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Abstract

We provide a review of recent work on formal methods for autonomous driving. Formal methods have been traditionally used
to specify and verify the behavior of computer programs and digital circuits. Enabled by abstraction techniques for dynamical
systems and the availability of verification and synthesis tools for finite systems, they have been adopted by the control and
robotics communities. In particular, in autonomous driving, recent research proposes formal languages such as temporal logics
to specify driving behaviors ranging from safety, such as collision avoidance, to compliance with complex rules of the road.
Our review focuses on formal verification, monitoring, and synthesis techniques enabling autonomous vehicles to adhere to
such specifications. We only consider works about system-level methods that have an ego-centric perspective, i.e., we focus on
the behavior of an autonomous vehicle in its entirety, rather than specific software code within the vehicle or traffic networks
consisting of multiple vehicles. This paper also identifies the main remaining challenges.

Key words: autonomous driving; formal methods; temporal logic; formal verification; formal synthesis; falsification;
monitoring; machine learning.

1 Introduction

The development and integration of cyber-physical and
safety-critical systems in various engineering disciplines
requires their verification and control with respect to
rich specifications. A prominent example is autonomous
driving, which received a lot of attention during the
last decade. Autonomous vehicles (AVs) aim to opti-
mize common control objectives, such as minimizing the
energy consumption and travel time, and satisfy con-
straints on control variables, such as maximum accelera-
tion. In addition, AVs aim to drive safely and follow the
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rules of the road (ROTRs), which include traffic laws and
other informal rules or cultural expectations of reason-
able driving behavior. For example, an AV tries to avoid
collisions with other road users, avoid obstructing traf-
fic, maintain longitudinal clearance with the lead vehi-
cle, yield when required, and stop at red lights and stop
signs. These rules could be prioritized, e.g., by specifying
that maintaining clearance to pedestrians is more im-
portant than staying in lane, which, in turn, takes prece-
dence over observing the maximum speed limit. There
currently exists no consensus on how and to what extent
AVs should follow such complex (possibly prioritized)
driving specifications.

Formal methods is an area of computer science, tradi-
tionally focused on checking the correctness of digital cir-
cuits and computer programs. Correctness can pertain
to safety (something bad should never happen), liveness
(something good should eventually happen), or general
statements expressed as formulas of Temporal Logics
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(TL), such as Linear Temporal Logic (LTL), Computa-
tion Tree Logic (CTL) [1, 2], or Signal Temporal Logic
(STL) [3]. Due to the high expressivity of these specifica-
tion languages, the existence of verification, monitoring,
and control synthesis tools for finite systems, and recent
developments on abstractions for systems with infinite
state spaces, formal methods have been adopted by the
control community, and successfully used for dynami-
cal [4–6] and autonomous systems [7, 8].

In particular, there is a growing body of work on the
use of formal methods for autonomous driving. TLs have
been proposed for the formal specification of safety re-
quirements and complex ROTRs. Formal verification,
monitoring, and synthesis techniques have been used for
analysis and control of autonomous driving behaviour.
Machine learning algorithms have been employed to in-
fer formal rules describing ROTRs and desired behav-
iors from data, to assess the relative importance of dif-
ferent formal rules from data, and to generate driving
strategies.

In this paper, we review the literature on formal methods
used for autonomous driving. The focus is on studies that
consider ROTRs from the ego vehicle’s point of view. We
do not include traffic networks, e.g., traffic light control,
conflict resolution at intersections, congestion control,
and merging control. We also focus on formal methods
at the system level. We do not consider formal methods
for the software running on the autonomous cars.

Recent review papers covering the fast growing field of
autonomous driving include [9–16]. A comprehensive re-
view of a broad range of topics, including system ar-
chitectures, localization, mapping, perception, planning,
and human machine interfaces is provided in [11]. The
work in [12] also provides a general overview of the
field, with particular emphasis on planning, but does not
survey the state of the art in formal methods for au-
tonomous driving. With particular relevance to our re-
view, [12] includes a discussion on formal methods for
planning. A comprehensive review of the state of the art
in software verification and validation of AVs is provided
in [13]. Another comprehensive review, which includes a
discussion on safety verification of controllers for AVs,
is provided in [15].

Among more focused reviews, [9] surveys scenario-based
approaches, in which individual traffic situations are
tested through simulation. The focus is on safety as-
sessment. A literature review and analysis of threat-
assessment methods used for collision avoidance is pre-
sented in [16], including the use of formal methods. The
focus of [10], which reviews a limited number of papers,
is on human cyber-physical systems, with particular fo-
cus on semi-autonomous driving, and formal methods.
Finally, [14] introduces a control and planning archi-
tecture for connected vehicles and AVs and surveys the
state of the art on each functional block therein.

Compared to the survey papers covering general topics
in autonomous driving mentioned above, this review fo-
cuses solely on formal methods. It provides a compre-
hensive overview of the state of the art that is more in-
depth and detailed than the reviews referenced above,
which only contain sections of formal methods. Finally,
it covers very recent papers in the fast growing field of
autonomous driving, with specific emphasis on formal-
ization of ROTRs.

The remainder of this paper is organized as follows. In
Sec. 2, we review the methods used to formalize ROTRs
and other driving behaviors. We discuss the formal verifi-
cation approaches used to analyze vehicle models and be-
haviors from such formal specifications in Sec. 3. We re-
view monitoring algorithms and formal synthesis strate-
gies in Secs. 4 and 5, respectively. We discuss remaining
challenges in the field in Sec. 6 and conclude with final
remarks in Sec. 7.

For quick reference, each section concludes with a ta-
ble that lists all the papers cited in that section. Its
columns represent the particular categories covered in
that section. For example, Table 4 from Sec. 4 that cov-
ers monitoring, has two columns “Offline” and “Online”,
corresponding to the two monitoring techniques from
the reviewed papers. Each table has three rows, which
correspond to the three application areas: “Vehicle fol-
lowing”, ”Lane keeping / changing”, and “Other”. Pa-
pers listed under “Vehicle following” and “Lane keep-
ing / changing” focus on the respective application only.
The “Other” category corresponds to papers that dis-
cuss at least one application area different from the ones
listed above (e.g., pedestrian clearance or speed limit),
or that includes discussion of both “Vehicle following”
and ”Lane keeping / changing”. We believe that these
tables makes it easy for the reader to find a paper using
a specific technique in a particular application area. For
example, if she wants to find a paper that uses online
monitoring from STL specifications with applications to
lane keeping, then she would use Table 4 to find the pa-
pers that apply online monitoring to lane keeping: [17]
and [18]. She would then check which of these papers
appear at the intersection of the “STL” column and the
”lane keeping / changing” row in Table 2. In this exam-
ple, it turns out that [18] is the only paper that meets
these specific criteria. Note that, given the organization
of the review, a paper can appear in several sections and
tables.

2 Formal specifications

Most ROTRs are stated in natural language in traffic
legislations or driving manuals, which can differ among
countries and localities within countries. Some ROTRs
can be formalized as simple safety specifications that
guarantee safety when satisfied. For example, a safety
specification might be a formal rule that the ego vehicle
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Table 1
List of frequently used abbreviations.

Abbreviation Description

ACC Adaptive Cruise Control

AV Autonomous Vehicle

CBF Control Barrier Function

CLF Control Lyapunov Function

CTL Computation Tree Logic

ICS Inevitable Collision State

LTL Linear Temporal Logic

MI(L)P Mixed-integer (Linear) Programming

MPC Model Predictive Control

MTL Metric Temporal Logic

QP Quadratic Program

ROTR(s) Rule(s) of the road

RRT Rapidly-exploring Random Tree

RSS Responsibility-Sensitive Safety

STL Signal Temporal Logic

TL Temporal Logic

should maintain a given minimum clearance from pedes-
trians on the road for all times. Safety specifications are
sometimes given equivalently as reachability specifica-
tions. In the above example, the reachability specifica-
tion is that the ego vehicle can only reach distances to
pedestrians that are larger than the minimum clearance.

Safety specifications are a particular case of TL spec-
ifications, which specify formal rules that can also ex-
press eventuality (e.g., “reach destination in at most 10
min”, “maintain a speed less than 25 mph until the end
work zone sign is reached”), logical conditions (“use the
left lane only when passing”), and combinations of the
above. Formal rules are sometimes prioritized. For ex-
ample, a safety specification such as “maintain clearance
from pedestrians at all times” might have precedence
over “reach destination in at most 10 min”. In Sec. 2.1,
we briefly discuss safety specifications. Richer, TL for-
malisms are covered in Sec. 2.2. Papers dealing with rule
priorities are reviewed in Sec. 2.3.

It is important to note that, throughout the paper,
“safety specification” refers to a formal specification of
the form: “for all times, an undesired outcome never
happens”. In other words, as stated above, it is just a
particular type of a TL formula. Safety in this context is
not necessarily a stringent requirement such as collision
avoidance. For example, “Stay in lane for all times” is
a safety specification in formal methods (and in this
survey) but not a safety requirement since changing
lanes is a perfectly acceptable behavior in many driving
situations (e.g., when preparing for a left turn).

2.1 Safety specifications

In most of the papers included in this review, the for-
mal specification is given simply as a safety specifica-
tion only (see Table 2). Therefore, even though safety is
just a specific kind of temporal logic formula, we dedi-
cate Section 2.1 and the first column of Table 2 to such
papers. The most predominant safety specifications are
collision avoidance, maintaining a minimum clearance
from the preceding car, staying in lane and / or on the
road. In the rest of this section, we briefly discuss works
that provide safety specifications using control theoretic
or motion planning concepts, or combine safety specifi-
cations with other specifications, such as lawfulness.

The safety specifications in [65–67] refer to avoiding colli-
sions with static and dynamic obstacles, and are formal-
ized using Inevitable Collision States (ICS) (i.e., states
for which, no matter what the future trajectory followed
by the ego vehicle is, a collision with an obstacle eventu-
ally occurs [131]). ICS are used to enforce safety during
motion planning. Predictions of future occupancies for
surrounding traffic participants are used for safety spec-
ifications in [68–73, 105], and applied to the influential
Responsibility-Sensitive Safety (RSS) modeling frame-
work [24] in [74].

Positive invariant sets (e.g., sets that are guaranteed to
contain all trajectories of the vehicle for all times are used
to formalize safety in some works. In [41], these are used
to ensure that the ego vehicle stays on the road. Positive
invariant sets are also used in [106] to prove safety as de-
fined through velocity and obstacle collision constraints.
Control invariant sets (i.e., sets that are made positive
invariant using control) are used in [35, 47, 75, 77]. The
more recent, closely related concept of control barrier
functions (CBF) is used in [25, 26, 30]. Compositional
and contract-based principles are used for formal verifi-
cation of safety specifications [78,79].

Finally, safety specifications are combined with lawful-
ness and liabilities of traffic participants in [27,42,80,81].
The authors of [27, 42, 81] focus on liabilities of traf-
fic participants if a collision occurs using formal rules
based on the Vienna Convention on Road Traffic. The
concept of legal safety is defined in [80] as a set of rules
that could safely and efficiently manage mixed traffic of
human drivers and AVs, and illustrated for automated
driving on highways with distance keeping, speed adap-
tation, and lane-changing. Requirements induced by le-
gal safety on perception and control components are also
presented. Legal safety is used in [94] for critical urban
scenarios, which have been recorded in real traffic.

2.2 TL specifications

Most of the reviewed papers use standard TLs, such
as LTL and a common fragment called syntactically
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Table 2
Papers organized by type of formal specification and application area. Safety only refers to papers that only specify safety.

Safety only LTL STL MTL Other TLs Priorities

Vehicle following [19–35] [36] [37, 38] [23]

Lane keeping / changing [17, 39–48] [18, 49]

Other [50–107] [108–113] [114–121] [122,123] [124–126] [79, 82, 110,
115,126–130]

co-safe LTL (scLTL) [132], STL [3], and MTL [133].
Others propose new logics, specifically tailored for for-
malizing ROTRs [124–126]. With few exceptions (e.g.,
[81, 112, 124, 134]), which use high-order temporal logic
(i.e., logics that allow for universal and existential quan-
tifiers), all the reviewed works focus on propositional and
predicate temporal logics.

Informally, LTL formulas are made of three ingredients:
(1) atomic propositions (e.g., por = “pedestrian on the
road”) or predicates (e.g., vego < 30 = “the ego vehicle’s
speed is less than 30 miles per hour”); (2) Boolean op-
erators ∨ (disjunction), ∧ (conjunction), ¬ (negation),
etc.; and (3) temporal operators, such as G (globally,
or always), F (in the future, or eventually), X (next),
and U (until). For example, the LTL formula G(por →
(sdU pos)), reads “for all times, if a pedestrian is on the
road, slow down until she reaches the sidewalk” (por, sd,
and pos are propositions that are true when the pedes-
trian is on the road, the ego vehicle slows down, and
the pedestrian is on the sidewalk, respectively). LTL
formulas are interpreted over infinite executions. scLTL
is a strict fragment of LTL, in which the satisfaction
of formulas can be decided in finite time [132]. For ex-
ample, formula por → (sdU pos) is in scLTL, while
G(por → (sdU pos)) is in LTL but not in scLTL. For
both LTL and scLTL, time is abstract, i.e., only the or-
der of the events matter.

MTL is an extension of propositional LTL, in which time
is concrete, and formulas can refer to both past and fu-
ture times. Informally, the main difference is that the
temporal operators are timed. For example, the require-
ment that the ego vehicle slows down and comes to a
complete stop within 5 seconds translates to the MTL
formula sdU[0,5] stop, where sd is the same as above
and stop is a proposition that is true when the ego ve-
hicle stops. STL is an extension of LTL with real-time
and real-valued constraints, and its formulas are usually
over predicates. For example, a formal specification to
comply with the maximum speed limit is written in STL
as G[0,T ] (v(t) < vmax), where v(t) is the ego vehicle’s
speed at time t, vmax is the maximum speed limit, and T
is the total duration of the scenario during which compli-
ance with this specification is evaluated. In addition to
Boolean semantics, in which a word or signal satisfies or
violates a formula, MTL and STL have quantitative se-
mantics. This is defined using a robustness function that

gives the degree of satisfaction of a formula by a word or
signal. Many papers reviewed below use the robustness
function for monitoring and / or controller synthesis.

LTL ROTRs based on the German concretization of
the Vienna Convention on Road Traffic are formalized
using LTL in [108]. The focus is on dual carriageways,
such as highways, and the formulas are restricted to
the particular form “premise implies conclusion”, or
G(φp → φc), where φp is the premise and φp is the
conclusion. An LTL formula of this form states that “at
all times, if φp is True, then φc must be True”. The au-
thors provide algorithms for constructing such formulas
from ROTRs with the help of graphical representations.
To define semantics for the LTL formulas over vehicle
trajectories, the atomic propositions are concretized to
predicates, e.g., atomic proposition acc(i) corresponds
to predicate “i accelerates with a > alim”. A related ap-
proach, for a related set of German ROTRs, is proposed
in [109], where the focus is on overtaking. In this work,
the LTL formulas are more general and the predicates
are concretized through legal and engineering analyses.

LTL specifications obtained by interpreting relevant
Adaptive Cruise Control (ACC) standards are consid-
ered in [36] and used to produce correct-by-construction
controllers. LTL formulas over a semantic abstraction
obtained by partitioning the continuous state space cor-
responding to a traffic scenario are considered in [111],
where the authors consider a subset of the Vienna Con-
vention of Road Traffic that cover the interaction of the
ego vehicle with only one other traffic participant. In the
related work [112], the authors perform AV motion plan-
ning from ROTRs expressed as LTL formulas, which
are interpreted over maneuver automata, and allow
for automatic satisfiability checking. LTL is proposed
in [113] to specify a small set of ROTRs, together with a
quantitative semantics used for reinforcement learning.
scLTL is used in [110] to formalize a set of ROTRs that
need to be satisfied, while customer demands (e.g., pick
ups, drop offs) are met within desired deadlines.

STL Our review shows that STL is the preferred logic
for specifying ROTRs. One of the main advantages of
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STL is its quantitative semantics, which allows for mon-
itoring, and also to map verification and control synthe-
sis problems to optimization problems [114,121]. Recent
work also points to an interesting connection between
the quantitative semantics of STL and deep learning
for autonomous driving. The work in [115] represents
ROTRs as STL formulas and uses its quantitative se-
mantics and a deep learning framework to predict future
behavior of nearby vehicles and to recognize the impor-
tance of predefined formal rules. Using a parameterized
version of STL (pSTL), [116] proposes a method for inte-
grating TL formulas into a neural network, which allows
incorporating ROTRs into deep learning-based trajec-
tory prediction approaches. This framework is extended
in [117], where ROTRs expressed as STL formulas are
integrated as inductive biases into deep learning-based
prediction models.

A requirements-driven approach for test case generation
is proposed in [118,119], which covers both component-
level and system-level behaviors for an AV. Test cases are
evaluated against STL formulas and the requirements
are used to automatically discover test cases that fail
to satisfy the requirements. The related work [120] de-
scribes an approach for finding interpretable failures of
an AV system. The failures are described as STL formu-
las and optimization is used to produce likely failures.

Recent works showed that STL can be efficiently used
to formalize assume-guarantee conditions. In particular,
in [18], the author develops a set of contracts for con-
trol software for AVs ensuring that if all traffic partic-
ipants follow the contracts (i.e., the assumption), then
the overall traffic system is collision-free (i.e., the guar-
antee). In [49], it is shown that RSS assumptions can be
encoded in assume-guarantee logical conditions in STL,
which enables the use of verification and testing tools to
verify and validate AV compliance with RSS.

MTL MTL is used in [37] to formalize ROTRs for in-
terstates based on the German Road Traffic Regulation,
the Vienna Convention on Road Traffic, and legal de-
cisions from courts. In this paper, the authors also use
first-order logic to define the predicates and functions
used in the formulas. Specifications for a case study us-
ing the RSS model are given as MTL formulas in [38].
The work in [122] proposes a scenario description lan-
guage to create driving scenarios with different numbers
of agents and on different road topologies, which also
enables the specification of formal correctness specifica-
tions in MTL. A future-bounded, propositional MTL is
used in [123] to specify correctness properties for com-
ponents of an AV.

Other TLs Three out of the 20 reviewed papers
that use TLs for formalizing ROTRs propose new log-

ics specifically tailored to autonomous driving. The
work in [124] introduces Timed Quality Temporal
Logic (TQTL), an extension of STL, to monitor and
test the performance of object detection and situation
awareness algorithms. An example of a vision quality
requirement in this framework is “at every time step,
for all the objects id in the frame, if the object class
is cyclist with probability more than 0.7, then in the
next 5 frames the object id should still be classified
as a cyclist with probability more than 0.6”. A proba-
bilistic TL, called Chance Constrained Temporal Logic
(C2TL), is proposed in [125] to specify correctness re-
quirements in the presence of probabilistic uncertainty.
The main addition of C2TL over STL is the inclusion
of chance constraints as predicates. A chance constraint
is a probabilistic extension of deterministic predicates
and is of the form Pr(φdet) ≥ 1 − δ, where 0 ≤ δ ≤ 1
represents uncertainty about whether the inequality
holds and φdet is a Boolean combination of linear pred-
icates, where the coefficients are random variables with
Gaussian probability distributions. Finally, a version of
LTL, called stutter-invariant Finite Linear Temporal
Logic (si-FLTLGX), is introduced in [126]. While suffi-
cient to describe many ROTRs, si-FLTLGX also allows
for prioritized ROTRs and for efficient computation of
optimal motion plans through sampling.

2.3 Rule priorities

Only a few studies deal with the formal specification of
multiple potentially competing driving objectives. The
work in [23] encodes a specification of an adaptive cruise
controller that ensures compliance with safety specifi-
cations while maintaining comfortable control actions.
In [80], the authors discuss the need to not a priori
exclude trajectories that violate a formal rule like stay-
ing in the driving lanes, because in an emergency such
a trajectory might be necessary. However, they stop
short of specifying rule priorities. In [79], the authors
ensure the satisfaction of safety specifications and eight
formalized ROTRs. They encode an implicit notion of
rule priorities by relaxing a subset of the rules in some
experiments. The work in [127] considers a set of safety
specifications as formal rules and defines a notion of
global minimization of rule violation based on discrete
priority levels for each formal rule. While all of these
studies consider multiple formal ROTRs, none of them
explicitly captures priorities.

The work in [128] provides a general framework to
specify how an AV can transparently resolve conflicts
between formal rules using a priority structure. The
proposed priority structure is a pre-ordered set of formal
rules, which induces a pre-order on any set of potential
trajectories in a scenario. Several studies build on this
framework to develop algorithms for planning [126] or
control [82, 110]. In [82], the authors propose an offline
methodology for pass/fail evaluation of AV behavior
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to determine whether a given AV trajectory complied
with a priority structure of formal rules. They do so by
defining a candidate AV trajectory as non-compliant if
another trajectory exists that violates only lower prior-
ity rules than the candidate AV trajectory, which they
determine through iterative relaxation of the rules.

Some studies explore the use of a learned priority struc-
ture among various formal rules. For example, [115]
learns the margins of satisfaction for formal rules and
then applies them in Model Predictive Control (MPC)
of the ego vehicle and surrounding vehicles. Another
study [129] queries pairwise preferences between trajec-
tories to learn the weights that can be viewed as quan-
titative measures of how well a trajectory satisfies rules
for staying on the road and avoiding collisions. The work
in [130] creates a dataset consisting of 92 traffic scenar-
ios and used crowd-sourced annotations to compare an
instance of the rulebook pre-ordered priority structure
from [128] with models obtained using machine learning
with varying degree of interpretability, such as Bayesian
networks, decision trees, and logistic regression.

3 Formal verification

Formal verification is the process of verifying that all the
possible executions of a system satisfy a formal specifica-
tion, such as safety or a TL formula. While autonomous
system verification can proceed with incomplete or gray-
box models by combining statistics with structural rea-
soning (see [99,100] for treatments of such approaches),
in this review we focus on a formal, traditional approach
to verification that requires a model of the system. The
model typically consists of the ego vehicle and its en-
vironment in autonomous driving. Online verification is
performed during the execution of the system and it
only requires checking the satisfaction of a specification
against all possible behaviors originating at the current
time.

Since finding a suitable non-deterministic model of the
environment as well as formalizing all ROTRs are chal-
lenging, most formal verification methods focus on vehi-
cle following (which includes ACC, emergency braking
systems, and platooning) and lane keeping / changing.
In the first part of this section, we focus on these types of
maneuvers. Afterwards, we discuss more general meth-
ods for arbitrary traffic situations. A summary of the
reviewed papers is listed in Table 3. All reviewed pa-
pers performing formal verification use safety as specifi-
cations. Consequently, we do not list the considered type
of specification in Table 3. Instead, we list whether the
method is applied offline (during design time) or online
(during vehicle operation) and whether the approach can
be applied to mixed traffic, i.e., traffic with autonomous
vehicles, manually-driven vehicles, and other forms of
non-automated movements, such as riding a bicycle or
walking. Some approaches require that all vehicles are

autonomous or that the behavior of other traffic partic-
ipants is known. For instance, some papers assume that
a leading vehicle moves with constant velocity. These
would not necessarily prove safety in mixed traffic.

Theorem proving The first formally-correct con-
trollers have been developed for vehicle following and
verified using handwritten proofs, see e.g., [19,32,33]; an
extension to game-theoretic techniques for cooperative
controlled vehicles is presented in [31]. Lane following
is especially amenable for handwritten proofs since it
only requires one-dimensional movement along a lane,
and the corresponding dynamics are monotone [135]. To
avoid human error in proofs, a theorem prover is used
in [20,83], which, however, assumes that all vehicles are
automated. Theorem proving has also been extended to
prove the safety of lane changes by reserving space for
vehicles [40,62]. An advantage of theorem proving is that
the number of traffic participants is unbounded, how-
ever, it typically cannot be used for online verification,
because most theorem provers are not fully automatic.

Barrier certificates Barrier certificates verify sys-
tems by proving that a barrier between the set of initial
states and unsafe states always exists. This idea was
applied to ACC [25] and was experimentally validated
in [30]. An extension for varying velocities of the leading
vehicle and lane keeping is presented in [36] and [26],
respectively. Barrier certificates are particularly useful
for proving the correctness of specific controllers, such
as controllers for following vehicles and staying within a
lane (the construction of the controllers is discussed in
Sec. 5). So far, no approach has been presented to au-
tomatically create barrier certificates for a given traffic
situation so that no universal online verification scheme
has yet been realized.

Worst-case behaviors Due to the previously-
mentioned monotone dynamics of vehicles staying
within the same lane, vehicle-following problems can
be verified through worst-case behaviors. Those are
used to safeguard exchangeable nominal controllers, by
embedding them in an emergency controller that only
engages if the nominal controller performs an unsafe
action [22, 84]. This idea is also applied to vehicle pla-
tooning [29] and was later extended to handle cut-in
vehicles and also lane changes of the leading vehicle [23].
A lane change of the leading vehicle can suddenly reveal
an occluded obstacle, which either requires detecting
further vehicles ahead or assuming a standing obstacle
within the occluded region.

By conservatively separating the dynamics into a lateral
and longitudinal dynamics, one can also use worst-case
behaviors for lane changes. The work in [42] uses safe
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distances to ensure that lane changes are safe, despite
the uncertainty in the movement of other traffic partici-
pants. The special case of a fixed sinusoidal lane change
and given accelerations of surrounding traffic partici-
pants is shown in [43]. The approach in [42] is also used to
safeguard reinforcement learning for lane changes [44].
Additional formal rules are added in [45] under which
a lane change is deemed to comply with ROTRs. As a
special case, swerve maneuvers are verified in [85].

Reachability analysis Currently, the most popular
verification technique for AVs is reachability analysis.
Reachability analysis automatically verifies systems by
computing the set of reachable states. If no reachable
state enters an unsafe region, safe behavior is proven
[28,34]. Invariant sets are a special case of reachable sets
in which the state of a system stays indefinitely. Thus,
if the invariant set does not contain any unsafe states,
correctness can be proven analogously to reachability
analysis. Most of the reviewed papers that use reachabil-
ity analysis and invariant sets perform both verification
and control synthesis. Here, we focus on verification. We
revisit some of these papers and discuss their control
strategies in Section 5.

Safety is proven for ACC in [35, 39, 60, 77] using in-
variant sets. Since the relatively simple task of safe ve-
hicle following can be verified by handwritten proofs,
only [21] verified this problem using reachability anal-
ysis. Another sub-problem we consider is the problem
of verifying whether a safe solution still exists. This can
be used to prove that an aggressive evasive maneuver
has to be executed or that a collision can no longer be
avoided and a collision mitigation procedure needs to be
initiated. The work in [86] computed the reachable set
of the ego vehicle to check whether it becomes empty—
in this event, the ego vehicle is in an inevitable collision
state [67]. To reduce the conservatism of that work, the
velocity information within the reachable set and road
geometry are explicitly considered in [73]. This work was
later extended to compute the time to react in a formal
way, i.e., the remaining time to avoid a potential col-
lision [87]. Instead of determining whether the current
state is an inevitable collision state, one can also com-
pute the set of inevitable collision states [66]; however,
this is computationally expensive and thus currently not
real-time capable. The work in [59] does not only com-
pute the first point in time when a collision is possible,
but also the last point in time.

The set of possible scenarios for fully autonomous driv-
ing cannot be constrained in the same way as it is
done for vehicle following or lane changing. Thus, most
approaches compute reachable sets online for fully au-
tonomous driving so that all occurring situations are
considered—an offline procedure might have missed po-
tentially dangerous situations. To the best knowledge of

the authors, the first work using online reachability anal-
ysis for autonomous driving is [51]. The disadvantage
of that work is that it requires that vehicles communi-
cate with each other and that they have to travel with
constant velocity. These restrictions were later removed
in [88]; however, the used vehicle model is just a single-
track model. A method to consider high-dimensional
models through non-deterministic low-dimensional
models is presented in [46,89]; this approach is extended
in [58] to show conformance with real vehicles. The first
work that applied online reachability analysis to a real
vehicle is [70]; later works can be found in [90–94]. Al-
though this approach works in principle for all kinds of
traffic situations, it does not contain an algorithm for
computing the reachable set of other traffic participants
on arbitrary road networks—this is addressed in [68] and
implemented by the tool SPOT [71]. Further develop-
ments, in particular with respect to handling occlusions,
are presented, e.g., in [69, 95–97]. Online reachability
analysis was recently used to safeguard reinforcement
learning for AVs [48]. To engage safe but aggressive
maneuvers more comfortably, the work in [98] addition-
ally considers probabilistic information to slow down
the AV early when a dangerous situation is likely to
occur. An approach that combines ideas from contract-
based verification with reachability analysis is presented
in [78, 79]; however, this approach is not yet real-time
capable. Other approaches, such as [52,99,122], are pri-
marily designed for formal offline verification for specific
scenarios. To reduce computation times for online use,
some approaches consider exemplary traces instead of
the set of possible solutions [111].

Table 3
Papers covering verification techniques organized by appli-
cation areas, suitability for online use, and applicability in
mixed traffic.

Online Mixed
traffic

References

Vehicle
following

7 7 [20, 21,25,35,83]
7 3 [19, 30–34,36]
3 7 [28]
3 3 [22, 23,29,84]

Lane
keeping /
changing

7 7 [40, 62]
3 7 [43, 48]
3 3 [42, 44,45,85]

Other

7 7 [39, 66,77]
3 7 [51]
7 3 [26, 52,60,99,122]
3 3 [46, 58, 59, 67–69, 69–71,

73,78,79,86–97,101,102]

4 Monitoring

Monitoring (or runtime verification) refers to lightweight
formal verification methods designed to check system ex-
ecutions against formal requirements. The main differ-
ence from the verification approaches discussed in Sec.
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3 is that the latter reason over all possible system ex-
ecutions and uncertainties. Online monitoring refers to
checking the current execution of a system, while of-
fline monitoring is the process of checking a (finite set
of) recorded execution(s). In most monitoring applica-
tions, including autonomous driving, execution traces
are long, and are only available incrementally. Waiting
for and storing an entire execution trace and then per-
forming offline monitoring can be expensive. Moreover,
in offline monitoring, verification might occur too late
to allow the system to recover or take a shutdown ac-
tion. For this reason, online monitoring is the prevalent
technique in autonomous driving.

Safety specifications Monitoring for compliance
with safety specifications is presented in [17,63,64,134].
The authors of [17] use backward reachability analysis
to construct the monitor. Monitoring for Multi-Lane
Spatial Logic is considered in [134], where the authors
show that formula satisfaction can be mapped to feasi-
bility of formulas in the first-order theory of real-closed
fields. Runtime monitoring techniques based on predic-
tions of future behaviors of traffic participants are de-
veloped for safety specifications in [63, 64]. The authors
of [63] present a pedestrian intent estimation framework
that can predict future pedestrian trajectories, and
integrate it into a reachability-based online monitor-
ing and decision making scheme. A predictive runtime
monitoring method for estimating future vehicle posi-
tions and the probability of collisions with obstacles is
presented in [64]. Their approach combines Bayesian in-
ference techniques and set-valued reachability analysis
to approximate future positions of a vehicle.

LTL Similar to verification and synthesis, most moni-
toring techniques against LTL formulas require convert-
ing the LTL formula to an automaton. Depending on
the structure of the formula, this automaton can be a
finite state automaton, a Büchi automaton, or a Ra-
bin automaton. Monitoring against ROTRs expressed
as LTL formulas is performed in [108,109,111]. The au-
thors of [109] focus on overtaking and safe distance keep-
ing. In [108], ROTRs are modeled as objects called Rule-
Monitors, which are then used to monitor rule compli-
ance through simulation and comparison against a pub-
lic dataset. In [111], the authors develop an LTL offline
monitoring method that does not require the compu-
tation of a complete automaton from the specification
and the partition of the ego vehicle’s continuous environ-
ment, but rather constructs a smaller automaton corre-
sponding to a specific traversal of the quotient graph.

STL and MTL As mentioned previously, STL and
MTL are particularly fit for monitoring due to their
quantitative semantics (i.e., robustness functions that

Table 4
Papers organized by type of monitoring and application area
(there are no works in the “Vehicle following” application
area).

Offline Online

Lane keeping / changing [49] [17]

Other [109,111,134] [63, 64, 108,
114,121,123]

quantify the degree of satisfaction or violation with re-
spect to a formal specification). In [49], the authors en-
code the RSS model in STL, and perform monitoring of
two RSS specifications (i.e., keeping a safe distance to
front and side vehicles) on traffic scenarios from Com-
monRoad [136] using S-TALIRO [137]. STL specifica-
tions for vehicle following are encoded using a special,
block-sparse Mixed Integer Programming (MIP) prob-
lem structure in [121], which is exploited to increase the
efficiency of the computation involved in monitoring.

The authors of [114] propose STL monitoring to com-
pute corrections in a two-level AV control architecture.
At the top level, simple representations of the environ-
ment and vehicle dynamics are used to derive controllers
using an MPC approach. At the bottom level, STL run-
time monitoring techniques, together with detailed rep-
resentations of the environment and vehicle dynamics,
are used to compensate for the mismatch between the
simple models used in the MPC and the real complex
models.

A runtime monitoring algorithm that checks for viola-
tions of properties written in a future-bounded, proposi-
tional MTL by an experimental AV is presented in [123].
The algorithm incrementally takes as input a system
state, which maps propositions to either true or false,
and a MTL formula, and eagerly checks the state trace
for violations. It uses an iteration based on dynamic pro-
gramming to reduce the input formula as soon as possi-
ble using history - summarizing structures and formula-
rewriting-based simplifications.

5 Control synthesis

The control synthesis problem is to find controllers for
AVs that minimize a cost, while satisfying physical con-
straints and formal rules. This section presents com-
monly used approaches for formal control synthesis for
AVs. We first review papers that use automata-based
techniques for control from specifications given in LTL or
fragments of LTL. We then focus on optimization-based
approaches that exploit the quantitative semantics (ro-
bustness) of concrete-time temporal logics such as STL
(see [138] for a review and comparison of automata-based
and optimization-based approaches to formal synthesis)
and on papers that use Control Barrier Functions (CBF)
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and Control Lyapunov Functions (CLF). The most pop-
ular formal synthesis techniques for AV control involve
reachability analysis and invariant sets, and most of this
section reviews such papers. Finally, we review papers
using falsification techniques and machine learning. A
summary of the reviewed papers is listed in Table 5.

Automata-based synthesis For formal rules writ-
ten in LTL and fragments of LTL, the formal synthesis
problem can be mapped to solving an automaton game.
In short, this method is based on translating the specifi-
cation to an automaton, such as a Finite State Automa-
ton (FSA), Büchi automaton, or Rabin automaton, and
then combining this with a finite abstraction of the dy-
namics of the system. The control strategy is generated
by graph analysis, or by solving an automaton (Büchi or
Rabin) game [5].

The authors of [110] propose a receding-horizon ap-
proach to synthesize controllers in static environments
without any other traffic participants by solving a
minimum-violation motion planning problem. This
problem is formulated given a conflicting set of cus-
tomer demands (e.g., pick up or drop off a customer at
certain locations within desired deadlines) and ROTRs
specified in scLTL. A delay penalty is associated with
meeting customer demands and is minimized in the
global long-term routing, while a lower-level RRT*
(see [139, 140]) planner is used to compromise between
delay penalty and violating the ROTRs, while guaran-
teeing safety. The scLTL specifications are converted to
deterministic automata with weighted transitions that
are used to capture the level of violation based on the
priorities assigned to the ROTRs. The related work
in [126] develops an incremental sampling-based ap-
proach to solve minimum-violation planning problems
for static environments considering multiple, potentially
conflicting, ROTRs specified in si-FLTLGX that have
different priorities.

Optimization-based synthesis For formal rules
written in logics with real-time and real-valued speci-
fications such as STL and MTL, the control synthesis
problem can be formulated as an optimal control prob-
lem, where the cost captures traditional objectives,
such as energy spent and / or distance travelled. Vehi-
cle limitations, such as acceleration and turning radius,
are modeled as constraints. Boolean rule satisfactions
can also be imposed as constraints. Alternatively, rule
satisfactions can be maximized by adding weighted ag-
gregations of their robustness values to the cost. An
example of this approach can be found in [121], where
the authors translate selected ROTRs formulated as
STL specifications into a set of mixed-integer and lin-
ear constraints and solve the synthesis problem for a

simplified vehicle motion model with bounded additive
uncertainty using MIP techniques.

A two-level control architecture for a fully autonomous
system in a deterministic environment with real-time
performance is proposed in [114]. At the top level,
ROTRs formulated as STL specifications are translated
into MIP constraints and imposed in a linear MPC
problem defined over a simple representation of the en-
vironment and vehicle dynamics. At the bottom level,
specification-based run-time monitoring techniques, to-
gether with detailed representations of the environment
and vehicle dynamics, are used to compensate for the
mismatch between the simple models used in the MPC
and the real complex models. The authors of [125]
propose a correct-by-construction algorithm to control
AVs under perception uncertainty with probabilistic
correctness guarantees specified as C2TL formulas. By
approximating C2TL constraints with a set of mixed-
integer constraints, the synthesis problem is formulated
as a scalable second-order cone program that can be
solved using off-the-shelf optimization tools.

Synthesis through CBFs and CLFs The control
synthesis problem has also been formulated as an op-
timal control problem in which the satisfaction of the
rule(s) and the vehicle’s state limitations are enforced
by CBFs, and convergence to desired states (e.g., ve-
hicle following) is achieved through CLFs. These ideas
are proposed in [25] and used for ACC, in which CBFs
are associated with safe sets, and the inequality con-
straints that ensure forward invariance of the set are
imposed over the control strategies as optimization con-
straints. The unified optimal control problem with si-
multaneous safety (CBFs) and ACC objectives (CLFs)
is solved through a sequence of computationally efficient
Quadratic Programs (QPs). Building on this approach,
the authors of [26] develop controllers with probabilis-
tic correctness guarantees for simultaneous lane keep-
ing and ACC obtained using fast QPs. The work in [82]
uses high-order CBFs (i.e., CBFs that can accommodate
constraints with high relative degree) to guarantee satis-
faction of a set of prioritized formal rules including lane
keeping, following speed limits, and maintaining clear-
ance with other traffic participants.

Reachability techniques, invariant sets, and ICSs
Many recent works combine reachability analysis and
control techniques in hierarchical planning architec-
tures. These are usually composed of a high-level route
planner and a low-level controller used to follow the
constructed trajectory, while guaranteeing the satis-
faction of ROTRs and physical constraints of AVs. As
already stated, the reachability analysis of most papers
reviewed here is discussed in Sec. 3. Here, we focus on
the planning and control aspects.
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Reachability techniques have been extensively inves-
tigated for vehicle platooning [28, 34], ACC [55], and
path planning [56] for AVs in complex, safety-critical
situations. In [105], the authors model obstacles as
single speed, maximum turn-rate unicycle robots and
define velocity obstacle occupancy sets as unions of
the sets of all reachable points by the obstacles. This
study proves that subject to certain initial conditions,
an infinite-horizon iterative planner guarantees colli-
sion avoidance for all times with respect to moving
obstacles that have constrained dynamics. The work
in [78] uses reachability analysis to concurrently solve
compositional verification for the local road model and
synthesizes assume-guarantee contracts to certify the
safety of the given controllers. To improve the computa-
tion time for online applications, multiple works study
offline pre-computations of reachable sets [54,58].

Control invariant sets are mainly used to guarantee the
indefinite feasibility of MPC frameworks despite limited
prediction horizons [75]. Safety constraints normally
make the admissible domain of the MPC optimization
problem non-convex. Convexification of the safety con-
straint presented in [75] makes the computation of the
control invariant sets fast for real-time applications.
However, it reduces the set of feasible solutions. The
work in [141] identifies collision-free driving corridors
that represent spatio-temporal constraints for motion
planning using set-based reachability analysis. In [75],
look-up tables are generated offline to determine the
control invariant sets in real-time [75]. The work in [36]
formulates ACC specifications as LTL formulas assum-
ing varying velocities of the leading vehicle, and designs
two synthesis methods: one based on control invariant
set computations on the continuous state space domain,
and one using set computations on a non-deterministic
finite state abstraction of the system. In [103], the au-
thors use smooth over-approximations of the collision
avoidance constraints and present a tube-based robust
MPC framework with formal guarantees on recursive
feasibility and satisfaction of the constraints. Synthesis
of correct-by-construction centralized and distributed
ACC policies for vehicle platooning with infinite-
time collision avoidance guarantees in the presence of
bounded additive disturbances are investigated in [35]
using robust control invariant sets and QP optimization.
In [77], the authors use control invariant sets for syn-
thesizing controllers for an AV with linear parameter-
varying dynamics, ACC, and lane keeping subsystems,
which are robust against additive parametric uncertain-
ties. The work in [47] designs a safety supervisor for lane
departure assist systems to keep a semi-autonomous
vehicle in a lane using control invariance techniques.

Positive invariant sets are augmented with state-
feedback control in [41] to guarantee collision-free
closed-loop trajectory tracking under modeling errors in
overtaking and lane-change maneuvers. The framework
proposed in this study relies on graph search to find in-

variant sets over a finite set of lateral displacements on
the road. A similar idea is proposed in [106], which inte-
grates motion planning and state-feedback control. The
authors of [104] investigate robust positive invariant set
motion planners for systems with persistently varying
disturbances and parametric model uncertainty. The
invariant sets are parameterized using a pre-computed
input-to-state Lyapunov function.

ICS are employed in safe motion planning where a safety
checker determines whether a system motion could lead
to an ICS [131]. To efficiently build a conservative ap-
proximation of the ICS set rather than checking for col-
lisions for all possible future trajectories of infinite du-
ration, the authors of [65] propose a principle to select a
finite subset of the possible future trajectories through
imitating maneuvers, in which the AV tries to duplicate
the object’s behaviour. The works in [57, 67] propose
a less conservative version of ICS, called braking ICS,
which is used to guarantee that a collision could occur
only when the AV was at rest.

Fail-safe maneuvers have been proposed to reach time-
invariant safe states such that safety for an infinite time
horizon can be ensured. The works in [22, 50] consider
the most likely trajectory of other traffic participants for
ACC control design, and maintain an emergency maneu-
ver based on an over-approximation of the predicted oc-
cupancy set. Cooperative ACC is investigated in [29], in
which a pre-defined gradual braking strategy overrides
the nominal controller to guarantee collision avoidance.
In a more recent study, the authors of [23] investigate
fail-safe controllers for ACC in various driving condi-
tions studied in the literature, such as full braking of
the lead vehicle as well as more complex cut-in scenarios
while taking into account uncertainties.

Considering all dynamically feasible behaviours of other
traffic participants may over-conservatively limit the
maneuverability of the AV. The work in [80] proposes a
nominal control framework for highly automated driv-
ing on highways (e.g., with ACC and lane-changing
functionalities), which considers legal and reasonably
foreseeable nonlegal behavior of other traffic partici-
pants, and designs failure functioning trajectories for
critical situations. Legal safety is guaranteed in [94],
which finds legal and dynamically feasible behaviors
of traffic participants using online reachability, and
proposes a fail-safe trajectory to a standstill state in
designated safe areas. In [107], the authors use Stochas-
tic Model Predictive Control (SMPC) to reformulate
hard constraints (e.g., for lane change and collision
avoidance) in uncertain environments into probabilistic
chance constraints. A fail-safe trajectory is planned us-
ing reachability analysis, which overrides the nominal
SMPC controller.
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Falsification Falsification can be used to validate
safety requirements [120] and to provide guidance on
control design [119]. A simulation-based adversarial test
generation framework for AVs to check closed-loop prop-
erties of autonomous driving systems has been studied
in [118]. The authors of [122] propose a hierarchical
control stack (including an ACC planner, trajectory
planner and trajectory tracker), to reach a goal within
a fixed time and meet selected ROTRs formulated in
MTL. In that work, S-TALIRO [137] and dReach [142]
are used to evaluate the existence of a falsifying tra-
jectory under different types of uncertainty, including
uncertainty in AV’s perception and non-determinism in
the dynamics of other vehicles. In [79], safety contracts
are constructed by alternatively using falsification to
create counterexamples for collision-free specifications,
and employing them as obstacles in a reach-avoid prob-
lem solved through reachability analysis.

Machine learning and control The quantitative se-
mantics (robustness function) of formal rules has en-
abled a growing interest in combining machine learn-
ing techniques with TL-guided control for autonomous
driving. The authors of [115] formulate urban driving
ROTRs in STL and combine the benefits of deep learn-
ing and MPC to propose controllers that can reason
about the future behavior of nearby vehicles and behave
close to human experts. Allowing relaxation of the rule
constraints up to the predicted margin to satisfaction of
each rule provides insight on the importance of rules as
described in Sec. 2.3. The related work [116] integrates
a set of parametric STL rules into a neural network for
trajectory prediction. A differentiable STL robustness
of the rules is optimized using gradient techniques.

An increasing number of papers propose formal meth-
ods for reinforcement learning in AV control. The work
in [113] proposes a hierarchical structure with a high-
level deep reinforcement learning model and a low-level
(adapted RRT*) motion planner. The reinforcement
learning reward function and the motion planner cost
function are formulated using quantitative robustness of
LTL specifications that represent ROTRs. Learning the
suitable reward function based on human’s preferences
is studied in [129]. Safeguarded reinforcement learning
for lane change AV control is proposed in [44].

6 Discussion and remaining challenges

In this section, we discuss remaining challenges and di-
rections for future work.

Formal specifications Even though, as shown above,
formally specifying ROTRs has received a lot of atten-
tion recently, it is still one of the main challenges fac-
ing the AV community. Ideally, we would like to have

a computational framework allowing to automatically
map sets of traffic laws written in plain English, such as
state driving laws in the US, or the Vienna Convention
on Road Traffic, or the German Road Traffic Regula-
tion, to sets of formal rules, such as the TLs reviewed in
Sec. 2. This is a very daunting task.

First, a specification language should be chosen. As
already noted, most existing works use LTL-type lan-
guages, as opposed to branching time logics such as
CTL, which are popular in the formal methods com-
munity. The explanation for this is most probably that
translation from natural language to LTL is easier
and less prone to error than CTL [143]. However, the
few existing works that propose frameworks to trans-
late natural language to formulas of logics such as
LTL [144, 145] (see also [146] for a review) in related
fields are restrictive and difficult to automate. Second,
off-the-shelf TLs might be unnecessarily expressive, and
as a result, the corresponding verification and synthesis
algorithms too expensive for AVs. Defining languages
that are specifically tailored to autonomous driving is a
current direction of research. Third, based on our own
experience and of others, most probably there exists a
rather small set of formal rules (primitives) in a properly
chosen logic, such that any traffic law can be written as
a (temporal, Boolean) combination of these primitives.
Choosing the primitives, the composition rules, and the
logic, is a challenging and open problem.

As reviewed in Sec. 2, recent works propose (pre-, par-
tial, total) orders and / or weights to model rule relative
importance, or priorities. The problems of trajectory se-
lection and control synthesis while satisfying rule pri-
ority structures are not well understood. In particular,
dealing with priorities under uncertainty is a widely open
problem. Consider, for example, the problem of trajec-
tory selection under classification uncertainty. Assume
there are two rules: pedestrian and parked vehicle clear-
ance, with the first being more important. If pedestrian
classification is less reliable than parked vehicle classifi-
cation, it is not clear how to perform trajectory selection
when both pedestrians and parked vehicles are detected.

In most traffic scenarios, parameterizing formal specifi-
cations is challenging. For example, in pedestrian clear-
ance, it is not obvious what combination of vehicle dis-
tance to pedestrian and approach speed would not look
dangerous to the pedestrian. Some of the reviewed pa-
pers show that, when the specification is safety, such
parameters can be learned from data. When the speci-
fications are formulas of LTL, STL, or MTL, the prob-
lem is more complicated. Works from the controls and
formal methods communities suggest that STL robust-
ness can be used to find parameters in rules with given
structures by solving optimization problems [147]. More
recent works [148] show that the formula structures can
be learnt from data as well, which can prove useful for
AV applications. For example, safely engaging a curve
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Table 5
Papers organized by control approaches and application areas (Reachability* refers to works on reachability analysis, control
and positive invariant sets and ICS).

Automata Optimization CBFs&
CLFs

Reachability* Machine
learning

Falsification

Vehicle
following

[25] [22,23,28,29,34–36]

Lane keeping /
changing

[41, 47]

Other [110,126] [114,121,125] [26, 82] [50, 53–57, 65, 67,
75,77,79,80,94,103–
107,141]

[44, 48, 113,
115,116,129]

[79, 118–
120,122]

might require a TL combination of positions, speeds,
and accelerations that is not easy to formulate, but can
be learnt from good driving behavior. Finally, even with
known rules, specifying their relative importance (pri-
orities) is a challenging problem. An encouraging direc-
tion, supported by very recent preliminary results [130],
is to learn them from data.

Sets of ROTR formalized by translating traffic rules or
by learning from data can be inconsistent and / or in-
complete. The first can be dealt with using priority struc-
tures, as reviewed in Sec. 2.3, and corresponding iterative
control schemes. An interesting alternative is to gener-
ate rules that are consistent and complete by construc-
tion. Very recently, the authors of [149] addressed this
problem using a distributed assume-guarantee structure.
However, characterizing consistency and completeness
of sets of ROTRs is an open and challenging problem.

Verification Most of the verification approaches
reviewed here focus on well-defined use cases for au-
tonomous driving, such as safe vehicle following. In
such a well-defined scenario, one can verify the system
offline by making certain assumptions; e.g., the lead-
ing vehicle is not allowed to perform a lane change.
However, when removing this assumption, a standing
vehicle could suddenly be revealed so that the ego vehi-
cle is in an inevitable collision state. It is necessary to
be able to continuously monitor such situations and as-
sume that obstacles can be present in occluded spaces.
This requires to develop online verification methods
that can react to each situation appropriately— offline
verification methods are infeasible for fully autonomous
driving at the system level due to the large amount of
test cases required to obtain a meaningful coverage. On-
line verification methods have to be able to consider all
possible legal behaviors of surrounding traffic partici-
pants to verify that the planned action is not causing an
accident. This is one of the main remaining challenges
in this area. In order to avoid requiring that online
approaches are real-time capable and that a new safe
solution can always be found, most current approaches

use fail-safe maneuvers that are executed in case no safe
maneuver can be computed on time. Another remaining
challenge is that verification methods currently focus on
safety specifications, while methods for verifying more
complicated rules are in their infancy. This is because in
contrast to monitoring approaches, verification meth-
ods have to verify a system given all uncertainties. The
combined challenge of verifying complicated specifica-
tions for all possible executions of the system and its
environment is still an unsolved problem.

Synthesis There is an increasing number of works
that propose temporal logics as formal specification
languages for autonomous driving. The methods for
synthesis of control strategies from temporal logic spec-
ifications can be roughly grouped into two categories:
automata-based and optimization-based approaches.
The first group is mostly used for LTL-type specifi-
cations, and synthesis maps to solving an automaton
game (e.g., Büchi or Rabin games). This is usually ex-
pensive, and, as a result, not suited to real-time control
of autonomous vehicles. Most of the reviewed papers
in formal synthesis belong to the second category, for
which the specifications are given in concrete-time TLs,
such as STL and MTL, which have quantitative se-
mantics. Optimization methods can be subdivided into
MIP-based and gradient-based approaches. Computa-
tional complexity is still a limitation for both methods.
Current research is aimed at defining meaningful and
smooth convex robustness functions that can be effi-
ciently used in optimization. Most of existing approaches
are based on MILPs, which only apply to linear dy-
namics. A current research direction is their extension
to realistic vehicle dynamics. CBF-based methods are
fast but myopic, and the corresponding QPs can easily
become infeasible, which is one of the main challenges
in this approach. Another challenge and direction of
future work is designing frameworks for automatic con-
struction of barrier functions for a given formal rule or
state constraint.

Reachability analysis remains the most used technique
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in AV control. As shown in this review, various tools are
available for computing the reachable sets on arbitrary
road networks, which allows such techniques to be used
for online control. However, reducing conservativeness
caused by over-approximation of reachable states, while
maintaining guarantees on safety, remains a challenge.

Uncertainty, misclassification, and sensor noise
While formal methods for discrete systems often do not
require to consider uncertainties, this is of paramount
importance for physical systems, such as AVs. Undoubt-
edly, the main uncertainty arises due to the unknown fu-
ture behavior of surrounding traffic participants—even
if a traffic participant performs full braking, the ego ve-
hicle has to ensure safety. A second major source of un-
certainty originates from the sensing of surrounding traf-
fic participants whose positions, velocities, and headings
are subject to measurement uncertainties. This also ap-
plies to the proprioceptive sensors of the ego vehicle,
whose noise has to be considered when predicting the
maximum deviation from a planned trajectory. Besides
uncertainty in physical measurements, another challenge
is dealing with misclassifications of traffic participants.

Formal verification and synthesis methods have to con-
sider the above-mentioned uncertainties in their entirety.
In contrast, monitoring approaches only have to evaluate
a concrete evolution of a traffic scene. For instance, when
the classification of a traffic participant is uncertain, for-
mal approaches require to compute with all remaining
classification hypotheses. As a consequence, most for-
mal verification and synthesis approaches compute with
sets to ensure that disturbances and sensor noise are
appropriately considered. The challenge here is to con-
sider all sources of uncertainties. While some papers fo-
cus on the uncertain future movements of other traffic
participants, others only focus on the tracking error of
the ego vehicle when following a planned trajectory, yet
others only focus on the unknown number and states of
occluded traffic participants. Obviously, formal verifica-
tion can only be accomplished for the real system—and
not just its mathematical model—if all sources of un-
certainty of the real-world are considered. To address
the potential model mismatch, several works have devel-
oped conformance checking techniques for autonomous
vehicles (see [150] for a recent review). Nevertheless, this
area of research is underrepresented in our point of view.

7 Conclusion

In this paper, we reviewed recent works that use for-
mal methods for autonomous driving. We covered for-
mal specifications for rules of the road, with particular
emphasis on temporal logics. Verification, monitoring,
and control synthesis techniques from such specifications
were reviewed. We restricted our attention to ego-centric

approaches and system-level methods that focus on the
behavior of an autonomous vehicle in its entirety, rather
than specific software code within the vehicle. In addi-
tion, we included a critical discussion on the field and
discussed remaining challenges and directions for future
research.

We believe this paper will be of interest to a large audi-
ence, which includes academia and the rapidly growing
AV industry. Control theorists will learn how control
techniques and basic stability concepts are used in au-
tonomous driving. They will also get exposure to formal
methods techniques and their connection to dynam-
ical systems. Computer scientists working in formal
methods will see how the expressivity of temporal logic
formulas can be exploited to formalize traffic laws. Last
but not least, this paper will be of interest to engi-
neers working on developing autonomous cars. We also
hope that this paper will help form a community of
researchers and educators interested in using tools and
concepts from formal methods in the rapidly increasing
area of autonomous driving.

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
checking. MIT press, 1999.

[2] C. Baier and J. Katoen, Principles of Model Checking. The
MIT Press, 2008.

[3] O. Maler and D. Nickovic, “Monitoring temporal properties
of continuous signals,” in Proc. of International Conference
on FORMATS-FTRTFT, 2004, pp. 152–166.

[4] P. Tabuada, Verification and Control of Hybrid Systems -
A Symbolic Approach. Springer, 2009.

[5] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for
Discrete-Time Dynamical Systems. Springer, 2017.

[6] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe
Autonomy. MIT Press, 2021.

[7] E. Plaku and S. Karaman, “Motion planning with
temporal-logic specifications: Progress and challenges,” AI
Communications, vol. 29, no. 1, p. 151–162, 2016.

[8] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon,
and M. Fisher, “Formal specification and verification of
autonomous robotic systems: A survey,” ACM Computing
Surveys, vol. 52, no. 5, pp. 1–41, 2019.

[9] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and
F. Diermeyer, “Survey on scenario-based safety assessment
of automated vehicles,” IEEE Access, vol. 8, pp. 87 456–
87 477, 2020.

[10] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Formal methods
for semi-autonomous driving,” in 52nd ACM/EDAC/IEEE
Design Automation Conference, 2015, pp. 1–5.

[11] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda,
“A survey of autonomous driving: Common practices and
emerging technologies,” IEEE Access, vol. 8, pp. 58 443–
58 469, 2020.

[12] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and
decision-making for autonomous vehicles,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 1, no. 1,
pp. 187–210, 2018.

13



[13] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini,
“Software verification and validation of safe autonomous
cars: A systematic literature review,” IEEE Access, vol. 9,
p. 4797–4819, 2021.

[14] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected
and automated vehicles: State of the art and future
challenges,” Annual Reviews in Control, vol. 45, pp. 18–40,
2018.

[15] T. Ersal, I. Kolmanovsky, N. Masoud, N. Ozay, J. Scruggs,
R. Vasudevan, and G. Orosz, “Connected and automated
road vehicles: state of the art and future challenges,” Vehicle
System Dynamics, vol. 58, no. 5, pp. 672–704, 2020.

[16] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson,
“Collision avoidance: A literature review on threat-
assessment techniques,” IEEE Transactions on Intelligent
Vehicles, vol. 4, no. 1, p. 101–113, 2019.

[17] S. Kojchev, E. Klintberg, and J. Fredriksson, “A safety
monitoring concept for fully automated driving,” in Proc.
of the 23rd IEEE International Conference on Intelligent
Transportation Systems, 2020, p. 1–7.
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