial axis transforms, see

e.g. [10]).

Some of these features obviously do not fulfill our
requirements, e.g. changing the brightness or contrast of an
image does not change important content of the image. Most
of the classical techniques are only suitable for certain special
classes of images and not for others; i.e. they cannot be applied
in a general situation where there is no further knowledge about
the nature of the images available. For example, computing the
medial axis of a shape is impossible if the image in question
does not contain any obvious shape at all, e.g. for gradient
images. Of course there is a large number of more elaborate
techniques but a detailed discussion would be beyond the scope
of this short introduction. See e.g. [46,31,43] or [34] for an
overview of different methods.

In this paper we will introduce a method that works in
the general case where there is no restriction concerning the
kind of images. We will develop criteria to be met in such
a setup, and show that our fingerprints fulfill these criteria.
We will explain how to obtain these fingerprints using the
spectra of a family of operators known as Laplace or Kirchhoff
operators. Only discrete versions of these operators have been
used in image processing traditionally, while others (like the
continuous Laplace–Beltrami operator) are relatively new in
this area. In order to compute the operators’ eigenvalues, we
will interpret images as Riemannian manifolds. This is a novel
approach in the area of image analysis. Based on the theory
developed in [35] we will explain the techniques from the point
of view of its application on images, although they can be
used for more general shapes also. See [47] and [37,38] for an
introduction to the theory of Laplace spectra in general shape
matching.

2. Related work

Using the Laplace operator and more generally using
eigenvalues of different operators and matrices derived from
this operator is a well known and established technique in
the community of shape and image recognition. Most of the
applications mentioned in this section use discrete forms of the
Laplacian directly, i.e. they are using some kind of admittance
matrix.

One of the best known applications of the Laplace spectrum
of a graph is graph partitioning. This is useful in areas where
one has to find a segmentation of a given mesh, e.g. to identify
different components of a scene. See [33,9] for an overview of
the mathematical foundations. Closely related is the application
of eigenfunctions to remesh given objects (see [15,16]).

Another popular application of the Laplacian can be found in
image processing. A local version of the mesh Laplacian is well
established for smoothing of images and meshes; see [19,21,23,
7,18,45] for examples. A variant of the Laplace operator can be
used for mesh partitioning and compression. This technique is
known as spectral compression; details can be found in [26].

Furthermore, the Laplace operator is used for dimensionality
reduction of high dimensional data spaces (cf. [1]). This method
could be seen as a complement of the method developed
in this paper. Belkin and Niyogi assume the existence of a
manifold containing all the objects of a given set of objects
represented as points in a feature space. One can assume that
these points form a low dimensional manifold since for most
applications the space of possible data depends continuously
on few parameters. For example, given a set of images shot
from an indoor scene by a movable camera the results depend
solely on six parameters, i.e. placement and orientation of
the camera. Belkin and Niyogi then use some interpolation
technique to form a discrete mesh resembling the assumed
manifold containing the objects representations in feature space
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and compute eigenvalues and eigenfunctions of the associated
mesh Laplacian. These eigenfunctions can be used to reduce
the dimensionality of the embedding feature space to a lower
dimension, e.g. six dimensions for the camera example.

The principal difference (aside from using the mesh
Laplacian rather than the Laplace–Beltrami operator) is that
Belkin and Niyogi compute the eigenvalues of the manifold
defined by points in a given feature space, that is each of their
points represents an entire manifold in our approach. We use the
manifold’s eigenvalues as features. The Belkin/Niyogi method
is useful when there is a set of features present that has to be
reduced for some reasons, while our method is useful when
there is a manifold representation for each object possible but
no efficient features are known. The Belkin/Niyogi technique
can roughly be classified as a multi-dimensional scaling method
(MDS) although it is implemented differently from the classical
approaches (cf. [6] and [2]).

Another use of MDS is to map shapes to a canonical
signature surface (cf. [17]). Ideally two isometric shapes
should be mapped to an (almost) identical signature surface.
It would be possible to use the Belkin/Niyogi technique for this
application also.

These uses of the Laplacian show that the application
of (non-Riemannian!) manifolds in feature space are well
established in the image analysis community. On the other hand
the duality of the image as a discrete height function and its
continuous representation as a surface is also well known in the
theory of image processing (see [22]). Nevertheless there seems
to be no transfer between the two fields, i.e. the discussion of
an image as a Riemannian manifold. We will see in Section 5
how to acquire a Riemannian metric for an image and use it for
image classification. This discussion seems to be new.

Using the eigenvalues of a special matrix derived from point
sets of two given objects in Euclidean space, one can compute
a best match of these points. This technique, called modal
matching, was developed by Sclaroff and Pentland [42] based
on the classical well known technique of momentum matrices.
No features are derived from the shapes in this approach;
instead, the chosen points are matched to each other directly.

3. Features and invariants

In this section we will develop criteria for a fingerprint to
be used in image identification. We will make precise what we
mean by a feature and an invariant.

We call a map ι : A → B a feature map if it makes
some kind of higher level information from the objects in the
set A available. Features may include any kind of meaningful
information, e.g. placement of certain objects within a scene,
overall contrast or brightness of an image, and so on. For
purposes of efficiency one would expect a feature to take up
less space than the object itself. Nevertheless some features may
require more space for representation than the original dataset.

Definition 1. Let A, B, I be sets, P = (Pi : i ∈ I ) be a
partition of A with representatives pi ∈ Pi , and ι : A → B
be a map (and in our case even a feature map) with

ι(a) = ι(pi ) ⇔ a ∈ Pi ∀i ∈ I.
Then ι is called a P-invariant for A.

If |Pi | = 1 for all i ∈ I we call ι a characteristic. There is a
relation between partitions and maps. Suppose we have a family
of maps F = ( f j ) with f j : A → A, j ∈ J for some index set
J with ∪i∈I ∪ j∈J f −1

j (pi ) = A and f −1
j (pi ) ∩ f −1

j (pl) = ∅

for all j ∈ J and i 6= l. Then there exists a natural partition of
A with

a ∈ Pi ⇔ ∃ j ∈ J : f j (a) = pi .

It is therefore perfectly admissible to speak of an F-invariant,
e.g. for F being the family of isometries of an isometry
invariant.

We can now give some criteria for fingerprints feasible for
image identification, based on arguments from the introduction:

[COMPRESSION] Fingerprints should have a shorter repre-
sentation than the associated image.

[ISOMETRY] Fingerprints should be isometry invariants.
This is a natural requirement if we are dealing
with fingerprints of objects that are metric spaces
themselves. Here we will interpret images as
Riemannian manifolds (see Section 5); this discussion
seems to be new in the area of image analysis. In
the context of image classification this is motivated
by the fact that most content preserving operations
are isometries, i.e. this map and its inverse preserve
the arclength of all curves (see [14]). This includes
changes of brightness, rotations, mirror operations,
color rotations and inversions.

[SCALING] Fingerprints should optionally be made scaling
invariants, in order to identify different resolutions of
the same image.

There is another important criterion that is not directly
related to invariance:

[SIMILARITY] Fingerprints of similar images should be
similar. To develop a notion of similarity one needs
to have a metric structure (or at least semimetric
structure) for both images and fingerprints. Similarity
of images may be measured by simple Euclidean
distances. Refer to Section 7 to find out more about
the way similarity may be measured for fingerprints
resulting from spectra. One should note that the metric
structure generated by comparing fingerprints does
not necessarily correspond to a direct comparison of
images.

This cannot be taken for granted: even small almost
isometric changes in the object’s geometry may change some
feature’s values non-continuously. This is especially true for
discrete features, e.g. the number of “dark” regions on a photo
(the number of components in a level set) and similar features.

Concerning criterion [COMPRESSION], any method of
compression could be used in order to generate fingerprints.
This way a compressed representation of an image could be
viewed as its fingerprint. Nevertheless, traditional compression
schemes tend to change significantly for small changes in the
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data, thus violating [SIMILARITY]. This behaviour is even
wanted in some application, e.g. with MD5 hashes (see [39]),
where small changes to a file are required to cause a significant
change in the hash. Nevertheless, methods used especially for
geometry compression often change continuously, e.g. if they
are based on Fourier transformations.

4. The Laplace operator and the Kirchhoff operator

In this section we will describe the Laplace operator, also
known as the Laplacian. First we will take a look at the
traditional continuous case; then we will examine the analogous
construction in the discrete case.

Definition 2. Given a compact Riemannian manifold M of
dimension n, f : M → R with f ∈ Ck(M) and k ≥ 2. Let
grad denote the gradient and div the divergence on the manifold
M . Then

1 f := div(grad f )

defines the Laplace operator 1 on M .

For M being a domain of the Euclidean plane M ⊂ R2 the
Laplace operator reduces to

1 f =

(
∂2 f

∂x2
1

+
∂2 f

∂x2
2

)
. (1)

In the non-Euclidean case for a Riemannian metric given by
(gi j ) and n = 2 the Laplace operator can be expressed as
(cf. [8])

1 f =

2∑
i=1

2∑
j=1

gi j

(
∂2 f

∂xi∂x j
−

2∑
k=1

Γ k
i j
∂ f

∂xk

)
(2)

with (gi j ) := (gi j )
−1 and Γ k

i j being the well known Christoffel
symbols (of the second kind, see e.g. [14]):

Γm
i j =

1
2

∑
k

gkm
(
∂

∂ j
gik +

∂

∂i
g jk −

∂

∂k
gi j

)
.

Note that these are invariant against isometries and scaling.
One can easily check that, for the Euclidean case, Eq. (2)

specializes to Eq. (1). We will sometimes refer to the Laplace
operator in the non-Euclidean case as the Laplace–Beltrami
operator.

As a special case we could identify the map generating the
manifold and the function the operator is applied to, i.e. given
coordinate functions F(u, v) := (x(u, v), y(u, v), z(u, v)) we
calculate 1F with respect to the manifold given by F . Note
that we use a generalized version of the Laplacian here that
is defined coordinate wise by 1F := (1x,1y,1z). In this
special case of a “double entry” where F serves the double
purpose of representing the manifold and defining a vector field
on this manifold we get the well known equation:

1F(u, v) = 2H(u, v)n(u, v) (3)

where H is the mean curvature and n is the surface normal of
the point F(u, v). This form where the parameterization of the
manifold and the argument of the operator are being identified
is often used for mesh smoothing (see [18,45] for the discrete
case). Eq. (3) follows directly from Eq. (2) and the Gauss
equations (see [14]):

∂i∂ j F =

∑
k

Γ k
i j∂k F + hi j n

⇒ hi j n = ∂i∂ j F −

∑
k

Γ k
i j∂k F. (4)

Here hi j are the coefficients of the second fundamental form. It
follows that

2Hn =

∑
i j

hi j g
i j n by definition of H

=

∑
i j

gi j

(
∂i∂ j F −

∑
k

Γ k
i j∂k F

)
with (4)

= 1F with (2).

There is a long tradition in studying the eigenvalues of the
Laplace operator. Formally we define an eigenvalue λ by:

1 f − λ f = 0. (5)

The (multi-)set of possible solutions λ to this equation is
defined to be the Laplacian spectrum of M . This spectrum
has a variety of interesting properties some of which make it
interesting for image and shape identification.

• The spectrum is an isometry invariant (see [8]), i.e. if
one maps M to an isometric manifold M ′ the spectrum
remains unchanged. This fulfills criterion [ISOMETRY].
For experimental results and a detailed discussion we refer
to [38].

• Continuous changes of the manifold’s geometry result
in continuous changes of the spectrum. Furthermore, we
will demonstrate that small changes of the geometry
yield likewise small changes of the spectrum; see [12],
p. 366. This corresponds to criterion [SIMILARITY]. It
is important to notice that a topological change of the
manifold can change its spectrum radically. I.e. given the
full disc, removing an infinitesimal small open disc at the
center transforms the surrounding disc into a topological
annulus. One will observe a significant change of the
spectrum without changing the visual appearance. Luckily
this restriction does not apply to images, as we will see in
Section 5.

• The multiset of eigenvalues form an infinite but countable
growing sequence, i.e.

0 ≤ λ1 ≤ λ2 ≤ · · · .

Nevertheless a finite number of these eigenvalues is
sufficient to distinguish shapes in a practical situation. This
is because the smaller eigenvalues correspond to “raw”
features of the geometry (like area and boundary length)
whereas the higher eigenvalues are related to finer details of
the geometry. In a practical setup the number of eigenvalues
being sufficient to distinguish images is much smaller
than the data needed to present the whole image. This
corresponds to criterion [COMPRESSION].
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• For a uniform scaling of the manifold by an factor a > 0 in
every dimension, the spectrum is scaled by 1

a2 . We will show
how to use this knowledge to cancel this effect of scaling,
thus making the spectrum scaling invariant. This fulfills our
criterion [SCALING].

Summarizing the points above, we take a finite number of
eigenvalues of the Laplace operator as a fingerprint of the given
manifold. We will see in Section 5 how images are related to
manifolds.

4.1. The Laplacian with a mass density function

In extension to Eq. (5) we can introduce a mass density
function ρ. This function assigns a mass density to each point
of the manifold that influences the vibration of the material.
Formally we can reformulate the equation as

1 f − λρ f = 0 (6)

with ρ : M → R. A mass density of 1 means the usual
density; therefore setting ρ = 1 everywhere leads to the
classical problem in Eq. (5). The new formulation yields some
interesting properties:

• The solutions of the problem depend continuously on
changes of the manifold and of the mass density function
(see [12], pp. 304).

• Given two isometric manifolds M and M ′ with an isometry
I and mass densities ρ and ρ′ that are conformal to the
isometry, that is

I (M) = M ′ and ρ(m) = ρ′(I (m)) ∀m ∈ M

then the spectra are identical. In different words, for a fixed
mass density function the spectrum is isometry invariant.

• The statement above still holds if I is not an isometry but an
isospectral transplantation (see Section 6.3), i.e. a function
that maps a manifold to an isospectral twin.

• Scaling the mass density function by a factor of 1/k results
in a spectrum also scaled by 1/k. Let ρ′

:= kρ and 1 f =

λρ f , then:

1 f = λρ f = λ
1
k
ρ′ f =

1
k
λρ′ f.

For each eigenvalue λ of the problem with density ρ an
eigenvalue λ′

:=
1
k λ of the problem with density ρ′ exists

with identical eigenfunction f .
• When scaling the manifold by k while keeping the mass

density function, one gets

1′ f =
1

k21 f and ρ′
= ρ

⇒ 1′ f =
1

k21 f =
1

k2 λρ f =
1

k2 λρ
′ f.

Thus the spectrum is scaled by 1
k2 .

4.2. Numerical calculations

In order to solve the stated eigenvalue problems 5 and
6 using a computer we need to discretize them. This can
be accomplished by transforming the respective eigenvalue
problem into an equivalent variational problem for the manifold
M (cf. [38] for the steps involved in the transformation):∫

M
〈∇φ,∇ f 〉 dξ =

∫
M
φ1 f dξ = λ

∫
M
ρφ f dξ.

Here ξ represents the area element of M , φ is an arbitrary
function from the same space as f , and ρ is the mass density
function. For the classical problem we set ρ = 1. Now we
approximate f by

f =

m∑
k=1

ckφk

with {φ1, . . . , φm} being an FEM base for the intended space of
solutions. Sometimes we will refer to these functions as form
functions. Furthermore, we choose φ ∈ {φ1, . . . , φm}. This way
the problem is transformed into a generalized matrix eigenvalue
problem (again see [38] for details):

AEc = λBEc (7)

A = (a jk) =

(∫
G
〈gradφ j , gradφk〉W dudv

)
(8)

B = (b jk) =

(∫
G
ρφ jφk W dudv

)
. (9)

This problem can be solved using standard numerical libraries.
The existence of boundary conditions can have some impact

on the choice of form functions also. Given a Dirichlet
boundary condition f (x) = 0 for all x ∈ Γ , with Γ being
the boundary, given a point Pi on the boundary, and given that
the intended form functions have local character, that is each is
associated to a special point and is only defined on a compact
surrounding of that point, then the boundary condition mostly
implies that the corresponding form function φi is zero. This is
the case for most sets of popular form functions like piecewise
linear function (“hat functions”), polynomial bases, etc. In this
case every product with φi and its derivative is cancelled also.
This implies that the corresponding entries in the FEM matrices
A and B become zero.

Given a mesh that covers each pixel of an image, the
matrices A and B can be computed in a time proportional to
O(n) for a n-pixel image. In practice this leaves the complexity
of the approach up to the method for calculating the eigenvalues
of A and B. Since the matrices are sparse one can greatly benefit
from using a suitable method, e.g. the Lanczos algorithm.

4.3. The Laplace–Kirchhoff operator

There is a different version of the Laplace operator in the
discrete case. It is defined as follows:

Definition 3. Given a node weighted graph G = (A,M)
with A ∈ Rn×n being the adjacency matrix of the graph. In
the case of an (edge-)weighted graph the entry Ai j contains
the weight of the edge connecting nodes i and j . For an
unweighted graph the weights are simply 0 or 1. Most of the
time we will use the unweighted case, but there are many
applications for the weighted graph also (see e.g. [16,18,45]).
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Fig. 1. Application of the Laplace–Kirchhoff operator to an image.

M = diag(m1, . . . ,mn) ∈ Rn×n
+ is the diagonal matrix

containing the weights of the nodes, if there are any. Let

Di i =

n∑
j=1

Ai j

define the valence matrix of G, i.e. the diagonal matrix
containing all degrees of the nodes of G. Then the discrete
Laplace operator of G is given by

L = L(G) := M−1(D − A).

The discrete Laplace operator is also known from the Matrix-
Tree theorem by G. Kirchhoff and is therefore sometimes
referred to as the Kirchoff operator. To distinguish the operator
from the Laplacian in the continuous case we will refer to it as
the Laplace–Kirchhoff operator.

The Laplace–Kirchhoff operator is a difference operator on
G since it maps each function f : G → R to a difference
function f ′

: G → R. Here we identify f and f ′ with
vectors from Rn by fi := f (i) and get f ′

= L · f . It is
then possible to interpret a gray value image as a node weighted
graph by connecting each pixel with its four direct neighbours,
and assigning each pixel its gray value as a weight. The gray
value function then becomes a function on the graph where we
can apply the Laplace–Kirchhoff operator to. Fig. 1 shows an
image before and after applying its Laplace–Kirchhoff operator.
The operator has no impact on an image corresponding to
an eigenfunction. Its frequency response on the image can be
characterized as a band pass convolution filter (see [35,19,22,
23]).

The spectrum of the Laplace–Kirchhoff operator is given by
the ordinary eigenvalue problem

Lx − λx = 0 (10)

with x ∈ Rn . One can easily check that this is equivalent to

(D − A)x = λMx ⇔ det(D − A − λM) = 0 (11)

which is a generalized eigenvalue problem. The advantage
of (11) over the formulation in (10) is, that all matrices are
given in symmetric form, whereas L might be non-symmetric
in general. This can be easily reformulated to the ordinary
eigenvalue problem:

M−1/2(D − A)M−1/2x = λx . (12)

For symmetric eigenvalue problems more accurate numerical
solutions are available.
Fig. 2. Orthogonal FEM base function.

Note that again the main part of the calculations is finding
the eigenvalues. Therefore the complexity of this approach is
given by the chosen method for calculating the eigenvalues,
e.g. the Lanczos algorithm.

The Laplace–Kirchhoff operator can be seen as a special
discrete formulation of the Laplace–Beltrami operator. If we
choose the FEM base from Section 4.2 to be the set {φi j :

(i, j) ∈ Z2
} we can define a FEM base for the space of

functions defined on R2 with

φi j (x, y) := φi (x)φ j (y)

φi (x) := φ(x − i)

φ(x) :=

x + C for − 1 ≤ x < 0
−x + C for 0 ≤ x < 1
0 else

using C =
3+

√
3

6 (see Fig. 2). This yields the following matrices
(by evaluating Eqs. (8) and (9); note that we choose pairs of
numbers as indices here):

A = (ai j,kl) =

4 for (i, j) = (k, l)
−1 for |(i, j)− (k, l)| = 1
0 else

B = (bi j,kl) =


√

3 − 1
3

for (i, j) = (k, l)

0 else

after dividing by a factor of
√

3−1
3 on both sides of the equation.

This conforms to the Laplace–Kirchhoff operator of a regular

grid, except for a factor of
√

3−1
3 for the B matrix. This factor

is of no practical importance, since it only leads to a scaling
of the spectrum and can be divided from the spectrum after
calculation. Now let there be a mass density function given by

ρ(x, y) := K[x][y]

where B ∈ Nn×m is a grey value image. For each square in R2

this function ρ is constant, therefore we get (again after dividing
by a factor):

A = (ai j,kl) =

4 for (i, j) = (k, l)
−1 for |(i, j)− (k, l)| = 1
0 else
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B = (bi j,kl) =

Ki j

√
3 − 1
3

for (i, j) = (k, l)

0 else.

This conforms to the Laplace–Kirchhoff operator with mass
density function ρ. So far we have constructed discrete
operators for the case of a uniformly spaced grid with grid
size 1. Now let the grid have a grid size of 1/w. We define

φ[w](x) := φ(wx)

φ
[w]

i (x) := φ[w](x − i) = φ(w(x − i)).

By applying the substitution rule for integration we get:∫
∞

−∞

φ
[w]

i φ
[w]

j dx =
1
w

∫
∞

−∞

φiφ j dx∫
∞

−∞

φ
′[w]

i φ
′[w]

j dx =
1
w

∫
∞

−∞

wφ′

iφ
′

j dx =

∫
∞

−∞

φ′

iφ
′

j dx .

This shows that the mass matrix B is scaled by an additional
factor of 1/w in the one-dimensional (1D) case; for the two-
dimensional (2D) case B is scaled by 1/w2 and A is scaled by
1/w. Again we can divide by 1/w.

Summarizing the above results, the Laplace–Kirchhoff
operator can be seen as a discrete approximation of the
Laplace–Beltrami operator with mass density operator on a
regular grid. Given that the mass matrix B is scaled by

w
√

3−1
3 , the resulting spectrum is an approximation of the

spectrum of the Laplace–Beltrami operator. Note that according
to Section 4.2 one needs to zero out the matrix entries
corresponding to a boundary point to zero if there is a Dirichlet
boundary condition.

Instead of interpreting the Laplace–Kirchhoff operator as a
special case of the Laplacian resulting from FEM calculations,
we could also view it as an approximation: Let B be a small
geodesic disc with boundary ∂B and center point p, φ, ψ :

B → R with ψ ≡ 1 on B and φ being C2-smooth. Then we
obtain (cf. [5])∫

B
ψ1φdξ = −

∫
∂B
ψ
∂

∂n
φds −

∫
B
〈∇φ,∇ψ〉dξ

⇒

∫
B
1φdξ = −

∫
∂B

∂

∂n
φds − 0

as 〈∇φ,∇ψ〉 =
∑

i j gi j∂iφ∂ jψ = 0 since ψ ≡ 1. This gives:∫
B
1φdξ =

∫
∂B

∂

∂n
φds. (13)

It is well known that for the arclength l and area F of a geodesic
circle the following approximations hold (with K (p) being the
Gaussian curvature at center p, cf. [5], p. 204):

lim
r→0

2πr − l

r3 =
π

3
K (p)

⇒ l ≈ 2π
(

r −
r3

6
K (p)

)
lim
r→0

πr2
− F

r4 =
π

12
K (p)
⇒ F ≈ π

(
r2

−
r4

12
K (p)

)
.

For a sufficiently small radius of B, 1φ is approximately
constant; thus we have in geodesic polar coordinates (r, α):∫

B
1φdξ = (1φ + o(r))

∫
B

1dξ

= 1φ

(
πr2

(
1 −

r2

12
K (p)

)
+ o(r4)

)
+ o(r)︸ ︷︷ ︸

Area of the geodesic disc

=

∫
∂B

∂

∂n
φds using (13)

=

∫ 2π

0

∂

∂n
φ

√
G(r, α)︸ ︷︷ ︸

Arclength element

dα

=

∫ 2π

0

∂φ

∂n

((
r −

r3

6
K (p)

)
+ o(r4)

)
︸ ︷︷ ︸

Arclength element

dα

=

∫ 2π

0

∂φ

∂n
r + γ r3 K (p)dα γ ∈ [−1, 1].

Let Erα be the Cartesian vector of the point with coordinates
(r, α). Then we have, using a linear approximation:

∂φ(r, α)

∂n
r

= ∇φ(r, α) · Erα (directional deriv. of φ along rα)

= ∇φ(0, 0)Erα + Er t
α

(
φxx (0, 0) φxy(0, 0)
φxy(0, 0) φyy(0, 0)

)
Erα + o(|Erα|

2)

= φ(r, α)− φ(0, 0)+ o(|Erα|
2).

Note that here (x, y) denote Riemannian normal coordinates
with center p, implying that 1φ(p) = φxx (0, 0) + φyy(0, 0).

Since
∫ 2π

0 ∇φ(0, 0)Erα dα = 0, and the same is true for the
mixed partial derivatives, we get∫ 2π

0

∂φ(r, α)

∂n
rdα

=

∫ 2π

0
Er t
α

(
φxx (0, 0) 0

0 φyy(0, 0)

)
Erα + o(|Erα|

2) dx

=

∫ 2π

0
φ(r, α)− φ(0, 0)+ o(|Erα|

2)dα.

Choosing a symmetric discretization of the geodesic disc B
with angle steps D = π/n we obtain, with αi := iD,∣∣∣∣∣
∫ 2π

0
Er t
(
φxx (0, 0) 0

0 φyy(0, 0)

)
Erdx

−

2n∑
i=1

DEr t
αi

(
φxx (0, 0) 0

0 φyy(0, 0)

)
Erαi

∣∣∣∣∣
≤ r2 2π

n
(|φxx | + |φyy |).
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Using the above equations we get:∫ 2π

0

∂φ

∂n
r + γ r3 K (p)dα γ ∈ [−1, 1]

=

2n∑
i=1

D
(

Er t
αi

(
φxx (0, 0) 0

0 φyy(0, 0)

)
Erαi

+ β

(
r2 2π

n
(|φxx | + |φyy |)

)
+ o(|Erα|

3)

)
β ∈ [−1, 1]

=

2n∑
i=1

D(φ(iD, r)− φ(0, 0)+ o(r2))+ O

(
1
n

)
r2.

Therefore we get:

1φ(p) = lim
r→0


2n∑

i=1
φ(iD, r)− φ(0, 0)+ O

(
1
n

)
r2

+ o(r2)

πr2

.
Hence

1φ(p) = lim
r→0


2n∑

i=1
φ(iD, r)− φ(0, 0)

πr2

+ O

(
1
n

)
.

This corresponds to the well known non-matrix formulation
of the Laplace–Kirchhoff operator, i.e. for a function f =

( f1, . . . , fn) defined on a graph with each fi located at a node
pi we get the respective discrete form 1 fi =

∑
j ( f j − fi )wi j

for edge weights wi j . In matrix formulation this is 1 f = −L f
with L as defined in Definition 3.

5. Images

In this section we will explain how to represent images in
order to compute fingerprints. First we will restrict ourselves to
gray value images to keep the description simple, but we will
also explain how to extend the technique developed to images
given in arbitrary color spaces.

Definition 4. Let m, n, k,∈ N, G = {0, . . . , k − 1} and B ∈

Gm×n . Then we call B a discrete gray value image with k steps.

We define a gray value image to be a matrix, but as one
can easily see, this is the same as defining B to be a discrete
height map B : {1, . . . ,m} × {1, . . . , n} → G. We will use
both definitions interchangeably. See Fig. 3 for an example. We
will define a gray value of 0 to represent “black” and k − 1 to
represent “white”, with the values in between defining shades
of gray. This specification is arbitrary and – as we will see later
– without effect on the actual calculations.

5.1. Fingerprints and the Laplace–Beltrami operator

One way to calculate a fingerprint for an image is to take
the image as a discrete height map and transform it into a
continuous manifold. Then the eigenvalues of its associated
Laplace–Beltrami operator can be used as a fingerprint. At
Fig. 3. An image and its height map.

first glance it is not clear how to transform the image into a
continuous form. An ad hoc technique could be to interpolate
the manifold with any kind of 2D spline, e.g. a tensor product
NURBS. However, the interpolation would take some time and
there would also be calculation time needed for evaluating the
resulting rather large spline representation of the surface.

An obvious solution to calculate the needed coefficients of
the first fundamental form is to create a bilinear surface and
then use the partial derivatives of that surface. For given pixel
values z1, z2, z3, z4 the associated patch is:

f (h, v) := (1 − v)((1 − h)z1 + hz2)+ v((1 − h)z3 + hz4)

with local coordinates h, v ∈ [0, 1] (see Fig. 4). We get the
partial derivatives

fh = v(z4 − z3)+ (1 − v)(z2 − z1)

fv = h(z4 − z2)+ (1 − h)(z3 − z1)

and therefore the coefficients

g11 = 1 + f 2
h

= 1 + (v(z4 − z3)+ (1 − v)(z2 − z1))
2

g12 = fh fv
= (v(z4 − z3)+ (1 − v)

(z2 − z1))(h(z4 − z2)+ (1 − h)(z3 − z1))
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Fig. 4. Bilinear interpolation of partial derivatives.

g22 = 1 + f 2
v

= 1 + (h(z4 − z2)+ (1 − h)(z3 − z1))
2.

Given this Riemannian metric of an image one can use the
finite element method to obtain the eigenvalues. See Section 4.2
and [37,38] for the details of this calculation.

In Section 4 we have noted that a change of the topology
of a given object changes its spectrum fundamentally without
affecting the point set of the object significantly. For images
this is of no relevance since we take each image to be a
height function defined on a rectangular area, i.e. the resulting
manifold is always homeomorphic to the full disc. Therefore
changes in topology cannot occur and we only have to deal with
changes in geometry. As noted in Section 4, these changes take
place continuously, which is the desired behaviour.

These small changes of the geometry could also include
noise, compression artifacts and transmission errors on the
images, given that these errors are kept within a certain range
resulting in a similar geometry. Therefore the approach is robust
against noise up to a certain degree.

Furthermore, we have noted that uniform scaling of a
manifold by a modifies the associated Laplace–Beltrami
spectrum by 1/a2. This might be problematic with images since
images are usually either scaled along their x and y directions
(which represents a uniform scaling of an image) or along their
z direction only (which corresponds to a change of contrast). As
a result of this, changing e.g. the contrast of an image modifies
its spectrum in a rather unpredictable manner. To make the
spectrum invariant against contrast changes we need to scale the
gray values to the range [0, . . . , smax], where smax represents
the larger value of image width and image height. This way
the effect of contrast changes are canceled and a scaling of
the image in x and y directions becomes a uniform scaling
along all axes. To make this spectrum scaling invariant we
could simply divide it by its first non-zero eigenvalue. This
way scaled spectra become identical. Note that this effect can
be achieved also using a different method for computing the
similarity of two spectra. For example, if we use the correlation
coefficient instead of a simple Euclidean distance, scaling
effects are canceled. See [38] for more detailed insights on
this.
Fig. 5. The 4-neighborhood of a pixel.

5.2. Fingerprints from the Laplace–Kirchhoff operator

Another possibility is to choose the eigenvalues of the
Laplace–Kirchhoff operator as a fingerprint. To accomplish
this, the image is transformed into a node weighted graph.
Each pixel is interpreted as a node whose weight corresponds
to the given gray value. Then two nodes are connected iff
they are adjacent in the image. One can choose different
models of neighborhoods here; for our experiments we
implemented the 4-neighborhood (see Fig. 5) for the sake of
simplicity. Note that for arbitrary neighborhoods the spectrum
of the Laplace–Kirchhoff operator should also converge against
the underlying spectrum of the Laplace–Beltrami operator
for finer resolutions of the image. For the resulting graph
the Laplace–Kirchhoff operator according to Definition 3 is
calculated and its eigenvalues are computed numerically. Note
that one needs only the n smallest eigenvalues, so efficient
techniques like the Lanczos algorithm (see [13]) can be applied.
These eigenvalues, possibly normalized to avoid scaling effects,
are then taken as a fingerprint.

5.3. Color images

Usually color images are given in some color space
representation. The most commonly used color space is the
RGB space, i.e. each color pixel is given by a triple (r, g, b)
with r representing the red value, g the green value and b the
blue value of the pixel. Most color spaces are three dimensional,
although there are some four-dimensional (4D) spaces also,
e.g. the CMYK space used in printing. We will outline a
technique for three-dimensional (3D) spaces here; the extension
to four dimensions is straightforward.

Definition 5. Let m, n, k ∈ N,G = {0, . . . , k − 1} and B ∈

(G × G × G)m×n . Then we call B a discrete RGB value image
with k steps.

Just like in the monochrome case, we can interpret B as a
map B : {1, . . . ,m} × {1, . . . , n} → G × G × G. This is some
kind of generalized height function. Like the monochrome
image can be understood as a two-manifold embedded in 3D
space, we can interpret the color image as a two-manifold
embedded in 5D space. The manifold is parameterized by:

(u, v) 7→ (u, v, r(u, v), g(u, v), b(u, v)).

Thus we get the following components for the first fundamental
form:

g11 = 1 + r2
u + g2

u + b2
u

g22 = 1 + r2
v + g2

v + b2
v

g12 = g21 = rurv + gu gv + bubv
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with ru and rv denoting the partial derivatives of r(u, v) and
similar definitions for g and b. We can then apply exactly
the same interpolation techniques as in the monochrome case
in Section 5.1 and then use the Laplace Beltrami operator to
gain a fingerprint for the color image. See Section 6.2 for a
discussion of advantages and disadvantages that may arise from
this approach.

Interestingly this approach is compatible with the method
developed for gray value images in Section 5.1. In RGB colour
space a gray value image can be represented by a colour image
with equal channels f := r = g = b. Thus we get:

g11 = 1 + 3 f 2
u

g22 = 1 + 3 f 2
v

g12 = g21 = 3 fu fv.

This can be seen as the calculation done for a gray value image
with height function

√
3 f . This means that we get the same

spectrum as with an ordinary height function f , only scaled by
1/3.

6. Isometry and isospectrality

In Section 5 we have presented two possibilities for
constructing fingerprints of an image applying variants of the
Laplace operator. The question we are dealing with now is to
what extent a fingerprint is unique for a given image.

6.1. Isometry

Let us first discuss the spectrum of the Laplace–Beltrami
operator. From Section 4, we know that isometric manifolds
share identical spectra. So we would have to find out in which
cases two images can be considered isometric. Furthermore,
there are some rare cases where manifolds are isospectral
(i.e. they share the same spectrum) but are non-isometric. We
will discuss them in Section 6.3. In particular, two manifolds
generated by the process described in Section 5.1 are isometric
if their Riemannian metrics (gi j ) are identical:

Theorem 1. Let the manifolds be defined by height functions
f : [0,m−1]×[0, n−1] → R and g : [0,m−1]×[0, n−1] →

R with g f
i j = gg

i j =: gi j . Then:

f = g + α or f = −g + α

for any α ∈ R.

Proof. We first show that the partial derivatives of f and g are
identical up to their sign:

g11 = 1 + f 2
x ∧ g11 = 1 + g2

x

g22 = 1 + f 2
y ∧ g22 = 1 + g2

y

g12 = g21 = fx fy ∧ g12 = g21 = gx gy

⇒ (1) f 2
x = g2

x

(2) f 2
y = g2

y

(3) fx fy = gx gy

⇒ (from (1)) | fx | = |gx |
(from (2)) | fy | = |gy |

⇒ (with (3)) ( fx = gx ∧ fy = gy)

∨( fx = −gx ∧ fy = −gy).

Now let fx = gx and fy = gy . Then we have:

(1) f =

∫ x2

x1

fx dx + C(y)

(2) f =

∫ y2

y1

fydy + D(x)

(3) g =

∫ x2

x1

fx dx + E(y)

(4) g =

∫ y2

y1

fydy + F(x)

where C(y) and E(y) are functions depending solely on y,
D(x) and F(x) solely on x . We get:

(5) 0 =

∫ x2

x1

fx dx −

∫ y2

y1

fydy + C(y)− D(x)

(6) 0 =

∫ x2

x1

fx dx −

∫ y2

y1

fydy + E(y)− F(x)

and finally:

(7) 0 = C(y)− D(x)− E(y)+ F(x).

This means that there has to be some constant α fulfilling:

D(x)− F(x) = α = C(y)− E(y).

By substitution in (1) and (3), respectively (2) and (4) we get:

f = g + α.

Now let fx = −gx ∧ fy = −gy . From an analogous argument
we get:

f = −g + α.

There is an alternative proof of Theorem 1 using knowledge
about Riemannian manifolds: Given two surfaces defined by
height functions f and g we can define a solid height function
for f by:

S f (x, y; z) :=

 x
y

f (x, y)+ z

 with z ∈ Rn

and the same for g. One can easily check that its Riemannian
(volume) metric is given by:

(gS
i j ) =

g f
11 g f

12 fx

g f
21 g f

22 fy
fx fy 1

 =

1 + f 2
x fx fv fx

fx fv 1 + f 2
v fy

fx fy 1

 .
We know from our elementary considerations at the beginning
of this proof that ( fx = gx ∧ fy = gy) ∨ ( fx = −gx ∧ fy =

−gy), hence for Sg we get

(gS
i j ) =

gg
11 gg

12 gx

gg
21 gg

22 gy
gx gy 1

 .
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This resolves to one of1 + f 2
x fx fv fx

fx fv 1 + f 2
v fy

fx fy 1

1 + f 2
x fx fv − fx

fx fv 1 + f 2
v − fy

− fx − fy 1

 .
Therefore S f and Sg are isometric. Two solids in Euclidean
three space are isometric if and only if they are congruent;
that is, they are related by a series of Euclidean motions (see
e.g. [27], p. 88). Hence all their faces including the original
height functions must be identical up to Euclidean motions.

�

Theorem 1 shows that if two images share the same Riemannian
metric, one is either a brighter version of the other, its negative
or a combination of both. However, in order to be isometric
two images do not need to share the same Riemannian metric
of their height functions. They could also be rotations or
mirror images of each other. This still perfectly conforms to
criterion [ISOMETRY]. Furthermore, there are some cases
where isometries result from a change of parameterization. For
example, let

f1(x, y) :=

√
1 − (x − 1)2

f2(x, y) :=
x

2

√
π2 − 4.

One can easily check that these functions do not have identical
Riemannian metrics of their height functions; however, their
graphs on the parameter space [0, 2] × [0, 2] are both isometric
to the Euclidean rectangle [0, π] × [0, 2]. This way they are
related by an isometry flattening the cylindrical surface to the
rectangle. Fig. 6 shows the corresponding manifolds. Another
possibility to construct isometric images is to determine the
maximal and minimal partial derivative along one axis and then
rotate the image at angles α and −α along the other axis (see
Fig. 7). Since one needs to make sure that the rotated manifold
remains describable by a height function, α can be calculated
as

α < 90 − arctan mmax and α < 90 + arctan mmin

with mmin and mmax being the minimal respectively maximal
derivative (see Fig. 8). Fig. 9 shows an image and the same
image rotated by 5◦. Note that the image needs to be rather
blurred to allow even a small possible rotation angle of 5◦. For
a monochrome image mmin and mmax are determined by the
maximal possible difference of two gray values, i.e. g − 1:

mmin = −g + 1 and mmax = g − 1

(see Fig. 10). Typically g − 1 = 255 so it follows:

α < 90 − 89.775312 = 0.22468818.

This gives a maximal rotation angle of 0.22468818◦, resulting
for an original image width of w in a width of w · cosα
after the rotation. In a typical situation with g − 1 = 255
and α = 0.22468818 this yields a width of 99.999231% of
the original, that is for a total image width of 100 000 pixels
less than 1 pixel difference! Effectively the rotation would be
invisible.
Fig. 6. Isometric height functions.

Fig. 7. Rotated height function.

Fig. 8. Computation of the rotation angle.

Therefore in practice one rarely encounters images that
meet the above conditions, so isometry usually means that
two images are identical up to Euclidean motions and mirror
operations.

6.2. Isometry and color images

Using the Laplace–Beltrami spectrum for color images
introduces some differences from the monochrome case that
can be both advantageous and disadvantageous. First of all,
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Fig. 9. Original image and by 5◦ rotated version.

Fig. 10. Maximal gray value difference.

there are some well known cases of isometric but non-
congruent two-manifolds in spaces with more than two
dimensions. A popular example is the pair catenoide and
helicoide (cf. [14]): These are isometric but not congruent.
Since they are isometric we can construct a parameterization so
that both share identical gi j values. This way we have defined
two color images (namely maps from two dimensions to three
dimensions) that are isometric but look notably different. This
can be stated more formally as follows. Let f, g : R2

→

R3 be maps from the parameter space to the color space
defining the two images. Clearly most of the time the manifolds
defined by f and g are degenerate (cf. Fig. 14). This is a
result of images containing the same color in possibly adjacent
places: the extreme case is a uniformly black image where
the resulting gamut collapses to a single point. Nevertheless,
the above examples show that there are non-degenerate cases
also. Suppose the resulting manifolds in R3 are isometric.
Then there exists some parameterization so that the gi j values
are identical for both manifolds. Suppose f, g are given by
such a parameterization. Now define two two-manifolds in
five dimensions by the maps F(u, v) := (u, v, f (u, v)) and
G(u, v) := (u, v, g(u, v)). Then the first fundamental form for
the manifold F are given by

gF
11 = 1 + g f

11 · g f
11 gF

22 = 1 + g f
22 · g f

22 gF
12 = g f

12

and they are identical for G. Fig. 11 shows the resulting
helicoide and catenoide images with marking lines between the
areas where each prime color (red, green and blue) dominates
to emphasize the difference. Fig. 12 shows the color gamuts of
these images. Note that these gamuts approximate the geometry
of helicoide and catenoide in RGB-space. Thus we have the
disadvantage of non-similar images sharing identical spectra
Fig. 11. Color images associated to helicoide and catenoide. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Color gamuts of helicoide and catenoide. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Color rotation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

here. Of course one could calculate separate spectra for each of
the colors, but in that case we lose the invariance with respect
to color rotations, an advantage of this approach which we will
describe below.

Another possibility to create isometric manifolds associated
with color images is to apply Euclidean motions in color space,
most notably color rotations. In other words: the fingerprints
are invariant with respect to color rotations. This can be a
big advantage in some applications since color rotations rather
represent a change in the look of an image but not in its intended
content. Fig. 13 shows an example of a color rotation by 90◦.
Fig. 14 shows the two images from Fig. 13 in RGB-space (their
color gamuts). Note that the resulting two-manifolds in three
dimensions are congruent up to rotation. Also note that the
gamuts almost fill the entire RGB cube. In such cases color
rotation angles are naturally limited to multiples of 90◦. Further
Euclidean motions in color space correspond to translations.
These are effectively linear changes of the dominant image
color: once again the principal content of the image remains
unchanged. Another advantage is that the fingerprints are
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Fig. 14. Color gamuts. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 15. Two isospectral domains.

invariant to changes of the color space, given that the color
spaces are connected by an Euclidean motion. For example,
one can obtain a representation in CMY space from an RGB
representation by the transformation c

m
y

 =

1 − r
1 − g
1 − b

 .
Clearly this is an Euclidean motion (an inversion and a
translation); thus the fingerprint does not change.

6.3. Isospectrality

On the other hand, there are cases where two manifolds
share an identical spectrum while they are not isometric.
We have seen how to represent monochrome images as two-
manifolds; thus we have to investigate if it is possible for a
pair of two-manifolds to be isospectral. Indeed, examples for
non-isometric but isospectral two-manifolds have been found;
see [11] for some planar domains. Fig. 15 shows a typical pair.
However, none of those manifolds can be expressed by height
functions over a convex domain, i.e. their parameter space must
be a non-convex domain. Thus it is very unlikely that there
exist isospectral monochrome images, since they are defined
by height functions over rectangular (and therefore convex)
domains. Fig. 16 shows a possible parameter domain for the
manifolds from Fig. 15. From all we know so far isospectrality
seems to be a rare phenomenon. Only pairs of isospectral
domains have been found in two dimensions and all of them
are non-convex. Therefore isospectrality should not be a serious
problem and should not prevent the discrimination of images
via their spectra.

When using the Laplace–Kirchhoff operator instead of the
Laplace–Beltrami operator, one has to deal with isospectral
Fig. 16. Parameter domain for the isospectral domains.

graphs instead of isospectral manifolds. Just like in the
continuous case, the phenomenon is not understood completely,
but theories exist of how to construct such graphs; see e.g. [24].
Halbeisen and Hungerbühler describe a method for obtaining
an isospectral “twin” for a given graph. An interesting property
of their method is that the constructed graph is either not simple
or has at least two more nodes than the original graph.

7. Spectra and fingerprints

Formally we have defined the Laplacian spectra in Eqs. (5),
(6) and in Eq. (10). Following the first definition a spectrum is
an infinite countable multiset of real numbers, i.e. a sequence
0 ≤ λ0 ≤ λ1 ≤ · · · ≤ ∞. It is a multiset since one can
have eigenvalues with multiplicities larger than 1. According
to the second definition it is a finite multiset of real numbers
with λ0 = 0. The first eigenvalue is always zero if there is
no boundary condition, since the sum of all rows of the matrix
D − A is zero; therefore its determinant is zero.

We define the fingerprint of an image to be a suitable finite
subset of one of the possible spectra. We will see in Section 8
that for practical applications most of the time the first n ≤ 10
eigenvalues suffice.

To effectively compare two images one has to compare their
associated fingerprints. This can be accomplished by defining a
suitable metric on the space of the fingerprints. If we choose our
fingerprints to be the first n eigenvalues we are dealing with the
vector space Rn , where we can choose between a large number
of well known metrics. For our tests we have used different
p-norms given by

dp(u, v) :=

(
n−1∑
i=0

|ui − vi |
p

) 1
p

with u = (u1, . . . , un) and v = (v1, . . . , vn) being fingerprints.
Furthermore, we have tested the Hausdorff distance and the
Pearson correlation distance:

dc(u, v) := 1 −

∣∣∣∣∣∣∣∣∣
(n − 1)

n−1∑
i=0
(ui − ū)(vi − v̄)

n−1∑
i=0
(ui − ū)2

n−1∑
i=0
(vi − v̄)2

∣∣∣∣∣∣∣∣∣
where ū and v̄ denote the arithmetic means of u and v. We
observed that for most applications the Euclidean distance d2
yields acceptable results (see Section 8) while being easy to
implement.

Since we know that scaling an image can be transformed to
an associated scaling of the fingerprint (see Sections 4 and 5),
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Fig. 17. Original test image and modified versions.

Fig. 18. Distances for the Laplace–Kirchhoff operator.

one could use a distance that is insensitive against linear
scaling. For example, the correlation distance has this property
by definition. Other possibilities include dividing the fingerprint
by its first non-zero eigenvalue or normalizing the slope of
the best fitting line of the sequence of eigenvalues to 1 before
comparing. This way one makes sure that fingerprints being in
fact scaled variations of each other are considered identical.

8. Examples

To test the implementation of the methods described
above an image from the collection of Snodgrass [44] was
modified (see Fig. 17). We calculated the eigenvalues of the
Laplace–Kirchhoff operator with Dirichlet boundary condition.
All images were scaled to 32 × 32 pixels to allow a fast
computation. The fingerprints were divided by the second
eigenvalue (since the first one is always zero), cropped to
10 eigenvalues and compared via Euclidean distance. Fig. 18
shows the result for the 15 best matches. The computed
distances are shown in the figure; note that the distances plotted
are not linearly scaled: the shorter distances are scaled up.

It can be observed that images that are not very similar in
terms of human perception may be considered similar by our
methods. This is a result of interpreting an image as a height
function, i.e. taking the (white) background of an image as a
part of the described shape (see also Fig. 23). If one does not
wish to consider the background one could separate the content
of the image from a possible background (see Section 9).
Fig. 19. Distances for the Laplace–Beltrami operator.

The experiment was repeated using the Laplace–Beltrami
operator obtained from the height function. The fingerprints
were computed using 338 elements and cubic form functions
(cf. [38] for details of the FEM calculations used). They were
divided by the first eigenvalue and compared via Euclidean
distance. Fig. 19 shows the result.

One observes that both methods – using the Laplace–
Kirchhoff operator and using the Laplace–Beltrami operator –
perform similarly. In fact there is no notable difference in terms
of run time. However, while the Laplace–Kirchhoff operator is
more easily implemented, the Laplace–Beltrami variants open
up the possibility to use a coarser mesh and thus save some time
while computing eigenvalues while the size of the matrices for
the Laplace–Kirchhoff operator is fixed for a given image size.

To test the robustness against scaling, each image from the
collection of Rossion (see [40]) was scaled by a factor of 2
and added to the collection. The fingerprints were calculated
using the Laplace–Beltrami operator obtained from the height
function with 338 finite elements. They were compared using
Euclidean distances with best fitting lines (see Section 7). For
511 of 532 the double sized images were the second best
fits (behind the respective image itself); for the remaining 21
images the double sized versions were the third best fits. This
corresponds to a reliability of about 96% for scaling.

The experiment was repeated with the images being changed
in contrast instead of size. For each image a copy with 50% of
the original contrast was added to the collection. In this case
all of the 532 images could be matched to their low contrast
counterparts. This corresponds to a reliability of 100% for
change of contrast. Combining changes of scale with changes
of contrast again gives the same results like changing scale only,
i.e. 96% reliability. This makes the method especially useful in
setups where combinations of such operations occur.

By simply averaging the results of the preceding experi-
ments one could conclude that the method performs similarly
to the combined Wavelet–Fourier approach of Sabharwal and
Subramanya (see [41]). However, one should keep in mind that
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Fig. 20. Original colour test image and modified versions.

Fig. 21. Distances for the Laplace–Beltrami operator (colour images).

our test set was considerably larger (532 against only 78), and
using less information: Sabharwal and Subramanya used 64
bytes of information while we compared the images using their
first 10 eigenvalues amounting to only 40 bytes. For shorter
set of images, e.g. 78 like the test set of Sabharwal and Subra-
manya, even fewer eigenvalues can be used, e.g. the first three
(3·4 = 12 bytes). This said, our method performs as good while
using shorter representations which is a substantial advantage
when working with large data bases where typical feature vec-
tors should not be of dimension much greater than 10.

To test the methods developed for colour images an image
from the collection of Kambeck [25] was modified in different
ways (see Fig. 20). Thirty eigenvalues were calculated using
the Laplace–Beltrami operator for generalized height functions
with 338 finite elements and cubic form functions. They were
compared using the Euclidean distance with best fitting lines.
Fig. 21 shows the calculated distances for the best matches.
Fig. 22 shows an MDS plot of the best matches depicted in
Fig. 21, that means the resulting spectra projected to a 2D
space using the standard MDS method. One can identify the
cluster of the microscope images. Of course projecting the high
dimensional spectra to a very low dimensional space means
a massive loss of information, resulting in the formation of
additional clusters, and thus cannot serve more than purposes
Fig. 22. Cluster for the colour images (Laplace–Beltrami).

Fig. 23. One parameter family of images.

Fig. 24. One parameter curve of the fingerprints.

of illustration. For practical applications one should work
with more than two dimensions. Using the Pearson correlation
distance (see Section 7) yielded similar good results in this case,
whereas using the Hausdorff distance showed inferior results.
This is because for the Hausdorff distance to become small it
is sufficient that there are two eigenvalues at a relatively small
distance, while for the other distances all eigenvalues need to
be near their corresponding partners.

Finally we generated a family of images containing a moved
full disc (see Fig. 23). Clearly, this is a one parameter family of
different images, so one should predict the set of fingerprints to
depend on one parameter as well. Note that we interpret these
images to be different since we chose the height function of
the image as a manifold for computing the spectrum. If one
wishes to treat such images as principally the same image, more
precisely as the same content, one has to cut the background
from the represented content and use only this as the manifold.
Fig. 24 shows an MDS plot of the calculated fingerprints. It
forms a one parameter curve.

9. Conclusion and outlook

We have presented three methods for obtaining finger-
prints from discrete monochrome or color images. Namely,
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the Laplace–Beltrami operator with height functions, the
Laplace–Beltrami operator with density functions, and its
discrete counterpart the Laplace–Kirchhoff operator were
used. We have shown an interlink between the discrete
Laplace–Kirchhoff operator and the Laplace–Beltrami opera-
tor. Furthermore, we have introduced concepts from the theory
of Riemannian geometry into the field of image fingerprints. We
have demonstrated these techniques to work in a set of practical
situations. The methods were shown to be especially useful in
the presence of rotations or color rotations, changes of contrast
and scale, and combinations of all these operations, since the
calculations are invariant against such transformations. We have
shown that our method uses substantially less information than
established techniques for discriminating collections of images,
while maintaining a high reliability. This is especially useful for
data bases of images where high dimensional searches are very
cost intensive (see [4,3]).

Future work will include investigations on how to apply the
Laplace–Kirchhoff operator and the Laplace–Beltrami operator
with density functions to color images.

As shown in Section 8 a drawback for some applications
could be the representation of the image content together
with its background as a single height function. A preprocess
of separating the background from the content should be
investigated.

Furthermore, methods would have to be provided to cancel
the effects of special non-Euclidean transformations (e.g. most
color space transformations) on color images. These problems
could probably be solved by transforming images in a pre-
process in such a way that the non-Euclidean transformations
are mapped to Euclidean transformations, although this could
mean that the former Euclidean transformations become non-
Euclidean.
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[7] Bülow T. Spherical diffusion for 3d surface smoothing. IEEE Trans
Pattern Anal Mach Intell 2004;26(12).

[8] Chavel I. Eigenvalues in Riemannian geometry. New York, San Francisco,
London: Academic Press; 1984.
[9] Chung F. Spectral graph theory, vol. 92. Providence (RI): American
Mathematical Society; 1997.

[10] Cohen S, Guibas L. Shape-based image retrieval using geometric hashing.
In: Proc. of the ARPA image understanding workshop. 1997. p. 669–74.

[11] Conway J, Semmler K-D, Buser P, Doyle P. Some planar isospectral
domains. Internat Math Res Notices 1994;9:391–400.

[12] Courant R, Hilbert D. Methoden der mathematischen physik. 4th ed.
Berlin: Springer; 1993.

[13] Cullum JK, Willoughby RA. Lanczos algorithms for large symmetric
eigenvalue computations. Boston: Birkhäuser; 1985.
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