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Abstract

To provide robustness of distributed model predictive control (DMPC), this work proposes a robust DMPC formulation
for discrete-time linear systems subject to unknown-but-bounded disturbances. Taking advantage of the structure of certain
classes of distributed systems seen in applications with interagent coupling like vehicle platooning, a novel robust DMPC is
formulated. The proposed approach is characterised by separable terminal costs and locally robust terminal sets, with the latter
sets adaptively estimated in the online optimisation problem. A constraint tightening approach based on a set-membership
approach is used to guarantee constraint satisfaction for coupled subsystems in the presence of disturbances. Under this
formulation, the closed-loop system is shown to be recursively feasible and input-to-state stable. To aid in the deployment of
the proposed robust DMPC, a possible synthesis method and design conditions for practical implementation are presented.
Finally, simulation results with a mass-spring-damper system are provided to demonstrate the proposed robust DMPC.

Key words: Distributed Model Predictive Control; Robust Constraint Tightening; Set-membership Approach; Robust Local
Terminal Sets.

1 Introduction

Model predictive control (MPC) is a powerful method-
ology (Maciejowski, 2002; Rawlings, Mayne, & Diehl,
2018) that has been widely considered and used in
a variety of industrial applications, such as chemi-
cal processes (Ellis, Liu, & Christofides, 2017), water
networks (Wang, Puig, & Cembrano, 2017) as well as
building energy managements (Oldewurtel et al., 2012).
As the size of the system increases, challenges in main-
taining a centralised control strategy may arise due
to issues including computational complexity and the
mixed spatial and/or temporal scales necessitating
larger communication requirements, all of which can
impact on the ability to meet real-time requirements.

With the development of communication and dis-
tributed optimisation techniques, distributed MPC
(DMPC) has been an active research field during the
past two decades. DMPC can be also regarded as an al-
ternative way to overcomes issues for centralised control
strategy. Recent works on DMPC can be found in the
literature (Conte et al., 2016; Darivianakis et al., 2020;
Maestre & Negenborn, 2014; Giselsson & Rantzer,

Email addresses: ye.wang1@unimelb.edu.au (Ye Wang),
manziec@unimelb.edu.au (Chris Manzie).

2014). Among these DMPC methods, the correspond-
ing DMPC optimisation problem is built in a sep-
arable structure so that it can be decomposed into
sum of local optimisation problems. Therefore, dis-
tributed optimisation techniques, such as dual decom-
position (Farokhi, Shames, & Johansson, 2014), alter-
nating direction method of multipliers (ADMM) and
improved/accelerated ADMM (Ghadimi et al., 2015;
Mota et al., 2013; Teixeira et al., 2016), and game theo-
retic approaches (Barreiro-Gomez, 2019), can be imple-
mented. Since local optimisation problems are solved in
parallel, the computation time is significantly reduced,
which is helpful for practical implementation.

For systems subject to disturbances, robustness is nec-
essarily considered in an MPC setup (Mayne et al.,
2005; Rawlings et al., 2018). Tube-based approach as
one of popular robust MPC has been widely studied,
see e.g. Alvarado et al. (2010), Limon et al. (2008),
Broomhead et al. (2015), Pereira et al. (2017). The idea
of tube-based MPC is to optimise the nominal system
model along the prediction horizon subject to tightened
constraints by means of an effective robust constraint
tightening approach. In principle, robust positively in-
variant (RPI) sets (Stoican et al., 2011; Wang et al.,
2019) are used for constraint satisfaction in order
to guarantee recursive feasibility and stability of the
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closed-loop systems.

In this work we consider systems subject to un-
known but bounded disturbances. Previous research
on robust DMPC has considered modifying the con-
troller to guarantee recursive feasibility and closed-
loop stability in the presence of disturbances. In
Richards and How (2007) and Trodden and Richards
(2006), a robust approach was formulated for systems
with fully decoupled dynamics but subject to cou-
pled constraints. A similar vein of work was consid-
ered for systems with coupled dynamics via states in
(Conte, Zeilinger, Morari, & Jones, 2013) and via in-
puts in Al-Gherwi, Budman, and Elkamel (2011), and
via both states and input in Grancharova and Olaru
(2014). In Zhang, Wang, Ge, and Wang (2014), a robust
MPC was also designed for a networked system with
time delays. In these existing results, fixed terminal sets
were used in the robust DMPC formulations.

Recently, Conte et al. (2016) and Darivianakis et al.
(2020) consider the DMPC problem with the local ter-
minal sets adapted online. In Conte et al. (2016), time-
varying local terminal sets are defined with a relaxation
term from the Lyapunov function for decentralised sys-
tems from Jokic and Lazar (2009). In Darivianakis et al.
(2020), adaptive local terminal sets are defined, where
the parameters of these sets are chosen as decision
variables to be determined in the same optimisation
problem as DMPC. In both cases, the adaptation is mo-
tivated by a desire to avoid unnecessarily small terminal
sets, which can adversely impact performance. However,
the class of systems considered in this work does not
explicitly consider disturbances in the system model.
An open challenge is not only to implement a robust
constraint tightening approach for distributed systems
but also to properly define time-varying local terminal
sets taking into account the effects of disturbances.

The main contribution of this work is to build on the
work described in the previous two paragraphs to pro-
pose a robust DMPC for discrete-time linear systems
subject to unknown-but-bounded disturbances. We for-
mulate a robust DMPC that admits a separable struc-
ture along with appropriate design rules, in order to
facilitate distributed optimisation techniques for imple-
mentation. Specifically,

• We introduce robust adaptive local terminal sets,
whose sizes are determined online;

• We prove the closed-loop control system recursively
feasible and input-to-state (ISS) stable;

• We present a synthesis method for a robust DMPC
controller and develop design conditions for those
local terminal sets.

The paper organisation begins after the problem state-
ment in Section 2. The robust DMPC is formulated in

Section 3. The closed-loop performance analysis is dis-
cussed in Section 4. The distributed synthesis method,
the design conditions for terminal constraint, as well as
summary of robust DMPC algorithm are presented in
Section 5. Implementation of the synthesis results and
validation of the theoretical results are undertaken via
simulation in Section 6. Finally, the conclusion is drawn
in Section 7.

Notation. We use I to denote an identity matrix of
appropriate dimension. For a matrix A, we denote tr(A)
and rank(A) as the trace and the rank of A, A−1 and
A⊤ as the inverse and the transpose of A, and A ≻
0 being the positive definiteness. For two matrices A
and B, we use diag(A,B) to denote a block diagonal
matrix. For a set of matrices Aj with j ∈ N , we denote

colj∈N {Aj} :=
[

A⊤
j1
, A⊤

j2
, . . . , A⊤

jN

]⊤
, where j1 < j2 <

· · · < jN are the (ordered) elements of N . Besides, we
define the following sets Sn :=

{

X ∈ Rn×n | X = X⊤
}

,

S
n
≻0 := {X ∈ R

n×n | X = X⊤, X ≻ 0} and S
n
�0 :=

{

X ∈ Rn×n | X = X⊤, X � 0
}

. For a vector z ∈ Rn and
a matrix W ∈ Sn, we use ‖z‖ to denote the 2-norm
and the weighted 2-norm by W , respectively. We use
colj∈N {zj} to denote the column vector with elements
given by the vector zj , ∀j ∈ N . We use diag(z) to denote
a diagonal matrix with elements of its argument z. For
any two sets X and Y, the Minkowski sum, Pontryagin
difference and Cartesian product are denoted asX⊕Y =
{x+y : x ∈ X , y ∈ Y}, X ⊖Y = {z : z+y ∈ X , ∀y ∈ Y},
X × Y = {(x, y) : x ∈ X and y ∈ Y}, respectively.
Besides, for setsXj with ∀j ∈ N , we denote

⊕

j∈N Xj :=

Xj1 ⊕ · · · ⊕ XjN and×j∈N
Xj := Xj1 × · · · × XjN .

2 Problem statement

Let us consider a network ofM nodes (or called agents).
The agents exchange information according to a fixed
graph defined by G := (M,D), where the vertex set
M := {1, . . . ,M} indicates all the agents and the edge
set D ⊂ M×M specifies pairs of agents that can com-
municate. In general, the network admits the following
linear time-invariant system dynamics:

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where x ∈ Rn, u ∈ Rm denote the state vector and the
control input vector and the discrete-time index k ∈ N.
A ∈ Rn×n and B ∈ Rn×m. For each agent i ∈ M,
coupled dynamics via states is considered as follows:

xi(k+1) = ANi
xNi

(k)+Biui(k)+wi(k), ∀i ∈ M, (2)

where xi ∈ Rni , ui ∈ Rmi denote the local state vector
and the local control input vector, wi ∈ R

ni denotes the
local disturbance vector of the i-th agent, respectively.
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ANi
:= colj∈Ni

{Aij} ∈ R
ni×nNi , Aij ∈ Rni×nj and

Bi ∈ Rni×mi .Ni ⊆ M is defined as the set that includes
all the agents related to the agent i (i also included).
Furthermore, local variables can be selected by using
lifting matrices Ti ∈ {0, 1}ni×n

, Li ∈ {0, 1}mi×m
, and

TNi
∈ {0, 1}nNi

×n
such that

xi = Tix, ui = Liu, xNi
= TNi

x. (3)

Assumption 1 For the global system (1), the pair
(A,B) is controllable. The closed-loop system states
xi(k) can be measured at each time step k ∈ N.

Assumption 2 The network graph is undirected, that
is, any two neighbouring agents i ∈ Nj and j ∈ Ni

can communicate with information exchange in a bidi-
rectional way.

We are solving a finite horizon problem minimising
∑N

k=0 ℓ(x(k), u(k)), N > 0 , where

ℓ(x(k), u(k)) := ‖x(k)‖2Q + ‖u(k)‖2R , (4)

withQ ∈ Sn≻0 is a positive-definite weightingmatrix, and
R ∈ Sm≻0 is a block-diagonal positive-definite weighting
matrix. In addition, (4) can be rewritten in a separable
structure

ℓ(x(k), u(k)) =
∑

i∈M

ℓi(xNi
(k), ui(k))

=
∑

i∈M

(

‖xNi
(k)‖2QNi

+ ‖ui(k)‖
2
Ri

)

(5)

where QNi
= TNi

QT⊤
Ni

∈ S
nNi

≻0 and Ri = LiRL
⊤
i ∈ S

mi

≻0,
∀i ∈ M.

The system states and control inputs are constrained in
convex sets

x(k) ∈ X :=×
i∈M

Xi, u(k) ∈ U :=×
i∈M

Ui, (6)

for k ∈ N, where Xi ⊆ Rni and Ui ⊆ Rmi , ∀i ∈ M are
convex sets.

Assumption 3 The disturbance vector w(k) is un-
known but bounded by convex sets

w(k) ∈ W :=×
i∈M

Wi, ∀k ∈ N. (7)

A nominal distributed model is now introduced as fol-
lows:

x̄i(k + 1) = ANi
x̄Ni

(k) +Biūi(k), ∀i ∈ M. (8)

From the nominal system (8), the resulting global system
can be formulated as

x̄(k + 1) = Ax̄(k) +Bū(k), (9)

where x̄ = coli∈M(x̄i) and ū = coli∈M(ūi).

For the system (1), centralised robust MPC formulation
can be formulated (Mayne et al., 2005)

minimise
ū(0),...,ū(N−1)

Vf (x̄(N)) +

N−1
∑

t=0

ℓ(x̄(t), ū(t)), (10a)

subject to

x̄(t+ 1) = Ax̄(t) +Bū(t), (10b)

x̄(t) ∈ X̄ , (10c)

ū(t) ∈ Ū , (10d)

x̄(N) ∈ Ωf , (10e)

x̄(0) = x(k), (10f)

where X̄ and Ū are tightened sets for states and inputs.
Vf (x̄(N)) and Ωf are terminal cost function and termi-
nal set to guarantee the closed-loop convergence.

To formulate a distributed solution for (10), the follow-
ing problems must be considered:

Problem 1 How can the constraints X̄ and Ū be tight-
ened for distributed systems with disturbances?

Problem 2 How can the terminal cost Vf and the ter-
minal set Ωf be defined in a distributed way?

3 Robust DMPC based on set-membership ap-
proach

In this section, we formulate the robust DMPC con-
sidering a finite prediction horizon N > 0. We first
propose a constraint tightening approach based on set-
membership approach. Besides, we also use another aux-
iliary terminal gain to find separable terminal cost func-
tion and local terminal sets.

3.1 Robust constraint tightening approach

Since system states are coupled in the system dynam-
ics (2), the effect of disturbance wi(k) for agent i will be
propagated into other neighbours. To solve Problem 1,
we propose a robust constraint tightening approach to
tighten constraints on states and inputs iteratively along
the MPC prediction horizon N in terms of the global
systems (1) and (9), and then project the tightened con-
straints into each agent.
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For the system (1), there exists a state feedback con-
troller

u = κ(x) := Kx, (11)

where K ∈ Rm×n is a stabilising state feedback gain.

By comparing the systems (1) and (9), let us define the
error e := x − x̄, and therefore the error dynamics can
be formulated with the control law in (11) as

e(k + 1) = AKe(k) + w(k), ∀k ∈ N, (12)

where AK := A+BK.

Set x̄(0) = x(k). Then, we can derive e(0) = 0, e(1) =
AKe(0)+w(1) = w(1), and for t ≥ 1, e(t+1) = AKe(t)+
w(t).

Remark 1 In order to clarify the different time steps,
we use t ∈ {0, 1, . . . , N} to denote the MPC prediction
steps while k ∈ N to denote the closed-loop simulation
steps.

The closed-loop states and inputs are constrained in the
convex sets, that is, x ∈ X and u ∈ U . Based on the
above analysis, from (12) withw(k) ∈ W under Assump-
tion 3, the constraints on nominal states and inputs can
be tightened as follows:

X̄ (t) := X ⊖R(t), t = 1, . . . , N − 1, (13a)

Ū(t) := U ⊖KR(t), t = 1, . . . , N − 1 (13b)

with X̄ (0) := X and Ū(0) := U , where the set R(t) is
defined as

R(t) :=

t−1
⊕

j=0

Aj
KW , t ≥ 1. (14)

From the definition of R(t) in (14), it holds

R(t+ 1)⊖At
KW = R(t), t ≥ 1, ∀i ∈ M. (15)

Remark 2 Note it is possible to generalise the problem
formulation slightly to consider bounded measurement
error at time step k, so that e(0) 6= 0. This will incur
further refinement of R(t) in (14), but all subsequent
steps in the following theoretical results are maintained.

Assumption 4 There exists a K guaranteeing that the
matrix AK is Schur stable, and for the chosen K the sets
X̄ (N) and Ū(N) from (13) are non-empty.

A synthesis method is proposed in Section 5 to find a K
if Assumption 4 holds.

From the tightened constraints in (13), we can find the
underlying constraints for each agent i by the projection
with the lifting matrices.

X̄Ni
(t) = TNi

X̄ (t), ∀i ∈ M, (16a)

Ūi(t) = LiŪ(t), ∀i ∈ M. (16b)

Remark 3 The state and input constraints can be also
tightened locally for each agent if there exist local stabil-
ising feedback control laws

ui = κi (xNi
) := KNi

xNi
, ∀i ∈ M,

where KNi
∈ Rmi×nNi is a local control gain. Since the

local disturbance vector is bounded in a separable set wi ∈
Wi, we can also tighten the constraints locally to find
X̄i and Ūi, ∀i ∈ M. If all stabilising KNi

are found,
the global feedback gain K may be determined using local
gains and the lifting matrices, i.e.

K =
∑

i∈M

L⊤
i KNi

TNi
.

3.2 Separable terminal cost

We now turn our attention to Problem 2. To set up a
distributed optimisation problem, since the stage cost
function and constraints can be set in a distributed way
as in (4) and (16), we formulate the separable terminal
cost function as

Vf (x) =
∑

i∈M

Vfi(xi) =
∑

i∈M

x⊤i Pfixi, (17)

with Pfi ∈ S
ni

≻0, and terminal control law can be defined
as

ui = κfi(xNi
) := KfixNi

, ∀i ∈ M, (18)

where Kfi ∈ R
mi×nNi is a terminal control gain.

The following lemma indicates the local terminal cost
may be increasing with a relaxation term but the com-
bination of the relaxation terms across all agents leads
to a strictly decreasing global terminal cost.

Lemma 1 ((Jokic & Lazar, 2009)) If there exists the
functions Vfi(xi), γi(xNi

) and ℓi(xNi
,KfixNi

), as well
as K∞ functions β1i , β2i and β3i , ∀i ∈ M such that

β1i(‖xi‖) ≤ Vfi(xi) ≤ β2i(‖xi‖), (19a)

β3i(‖xNi
‖) ≤ ℓi(xNi

,KfixNi
), (19b)

Vfi (ANi
xNi

+Biκfi(xNi
))− Vfi(xi)

≤ −ℓi(xNi
, κfi(xNi

)) + γi(xNi
), (19c)

∑

i∈M

γi(xNi
) ≤ 0, i ∈ M, (19d)
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then Vf (x) =
∑

i∈M Vfi(xi) defined in (17) is a Lya-
punov function for the system (8) with ui = κfi(xNi

)
defined in (18), ∀i ∈ M.

3.3 Robust adaptive local terminal sets

We next discuss how to choose local terminal sets for
each agent. In general, let us define the local terminal
sets as

Ωfi(αi) :=
{

xi ∈ R
ni : x⊤i Fixi ≤ αi

}

, ∀i ∈ M, (20)

where Fi ∈ S
ni

≻0 and a scalar αi > 0 determine the size
of local terminal sets. For each agent i, since Vfi satisfies
the conditions (19), it can be seen that the local terminal
cost might increase. Therefore, the corresponding local
terminal set should be also adaptive along the terminal
cost increasing.

Considering a prediction horizon of N , the constraints
on states and inputs are tightened iteratively as in (16).
We now define the local terminal sets Ωfi(αi) for the
robust DMPC controller with updating parameters.

Definition 1 (Robust adaptive local terminal
sets) For each agent i ∈ M, the set Ωfi(αi) is said to
be a robust adaptive local terminal set if there exists a
matrix Fi ∈ S

ni

≻0 and a scalar αi > 0 such that

AKfi

{

x̄Ni
⊕ ĒNi

(N − 1)
}

∈ Ωfi(αi), (21)

where ĒNi
(N − 1) := TNi

AN−1
K W and AKfi

:= ANi
+

BiKfi .

Remark 4 For the selection of Fi and αi, we can
set Fi = Pfi as widely used in Maestre et al. (2011);
Conte et al. (2016); Darivianakis et al. (2020) and up-
date the scalar αi online.

3.4 Robust DMPC optimisation problem

Based on the discussions above, we now formulate the
optimisation problem of the robust DMPC in the follow-
ing.

minimise
ūi(0),...,ūi(N−1)

α1,...,αM

M
∑

i=1

(

Vfi (x̄i(N)) +

N−1
∑

t=0

ℓi(x̄Ni
(t), ūi(t))

)

,

(22a)

subject to

x̄i(t+ 1) = ANi
x̄Ni

(t) +Biūi(t), (22b)

x̄Ni
(t) ∈ X̄Ni

(t), (22c)

ūi(t) ∈ Ūi(t), (22d)

x̄i(N) ∈ Ωfi(αi), (22e)

x̄i(0) = xi(k). (22f)

The optimisation problem (22) can be implemented
by means of alternative distribution optimisation tech-
niques, such as dual decomposition orADMMFarokhi et al.
(2014); Boyd et al. (2011). We use the superscript ∗ to
denote the variables related to the optimal solutions
of (22). For instance, let us denote the feasible solutions
of (22) at time step k ∈ N as follows:

x̄∗Ni
(0;xi(k)), . . . , x̄

∗
Ni

(N ;xi(k)), (23a)

ū∗i (0;xi(k)), . . . , ū
∗
i (N − 1;xi(k)), (23b)

and α∗
i , ∀i ∈ M. Therefore, by proceeding with the

receding-horizon strategy, the optimal MPC law can be
chosen for the closed-loop system at the time step k as

κN (xi(k)) := ū∗i (0;xi(k)), ∀i ∈ M. (24)

4 Properties of the closed-loop system

We now analyse the properties of the closed-loop sys-
tem (2) operated by the robust DMPC controller (22).

Since the predictionmodel (22b) does not contain distur-
bances, there exists a mismatch between the predicted
states and the closed-loop states. Based on the constraint
tightening approach in Section 3.1, we used an auxiliary
control gainK to attenuate the effect of this mismatch in
closed-loop. Similar to the robust tube-based technique
originally proposed in (Mayne et al., 2005), the optimal
control action at time step k can be chosen as

ui(k) := ū∗i (0;xi(k)) + LiK(x(k)− x̄∗(0;x(k))). (25)

Remark 5 If the local feedback control gains KNi
are

chosen for constraint tightening in Section 3.1, then the
control action (25) can be adapted to be

ui(k) := ū∗i (0;xi(k)) +KNi
(xNi

(k)− x̄∗Ni
(0;xi(k))),

where the mismatch of local states for Agent i is attenu-
ated by local feedback gain KNi

.

With the proposed robust DMPC controller, recursive
feasibility of the closed-loop system is summarised.

Theorem 1 (Recursive feasibility) Consider that
Assumptions 1-3 and the conditions of Lemma 1 hold.
For any feasible initial condition xi(0), ∀i ∈ M, the
closed-loop system (1) with (22) is recursively feasible.

PROOF. See Appendix A.1.

Since the closed-loop system is recursively feasible, we
next consider the closed-loop stability.
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Theorem 2 (ISS stability) Consider that Assump-
tions 1-3 and the conditions of Lemma 1 hold. For any
feasible initial condition xi(0), ∀i ∈ M, the closed-loop
system (1) with (5) and (22) is ISS stable.

PROOF. See Appendix A.2.

5 Synthesis and design for robust DMPC

In this section, we propose a synthesis method to design
feedback control gains and robust adaptive local termi-
nal sets needed for implementation of the theoretical
results underpinning the robust DMPC algorithm that
were introduced in Section 3.

5.1 Synthesis of local feedback gains

We first present a synthesis method to find a global feed-
back gainK as well as local feedback gainsKNi

, ∀i ∈ M.

5.1.1 Synthesis of K

Consider the convex sets in the polytopic forms:

X :=
{

x ∈ R
n : a⊤i x ≤ di, i = 1, . . . , nr

}

, (26a)

U :=
{

u ∈ R
m : h⊤j u ≤ gj, j = 1, . . . ,mr

}

, (26b)

where ai ∈ Rn, hj ∈ Rm, di ∈ R, gj ∈ R with non-
zero elements, and nr and mr are the number of linear
constraints of X and U .

We also consider the disturbance set.

W := {w ∈ R
n : |w| ≤ v}

:=
{

w ∈ R
n : w⊤Ww ≤ 1

}

,
(27)

where v ∈ Rn with assuming non-zero elements and a
diagonal matrixW ∈ Sn≻0. Besides,W = W1×· · ·×Wn.

In general, the synthesis objectives for K are concluded
as follows:

• For the system (1) with (11), there exists a matrix
P ∈ Sn≻0 such that the set

Z :=
{

x ∈ R
n : x⊤Px ≤ 1

}

, (28)

is a minimum RPI set, ∀k ∈ N, ∀w ∈ W . From the
definition of R(t), it holds R(t) ⊆ Z, ∀t ∈ N.

• The tightened constraint sets X̄ (N) and Ū(N) are
non-empty.

Based on these objectives, the following result provides
a condition to find the RPI set Z.

Theorem 3 Given the set W defined in (27). If there
exist matrices S ∈ Sn≻0, Y ∈ Rm×n, and two scalars
τ1 ≥ 0, τ2 ≥ 0 such that









τ2W I 0

⋆ S AS +BY

⋆ ⋆ 1
τ1
S









� 0, (29a)

τ1 + τ2 ≤ 1, (29b)

then Z is an RPI set, that is, x(k + 1) ∈ Z, for any
x(k) ∈ Z, ∀w(k) ∈ W, ∀k ∈ N. Moreover, P = S−1 and
K = Y S−1.

PROOF. See Appendix B.1.

Another objective is to make sure X̄ (N) and Ū(N) are
non-empty, which can be satisfied if X ⊖Z and U ⊖KZ
are non-empty due to R(t) ⊆ Z, ∀t ∈ N. We give the
corresponding conditions in the following theorem.

Theorem 4 Given the convex sets in (26)-(27). For the
RPI set Z in (28), if there exist matrices S ∈ Sn≻0, Y ∈
Rm×n such that

[

d2i a⊤i S

⋆ S

]

� 0, i = 1, . . . , nr, (30a)

[

g2j h⊤j Y

⋆ S

]

� 0, j = 1, . . . ,mr, (30b)

then the sets X ⊖Z and U ⊖KZ are non-empty. More-
over, P = S−1 and K = Y S−1.

PROOF. See Appendix B.2.

As a result, the auxiliary control gain K can be synthe-
sised via offline solving the following optimisation with
the objective of finding a minimum RPI set Z.

minimise
S,G,Y,τ2,µ

trace(S), (31)

subject to (29)-(30), for given τ1 > 0.

Remark 6 If we choose a structuredP for the Lyapunov
candidate function, i.e.

V (x) =
∑

i∈M

x⊤Ni
PNi

xNi
=

∑

i∈M

x⊤P̄ix,
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where PNi
∈ S

ni

≻0 and P̄i = T⊤
Ni
PNi

TNi
, then we may

find an RPI set for xNi

ZNi
:=

{

xNi
∈ R

nNi : x⊤Ni
PNi

xNi
≤ ϕi

}

, ∀i ∈ M,

where PNi
∈ S

nNi

≻0 , ϕi ≥ 0 and
∑

i∈M ϕi ≤ 1. The syn-
thesis condition can be found in (Conte et al., 2013, (21)-
(25)).

5.1.2 Synthesis of KNi

For a non-empty disturbance set, it may become more
challenging to apply a centralised constraint tighten-
ing approach as the system order increases. Instead, a
distributed robust constraint tightening approach can
be implemented with local feedback control gains KNi

,
∀i ∈ M so that less conservative tightening may be ap-
plied. We next present the synthesis conditions for find-
ing these local feedback control gains.

Corollary 1 For each agent i ∈ M, if there ex-
ist matrices Si ∈ S

ni

≻0 with Sij = TNi
T⊤
j SjTjT

⊤
Ni

,

Gi ∈ R
nNi

×nNi , Yi ∈ R
mi×nNi , and two scalars τ̄i ≥ 0,

τ̄ij ≥ 0, ∀j ∈ Ni such that













τ̄iWi I 0

⋆ Si ANi
Gi +BiYi

⋆ ⋆ Gi +G⊤
i −

∑

j∈Ni

Sij

τ̄ij













� 0, (32a)

τ̄i +
∑

j∈Ni

τ̄ij ≤ 1, (32b)

then Zi =
{

xi ∈ Rni : x⊤i Pixi ≤ 1
}

is an RPI set, that
is, xi(k + 1) ∈ Zi, ∀xi(k) ∈ Zi, ∀wi(k) ∈ Wi, ∀k ∈ N.
Moreover, Pi = S−1

i and KNi
= YiG

−1
i .

PROOF. See Appendix B.3.

Deriving from (26), the local constraints on states and
inputs are considered as follows:

Xi :=
{

xi ∈ R
ni : a⊤ilxi ≤ dil, l = 1, . . . , nri

}

, (33a)

Ui :=
{

ui ∈ R
mi : h⊤ipui ≤ gip, p = 1, . . . ,mri

}

, (33b)

and the local disturbance set

Wi := {wi ∈ R
ni : |wi| ≤ vi}

=
{

wi ∈ R
ni : w⊤

i Wiwi ≤ 1
}

.
(34)

Corollary 2 For each agent i ∈ M, if there ex-
ist matrices Si ∈ S

ni

≻0 with Sij = TNi
T⊤
j SjTjT

⊤
Ni

,

Gi ∈ R
nNi

×nNi , Yi ∈ R
mi×nNi , and scalars τ̃ijp ≥ 0,

∀j ∈ Ni, p = 1, . . . ,mri such that

[

d2il a⊤ilSi

⋆ Si

]

� 0, l = 1, . . . , nri, (35)

and







gip h⊤ipYi

⋆ Gi +G⊤
i −

∑

j∈Ni

Sij

τ̃ijp






� 0, p = 1, . . . ,mri ,

(36a)
∑

j∈Ni

τ̃ijp ≤ gip, (36b)

then the tightened constraint sets on states and inputs
are non-empty. Moreover, Pi = S−1

i and KNi
= YiG

−1
i .

PROOF. The proof follows directly from the proofs of
Theorem 4 and Corollary 1. ✷

5.2 Synthesis of terminal gains and costs

Considering the terminal cost function defined in (17),
for each agent i ∈ M, we have Vfi (xi) = x⊤i Pfixi with
Pfi ∈ S

ni

≻0. We also consider the relaxation function as

γi(xNi
) = x⊤Ni

ΓixNi
with Γi ∈ S

nNi

�0 . The terminal gain
Kfi and the matrix Pfi for i ∈ M can be obtained by
using (Conte et al., 2016, Lemma 10).

5.3 Conditions for robust local adaptive terminal sets

To implement the optimisation problem (22), we need
conditions for the terminal constraint (22e). Based on
Definition 1, we give the condition for robust adaptive
local terminal sets in the following theorem.

Theorem 5 Given the system (2) with K, Fi and Kfi ,
∀i ∈ M. For each agent i ∈ M, if there exist scalars αi,
and σi ≥ 0, σij ≥ 0, ∀j ∈ Ni such that













∑

j∈Ni

σijFij (α
1
2

Ni
)⊤A⊤

Kfi
0

⋆ α
1
2

i F
−1
i AKfi

⋆ ⋆ σiENi













� 0 (37a)

σi +
∑

j∈Ni

σij ≤ α
1
2

i , (37b)

where αNi
= TNi

αT⊤
Ni

, α = diag(α1In1
, . . . , αMInM

),

Fij = TNi
T⊤
i FiTiT

⊤
Ni

, andENi
= TNi

AN−1
K W (TNi

AN−1
K )⊤,

then the condition (21) is satisfied.

7



PROOF. See Appendix B.4.

Let ΩfNi
=×j∈Ni

Ωfj (αj), ∀i ∈ M. Any state xfNi
∈

ΩfNi
should satisfy

xfNi
∈ XNi

=×
j∈Ni

Xj , (38a)

KfixfNi
∈ Ui, (38b)

whereXNi
:=

{

xNi
∈ Rn : ā⊤ilxNi

≤ d̄il, l = 1, . . . , nrNi

}

.

Theorem 6 For each agent i ∈ M, if there exist scalars
φijl ≥ 0, ∀j ∈ Ni, l = 1, . . . , nrNi

, and ψijp ≥ 0, ∀j ∈
Ni, p = 1, . . . ,mri such that







∑

j∈Ni

φijlFij (α
1
2

Ni
)⊤āil

⋆ d̄il






� 0, (39a)

∑

j∈Ni

φijl ≤ d̄il, l = 1, . . . , nrNi
, (39b)

and







∑

j∈Ni

ψijpFij (α
1
2

Ni
)⊤K⊤

fi
hip

⋆ gip






� 0, (40a)

∑

j∈Ni

ψijp ≤ gip, p = 1, . . . ,mri , (40b)

then the conditions in (38) are satisfied.

PROOF. See Appendix B.5.

Moreover, by using the Schur complement, the con-
straint (22e) can be rewritten as





α
1
2

i x̄i(N)⊤

⋆ α
1
2

i F
−1
i



 � 0, ∀i ∈ M. (41)

To this end, the conditions for the constraint (22e)
in (22) can be summarised as follows:

x̄i(N) ∈ Ωfi(αi) ⇔ (37), (39), (40), (41),

for given Fi, Kfi . The decision variables are α
1
2

i , σi,

σij , φijl and ψijl. Besides, α
1
2

Ni
= TNi

αT⊤
Ni

and α
1
2 =

diag(α
1
2

1 In1
, . . . , α

1
2

MInM
).

5.4 Summary of robust DMPC algorithm

The proposed robust DMPC algorithm has both of-
fline (synthesis) and online (optimisation) components.
These are summarised in Algorithm 1 and 2, respec-
tively.

Algorithm 1 Offline synthesis of K/KNi
, Kfi and Pfi

1: Solve the optimisation problem (31) to obtain K
or alternatively use conditions in Corollary 1-2 to
obtain KNi

.
2: for t = 0, . . . , N − 1 do
3: Compute the set R(t) based on (14).
4: Compute the tightened constraint sets X̄ (t) and

Ū(t) based on (13).
5: Project the global constraint sets into local ones

X̄Ni
(t) and Ūi(t) based on (16).

6: end for
7: Obtain Kfi and Pfi for each agent i ∈ M.

Algorithm 2 Online robust DMPC

1: Choose and fix Fi = Pfi and Kfi from the offline
synthesis for each agent i ∈ M.

2: while k ≥ 0 do
3: Each agent i ∈ M measures its local current

state xi(k).
4: Solve optimisation problem (22) with condi-

tions (37), (39), (40), (41) for terminal constraints
by distributed optimisation, where agents Ni itera-
tively communicate.

5: Apply ui(k) = κN (xi(k)) as in (24).
6: end while

6 Simulation results

In this section, we use a mass-spring-damper system to
demonstrate the proposed robust DMPC. Let us con-
sider the system as shown in Fig. 1.

m3 m2 m1

b1b2

k1k2

k3

u3 u2 u1

x̃3 x̃2 x̃1

Fig. 1. The chain of three masses, connected by springs and
dampers.

Let the vectors of states and inputs be selected as x =
[

x̃1, ˙̃x1, x̃2, ˙̃x2, x̃3, ˙̃x3
]⊤

∈ R
6 and u = [u1, u2, u3]

⊤ ∈ R
3.

The continuous-time state-space model with additive

8



disturbances can be formulated as follows:

ẋ =











0 1 0 0 0 0

−
k1
m1

−
b1
m1

k1
m1

b1
m1

0 0

0 0 0 1 0 0
k1
m2

b1
m2

−
k1+k2

m2
−

b1+b2
m2

k2
m2

b2
m2

0 0 0 0 0 1

0 0
k2
m3

b2
m3

−
k2+k3

m3
−

b2
m3











x

+









0 0 0
1

m1
0 0

0 0 0
0 1

m2
0

0 0 0
0 0 1

m3









u+









w1

w2

w3









.

where the parameters of masses, spring constants and
damping coefficient are chosen asymmetricallywith k1 >
k2 > k3 and b1 > b2 from m1,m2,m3 ∈ [5, 10] kg,
k1, k2, k3 ∈ [0.8, 1.2]N · m and b1, b2 ∈ [0.8, 2] kg/s, re-
spectively. The resulting discrete-time LTI system in the
form of (1) can be obtained by using the Euler discreti-
sation method to the above continuous-time state-space
model with the sampling time Ts = 0.1s. Each mass
i ∈ M := {1, 2, 3} with the external force ui can be
considered as one agent. Asymmetric constraints are im-
posed as

X1 =
{

x1 ∈ R
2 : [−10,−10]⊤ ≤ x1 ≤ [10, 10]⊤

}

,

X2 =
{

x2 ∈ R
2 : [−2,−3]

⊤ ≤ x2 ≤ [2, 3]
⊤
}

,

X3 =
{

x3 ∈ R
2 : [−3,−5]

⊤ ≤ x3 ≤ [3, 5]
⊤
}

,

U =
{

u ∈ R
3 : |u1| ≤ 10, |u2| ≤ 1.5, |u3| ≤ 5

}

,

and the disturbances are unknown but bounded in given
sets

W1 =
{

w1 ∈ R
2 : [−0.15,−0.3]≤ w1 ≤ [0.15, 0.3]⊤

}

,

W2 =
{

w2 ∈ R
2 : [−0.05,−0.1]≤ w2 ≤ [0.05, 0.1]

⊤
}

,

W3 =
{

w3 ∈ R
2 : [−0.05,−0.1]≤ w3 ≤ [0.05, 0.1]

⊤
}

.

Table 1
Parameters for robust DMPC.

QNi
Ri

Agent 1 diag(10, 10) 0.1

Agent 2 diag(1, 1) 0.01

Agent 3 diag(2.5, 2.5) 0.05

The weighting matrices for the stage cost functions are
given in Table 1.

For comparison, in the closed-loop simulations, we
have implemented the nominal DMPC proposed
in (Darivianakis et al., 2020) with this uncertain system.
The initial condition x(0) = [−5,−3, 1.2, 1,−1,−2]⊤ is

(a) Case 1

(b) Case 2

Fig. 2. State trajectories under nominal DMPC with noise
sequences leading to infeasibility.

Fig. 3. State trajectories under robust DMPC, and local
terminal sets.

given and the prediction horizon is considered asN = 5.
With a number of realisations of the disturbance se-
quences sampled from W1 × W2 × W3, two sequences
leading to infeasible closed-loop results were identified

9



Table 2
Synthesis results for robust DMPC.

KNi
Kfi Pfi

Agent 1
[

−0.29 −0.88 −0.67 −0.82
] [

−7.68 −11.99 −0.26 −0.33]
]





151.92 57.76

57.76 92.08





Agent 2
[

−0.57 −0.70 −0.29 −0.83 −0.70 −0.28
] [

−0.29 −0.38 −12.39 −19.07 −0.11 −0.17
]





25.95 14.23

14.23 21.53





Agent 3
[

−0.41 −1.21 −1.01 −3.17
] [

−0.127− 0.19 −9.69 −15.30
]





68.39 40.33

40.33 62.28





20 40 60 80 100 120 140

60

80

100

120

140

160

Fig. 4. The optimal αi(k).

and denoted ’Case 1’ and ’Case 2’. The closed-loop state
trajectories of three agents are shown in Fig. 2.

The same disturbance sequences are now applied to the
closed-loop system with the proposed robust DMPC
controller. Offline implementation of Algorithm 1, leads
to the local feedback gains and terminal cost matrices
along with the terminal feedback gains shown in Ta-
ble 2. The online implementation of Algorithm 2 then al-
lows the closed-loop trajectories to be determined for the
same disturbance sequences that led to infeasibility with
the nominal controller. As illustrated in Fig. 3, the feasi-
bility of the closed-loop system is now retained, thereby
validating the results of Theorem 1. Similarly, the con-
vergence of the system towards the origin demonstrates
that the desired ISS property is achieved, thereby vali-
dating Theorem 2. This stability is further illustrated by
plotting the trajectories of the αi parameters in Fig. 4,
leading to the ellipsoidal terminal sets shown in Fig. 3.

7 Conclusions

In this paper, we have proposed a robust DMPC formu-
lation for discrete-time LTI systems subject to distur-
bances. The closed-loop system with the proposed ro-
bust DMPC controller has been proved to be recursively

feasible and ISS stable in the presence of unknown-but-
bounded disturbances.We have presented algorithms for
the offline (synthesis) problem as well as the online (op-
timisation) problem that have provable guarantees. As
a future direction, the proposed robust DMPC formu-
lation can be extended into tracking DMPC as well as
economic DMPC.
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A Proofs in Section 4

A.1 Proof of Theorem 1

The feasible solutions of (22) at any time step k ≥ 0 are
denoted as in (23). The control action at time step k is
chosen to be ui(k) = κN(xi(k)) as in (24). Due to the
constraint (22f), the control action ui(k) = κN (xi(k))
also satisfies (25).

According to the constraints (22c)-(22d), the corre-
sponding closed-loop state xi(k) and ui(k) are feasible
at time step k, that is, xi(k) ∈ Xi and ui(k) ∈ Ui when
t = 0. After applying the optimal control action (24),
we can obtain xi(k + 1) from the system (1).

Referring to (25), with xi(k + 1), ∀i ∈ M and feasible
solution at time step k, we define a sequence of shifted
nominal control inputs

ūi(t;xi(k + 1)) := ū∗i (t+ 1;xi(k))

+ LiK(x̄(t;x(k + 1))− x̄∗(t+ 1;x(k))),
(A.1)

for t = 0, . . . , N − 2, ∀i ∈ M, and when t = N − 1,

ūi(N−1;xi(k+1)) := Kfi x̄Ni
(N−1;xi(k+1)). (A.2)

10



We can also define the shifted error for the global system
states as

ē(t) := x̄(t;x(k + 1))− x̄∗(t+ 1;x(k)), (A.3)

with

ē(0) = x̄(0;x(k + 1))− x̄∗(1;x(k))

= x(k + 1)− coli∈M {ANi
xNi

(k) +BiκN (xi(k))}

= w(k) ∈ W .

With (A.1), the shifted error dynamics can be described
as

ē(t+ 1) = coli∈M {(ANi
TNi

+BiUiK) ē(t)}

= AK ē(t).
(A.4)

From ē(0) and (A.4), we denote shifted error sets ē(t) ∈
Ē(0) = W , and ē(t) ∈ Ē(t) = At

KW , t ≥ 1, ∀i ∈ M.

We now check the feasibility of all the constraints in (22)
at time step k + 1, ∀i ∈ M.

• State constraint (22c): for t = 0, 1, . . . , N − 1,

x̄Ni
(t;xi(k + 1)) ∈ x̄∗Ni

(t+ 1;xi(k))⊕ TNi
Ē(t)

⊆ X̄Ni
(t+ 1)⊕ TNi

Ē(t)

= TNi
X ⊖ TNi

{

R(t+ 1)⊖ Ē(t)
}

= TNXi ⊖ TNi
R(t)

= X̄Ni
(t).

• Input constraint (22d): for t = 0, 1, . . . , N − 1,

ūi(t;xi(k + 1)) ∈ ū∗i (t+ 1;xi(k)) ⊕ LiKĒ(t)

⊆ Ūi(t+ 1)⊕ LiKĒ(t)

= LiUi ⊖ LiK
{

R(t+ 1)⊖ Ē(t)
}

= LiUi ⊖ LiKR(t)

= Ūi(t).

• Terminal constraint (22e): Since

x̄i(N − 1;xi(k + 1)) ∈ x̄∗i (N ;xi(k))⊕ TiĒ(N − 1)

⊆ Ωfi(αi)⊕ TiĒ(N − 1),

and then by using the terminal control law (A.2),
when t = N , it holds x̄i(N ;xi(k+1)) ∈ Ωfi(αi) by
the condition (21) in Definition 1.

• Initial condition constraint (22f): x̄i(0;xi(k+1)) =
xi(k + 1).

Thus, the optimisation problem (22) is also feasible at
time step k + 1, ∀k ≥ 0. ✷

A.2 Proof of Theorem 2

Denote the optimal cost of (22) at any time step k ≥
0 as V ∗

N (x(k)) :=
∑

i∈M V ∗
Ni

(xi(k)). Since V
∗
N (x(k)) is

positive-definite and continuous in a neighbourhood of
the coordinate origin, there exist K functions β1 and β2
such that β1(‖x(k)‖) ≤ V ∗

N (x(k)) ≤ β2(‖x(k)‖). Then,
at time step k + 1, let us define

∆VN :=VN (x(k + 1))− V ∗
N (x(k))

=
∑

i∈M

(

VNi
(xi(k + 1))− V ∗

Ni
(xi(k))

)

,

where for i ∈ M,

VNi
(xi(k + 1))− V ∗

Ni
(xi(k))

=Vfi(x̄i(N ;xi(k + 1)))− V ∗
fi
(x̄i(N ;xi(k)))

+

N−1
∑

t=0

(ℓi(x̄Ni
(t;xi(k + 1)), ūi(t;xi(k + 1)))

−
N−1
∑

t=0

(

ℓi(x̄
∗
Ni

(t;xi(k)), ū
∗
i (t;xi(k))

)

=‖x̄i(N ;xi(k + 1))‖2Pfi
− ‖x̄i(N ;xi(k))‖

2
Pfi

+
N−1
∑

t=0

(

‖x̄Ni
(t;xi(k + 1))‖2QNi

+ ‖ūi(t;xi(k + 1))‖2Ri

)

−
N−1
∑

t=0

(

∥

∥x̄∗Ni
(t;xi(k))

∥

∥

2

QNi

+ ‖ū∗i (t;xi(k))‖
2
Ri

)

.

For t = 0, 1, . . . , N − 2, from (A.3)-(A.4), we have

x̄Ni
(t;xi(k + 1))− x̄∗Ni

(t+ 1;xi(k)) = TNi
ē(t)

= TNi
At

Kw(k).

Then, it follows

‖x̄Ni
(t;xi(k + 1))‖2QNi

−
∥

∥x̄∗Ni
(t+ 1;xi(k))

∥

∥

2

QNi

=‖At
Kw(k)‖

2
Q̄i

+ 2(T⊤
Ni
QNi

x̄∗Ni
(t+ 1;xi(k)))

⊤At
Kw(k)

≤‖At
Kw(k)‖

2
Q̄i

+ 2‖T⊤
Ni
QNi

x̄∗Ni
(t+ 1;xi(k))‖‖A

t
Kw(k)‖

≤‖At
Kw(k)‖

2
Q̄i

+ 2ci,1‖A
t
Kw(k)‖,

where Q̄i = T⊤
Ni
QNi

TNi
, and ci,1 is an upper bound of

‖T⊤
Ni
QNi

x̄Ni
‖ for given matrices TNi

and QNi
, ∀x̄Ni

∈
TNi

X .

Similarly, due to (A.1), we have

ūi(t;xi(k + 1))− ū∗i (t+ 1;xi(k))

=LiKē(t) = LiKA
t
Kw(k).

11



Then, it follows

‖ūi(t;xi(k + 1))‖2Ri
− ‖ū∗i (t+ 1;xi(k))‖

2
Ri

≤‖At
Kw(k)‖

2
R̄i

+ 2ci,2‖A
t
Kw(k)‖,

where R̄i = K⊤L⊤
i RiLiK, and ci,2 is an upper bound

of ‖K⊤L⊤
i Riūi‖ for given matrices K, Li and Ri, ∀ui ∈

LiU .

When t = N − 1, we can obtain x̄Ni
(N − 1;xi(k +

1)) − x̄∗Ni
(N ;xi(k)) = TNi

AN−1
K w(k). Besides, based

on (A.2), we can derive

‖x̄Ni
(N − 1;xi(k + 1))‖2QNi

+ ‖ūi(N − 1;xi(k + 1))‖2Ri

= ‖x̄Ni
(N − 1;xi(k + 1))‖2QNi

+K⊤
fi
RiKfi

≤
∥

∥x̄∗Ni
(N ;xi(k))

∥

∥

2

QNi
+K⊤

fi
RiKfi

+ ‖AN−1
K w(k)‖2

Q̄fi

+ 2ci,3‖A
N−1
K w(k)‖,

where Q̄fi = T⊤
Ni

(

QNi
+K⊤

fi
RiKfi

)

TNi
, and ci,3 is an

upper bound of ‖T⊤
Ni

(QNi
+ K⊤

fi
RiKfi)x̄Ni

‖, for given
matrices TNi

, QNi
, Ri and Kfi , ∀x̄Ni

∈ TNi
X .

Based on a shifted control input from (A.2) at the
prediction step N , we know x̄∗i (N + 1;xi(k)) =
AKfi

x̄∗Ni
(N ;xi(k)), which gives

‖x̄∗i (N + 1;xi(k))‖
2
Pfi

= ‖x̄∗Ni
(N ;xi(k))‖

2
A⊤

Kfi

Pfi
AKfi

.

Also based on shifted control inputs from (A.1) and (A.2)
at the prediction step N , it also comes

x̄i(N ;xi(k + 1))− x̄∗i (N + 1;xi(k)) = AKfi
TNi

AN−1
K w(k).

Therefore, we have

‖x̄i(N ;xi(k + 1))‖2Pfi

≤‖x̄∗Ni
(N ;xi(k))‖

2
A⊤

Kfi

Pfi
AKfi

+ ‖AN−1
K w(k)‖2

P̄fi

+ 2ci,4‖A
N−1
K w(k)‖,

where P̄fi = T⊤
Ni
A⊤

Kfi
PfiAKfi

TNi
, and ci,4 is an upper

bound of ‖T⊤
Ni
A⊤

Kfi
Pfixi‖ for given matrices Kfi and

Pfi .

From the condition (19c), we have

‖x̄∗Ni
(N ;xi(k))‖

2
A⊤

Kfi

Pfi
AKfi

− ‖x̄∗i (N ;xi(k))‖
2
Pfi

≤−
∥

∥x̄∗Ni
(N ;xi(k))

∥

∥

2

QNi
+K⊤

fi
RiKfi

+ γi(x̄
∗
Ni

(N ;xi(k))).

As a result, we thus obtain

VNi
(xi(k + 1))− V ∗

Ni
(xi(k))

≤γi(x̄
∗
Ni

(N ;xi(k))) + λi(‖wi(k)‖)

− ‖x̄∗Ni
(0;xi(k))‖

2
QNi

− ‖ū∗i (0;xi(k))‖
2
Ri

where

λi(‖w(k)‖) =
N−2
∑

t=0

(

‖At
Kw(k)‖

2
Q̄i

+ 2ci,1‖A
t
Kw(k)‖

+ ‖At
Kw(k)‖

2
R̄i

+ 2ci,2‖A
t
Kw(k)‖

)

+ ‖AN−1
K w(k)‖2

Q̄fi

+ 2ci,3‖A
N−1
K w(k)‖

+ ‖AN−1
K w(k)‖2

P̄fi

+ 2ci,4‖A
N−1
K w(k)‖,

By optimality, we know V ∗
Ni
(xi(k + 1) ≤ VNi

(xi(k + 1).
Then, by proceed with sum, we can obtain with (19d)

V ∗
N (x(k + 1))− V ∗

N (x(k))

≤
∑

i∈M

(

−‖x̄∗Ni
(0;xi(k))‖

2
QNi

+ λi(‖w(k)‖)
)

,

which is an ISS-Lyapunov function as stated in [Defini-
tion 7 ](Limon et al., 2009). Thus, the closed-loop sys-
tem is ISS stable. ✷

B Proofs in Section 5

B.1 Proof of Theorem 3

The condition of the RPI set can be written as
x(k + 1) ∈ Z, ∀x(k) ∈ Z and ∀w ∈ W . By using the
S-procedure (Boyd, El Ghaoui, Feron, & Balakrishnan,
1994, Chapter 2.6.3), the above condition is satisfied if
there exist τ1 ≥ 0, τ2 ≥ 0 such that









−A⊤
KPAK −A⊤

KP 0

−PAK −P 0

0 0 1









− τ1









−P 0 0

0 0 0

0 0 1









− τ2









0 0 0

0 −W 0

0 0 1









� 0

The above condition is equivalent to (29b) and

[

τ1P 0

0 τ2W

]

−

[

A⊤
K

I

]

P
[

AK I
]

� 0.
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By using the Schur complement to the above condition,
we can obtain









τ1P 0 A⊤
K

0 τ2W I

AK I P−1









� 0.

Again, by using the Schur complement, we have

[

τ2W I

I P−1

]

−

[

0

AK

]

(τ1P )
−1

[

0 A⊤
K

]

� 0.

By using the Schur complement to the above condition
with setting Y = KP−1 and S = P−1, we thus ob-
tain (29a). ✷

B.2 Proof of Theorem 4

First, let us discuss the condition to guarantee X ⊖ Z.
By using the results in (Boyd & Vandenberghe, 2004,
Chapter 8.4.2), the condition to guarantee Z ⊆ X can
be expressed as

∥

∥

∥P− 1
2 aj

∥

∥

∥ ≤ dj , j = 1, . . . , nr.

which can be rewritten as

d2j − a⊤j P
−1aj ≥ 0, j = 1, . . . , nr.

By using the Schur complement to the above condition
with setting Y = KP−1 and S = P−1, we can ob-
tain (30a).

Then, similarly, considering U defined in (26b) and the
control gain K, we have h⊤j Kx ≤ gj, j = 1, . . . ,mr.
The condition to guarantee non-empty U ⊖KZ can be
expressed as

g2j − h⊤j P
−1hj ≥ 0, j = 1, . . . ,mr.

By using the Schur complement to the above condition,
we thus obtain (30b). ✷

B.3 Proof of Corollary 1

Similar to the proof of Theorem 3, for each agent i, the
condition xi(k + 1) ∈ Zi, ∀xi(k) ∈ Zi and ∀wi ∈ Wi is

satisfied if there exist two scalars τ̄i ≥ 0, τ̄ij ≥ 0, ∀j ∈ Ni

such that (32b) and







∑

j∈Ni

τ̄ijPij 0

0 τ̄iWi






−





A⊤
KNi

I



Pi

[

AKNi
I
]

� 0,

with AKNi
:= ANi

+ BiKNi
. By using the Schur com-

plement twice, the above condition is equivalent to

[

τ̄iWi I

I P−1
i

]

−

[

0

AKNi

]





∑

j∈Ni

τ̄ijPij





−1
[

0 A⊤
KNi

]

� 0.

Pre-multiplying and post-multiplying (32a) by [I −Θi]

and [I −Θi]
⊤

with ΘT
i =

[

0 A⊤
KNi

]

can obtain

the above condition with setting Si = P−1
i and

Yi = KNi
Gi. ✷

B.4 Proof of Theorem 5

From the condition (21), we have

AKfi
(xNi

+ eNi
) ∈ Ωfi(αi), ∀xj ∈ Ωfj (αj), ∀j ∈ Ni,

and ∀eNi
∈ ĒNi

(N − 1), which is equivalent to

(xNi
+ eNi

)⊤A⊤
Kfi

FiAKfi
(xNi

+ eNi
) ≤ αi,

for all x⊤j Fixj ≤ αj , ∀j ∈ Ni, and e
⊤
Ni
ENi

eNi
≤ 1.

Refer to (Darivianakis et al., 2020, Proposition 2), we

set xi = α
1
2

i si, xNi
= α

1
2

Ni
sNi

and eNi
= α

1
2

Ni
zNi

.

The above condition is equivalent to

(sNi
+ zNi

)⊤(AKfi
α

1
2

Ni
)⊤FiAKfi

α
1
2

Ni
(sNi

+ zNi
) ≤ αi,

for all s⊤Ni
FijsNi

≤ 1, ∀j ∈ Ni,

and z⊤Ni
(α

1
2

Ni
)⊤ENi

α
1
2

Ni
zNi

≤ 1.

By using the S-procedure (Boyd et al., 1994, Chapter
2.6.3), the above condition is satisfied if there exist
scalars σi ≥ 0, σij ≥ 0, ∀j ∈ Ni, ∀i ∈ M such that (37b)
and






∑

j∈Ni

σijFij 0

0 (α
1
2

Ni
)⊤σiENi

α
1
2

Ni







−





(AKfi
α

1
2

Ni
)⊤

(AKfi
α

1
2

Ni
)⊤



α
− 1

2

i Fi

[

AKfi
α

1
2

Ni
AKfi

α
1
2

Ni

]

� 0.
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By using the Schur complement and arranging its rows
and columns, we can obtain













∑

j∈Ni

σijFij (α
1
2

Ni
)⊤A⊤

Kfi
0

⋆ α
1
2

i F
−1
i AKfi

α
1
2

Ni

⋆ ⋆ (α
1
2

Ni
)⊤σiENi

α
1
2

Ni













� 0.

Again, by using the Schur complement twice, we thus
obtain (37a). ✷

B.5 Proof of Theorem 6

Also based on the results in (Boyd & Vandenberghe,
2004, Chapter 8.4.2), the condition for Ωfi(αi) satisfy-

ing XNi
=×j∈Ni

Xj can be formulated as

∥

∥ā⊤ilxNi

∥

∥ ≤ d̄il, for all x
⊤
j Fixj ≤ αj , ∀j ∈ Ni,

for each l = 1, . . . , nrNi
.

Set xi = α
1
2

i si, xNi
= α

1
2

Ni
sNi

. The above condition is
equivalent to

s⊤Ni
(α

1
2

Ni
)⊤āild̄

−1
il ā

⊤
ilα

1
2

Ni
sNi

≤ d̄il,

for all s⊤Ni
FijsNi

≤ 1, ∀j ∈ Ni,

which is satisfied if there exist scalars φijl ≥ 0, ∀j ∈ Ni

such that (39b) and

∑

j∈Ni

φijlFij − (α
1
2

Ni
)⊤āild̄

−1
il ā

⊤
ilα

1
2

Ni
� 0.

By using the Schur complement to the above condition,
we thus obtain (39a).

On the other hand, following the same procedure, we
have

x⊤Ni
K⊤

fi
hipg

−1
ip h

⊤
ipKfixNi

≤ gip,

for all x⊤j Fixj ≤ αj , ∀j ∈ Ni,

for each p = 1, . . . ,mri , is satisfied, if the conditions
in (40) hold. ✷
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