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ABSTRACT 

Untreated sleep disorders can harm bodily functions, and a sleep study and monitoring of sleep stages are the first 
steps in diagnosing these disorders. Using Polysomnography (PSG), signal scoring for sleep stage determination has 
become a familiar investigation in recent years. Despite its effectiveness, the procedure is time-consuming and costly. 
This study presents a cost-effective method for sleep classification based on Electrocardiogram (ECG) input signals. 
We proposed a multi-ethnic study of the Atherosclerosis dataset, including 1700 PSG, to develop a Residual Neural 
Network (RNN) classifier to stage sleep from Instantaneous Heart Rate (IHR) extracted from the ECG signals. The 
proposed system follows the following steps: ECG collection, signal preprocessing (including ECG normalization 
and segmentation, instant heart rate calculation and normalization, resampling, and filtering), and classification using 
an RNN. A Convolutional Neural Network (CNN) is used to detect sleep stages using preprocessed segments of the 
IHR time series of 240 samples centered on 30-s epochs as inputs. The proposed algorithm in the five-fold cross-
validation achieved an accuracy of 85.32%, a kappa of 77.11%, a Sensitivity of 81.14%, a Specificity of 82.68%, 
and an F-1 score of 81.87%. The results show that ECG data provide valuable information about sleep stages for a 
large population. 
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The abbreviations used in this paper are in alphabetical order as follows: 
Nomenclature Referred to Nomenclature Referred to 
Acc Accuracy MGH Massachusetts General Hospital 

AAMI Association for the Advancement of 
Medical Instrumentation  NREM Non-Rapid Eye Movement 

AASM American Academy of Sleep 
Medicine OSAS Obstructive Sleep Apnea Syndrome 

CNN Convolutional Neural Network PSG Polysomnography 
CPAP Constant Positive Airway Pressure ReLU Rectilinear Unit 
ECG Electrocardiogram REM Rapid Eye Movement 
EDR ECG-Derived Respiration RNN Residual Neural Network 
EEG Electroencephalography R&K Rechtschaffen and Kales 
EMG Electromyography ResNet Residual Neural Network 
EOG Electrooculography Sens Sensitivity 
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FN False Negative SLPDB MIT-BIH Polysomnographic 
Database 

FP False Positive Sp Specificity 
F1 F-1 Score SHHS Sleep Heart Health Study 
HRV Heart Rate Variability S1 Sleep Stage 1 
IBI Inter Beat Intervals S2 Sleep Stage 2 

ILSVRC ImageNet Large Scale Visual 
Recognition Challenge S3 Sleep Stage 3 

IHR Instantaneous Heart Rate TP True Positive 
Kappa Cohen’s Kappa TN True Negative 

MESA Multi-Ethnic Study of 
Atherosclerosis   

1. Introduction 

When thinking about how much sleep you need, it is normal to take into account the amount of time you will be 
in bed. The importance of sleeping enough is undeniable, but it is not the only factor. Additionally, bedtime should 
also be considered in terms of quality and whether it actually promotes health restoration. A person must experience 
all four stages of sleep several times throughout the night in order to reach the level of health restoration sleep. Sleep 
contributes to your feeling of refreshed in body and mind. Therefore, understanding how the cycle of sleep affects a 
person's health and sleep can help us detect sleeping disorders and other health conditions early.  

The human sleep cycle is decomposed into epochs, usually 30 seconds apart, and each epoch has its own sleep 
stage. The Association for the Advancement of Medical Instrumentation (AAMI) [1] states that there are five stages 
of sleep: Rapid Eye Movement sleep (REM), non-REM sleep (Sleep Stage-1 (S1), Sleep Stage-2 (S2), and Sleep 
Stage-3 (S3)), and Wakefulness (W). The standard method for measuring and analyzing sleep involves the recording 
of multiple physiological changes such as heart rhythms, brain activity, muscle activity, and eye movements by means 
of Polysomnography (PSG) [2]. PSG provides a variety of sleep-related signals, such as Electrooculography (EOG), 
Electroencephalography (EEG), and Electromyography (EMG) [3, 4]. In a process known as sleep staging, experts 
can estimate sleep duration and quality by using these signals based on sleep manuals like the American Academy of 
Sleep Medicine (AASM) and Rechtschaffen and Kales (R&K) [5]. 

PSG recording is labor-intensive and time-consuming due to the need for attaching several sensors to the subjects 
overnight, which requires visiting sleep centers or laboratories. Furthermore, PSGs are expensive to record and process 
and they are not readily available for analysis [6, 7]. While PSGs offer an accurate assessment of sleep, they are not 
practical for long-term use due to their high costs and because so many sensors need to be implanted into the body of 
the participant, which can disturb their sleep. 

According to statistics, about 70% of Americans suffer from sleep disorders, a condition that causes chronic 
sleep deprivation and interferes with normal daytime functioning. Many patients struggle to identify sleep disorders 
because they occur at night and most go undiagnosed [8]. Sleep disorders can also result in chronic health issues and 
be very expensive to manage. Each year in the US, about $400 billion is lost due to insufficient sleep [9]. Therefore, 
early detection and diagnosis of sleep can improve daytime functioning and save resources. 

An electrocardiogram (ECG) is a simple test that measures your heart rhythm and activities that affect the heart. 
ECG signals are among the low-cost methods for stimulating the heartbeat by measuring the voltage over time. Sensors 
attached to your skin detect the electrical signals produced by your heartbeat. A machine collects ECG signals, which 
are analyzed by professionals to find the information contained within the heart. Several studies investigated the use 
of ECGs in sleep apnea detection [10, 11]. The ECG indicates the overall health of the heart. An ECG interpretation 
includes a structured assessment of the ECG waves and intervals. In a normal ECG, P, Q, R, S, T, and U waves are 
present, along with various intervals, including P-R, Q-T, R-R, and S-T. The amplitude and duration of these intervals 
are calculated during heartbeat processing and classification. 

Several recent studies have demonstrated that networks based on artificial neural networks are very successful 
at recognizing and categorizing objects [12, 13, 14, 15, 16]. Researchers have been inspired by these successes to 
design different architectures that solve problems encountered by others more efficiently and study the roles played 
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by particular parameters in solving problems. One of the most successful deep learning models is the Residual Neural 
Network (ResNet) architecture proposed by [17]. ResNet is a type of convolutional neural network (CNN) that use 
identity mapping (skip connections) to incorporate the output of each layer into the next. It was designed with residual 
blocks to address the problem encountered when training very deep networks. ResNet architecture took part and won 
first place in the 2015 ILSVRC classification competition. Furthermore, it demonstrated a significant improvement 
on the famous image recognition database COCO [18].  

ECG signals can be a cost-effective and easy-to-use alternative to the more expensive and complex EEG signals 
for classifying sleep stages. ECG signals can provide information on heart rate variability, which is associated with 
autonomic nervous system activity, and can be combined with other physiological signals such as respiratory signals 
for more accurate sleep stage classification. Although ECG signals show promise for sleep stage classification, more 
research is needed to validate their use and optimize their effectiveness. 

To improve the accuracy of sleep stage classification using ECG features, researchers have attempted to increase 
the amount of data used for training and explored the use of deep CNNs. However, as the number of layers in a CNN 
model increases, the model size also increases, resulting in slower training times, higher computational costs, and 
overfitting. To address these issues, researchers have turned to ResNet architecture, which allows for the addition of 
more layers while keeping the model size relatively small. ResNet achieves this by using residual connections, which 
enable the network to skip certain layers and pass the output of one layer directly to another layer further down the 
network. This has proven to be particularly useful for improving the accuracy of ECG-based sleep stage classification. 

Rather than extracting features manually from ECG data, researchers can use CNNs to learn local cardiac features 
automatically. This approach saves time and eliminates the need for researchers to calculate and interpret these features 
themselves. By analyzing the raw ECG signal, CNNs can extract key features such as amplitude, frequency, and 
duration of cardiac activity without human intervention. 

In this study, the proposed approach is evaluated according to its ability to automatically stage sleep based on 
ECG signals acquired from the Multi-Ethnic Study of Atherosclerosis (MESA) dataset into awake (W), REM, and 
Non-Rapid Eye Movement sleep (NREM) which includes stages 1, 2, and 3. In order to optimize accuracy, and since 
the data used in stage S1 is insufficient for learning, four stages are classified (W, S1&S2, S3, REM). The three stages 
in NREM sleep are reduced to two stages by combining S1 and S2 to optimize for accuracy since S1 does not have 
enough data to distinguish its fractures from the rest of the stages. An individual's sleep state is recorded by recording 
30-second epochs according to methods established by the AASM [19]. The classifier uses two-minute Instantaneous 
Heart Rate (IHR) segments centered at 30-s epochs computed from the ECG signals as one-dimensional input data.  

In summary, the paper makes several significant contributions. Firstly, the study investigates the use of the IHR 
to detect sleep stages through ECG analysis and demonstrates its effectiveness as a dependable and accurate approach. 
Secondly, the proposed method achieves an impressive 85% accuracy rate in detecting sleep stages, surpassing the 
established standard of polysomnography. Notably, the ResNet architecture used in the models reduces memory 
requirements, allowing them to be used in mobile devices. While the data preprocessing followed previously applied 
methods, the paper's approach stands out by applying an effective filter at the end of the data processing that removes 
values greater than 5 standard deviations per segment, which can interfere with the training process. Lastly, the IHR-
based method is computationally efficient, enabling it to be easily integrated into existing ECG monitoring systems. 
In light of the obtained results, ResNet can be used with IHR to stage sleep.  

The rest of the paper is organized as follows: Section I provides analyses of related works. Sections II and III 
provide an analysis of the methodology, including data acquisition, annotation scoring, input signal preprocessing, the 
algorithm, and performance evaluation and results of our proposed work. Lastly, sections IV and V are dedicated to 
the discussion and conclusions.  

1.1. Related work 

Su, et al. [20] classified sleep stage into five labels, which are awake, N1, N2, N3, and REM. Fourteen PSG 
records from the NicoletOne v44 sleep Diagnostic system were trained, where signal entropy and a frequency 
spectrograph were derived from a 30-second EEG inputs. The validation dataset included 18 PSD records. The 
Gaussian SVM machine learning method was used for feature learning. A median filter with three 30 s epochs was 
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utilized to smooth the predicted stages. The resulting testing accuracy was 79%. They concluded that the entropy and 
spectral power features are stable across different classification methods. 

Researchers [21] conducted a study on sleep stage classification by combining recurrence and CNNs to learn 
sleep apnea events, clinical labels, and leg movements. PSG reports from 15 804 subjects at the SHHS and the 
Massachusetts General Hospital (MGH) sleep laboratory were included in their study. Spectrogram and raw waveform 
representation from EEG and EMG data were utilized as input data for the model. 30-second epochs were segmented 
into 29 sub epochs of 2-seconds with an overlap of 1-second. A multi-taper method was used to estimate the power 
spectrum density. The overall accuracy for the RCNN was 87.5%. 

Garcia-Molina et al. [22] investigated the impact of ECG-generated Inter Beat Intervals (IBIs) on four stages of 
sleep (light, deep, REM, and wake). PSG data from 1147 subjects were analyzed using two datasets from the 
PhysioNet resource and data from self-reported healthy sleep participants. Among the subjects are healthy sleepers, 
people with insomnia, people with REM behavior disorder, and people with periodic leg movement disorder. Garcia-
Molina et al used a 150-second window with a 30-second shift. According to the DNN, their accuracy was 76% and 
the kappa was 52%, indicating the potential of using ECGs to screen for sleep disorders. 

Surantha et al. [23] utilized input signals from the MIT-BIH polysomnographic dataset and categorized sleep 
stage into four sets of stages, 6, 4, 3, and 2 classes.  Particle Swarm Optimizations and Extreme Learning Machine 
were integrated as a machine learning approach to learn features from physiological signals in the MIT-BIH. Eighteen 
HRV features were extracted from the ECG, which includes AVNN, SDNN, RMSSD, SDSD, NN50, pNN50, HRV 
Triangular Index, SD1, SD2, SDISD2 Ratio, S, TP, VLF, LF, HF, LFHF Ratio, LFnorm, and HFnorm. Training and 
testing data was split at 70% and 30 respectively. The testing results for the model were 62.66%, 71.52%, 76.77% and 
82.1% respectively for 6, 4, 3, and 2 classes. Their proposed method was compared with support vector machine and 
ELM methods and it was concluded that the integration of ELM and PSO performed better than SVM and ELM. 

The study by Sharan et al. [24] investigated ECG-Derived Respiration (EDR) and Heart Rate Variability (HRV) 
from a single-lead ECG and applied them to two stages of sleep (sleep and awake). The MIT-BIH PSG database was 
used to analyze 18 ECG recordings. REM and NREM were classified as one class in the binary classification. In 
Sharan’s et al study, a 5-minute window was used for feature extraction. A total of 74 features were extracted, 32 EDR 
frequency domain, 32 RR interval frequency domain, and 10 RR interval time domain features. The combination of 
HRV and EDR features achieved and accuracy of 80%, concluding the potential of using ECG for the screening of 
sleep disorder. 

According to [25], a deep learning method has been developed for sleep scoring based on single-channel EEG 
data. To learn transition rules between sleep stages, their work used bidirectional long-short-term memory and time-
variant features extracted from EEG epochs. A two-part classifier, consisting of sequence residual learning and 
representation learning, scores the 30s EEG epochs according to AAMI and R&K standards. Supratak et al. [25] 
utilized sleep data from two public datasets to classify five stages of sleep. PSG recording from 20 subjects from sleep-
EDF and 62 subjects came from Montreal Archive of sleep studies. Their model archived an accuracy of 82.0% and 
Fi-score of 76.0% in the Mass dataset, while in sleep-EDF, the accuracy was 86.2% and F1-score of 81.7%. 

2. Materials and Methods 

2.1. Data acquisition 

Data from MESA is used [26, 27]. These data were made available by the MESA Coordination Center. An online 
portal, www.sleepdata.org, is used to grant users permission and access to the dataset. The data includes PSGs and 
actigraphy raw data for black, white, Chinese-American, and Hispanic men and women aged between 45 and 84 years. 
PSGs were recorded following the AASM standard. The sampling frequency is 200 Hz for all signals. PSGs are annotated 
in 30-second non-overlapping epochs as one of the five-sleep stages: W, S1, S2, S3 and REM. In total, 2,237 subjects 
participated in an overnight sleep study with unattended PSGs [27], seven-day wrist-worn actigraphy, and sleep 
questionnaire. Data from 1700 sleeping nights were processed and used to develop the model (Table 1). Training, 
validation, and testing data are randomly divided into three subsets of 70:20:10. Training and validation sets are used to 
develop the model, while the test set is used to test it without being exposed to the model. The MESA sleep data is 
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advantageous for research due to several factors. First, the dataset includes a large and diverse sample size of thousands 
of participants, providing greater statistical power and the ability to detect small effects. Additionally, the MESA study 
is longitudinal, with data collected at multiple time points, allowing for an examination of changes in sleep patterns and 
health outcomes over time. The dataset also includes rich data on a variety of sleep parameters and disorders, 
promoting a comprehensive analysis of sleep patterns and their relationship to health outcomes. As a multi-ethnic 
study, the MESA data allows for the examination of potential ethnic differences in sleep patterns and health outcomes. 
We used data from the MIT-BIH Polysomnographic Database (SLPDB) to test the generalization of our model. The 
SLPDB is a collection of over 80 hours of physiological recordings obtained during sleep from individuals with 
Obstructive Sleep Apnea Syndrome (OSAS) who were monitored in a sleep laboratory. The database includes ECG, 
EEG, and respiration signals, which are annotated beat-by-beat and with respect to sleep stages and apnea. The purpose 
of the database is to evaluate the efficacy of Constant Positive Airway Pressure (CPAP) therapy in OSAS. It is a 
valuable resource for researchers and clinicians interested in studying sleep physiology, and developing new 
algorithms for sleep staging, apnea detection, and CPAP optimization. 

 
Table 1 
Number of different sleep segments per sleep 

Sleep stage 5 stage segments 4 stage segments 
W 717159 717159 
S1 185474 (S1&S2) 971376 S2 785902 
S3 144703 (S3) 144703 
REM 250830 250830 

2.2. Annotation scoring 

The data used in this study is part of PSG recording of sleep in the MESA database. Annotation for scoring sleep 
and other events in the MESA database is based on the AASM. A sleep expert scored every night signal. The data was 
divided into 30-second epoch and each epoch assigned to one of five sleep stage scores. The AASM scores sleep into 
five stages, W, S1, S2, S3, and REM. For epochs with more than one stage, the stage that reflects the greatest portion 
of the epoch is assigned to that stage. In the case of two sleep stages that are evenly distributed in one epoch and one 
of the stages is the same as the preceding epoch, the same stage as the preceding epoch is assigned to that epoch. 

2.3. Input features preprocessing 

The study applies 2 min segments of heart rate extracted from the ECG signals as input signals.  To extract the 
features, first the signal is normalized, and the R-peak detection algorithm is applied. The IBI is calculated by finding the 
difference between consecutive R positions. The IHR is then calculated by taking the reciprocal of the interbeat interval. 
Each individual's heart rate is normalized separately by subtracting the mean and dividing by the standard deviation. 
Segments with less than 25 R-peaks per 30 sec epochs are removed to make sure that only data with uninterrupted beats 
is used. After removing segments with less R peak than normal, the time series is interpolated to 30 samples per 30 sec 
epochs to have an exact match between the segments and the annotations. The time-series data is resampled using linear 
interpolation with a sampling rate of 2 Hz. To smooth the time series, anomalous values exceeding five standard 
deviations that are the result of missed or false peaks are removed. Four 30-s epochs are merged together to form one 
segment for the input signals. Fig. 1 shows the signal processing flowchart for the proposed work.  
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Fig. 1. Signal collection and feature extraction flowchart. 

2.4. Algorithm 

In this paper, we propose a sleep stage classification model that can be applied on mobile devices. To address the 
memory size issue encountered in our previous research [24], we utilized the ResNet architecture. Moreover, ResNet is 
recommended for addressing challenges during training of deeper neural networks. 

The input to the model is an IHR with a shape of (240, 1) centred on 30-s epochs. The network architecture has 
nine layers, utilizing shortcut connections similar to ResNet [28]. Three residual blocks are constructed with three 
convolutional layers per block, followed by average pooling and a softmax layer. Every block consists of three 
convolutional layers followed by batch normalization and Rectilinear Unit (ReLU) between them.  The training procedure 
is the same as that described in [29]. There are 64, 128, and 128 convolutional filters in each of the 3 blocks. The first 
layer is a batch normalization layer, which improves the performance of the model by normalizing the input data to have 
a zero mean and unit variance. The next layer is a convolutional layer with 64 filters, each with a size of 240 × 1. The 
output of this layer is passed through another batch normalization layer, followed by an activation function, in this case, 
ReLU. The next two layers are a pair of convolutional, batch normalization, and activation layers, each with 64 filters. 
The outputs of these two layers are added together via a skip connection. The next pair of convolutional layers are similar 
to the previous pair, but this time with 128 filters each. Again, the outputs are added together via a skip connection. 
Finally, there are two more convolutional layers with 128 filters each, followed by batch normalization and activation 
layers. The output of the final convolutional layer is the output of the model, which classifies between four stages of sleep 
(W, S1&S2, S3, and REM).  Fig. 2 shows the structure of the model used in this research.   

 

 

Fig. 2. Network structure. 
 

CNN training can be a challenging and lengthy process due to its high computational requirements, particularly 
when working with larger and more complex models and datasets. As a result, high computing power, such as GPUs, is 
often required to achieve both accuracy and efficiency in the training process. In this case, a Nvidia GPU with 32 GB 
was utilized, hosted in a supercomputer provided by Yuan Ze University, to train a model with 150 epochs. The training 
process took 21 hours, and the resulting model size was 17.2 MB. 

2.5. Performance evaluation  

The classification performance of the model is measured using the accuracy, Cohen’s Kappa, Sensitivity (Sens), 
Specificity (Sp) and the F-1 score of the 5-classes with the annotations as a reference. Training and validation are 
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carried out using 70% and 20% of the total data respectively, and 10% is set apart for testing. According to the CNN 
model, five probabilities are generated to predict the 30-s segment (epoch). The values correspond to the five classes, 
which are W, S1, S2, S3, and REM. The value with the highest probability is taken as the predicted stage. The 
confusion matrix table is used to calculate the performances of the model. For calculating performances in a multiclass 
classification, it is assumed that there are three stages of sleep S1, S2, and S3. A confusion matrix table to visualize 
the performance example for the three stages model is shown in Table 2. Table 3 summarizes the equations of features 
used to evaluate the proposed model. 

 
Table 2.  
Example of the confusion matrix 

 Predicted 
Actual Sleep stage S1 S2 S3 

S1 PS11 PS21 PS31 
S2 PS12 PS22 PS32 
S3 PS13 PS23 PS33 

 
Table 3 
Equation of features used in the proposed method. 

Row Features Equation Row Features Equation 

1 

2 

3 

True 

Positive 

rate 

𝑇𝑇𝑇𝑇(𝑆𝑆1) = 𝑇𝑇𝑆𝑆22 + 𝑇𝑇𝑆𝑆32 + 𝑇𝑇𝑆𝑆23 + 𝑇𝑇𝑆𝑆33 

𝑇𝑇𝑇𝑇(𝑆𝑆2) = 𝑇𝑇𝑆𝑆11 + 𝑇𝑇𝑆𝑆31 + 𝑇𝑇𝑆𝑆13 + 𝑇𝑇𝑆𝑆33 

𝑇𝑇𝑇𝑇(𝑆𝑆3) = 𝑇𝑇𝑆𝑆11 + 𝑇𝑇𝑆𝑆21 + 𝑇𝑇𝑆𝑆12 + 𝑇𝑇𝑆𝑆22 

11 Sens Sens = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 x 100% 

12 Sp 𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 x 100% 

4 

5 

6 

False 

Positive 

rate 

𝐹𝐹𝑇𝑇(𝑆𝑆1) = 𝑇𝑇𝑆𝑆12 + 𝑇𝑇𝑆𝑆13 

𝐹𝐹𝑇𝑇(𝑆𝑆2) =  𝑇𝑇𝑆𝑆21 + 𝑇𝑇𝑆𝑆23 

𝐹𝐹𝑇𝑇(𝑆𝑆3) =  𝑇𝑇𝑆𝑆31 + 𝑇𝑇𝑆𝑆32 

13 Kappa 𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝐾𝐾 =  𝑇𝑇0−𝑇𝑇𝑒𝑒
1−𝑇𝑇𝑒𝑒

 x 100% 

14 Po 𝑇𝑇𝑃𝑃 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

7 

8 

9 

False 

Negative 

rate 

𝐹𝐹𝑇𝑇(𝑆𝑆1) =  𝑇𝑇𝑆𝑆21 + 𝑇𝑇𝑆𝑆31 

𝐹𝐹𝑇𝑇(𝑆𝑆2) =  𝑇𝑇𝑆𝑆12 + 𝑇𝑇𝑆𝑆32 

𝐹𝐹𝑇𝑇(𝑆𝑆3) =  𝑇𝑇𝑆𝑆13 + 𝑇𝑇𝑆𝑆23 

15 Pe 
𝑇𝑇𝑃𝑃 =  (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

+(𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇) × (𝐹𝐹𝑇𝑇 +  𝑇𝑇𝑇𝑇) 

10 Accuracy 𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 x 100% 16 F1 𝐹𝐹1 =  2 ×

𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑆𝑆
𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆

 x 100% 

 
where TN, FP, and FN represent true negative, false-positive, and false-negative values, respectively, for each sleep stage. 
TP is calculated the same way as in binary classification. Multiclass classification, however, calculates the true positive 
values for each class under investigation. The TP values for the classes in Table 2 are PS11, PS22 and PS33. Cohen's kappa 
measures the degree of agreement between two raters categorizing items into mutually exclusive groups. The po and pe 
variables used in Kappa equation are the observed proportionate agreement and the probability of random agreement, 
respectively, as provided in equations 14 and 15. A kappa value of 1 indicates complete agreement between the raters. 
The kappa value is zero if the raters do not agree. There is a possibility that the statistic will be negative. This can happen 
by chance if the ratings of the two raters are unrelated. The model is validated using fivefold cross-validation. 

3. Results 

The features of the time series input were extracted by training a three-block ResNet (Fig. 2). Using two-minute 
IHR time series, the network classifies five stages of sleep for every 30-second interval, including W, S1, S2, S3 and 
REM. Due to poor predictions in S1, S1 and S2 are merged into a single stage.  The model is trained, validated, and 
tested using data from the MESA. Initially, 500 subjects’ data are selected from the database for training. The number 
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of subjects' data are varied from 500 to 1000 in order to see how it affected sleep classification. A common difference 
between 100 subjects is used as an arithmetic progression sequence. Furthermore, additional subjects are added in the 
training and testing including 1500 and 1700 subjects to advance the study. Different sets of labels are tested including 
four and five labels in the pursuit of finding the effect of adding more subjects and the results are shown in Tables 4 
and 5. This work is evaluated based on the overall accuracy, Kappa value, Sens, Sp, and F-1 score. Table 4 shows the 
performance results for finding the effect of adding more subjects to training stages of sleep. 

 
Table 4 
The results for sleep stage to find the effect of adding data in the classification of 4 and 5 sleep stages 

 5-stages  4-stages  
Subjects Acc Kappa Acc Kappa 
500 73.35% 61.96% 72.59% 57.91% 
600 72.90% 61.56% 78.96% 67.15% 
700 71.01% 58.07% 78.27% 65.98% 
800 72.29% 60.13% 77.20% 64.04% 
900 70.96% 58.77% 77.94% 66.38% 
1000 74.18% 63.36% 78.12% 66.14% 
1500 74.69% 64.00% 80.11% 68.86% 
1700 77.34% 67.58% 84.17% 75.29% 

 
Looking at the results for the five stages of sleep, a consistently low performance was observed in the 

performance evaluation of Sens, Sp, and F-1 score. This is because there is relatively low number of segments in S1 
compared to the rest of the stages, which lead us to merge the S1 with S2 as per practice with other researchers [30, 
31, 32]. The performance evaluation using Sens, Sp, and F-1 for finding the effect of adding more subjects when 
training the four and five stages of sleep is shown in Table 5. 

 
Table 5 
The results for sleep stage using different sets of subjects to find the effect of adding data in the classification. 

 5-stages   4-stages   
Subjects Sens Sp F-1 Sens Sp F-1 
500 63.25±27.31% 64.47±16.83% 63.12±23.16% 67.63±15.25% 66.92±16.47% 66.2±12.33% 
600 64.10±24.93% 63.53±19.77% 63.50±22.58% 74.16±9.06% 74.41±12.70% 74.12±10.24% 
700 58.78±25.45% 63.11±19.86% 60.30±22.57% 71.94±14.01% 73.98±9.39% 72.67±11.07% 
800 62.60±26.26% 62.93±19.14% 62.26±23.35% 68.95±16.05% 73.45±8.16% 70.87±12.26% 
900 61.43±26.83% 61.01±17.83% 60.45±23.37% 71.67±13.08% 75.76±7.42% 73.36±9.52% 
1000 64.67±24.06% 66.35±20.10% 65.36±22.22% 73.23±12.24% 72.51±11.34% 72.74±11.30% 
1500 64.97±24.70% 66.93±19.01% 65.7±22.20% 74.36±11.87% 76.68±7.77% 75.43±9.84% 
1700 67.17±26.62% 70.30±16.31% 68.03±22.69% 79.52±9.98% 81.3±6.94% 80.36±8.43% 

 
An example of the sleep stage IHR, hypnograms that were manually scored by experts, hypnograms that were 

automatically scored by our model, as well as predicted IHR segments for each of the four sleep stages for one subject 
using the MESA dataset is shown in Fig. 3. 

An equivalence of 170 subjects’ data (208409 segment) is set apart for testing the 4 and 5 classes of sleep. The 
study used 1700 subjects' data, of which 70%, 20%, and 10% were used for training, validation, and test, respectively. 
To evaluate the performance of the model, the results from testing data were used. To compare predicted classification 
results with actual classification results, a confusion matrix table was created.  
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Fig. 3. Sleep stage chart for one of the subjects in the MESA dataset over the course of one night. (a) The Unfiltered 
IHR, used as input for a classifier after being segmented. (b) A hypnogram of the sleep stage as manually scored by 
experts according to the four stages of sleep. (c) A hypnogram of the sleep stage as automatically scored by the 
model. (d) An example of correctly classified 2-minute IHR segments from each sleep stage. 

In Tables 6 and 7, the confusion matrices of the proposed model applied to the MESA datasets are shown. To 
calculate the confusion matrix, the scores for each of the test cases are added together. The rows represent the number 
of samples scored by experts in their respective sleep stages, while the columns reflect the number of samples predicted 
by the proposed model. Table 8 tests the generalization of the proposed model by testing it on a different dataset 
(SLPDB). 

 
Table 6 
Normalized classification results of each of the classes in the 5-stage classifier. 

Stage Normalized Full count 
W S1 S2 S3 REM W S1 S2 S3 REM 

W 86.30% 23.61% 5.85% 3.75% 7.36% 61892 4380 4599 543 1846 
S1 2.91% 22.58% 3.80% 0.30% 1.93% 2090 4189 2989 43 484 
S2 7.32% 46.60% 83.73% 32.00% 9.27% 5249 8643 65801 4631 2324 
S3 0.62% 0.95% 4.04% 62.49% 0.69% 446 177 3174 9043 174 
REM 2.84% 6.25% 2.58% 1.46% 80.75% 2039 1159 2028 211 20255 
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Table 7 
Normalized classification results of each of the classes in the 4-staage classifier (MESA data). 

 Normalized Full count 
Stage Awake S1 S2 REM Awake S1 S2 REM 
Awake 87.95% 6.41% 2.25% 6.08% 63073 6228 326 1524 
S1 9.71% 88.58% 26.31% 8.26% 6967 86049 3808 2073 
S2 0.31% 3.01% 70.62% 0.35% 225 2922 10219 89 
REM 2.02% 2.00% 0.82% 85.30% 1451 1940 118 21397 

 
Table 8 
Normalized classification results of each of the classes in the 4-staage classifier (sleep). 

Stage 
Normalized Full count 
Awake S1 S2 REM Awake S1 S2 REM 

Awake 63.42% 22.76% 16.16% 29.99% 1938 1288 107 209 
S1 26.87% 67.11% 63.75% 38.16% 821 3798 422 266 
S2 1.73% 2.40% 15.41% 0.86% 53 136 102 6 
REM 7.98% 7.72% 4.68% 30.99% 244 437 31 216 

 
Table 6 presents results of testing the 5 stages of sleep using the confusion matrix table. The results show the 

normalized count and the full count respectively. Table 7 shows the results for the 4-stages of sleep after merging S1 
and S2 for the 1700 subjects. The evaluation of testing the model used for training the 5-stages of sleep in the 1700 
subjects gives an overall accuracy of 77.34%, and Kappa of 67.58% as shown in Table 4. Evaluating using Sens give 
a mean and standard deviation of 67.17% ± 26.62%. Sp gives a mean and standard deviation of 70.30% ± 16.31%, 
while F-1 score results are 68.03% ± 22.69%. In order to improve the accuracy of the model, S1 and S2 were merged 
to reduce the number of sleep stages. Evaluating the accuracy of the model for 4 stages using the overall accuracy 
provides 84.17% and kappa is 75.29% respectively and is provided in Table 4. The Sens gives a mean and standard 
deviation of 79.52% ± 9.98%. Sp provides a mean and standard deviation of 81.3% ± 6.94 %. Evaluation using the F-
1 score gives a mean and standard deviation of 80.36% ± 8.43%. 

In Table 9, the evaluation results obtained for the four stages of sleep cross-validation using 1,700 subjects are 
presented. The evaluation results include the mean and standard deviations for Sens, Sp, and F1. Table 10 presents 
the mean and standard deviations for accuracy Kappa, mean Sens and Sp for all the classes, along with the F-1 score. 
Additionally, Table 10 presents the results for testing the model using data from the SLPDB. The means and standard 
deviation for accuracy are 85.3% ± 1.12%, kappa is 78.9% ± 1.77%, Sens is 81.14% ± 1.57%, Sp is 82.68% ± 1.37%, 
and F-1 score is 81.87% ± 1.48%, respectively. The accuracy for data from the SLPDB is 60.10%, kappa is 44.70%, 
Sens is 45.98%, Sp is 44.23%, and F-1 score is 45.09%. 
 
Table 9 
Five-fold cross-validation results of the 4-stage classifier using the Sens, Sp and F1-score. 

 CV-1 CV-2 CV-3 CV-4 CV-5 

 Sens Sp F-1 Sens Sp F-
1 Sens Sp F-1 Sens Sp F-1 Sens Sp F-1 

Mean 
(%) 79.52 81

.3 
80.
36 79.73 81.

38 
80
.5 83.11 84.

38 
83.
72 82.28 83.

67 
82.
95 81.05 82.

68 
81.
82 

SD 
(%) 9.98 6.

94 
8.4
3 10.29 6.4

5 
8.
44 8.45 5.7

3 
7.1
2 8.76 5.9

9 7.4 9.53 6.1
8 

7.8
9 

Table 10 
Classification results of the 4-stage classifier using the 5-fold cross-validation 

5-fold CV Acc Kappa Sens Sp F-1 
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Mean 85.32% 77.11% 81.14% 82.68% 81.87% 
SD 1.12% 1.77% 1.57% 1.37% 1.48% 
SLPDB 60.10% 44.70% 45.98% 44.23% 45.09% 

4. Discussion 

The study focuses on using ResNet architecture to classify sleep stages into four categories based on ECG signals. 
The IHR is calculated from the ECG signals of 1700 participants to demonstrate that ECG contains information about 
sleep stages. Using IHR is justified by the fact that ECG can be extracted using various wearable sensors, some of which 
are readily accessible to consumers. ECG signals are a cost-effective and easy-to-use alternative to more expensive EEG 
signals for sleep stage classification. They provide information on heart rate variability, which is associated with 
autonomic nervous system activity and can be combined with other physiological signals for better classification 
accuracy. However, more research is needed to validate their use and improve their effectiveness.  

To address the challenges associated with improving classification accuracy, researchers have tried to use more 
training data and deep CNNs. Adding more layers to a CNN model can lead to longer training times, higher computational 
costs, and overfitting. Therefore, ResNet architecture is used, which allows for the addition of more layers while keeping 
the model size relatively small. ResNet uses residual connections to skip certain layers and pass the output of one layer 
directly to another layer further down the network. This approach has been shown to be effective in improving the 
accuracy of ECG-based sleep stage classification. The goal is to implement the model for sleep stage classification on 
smartphones, which is feasible with the solutions proposed above.  

Rather than extracting features manually from ECG data, we used CNNs to learn local cardiac features 
automatically. This approach saves time and eliminates the need for researchers to calculate and interpret these features 
themselves. By analyzing the raw ECG signal, CNNs can extract key features such as amplitude, frequency, and duration 
of cardiac activity without human intervention. 

Datasets for training are taken from the MESA database, which included heart rate features based on ECG analysis. 
The MESA database is one of the largest databases used in sleep studies and is annotated according to 30-second intervals. 
The sleep stage study has not made the much-anticipated breakthrough that other researchers have, and that is largely 
due to the lack of data. Even though participants usually provide at least 10 hours of sleep data, studies have shown that 
even more participants are needed to strengthen the diverse features required for a study of sleep. As a test to determine 
whether sufficient data is available to diagnose sleep, the number of participants is varied from 500 to 1000. Six datasets 
are created using a sequence with a difference of 100 participants. In addition, two sets of 1500 and 1700 participants are 
included. This study was conducted for the five stages of sleep and the results are presented in Tables 4 and 5. Across 
the 5-sleep stage classification, Table 4 indicates fluctuating accuracy from 500 to 900 participants and a consistent rise 
from 1000 to 1700 participants. Another notable change is the decrease in mean for the Sens, Sp, and 𝐹𝐹1-score, as well 
as the increase in standard deviation in all five stages. This is largely due to the model's low performance at S1, which is 
often misclassified as classed W, S2, S3, and REM. The majority of misclassifications in S1 are in S2, which is the 
majority class in all NREM sleep stages (S1, S2, and S3). In the MESA dataset, class W had the best performance for 
the 5-stage classification. However, it is not the majority class. Across the different datasets, the majority of 
misclassifications are in class S2, which is the majority class. 

To improve model performance and determine whether the low performance in stage S1 interferes with the 
investigation in Tables 4 and 5, the model is trained to classify sleep in four stages. Stages 1 and 2 were merged to achieve 
this. Table 4 with the 4 sleep stages shows an increase in accuracy and kappa from 600 to 1700 participants, although 
there is still some variation in accuracy in the early stages of the classification. The mean Sens, Sp, and F-1 for the four 
stages are also improved, and the standard deviation is low in comparison with results shown in Table 5. The results in 
Tables 4 and 5 indicate that more participants are needed in the sleep stage study.  

Sleep stage classification is a difficult task, with challenges including inter- and intra-subject variability, noise in 
signals, and unclear definitions of sleep stages [33, 34]. These challenges can cause classification errors due to EEG 
signal variability, ambiguity in stage definitions, artifact contamination, and inadequate feature selection [35, 36, 37]. 
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To reduce classification errors, researchers have proposed several techniques. Feature extraction methods, 
including time-frequency and wavelet analyses, can extract more relevant and distinctive features. Ensemble classifiers, 
which combine multiple classifiers, can improve accuracy by reducing the impact of misclassifications and signal 
variability. Incorporating expert knowledge, such as sleep expert annotations, can improve accuracy. Data augmentation, 
including adding artificial noise or shifting signals, can increase the diversity and size of training data. Transfer learning 
techniques, which utilize pre-trained models, can improve the accuracy of sleep stage classification models with limited 
training data [38, 39, 40, 41, 42]. Overall, sleep stage classification is challenging, but researchers can improve accuracy 
by utilizing these techniques, which can lead to better understanding of sleep patterns and disorders. 

The proposed method is compared with other works conducted with different databases, numbers of participants, 
and types of signals, sleep stages and methods. A summary of the comparison is shown in Table 11. Comparisons include 
accuracy, TPR, and FPR obtained from their methods. Studies have attempted to stage sleep using ECG features in the 
past. With the growing interest in the field and the availability of large sample size databases, this method is starting to 
gain popularity. The use of ECG features to stage sleep also has the advantage that some of the tools are easily accessible, 
so data can be extracted more easily. The results of Table 11 also highlight the advantage of using ECG features, since 
more researchers are able to stage sleep on more than 100 participants. 

 
Table 11 
Comparison with other research. 

Author Database Signal Participants Stages Method Acc (%)  TPR FPR 
[43] SHHS ECG and 

respiratory 
8682 
(7208) 

5,  
3 

CNN+LSTM 72.54, 
88.03 

 0.76, 
0.87 

0.13, 
0.07 

[44] SHHS, MESA ECG 
(IHR) 

10,000 4 CNN SHHS,78 
MESA,80 

 0.76 
- 

0.08 
- 

[45] Siesta ECG 
(HRV) 

292 4 LSTM 74.65  - - 

[46] RF-Sleep RFS 100 4 CNN-RNN 79.80  0.67 0.12 
 Sleep-EDF EEG 8 5 FKSVM 90.20  - - 
[47] Sleep-EDF-20 

Sleep-EDF-78 
SHHS 

EEG 20,  
78,  
329 

5 AttnSleep 85.60, 
82.90, 
86.60 

 0.79, 
0.76, 
0.75 

0.04, 
0.05, 
0.04 

[23] MITBPD ECG 
(HRV) 

18 6,  
4,  
3,  
2 

ELM/PSO 62.66, 
71.52, 
76.77, 
82.10 

 - - 

[48] SHHS EEEG+ 
ECG+ 
EMG 

8682  XGBoost 85.30  0.85 - 

[49] Apnea-ECG ECG 35 2 CWT+SVM 91.40  0.89 - 

[50] Apnea-ECG ECG 32 2 ResNet+ 
Multiscale 

86.00  0.84 - 

[51] SHHS+MESA ECG 100 4 Multi-Scale 
Residual 
Adaptive 
Network 

84.90, 
82.70 

 0.86, 
0.83 

0.05, 
0.05 

Proposed MESA ECG 
(IHR) 

1700 5 
4 

ResNet 77.34, 
85.32 

 - 
0.89 

- 
0.05 

SVM: Support Vector Machine, RotSVM: Rotational support Vector Machine, MITBPD: MIT-BIH polysomnographic 
database, LSTM: long short-term memory, RNN: recurrence neural network, AttnSleep: attention-based deep learning 
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architecture, ELM: Extreme Learning Machine, PSO: Particle Swarm Optimization RFS: Radio frequency 
spectrogram. XGBoost: Extreme Gradient Boosting  
 

According to Table 11, ECG-based sleep staging in 5 stages is not popular as more researchers prefer staging sleep 
in 4 stages. It is primarily due to the low performance caused by the high data imbalance, as shown in Table 6. Based on 
the results from Table 6, S1 has a very low accuracy rate and does not have any distinct features of its own. It may be 
possible to conduct a study on whether the lack of data in S1 is a contributing factor to its poor performance using the 
SHHS database. In the SHHS database there is more data that may improve the size of all stages and provide a basis for 
a study involving balancing the sizes of all stages. 

A comparison of the results of the proposed work with previous multi-classification works based on features 
extracted from ECG signals is provided. In [43], researchers used a combination of an ECG and abdominal breathing to 
stage sleep using CNN and LSTM networks. In 5-stage classification, the proposed method outperformed the previous 
method by 4.80%. Due to the different number of sleep stages pursued in both studies, research on the other sleep stages 
is not comparable. In comparison to [44], ResNet performed better in the SHHS and MESA databases by 7.32% and 
5.32%, respectively. According to [45], the proposed method performed better than their LSTM-based method by 
10.67%. Researcher in [23] also used ELM and PSO in combination to study sleep stages based on ECG HRV features. 
In spite of using different sets of stages, our method performed better than all of them. When it comes to the 3, 4, and 6 
stages of sleep, our method beats theirs in each of the four and five stages. For the 4-stages, the accuracy rate was 22.66%, 
13.8%, and 8.55%, and for the 5-stages, it was 14.68%, 5.82% and 0.57% better than their method. Despite some of them 
being less than the proposed method, the proposed method in four stages performed better than all the sets of stages 
examined in [23]. 

In addition, the proposed study is compared with studies that investigated sleep stage studies using features from 
other types of signals. Researchers [47, 51] used EEG signals to investigate sleep in 5-stages. In [51], the researchers 
used a rotational support vector machine model trained on data from eight participants to classify sleep stage. In spite of 
training their model on twenty participants' data, they outperformed the proposed model by 5.78%. When compared to 
research from [47], the proposed work performed better than their proposed work based on sleep-EDF database data on 
20 and 78 participants. Their study on the SHHS dataset outperformed the proposed work by 1.28%. Research conducted 
by [46] on the radio frequency spectrogram performed better than the proposed study by 5.52%. 

The performance of the proposed classifier in terms of TPR and FPR is also presented in Table 11. Comparing the 
TPR of our study with the rest of the studies in Table 11 suggests that our work is superior to most, with the exception 
of [49], which has the same TPR detection. Two studies performed better in terms of FPR compared to ours. Three of 
the studies are level with our study in terms of FPR, and the rest were slightly poorer. It is worth mentioning that most 
of the TPR and FPR values were not provided in the studies. We had to calculate them ourselves from the data that was 
provided. Most of the data provided is not the final assessment by the studies, and some is from experimentations they 
conducted. 

ResNet has been combined with other networks to classify sleep in other studies [50, 51]. Compared to these two 
studies, our classifier performed slightly better in terms of accuracy. One noticeable advantage of our study is the amount 
of data used, compared to the majority of the studies in Table 11. Although our proposed study produced promising 
results in sleep stage classification, it is worth mentioning that the model's generalization is not good. The SLPDB dataset 
was used to test the proposed model, producing an accuracy of 60.1%. This means that the model is unable to perform 
well on new, unseen data, despite being trained on a large dataset. Overfitting, where the model learns the noise or 
idiosyncrasies of the training data too well, is a common cause of poor generalization. In this case, utilized the SLPDB 
dataset, which comprises a distinct patient population, to evaluate the efficacy of our model on data from a diverse patient 
group. We selected the SLPDB dataset as it consists of sleep data for patients with OSAS, and we wanted to determine 
how our model would perform on unfamiliar data. Our model's results on the SLPDB dataset were satisfactory and 
reasonable (although an accuracy of 60.1% only), because it had not been exposed to the features of sleep data from 
individuals with sleep apnea. To enhance the model's generalization capacity to classify sleep stages in individuals of all 
types, including those with sleep apnea, we will integrate this dataset into our training data in future studies. Furthermore, 
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we plan to experiment with different models to identify an appropriate classifier that satisfies our needs. We also intend 
to modify the ResNet model's architecture to optimize its suitability for the data. 

Filtering is a crucial step in removing outside influences from the data that would interfere with the analysis. 
Researchers have used the threshold from the five standard deviations to remove outliers in similar features. In their 
filtering process, [44] removed values greater than five standard deviations per night. Although the filter is effective, 
the threshold is high in cases such as the one shown in Fig. 3 (a), which may render it ineffective. In order to 
compensate for that, we calculated the threshold segment by segment and removed anomalous values >5 standard 
deviations in every segment. 

5. Conclusion 

This paper proposes a 1-D automatic sleep stage detection method based on the IHR. The MESA dataset was used 
to acquire ECG signals. Preprocessing of ECG data includes normalization and segmentation, R-peak detection to 
calculate the inter-beat interval, IHR calculation and normalization, resampling, and filtering. In order to ensure that the 
annotations provided match the segments perfectly, interpolation is used. Anomalies greater than five standard deviations 
were filtered from IHR segments. Sleep staging is based on the 2-minute segments of the IHR inputs to the three blocks 
ResNet. An experiment is conducted that varied the number of subjects in the training of sleep staging in order to explore 
the effect of adding more subjects. Based on the five-fold cross-validation, the 4-stage classifier has an accuracy of 
85.32%, a kappa of 77.11%, a Sens of 81.14%, a Sp of 82.68%, and an F-1 score of 81.87%. The proposed method 
performed well on the MESA dataset. In the future, other databases will be incorporated in order to add more subjects 
since Tables 4 and 5 indicate that adding more subjects improves the accuracy of the classifier. 
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	ABSTRACT
	Untreated sleep disorders can harm bodily functions, and a sleep study and monitoring of sleep stages are the first steps in diagnosing these disorders. Using Polysomnography (PSG), signal scoring for sleep stage determination has become a familiar investigation in recent years. Despite its effectiveness, the procedure is time-consuming and costly. This study presents a cost-effective method for sleep classification based on Electrocardiogram (ECG) input signals. We proposed a multi-ethnic study of the Atherosclerosis dataset, including 1700 PSG, to develop a Residual Neural Network (RNN) classifier to stage sleep from Instantaneous Heart Rate (IHR) extracted from the ECG signals. The proposed system follows the following steps: ECG collection, signal preprocessing (including ECG normalization and segmentation, instant heart rate calculation and normalization, resampling, and filtering), and classification using an RNN. A Convolutional Neural Network (CNN) is used to detect sleep stages using preprocessed segments of the IHR time series of 240 samples centered on 30-s epochs as inputs. The proposed algorithm in the five-fold cross-validation achieved an accuracy of 85.32%, a kappa of 77.11%, a Sensitivity of 81.14%, a Specificity of 82.68%, and an F-1 score of 81.87%. The results show that ECG data provide valuable information about sleep stages for a large population.
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	90B1. Introduction
	1. Introduction
	When thinking about how much sleep you need, it is normal to take into account the amount of time you will be in bed. The importance of sleeping enough is undeniable, but it is not the only factor. Additionally, bedtime should also be considered in terms of quality and whether it actually promotes health restoration. A person must experience all four stages of sleep several times throughout the night in order to reach the level of health restoration sleep. Sleep contributes to your feeling of refreshed in body and mind. Therefore, understanding how the cycle of sleep affects a person's health and sleep can help us detect sleeping disorders and other health conditions early. 
	The human sleep cycle is decomposed into epochs, usually 30 seconds apart, and each epoch has its own sleep stage. The Association for the Advancement of Medical Instrumentation (AAMI) [1] states that there are five stages of sleep: Rapid Eye Movement sleep (REM), non-REM sleep (Sleep Stage-1 (S1), Sleep Stage-2 (S2), and Sleep Stage-3 (S3)), and Wakefulness (W). The standard method for measuring and analyzing sleep involves the recording of multiple physiological changes such as heart rhythms, brain activity, muscle activity, and eye movements by means of Polysomnography (PSG) [2]. PSG provides a variety of sleep-related signals, such as Electrooculography (EOG), Electroencephalography (EEG), and Electromyography (EMG) [3, 4]. In a process known as sleep staging, experts can estimate sleep duration and quality by using these signals based on sleep manuals like the American Academy of Sleep Medicine (AASM) and Rechtschaffen and Kales (R&K) [5].
	PSG recording is labor-intensive and time-consuming due to the need for attaching several sensors to the subjects overnight, which requires visiting sleep centers or laboratories. Furthermore, PSGs are expensive to record and process and they are not readily available for analysis [6, 7]. While PSGs offer an accurate assessment of sleep, they are not practical for long-term use due to their high costs and because so many sensors need to be implanted into the body of the participant, which can disturb their sleep.
	According to statistics, about 70% of Americans suffer from sleep disorders, a condition that causes chronic sleep deprivation and interferes with normal daytime functioning. Many patients struggle to identify sleep disorders because they occur at night and most go undiagnosed [8]. Sleep disorders can also result in chronic health issues and be very expensive to manage. Each year in the US, about $400 billion is lost due to insufficient sleep [9]. Therefore, early detection and diagnosis of sleep can improve daytime functioning and save resources.
	An electrocardiogram (ECG) is a simple test that measures your heart rhythm and activities that affect the heart. ECG signals are among the low-cost methods for stimulating the heartbeat by measuring the voltage over time. Sensors attached to your skin detect the electrical signals produced by your heartbeat. A machine collects ECG signals, which are analyzed by professionals to find the information contained within the heart. Several studies investigated the use of ECGs in sleep apnea detection [10, 11]. The ECG indicates the overall health of the heart. An ECG interpretation includes a structured assessment of the ECG waves and intervals. In a normal ECG, P, Q, R, S, T, and U waves are present, along with various intervals, including P-R, Q-T, R-R, and S-T. The amplitude and duration of these intervals are calculated during heartbeat processing and classification.
	Several recent studies have demonstrated that networks based on artificial neural networks are very successful at recognizing and categorizing objects [12, 13, 14, 15, 16]. Researchers have been inspired by these successes to design different architectures that solve problems encountered by others more efficiently and study the roles played by particular parameters in solving problems. One of the most successful deep learning models is the Residual Neural Network (ResNet) architecture proposed by [17]. ResNet is a type of convolutional neural network (CNN) that use identity mapping (skip connections) to incorporate the output of each layer into the next. It was designed with residual blocks to address the problem encountered when training very deep networks. ResNet architecture took part and won first place in the 2015 ILSVRC classification competition. Furthermore, it demonstrated a significant improvement on the famous image recognition database COCO [18]. 
	ECG signals can be a cost-effective and easy-to-use alternative to the more expensive and complex EEG signals for classifying sleep stages. ECG signals can provide information on heart rate variability, which is associated with autonomic nervous system activity, and can be combined with other physiological signals such as respiratory signals for more accurate sleep stage classification. Although ECG signals show promise for sleep stage classification, more research is needed to validate their use and optimize their effectiveness.
	To improve the accuracy of sleep stage classification using ECG features, researchers have attempted to increase the amount of data used for training and explored the use of deep CNNs. However, as the number of layers in a CNN model increases, the model size also increases, resulting in slower training times, higher computational costs, and overfitting. To address these issues, researchers have turned to ResNet architecture, which allows for the addition of more layers while keeping the model size relatively small. ResNet achieves this by using residual connections, which enable the network to skip certain layers and pass the output of one layer directly to another layer further down the network. This has proven to be particularly useful for improving the accuracy of ECG-based sleep stage classification.
	Rather than extracting features manually from ECG data, researchers can use CNNs to learn local cardiac features automatically. This approach saves time and eliminates the need for researchers to calculate and interpret these features themselves. By analyzing the raw ECG signal, CNNs can extract key features such as amplitude, frequency, and duration of cardiac activity without human intervention.
	In this study, the proposed approach is evaluated according to its ability to automatically stage sleep based on ECG signals acquired from the Multi-Ethnic Study of Atherosclerosis (MESA) dataset into awake (W), REM, and Non-Rapid Eye Movement sleep (NREM) which includes stages 1, 2, and 3. In order to optimize accuracy, and since the data used in stage S1 is insufficient for learning, four stages are classified (W, S1&S2, S3, REM). The three stages in NREM sleep are reduced to two stages by combining S1 and S2 to optimize for accuracy since S1 does not have enough data to distinguish its fractures from the rest of the stages. An individual's sleep state is recorded by recording 30-second epochs according to methods established by the AASM [19]. The classifier uses two-minute Instantaneous Heart Rate (IHR) segments centered at 30-s epochs computed from the ECG signals as one-dimensional input data. 
	In summary, the paper makes several significant contributions. Firstly, the study investigates the use of the IHR to detect sleep stages through ECG analysis and demonstrates its effectiveness as a dependable and accurate approach. Secondly, the proposed method achieves an impressive 85% accuracy rate in detecting sleep stages, surpassing the established standard of polysomnography. Notably, the ResNet architecture used in the models reduces memory requirements, allowing them to be used in mobile devices. While the data preprocessing followed previously applied methods, the paper's approach stands out by applying an effective filter at the end of the data processing that removes values greater than 5 standard deviations per segment, which can interfere with the training process. Lastly, the IHR-based method is computationally efficient, enabling it to be easily integrated into existing ECG monitoring systems. In light of the obtained results, ResNet can be used with IHR to stage sleep. 
	The rest of the paper is organized as follows: Section I provides analyses of related works. Sections II and III provide an analysis of the methodology, including data acquisition, annotation scoring, input signal preprocessing, the algorithm, and performance evaluation and results of our proposed work. Lastly, sections IV and V are dedicated to the discussion and conclusions. 
	1.1. Related work
	Su, et al. [20] classified sleep stage into five labels, which are awake, N1, N2, N3, and REM. Fourteen PSG records from the NicoletOne v44 sleep Diagnostic system were trained, where signal entropy and a frequency spectrograph were derived from a 30-second EEG inputs. The validation dataset included 18 PSD records. The Gaussian SVM machine learning method was used for feature learning. A median filter with three 30 s epochs was utilized to smooth the predicted stages. The resulting testing accuracy was 79%. They concluded that the entropy and spectral power features are stable across different classification methods.
	Researchers [21] conducted a study on sleep stage classification by combining recurrence and CNNs to learn sleep apnea events, clinical labels, and leg movements. PSG reports from 15 804 subjects at the SHHS and the Massachusetts General Hospital (MGH) sleep laboratory were included in their study. Spectrogram and raw waveform representation from EEG and EMG data were utilized as input data for the model. 30-second epochs were segmented into 29 sub epochs of 2-seconds with an overlap of 1-second. A multi-taper method was used to estimate the power spectrum density. The overall accuracy for the RCNN was 87.5%.
	Garcia-Molina et al. [22] investigated the impact of ECG-generated Inter Beat Intervals (IBIs) on four stages of sleep (light, deep, REM, and wake). PSG data from 1147 subjects were analyzed using two datasets from the PhysioNet resource and data from self-reported healthy sleep participants. Among the subjects are healthy sleepers, people with insomnia, people with REM behavior disorder, and people with periodic leg movement disorder. Garcia-Molina et al used a 150-second window with a 30-second shift. According to the DNN, their accuracy was 76% and the kappa was 52%, indicating the potential of using ECGs to screen for sleep disorders.
	Surantha et al. [23] utilized input signals from the MIT-BIH polysomnographic dataset and categorized sleep stage into four sets of stages, 6, 4, 3, and 2 classes.  Particle Swarm Optimizations and Extreme Learning Machine were integrated as a machine learning approach to learn features from physiological signals in the MIT-BIH. Eighteen HRV features were extracted from the ECG, which includes AVNN, SDNN, RMSSD, SDSD, NN50, pNN50, HRV Triangular Index, SD1, SD2, SDISD2 Ratio, S, TP, VLF, LF, HF, LFHF Ratio, LFnorm, and HFnorm. Training and testing data was split at 70% and 30 respectively. The testing results for the model were 62.66%, 71.52%, 76.77% and 82.1% respectively for 6, 4, 3, and 2 classes. Their proposed method was compared with support vector machine and ELM methods and it was concluded that the integration of ELM and PSO performed better than SVM and ELM.
	The study by Sharan et al. [24] investigated ECG-Derived Respiration (EDR) and Heart Rate Variability (HRV) from a single-lead ECG and applied them to two stages of sleep (sleep and awake). The MIT-BIH PSG database was used to analyze 18 ECG recordings. REM and NREM were classified as one class in the binary classification. In Sharan’s et al study, a 5-minute window was used for feature extraction. A total of 74 features were extracted, 32 EDR frequency domain, 32 RR interval frequency domain, and 10 RR interval time domain features. The combination of HRV and EDR features achieved and accuracy of 80%, concluding the potential of using ECG for the screening of sleep disorder.
	According to [25], a deep learning method has been developed for sleep scoring based on single-channel EEG data. To learn transition rules between sleep stages, their work used bidirectional long-short-term memory and time-variant features extracted from EEG epochs. A two-part classifier, consisting of sequence residual learning and representation learning, scores the 30s EEG epochs according to AAMI and R&K standards. Supratak et al. [25] utilized sleep data from two public datasets to classify five stages of sleep. PSG recording from 20 subjects from sleep-EDF and 62 subjects came from Montreal Archive of sleep studies. Their model archived an accuracy of 82.0% and Fi-score of 76.0% in the Mass dataset, while in sleep-EDF, the accuracy was 86.2% and F1-score of 81.7%.
	109B2. Materials and Methods
	2. Materials and Methods
	2.1. Data acquisition
	Data from MESA is used [26, 27]. These data were made available by the MESA Coordination Center. An online portal, www.sleepdata.org, is used to grant users permission and access to the dataset. The data includes PSGs and actigraphy raw data for black, white, Chinese-American, and Hispanic men and women aged between 45 and 84 years. PSGs were recorded following the AASM standard. The sampling frequency is 200 Hz for all signals. PSGs are annotated in 30-second non-overlapping epochs as one of the five-sleep stages: W, S1, S2, S3 and REM. In total, 2,237 subjects participated in an overnight sleep study with unattended PSGs [27], seven-day wrist-worn actigraphy, and sleep questionnaire. Data from 1700 sleeping nights were processed and used to develop the model (Table 1). Training, validation, and testing data are randomly divided into three subsets of 70:20:10. Training and validation sets are used to develop the model, while the test set is used to test it without being exposed to the model. The MESA sleep data is advantageous for research due to several factors. First, the dataset includes a large and diverse sample size of thousands of participants, providing greater statistical power and the ability to detect small effects. Additionally, the MESA study is longitudinal, with data collected at multiple time points, allowing for an examination of changes in sleep patterns and health outcomes over time. The dataset also includes rich data on a variety of sleep parameters and disorders, promoting a comprehensive analysis of sleep patterns and their relationship to health outcomes. As a multi-ethnic study, the MESA data allows for the examination of potential ethnic differences in sleep patterns and health outcomes. We used data from the MIT-BIH Polysomnographic Database (SLPDB) to test the generalization of our model. The SLPDB is a collection of over 80 hours of physiological recordings obtained during sleep from individuals with Obstructive Sleep Apnea Syndrome (OSAS) who were monitored in a sleep laboratory. The database includes ECG, EEG, and respiration signals, which are annotated beat-by-beat and with respect to sleep stages and apnea. The purpose of the database is to evaluate the efficacy of Constant Positive Airway Pressure (CPAP) therapy in OSAS. It is a valuable resource for researchers and clinicians interested in studying sleep physiology, and developing new algorithms for sleep staging, apnea detection, and CPAP optimization.
	Table 1
	Number of different sleep segments per sleep
	2.2. Annotation scoring
	The data used in this study is part of PSG recording of sleep in the MESA database. Annotation for scoring sleep and other events in the MESA database is based on the AASM. A sleep expert scored every night signal. The data was divided into 30-second epoch and each epoch assigned to one of five sleep stage scores. The AASM scores sleep into five stages, W, S1, S2, S3, and REM. For epochs with more than one stage, the stage that reflects the greatest portion of the epoch is assigned to that stage. In the case of two sleep stages that are evenly distributed in one epoch and one of the stages is the same as the preceding epoch, the same stage as the preceding epoch is assigned to that epoch.
	2.3. Input features preprocessing
	The study applies 2 min segments of heart rate extracted from the ECG signals as input signals.  To extract the features, first the signal is normalized, and the R-peak detection algorithm is applied. The IBI is calculated by finding the difference between consecutive R positions. The IHR is then calculated by taking the reciprocal of the interbeat interval. Each individual's heart rate is normalized separately by subtracting the mean and dividing by the standard deviation. Segments with less than 25 R-peaks per 30 sec epochs are removed to make sure that only data with uninterrupted beats is used. After removing segments with less R peak than normal, the time series is interpolated to 30 samples per 30 sec epochs to have an exact match between the segments and the annotations. The time-series data is resampled using linear interpolation with a sampling rate of 2 Hz. To smooth the time series, anomalous values exceeding five standard deviations that are the result of missed or false peaks are removed. Four 30-s epochs are merged together to form one segment for the input signals. Fig. 1 shows the signal processing flowchart for the proposed work. 
	/
	Fig. 1. Signal collection and feature extraction flowchart.
	2.4. Algorithm
	In this paper, we propose a sleep stage classification model that can be applied on mobile devices. To address the memory size issue encountered in our previous research [24], we utilized the ResNet architecture. Moreover, ResNet is recommended for addressing challenges during training of deeper neural networks.
	The input to the model is an IHR with a shape of (240, 1) centred on 30-s epochs. The network architecture has nine layers, utilizing shortcut connections similar to ResNet [28]. Three residual blocks are constructed with three convolutional layers per block, followed by average pooling and a softmax layer. Every block consists of three convolutional layers followed by batch normalization and Rectilinear Unit (ReLU) between them.  The training procedure is the same as that described in [29]. There are 64, 128, and 128 convolutional filters in each of the 3 blocks. The first layer is a batch normalization layer, which improves the performance of the model by normalizing the input data to have a zero mean and unit variance. The next layer is a convolutional layer with 64 filters, each with a size of 240 × 1. The output of this layer is passed through another batch normalization layer, followed by an activation function, in this case, ReLU. The next two layers are a pair of convolutional, batch normalization, and activation layers, each with 64 filters. The outputs of these two layers are added together via a skip connection. The next pair of convolutional layers are similar to the previous pair, but this time with 128 filters each. Again, the outputs are added together via a skip connection. Finally, there are two more convolutional layers with 128 filters each, followed by batch normalization and activation layers. The output of the final convolutional layer is the output of the model, which classifies between four stages of sleep (W, S1&S2, S3, and REM).  Fig. 2 shows the structure of the model used in this research.  
	/
	Fig. 2. Network structure.
	CNN training can be a challenging and lengthy process due to its high computational requirements, particularly when working with larger and more complex models and datasets. As a result, high computing power, such as GPUs, is often required to achieve both accuracy and efficiency in the training process. In this case, a Nvidia GPU with 32 GB was utilized, hosted in a supercomputer provided by Yuan Ze University, to train a model with 150 epochs. The training process took 21 hours, and the resulting model size was 17.2 MB.
	2.5. Performance evaluation 
	The classification performance of the model is measured using the accuracy, Cohen’s Kappa, Sensitivity (Sens), Specificity (Sp) and the F-1 score of the 5-classes with the annotations as a reference. Training and validation are carried out using 70% and 20% of the total data respectively, and 10% is set apart for testing. According to the CNN model, five probabilities are generated to predict the 30-s segment (epoch). The values correspond to the five classes, which are W, S1, S2, S3, and REM. The value with the highest probability is taken as the predicted stage. The confusion matrix table is used to calculate the performances of the model. For calculating performances in a multiclass classification, it is assumed that there are three stages of sleep S1, S2, and S3. A confusion matrix table to visualize the performance example for the three stages model is shown in Table 2. Table 3 summarizes the equations of features used to evaluate the proposed model.
	Table 2. 
	Example of the confusion matrix
	Table 3
	Equation of features used in the proposed method.
	where TN, FP, and FN represent true negative, false-positive, and false-negative values, respectively, for each sleep stage. TP is calculated the same way as in binary classification. Multiclass classification, however, calculates the true positive values for each class under investigation. The TP values for the classes in Table 2 are PS11, PS22 and PS33. Cohen's kappa measures the degree of agreement between two raters categorizing items into mutually exclusive groups. The po and pe variables used in Kappa equation are the observed proportionate agreement and the probability of random agreement, respectively, as provided in equations 14 and 15. A kappa value of 1 indicates complete agreement between the raters. The kappa value is zero if the raters do not agree. There is a possibility that the statistic will be negative. This can happen by chance if the ratings of the two raters are unrelated. The model is validated using fivefold cross-validation.
	133B3. Results
	3. Results
	The features of the time series input were extracted by training a three-block ResNet (Fig. 2). Using two-minute IHR time series, the network classifies five stages of sleep for every 30-second interval, including W, S1, S2, S3 and REM. Due to poor predictions in S1, S1 and S2 are merged into a single stage.  The model is trained, validated, and tested using data from the MESA. Initially, 500 subjects’ data are selected from the database for training. The number of subjects' data are varied from 500 to 1000 in order to see how it affected sleep classification. A common difference between 100 subjects is used as an arithmetic progression sequence. Furthermore, additional subjects are added in the training and testing including 1500 and 1700 subjects to advance the study. Different sets of labels are tested including four and five labels in the pursuit of finding the effect of adding more subjects and the results are shown in Tables 4 and 5. This work is evaluated based on the overall accuracy, Kappa value, Sens, Sp, and F-1 score. Table 4 shows the performance results for finding the effect of adding more subjects to training stages of sleep.
	Table 4
	The results for sleep stage to find the effect of adding data in the classification of 4 and 5 sleep stages
	Looking at the results for the five stages of sleep, a consistently low performance was observed in the performance evaluation of Sens, Sp, and F-1 score. This is because there is relatively low number of segments in S1 compared to the rest of the stages, which lead us to merge the S1 with S2 as per practice with other researchers [30, 31, 32]. The performance evaluation using Sens, Sp, and F-1 for finding the effect of adding more subjects when training the four and five stages of sleep is shown in Table 5.
	Table 5
	The results for sleep stage using different sets of subjects to find the effect of adding data in the classification.
	An example of the sleep stage IHR, hypnograms that were manually scored by experts, hypnograms that were automatically scored by our model, as well as predicted IHR segments for each of the four sleep stages for one subject using the MESA dataset is shown in Fig. 3.
	An equivalence of 170 subjects’ data (208409 segment) is set apart for testing the 4 and 5 classes of sleep. The study used 1700 subjects' data, of which 70%, 20%, and 10% were used for training, validation, and test, respectively. To evaluate the performance of the model, the results from testing data were used. To compare predicted classification results with actual classification results, a confusion matrix table was created. 
	/
	Fig. 3. Sleep stage chart for one of the subjects in the MESA dataset over the course of one night. (a) The Unfiltered IHR, used as input for a classifier after being segmented. (b) A hypnogram of the sleep stage as manually scored by experts according to the four stages of sleep. (c) A hypnogram of the sleep stage as automatically scored by the model. (d) An example of correctly classified 2-minute IHR segments from each sleep stage.
	In Tables 6 and 7, the confusion matrices of the proposed model applied to the MESA datasets are shown. To calculate the confusion matrix, the scores for each of the test cases are added together. The rows represent the number of samples scored by experts in their respective sleep stages, while the columns reflect the number of samples predicted by the proposed model. Table 8 tests the generalization of the proposed model by testing it on a different dataset (SLPDB).
	Table 6
	Normalized classification results of each of the classes in the 5-stage classifier.
	Table 7
	Normalized classification results of each of the classes in the 4-staage classifier (MESA data).
	Table 8
	Normalized classification results of each of the classes in the 4-staage classifier (sleep).
	Table 6 presents results of testing the 5 stages of sleep using the confusion matrix table. The results show the normalized count and the full count respectively. Table 7 shows the results for the 4-stages of sleep after merging S1 and S2 for the 1700 subjects. The evaluation of testing the model used for training the 5-stages of sleep in the 1700 subjects gives an overall accuracy of 77.34%, and Kappa of 67.58% as shown in Table 4. Evaluating using Sens give a mean and standard deviation of 67.17% ± 26.62%. Sp gives a mean and standard deviation of 70.30% ± 16.31%, while F-1 score results are 68.03% ± 22.69%. In order to improve the accuracy of the model, S1 and S2 were merged to reduce the number of sleep stages. Evaluating the accuracy of the model for 4 stages using the overall accuracy provides 84.17% and kappa is 75.29% respectively and is provided in Table 4. The Sens gives a mean and standard deviation of 79.52% ± 9.98%. Sp provides a mean and standard deviation of 81.3% ± 6.94 %. Evaluation using the F-1 score gives a mean and standard deviation of 80.36% ± 8.43%.
	In Table 9, the evaluation results obtained for the four stages of sleep cross-validation using 1,700 subjects are presented. The evaluation results include the mean and standard deviations for Sens, Sp, and F1. Table 10 presents the mean and standard deviations for accuracy Kappa, mean Sens and Sp for all the classes, along with the F-1 score. Additionally, Table 10 presents the results for testing the model using data from the SLPDB. The means and standard deviation for accuracy are 85.3% ± 1.12%, kappa is 78.9% ± 1.77%, Sens is 81.14% ± 1.57%, Sp is 82.68% ± 1.37%, and F-1 score is 81.87% ± 1.48%, respectively. The accuracy for data from the SLPDB is 60.10%, kappa is 44.70%, Sens is 45.98%, Sp is 44.23%, and F-1 score is 45.09%.
	Table 9
	Five-fold cross-validation results of the 4-stage classifier using the Sens, Sp and F1-score.
	Table 10
	Classification results of the 4-stage classifier using the 5-fold cross-validation
	F-1
	Sp
	Sens
	Kappa
	Acc
	5-fold CV
	81.87%
	82.68%
	81.14%
	77.11%
	85.32%
	Mean
	1.48%
	1.37%
	1.57%
	1.77%
	1.12%
	SD
	SLPDB
	45.09%
	44.23%
	45.98%
	44.70%
	60.10%
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	The study focuses on using ResNet architecture to classify sleep stages into four categories based on ECG signals. The IHR is calculated from the ECG signals of 1700 participants to demonstrate that ECG contains information about sleep stages. Using IHR is justified by the fact that ECG can be extracted using various wearable sensors, some of which are readily accessible to consumers. ECG signals are a cost-effective and easy-to-use alternative to more expensive EEG signals for sleep stage classification. They provide information on heart rate variability, which is associated with autonomic nervous system activity and can be combined with other physiological signals for better classification accuracy. However, more research is needed to validate their use and improve their effectiveness. 
	To address the challenges associated with improving classification accuracy, researchers have tried to use more training data and deep CNNs. Adding more layers to a CNN model can lead to longer training times, higher computational costs, and overfitting. Therefore, ResNet architecture is used, which allows for the addition of more layers while keeping the model size relatively small. ResNet uses residual connections to skip certain layers and pass the output of one layer directly to another layer further down the network. This approach has been shown to be effective in improving the accuracy of ECG-based sleep stage classification. The goal is to implement the model for sleep stage classification on smartphones, which is feasible with the solutions proposed above. 
	Rather than extracting features manually from ECG data, we used CNNs to learn local cardiac features automatically. This approach saves time and eliminates the need for researchers to calculate and interpret these features themselves. By analyzing the raw ECG signal, CNNs can extract key features such as amplitude, frequency, and duration of cardiac activity without human intervention.
	Datasets for training are taken from the MESA database, which included heart rate features based on ECG analysis. The MESA database is one of the largest databases used in sleep studies and is annotated according to 30-second intervals. The sleep stage study has not made the much-anticipated breakthrough that other researchers have, and that is largely due to the lack of data. Even though participants usually provide at least 10 hours of sleep data, studies have shown that even more participants are needed to strengthen the diverse features required for a study of sleep. As a test to determine whether sufficient data is available to diagnose sleep, the number of participants is varied from 500 to 1000. Six datasets are created using a sequence with a difference of 100 participants. In addition, two sets of 1500 and 1700 participants are included. This study was conducted for the five stages of sleep and the results are presented in Tables 4 and 5. Across the 5-sleep stage classification, Table 4 indicates fluctuating accuracy from 500 to 900 participants and a consistent rise from 1000 to 1700 participants. Another notable change is the decrease in mean for the Sens, Sp, and 𝐹1-score, as well as the increase in standard deviation in all five stages. This is largely due to the model's low performance at S1, which is often misclassified as classed W, S2, S3, and REM. The majority of misclassifications in S1 are in S2, which is the majority class in all NREM sleep stages (S1, S2, and S3). In the MESA dataset, class W had the best performance for the 5-stage classification. However, it is not the majority class. Across the different datasets, the majority of misclassifications are in class S2, which is the majority class.
	To improve model performance and determine whether the low performance in stage S1 interferes with the investigation in Tables 4 and 5, the model is trained to classify sleep in four stages. Stages 1 and 2 were merged to achieve this. Table 4 with the 4 sleep stages shows an increase in accuracy and kappa from 600 to 1700 participants, although there is still some variation in accuracy in the early stages of the classification. The mean Sens, Sp, and F-1 for the four stages are also improved, and the standard deviation is low in comparison with results shown in Table 5. The results in Tables 4 and 5 indicate that more participants are needed in the sleep stage study. 
	Sleep stage classification is a difficult task, with challenges including inter- and intra-subject variability, noise in signals, and unclear definitions of sleep stages [33, 34]. These challenges can cause classification errors due to EEG signal variability, ambiguity in stage definitions, artifact contamination, and inadequate feature selection [35, 36, 37].
	To reduce classification errors, researchers have proposed several techniques. Feature extraction methods, including time-frequency and wavelet analyses, can extract more relevant and distinctive features. Ensemble classifiers, which combine multiple classifiers, can improve accuracy by reducing the impact of misclassifications and signal variability. Incorporating expert knowledge, such as sleep expert annotations, can improve accuracy. Data augmentation, including adding artificial noise or shifting signals, can increase the diversity and size of training data. Transfer learning techniques, which utilize pre-trained models, can improve the accuracy of sleep stage classification models with limited training data [38, 39, 40, 41, 42]. Overall, sleep stage classification is challenging, but researchers can improve accuracy by utilizing these techniques, which can lead to better understanding of sleep patterns and disorders.
	The proposed method is compared with other works conducted with different databases, numbers of participants, and types of signals, sleep stages and methods. A summary of the comparison is shown in Table 11. Comparisons include accuracy, TPR, and FPR obtained from their methods. Studies have attempted to stage sleep using ECG features in the past. With the growing interest in the field and the availability of large sample size databases, this method is starting to gain popularity. The use of ECG features to stage sleep also has the advantage that some of the tools are easily accessible, so data can be extracted more easily. The results of Table 11 also highlight the advantage of using ECG features, since more researchers are able to stage sleep on more than 100 participants.
	Table 11
	Comparison with other research.
	SVM: Support Vector Machine, RotSVM: Rotational support Vector Machine, MITBPD: MIT-BIH polysomnographic database, LSTM: long short-term memory, RNN: recurrence neural network, AttnSleep: attention-based deep learning architecture, ELM: Extreme Learning Machine, PSO: Particle Swarm Optimization RFS: Radio frequency spectrogram. XGBoost: Extreme Gradient Boosting 
	According to Table 11, ECG-based sleep staging in 5 stages is not popular as more researchers prefer staging sleep in 4 stages. It is primarily due to the low performance caused by the high data imbalance, as shown in Table 6. Based on the results from Table 6, S1 has a very low accuracy rate and does not have any distinct features of its own. It may be possible to conduct a study on whether the lack of data in S1 is a contributing factor to its poor performance using the SHHS database. In the SHHS database there is more data that may improve the size of all stages and provide a basis for a study involving balancing the sizes of all stages.
	A comparison of the results of the proposed work with previous multi-classification works based on features extracted from ECG signals is provided. In [43], researchers used a combination of an ECG and abdominal breathing to stage sleep using CNN and LSTM networks. In 5-stage classification, the proposed method outperformed the previous method by 4.80%. Due to the different number of sleep stages pursued in both studies, research on the other sleep stages is not comparable. In comparison to [44], ResNet performed better in the SHHS and MESA databases by 7.32% and 5.32%, respectively. According to [45], the proposed method performed better than their LSTM-based method by 10.67%. Researcher in [23] also used ELM and PSO in combination to study sleep stages based on ECG HRV features. In spite of using different sets of stages, our method performed better than all of them. When it comes to the 3, 4, and 6 stages of sleep, our method beats theirs in each of the four and five stages. For the 4-stages, the accuracy rate was 22.66%, 13.8%, and 8.55%, and for the 5-stages, it was 14.68%, 5.82% and 0.57% better than their method. Despite some of them being less than the proposed method, the proposed method in four stages performed better than all the sets of stages examined in [23].
	In addition, the proposed study is compared with studies that investigated sleep stage studies using features from other types of signals. Researchers [47, 51] used EEG signals to investigate sleep in 5-stages. In [51], the researchers used a rotational support vector machine model trained on data from eight participants to classify sleep stage. In spite of training their model on twenty participants' data, they outperformed the proposed model by 5.78%. When compared to research from [47], the proposed work performed better than their proposed work based on sleep-EDF database data on 20 and 78 participants. Their study on the SHHS dataset outperformed the proposed work by 1.28%. Research conducted by [46] on the radio frequency spectrogram performed better than the proposed study by 5.52%.
	The performance of the proposed classifier in terms of TPR and FPR is also presented in Table 11. Comparing the TPR of our study with the rest of the studies in Table 11 suggests that our work is superior to most, with the exception of [49], which has the same TPR detection. Two studies performed better in terms of FPR compared to ours. Three of the studies are level with our study in terms of FPR, and the rest were slightly poorer. It is worth mentioning that most of the TPR and FPR values were not provided in the studies. We had to calculate them ourselves from the data that was provided. Most of the data provided is not the final assessment by the studies, and some is from experimentations they conducted.
	ResNet has been combined with other networks to classify sleep in other studies [50, 51]. Compared to these two studies, our classifier performed slightly better in terms of accuracy. One noticeable advantage of our study is the amount of data used, compared to the majority of the studies in Table 11. Although our proposed study produced promising results in sleep stage classification, it is worth mentioning that the model's generalization is not good. The SLPDB dataset was used to test the proposed model, producing an accuracy of 60.1%. This means that the model is unable to perform well on new, unseen data, despite being trained on a large dataset. Overfitting, where the model learns the noise or idiosyncrasies of the training data too well, is a common cause of poor generalization. In this case, utilized the SLPDB dataset, which comprises a distinct patient population, to evaluate the efficacy of our model on data from a diverse patient group. We selected the SLPDB dataset as it consists of sleep data for patients with OSAS, and we wanted to determine how our model would perform on unfamiliar data. Our model's results on the SLPDB dataset were satisfactory and reasonable (although an accuracy of 60.1% only), because it had not been exposed to the features of sleep data from individuals with sleep apnea. To enhance the model's generalization capacity to classify sleep stages in individuals of all types, including those with sleep apnea, we will integrate this dataset into our training data in future studies. Furthermore, we plan to experiment with different models to identify an appropriate classifier that satisfies our needs. We also intend to modify the ResNet model's architecture to optimize its suitability for the data.
	Filtering is a crucial step in removing outside influences from the data that would interfere with the analysis. Researchers have used the threshold from the five standard deviations to remove outliers in similar features. In their filtering process, [44] removed values greater than five standard deviations per night. Although the filter is effective, the threshold is high in cases such as the one shown in Fig. 3 (a), which may render it ineffective. In order to compensate for that, we calculated the threshold segment by segment and removed anomalous values >5 standard deviations in every segment.
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	5. Conclusion
	This paper proposes a 1-D automatic sleep stage detection method based on the IHR. The MESA dataset was used to acquire ECG signals. Preprocessing of ECG data includes normalization and segmentation, R-peak detection to calculate the inter-beat interval, IHR calculation and normalization, resampling, and filtering. In order to ensure that the annotations provided match the segments perfectly, interpolation is used. Anomalies greater than five standard deviations were filtered from IHR segments. Sleep staging is based on the 2-minute segments of the IHR inputs to the three blocks ResNet. An experiment is conducted that varied the number of subjects in the training of sleep staging in order to explore the effect of adding more subjects. Based on the five-fold cross-validation, the 4-stage classifier has an accuracy of 85.32%, a kappa of 77.11%, a Sens of 81.14%, a Sp of 82.68%, and an F-1 score of 81.87%. The proposed method performed well on the MESA dataset. In the future, other databases will be incorporated in order to add more subjects since Tables 4 and 5 indicate that adding more subjects improves the accuracy of the classifier.
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