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Abstract

We present a methodology for stabilization of general nonlinear systems with actuator dynamics governed by general, quasilinear, first-
order hyperbolic PDEs. Since for such PDE-ODE cascades the speed of propagation depends on the PDE state itself (which implies
that the prediction horizon cannot be a priori known analytically), the key design challenge is the determination of the predictor state.
We resolve this challenge and introduce a PDE predictor-feedback control law that compensates the transport actuator dynamics. Due to
the potential formation of shock waves in the solutions of quasilinear, first-order hyperbolic PDEs (which is related to the fundamental
restriction for systems with time-varying delays that the delay rate is bounded by unity), we limit ourselves to a certain feasibility region
around the origin and we show that the PDE predictor-feedback law achieves asymptotic stability of the closed-loop system, providing an
estimate of its region of attraction. Our analysis combines Lyapunov-like arguments and ISS estimates. Since it may be intriguing as to
what is the exact relation of the cascade to a system with input delay, we highlight the fact that the considered PDE-ODE cascade gives
rise to a system with input delay, with a delay that depends on past input values (defined implicitly via a nonlinear equation).

1 Introduction

1.1 Motivation

Numerous processes may be described by quasilinear,
first-order hyperbolic Partial Differential Equations (PDEs)
cascaded with nonlinear Ordinary Differential Equations
(ODEs), such as, for example, communication networks
[19], blood flow [7], sewer networks [15], production sys-
tems [20], vehicular traffic flow [21], piston dynamics [32],
and automotive engines [16], [23], [28] to name only a few
[36]. Despite their popularity, despite the fact that predictor-
based control laws now exist for nonlinear systems with
input delays that may depend on the ODE state [2], [3], [4],
[5], [11], [12] as well as the uncontrolled- or controlled-
boundary value of the PDE state [8], [9], [10], [17], and
despite the existence of several results on boundary stabi-
lization of quasilinear, first-order hyperbolic PDEs, such as,
for example, [6], [13], [22], [29], [37], [39], [40], no result
exists on the compensation of actuator dynamics governed
by quasilinear, first-order hyperbolic PDEs for nonlinear
systems.

Email addresses: nikos.bekiaris@dssl.tuc.gr
(Nikolaos Bekiaris-Liberis), krstic@ucsd.edu (Miroslav
Krstic).
1 Corresponding author.

1.2 Contributions

In this paper, we consider the problem of stabilization of
nonlinear ODE systems through transport actuator dynam-
ics governed by quasilinear, first-order hyperbolic PDEs. We
develop a novel PDE predictor-feedback law, which com-
pensates the PDE actuator dynamics. Since the speed of
propagation depends on the PDE state itself, the key idea
in our design is the construction of the PDE predictor state.
This construction is by far non-trivial and cannot follow in a
straightforward way employing the results from [17], which
is perhaps the only available work dealing with the problem
of complete compensation of an input-dependent input delay
(note that the designs in [9], [10], [8], don’t aim at achieving
complete delay compensation). The reason is that the trans-
port speed in the class of systems considered in [17] depends
only on the uncontrolled-boundary value of the PDE state
rather than on the PDE state itself, as it is the case here.

Furthermore, we show that the PDE predictor-feedback de-
sign achieves local asymptotic stability in the C1 norm of
the actuator state. The reason for obtaining only a regional
result, restricting the C1 norm of the PDE state, is the pos-
sibility of appearance of multivalued solutions, or, in other
words, the appearance of shock waves, in the solutions of
quasilinear, first-order hyperbolic PDEs. We show, within
our stability analysis, that this issue is avoided, limiting the
C1 norm of the solutions and the initial conditions. This
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limitation may alternatively be expressed as the fundamen-
tal limitation in stabilization of systems with time-varying
input delays that the delay rate is bounded by unity–for the
class of systems considered here, giving rise to an input de-
lay that depends on the actuator state and its derivative, the
satisfaction of this restriction is guaranteed by confining the
size of the actuator state and its derivative. The proof of
asymptotic stability in the C1 norm of the actuator state is
established employing Lyapunov-like arguments as well as
Input-to-State Stability (ISS) estimates.

In order to make the presentation of our control design
methodology accessible to both readers who are experts on
PDEs and readers who are experts on delay systems we
highlight the relation of the PDE-ODE cascade to a system
with input delay that is defined implicitly through a nonlin-
ear equation, which involves the input value at a time that
depends on the delay itself, and, moreover, we present the
predictor-feedback design in this representation as well.

1.3 Organization

We start in Section 2 where we present the class of systems
under consideration as well as the PDE predictor-feedback
control design. We provide an alternative, delay system rep-
resentation of the considered PDE-ODE cascade in Section
3. In Section 4 we prove the local asymptotic stability of the
closed-loop system under the proposed controller. Conclud-
ing remarks are provided in Section 5.

Notation: We use the common definition of class K, K∞
and KL functions from [27]. For an n-vector, the norm
| · | denotes the usual Euclidean norm. For a scalar func-
tion u ∈ C[0, 1] we denote by ‖u(t)‖∞ its respective
maximum norm, i.e., ‖u(t)‖∞ = maxx∈[0,1] |u(x, t)|.
For a scalar function ux ∈ C[0, 1] we denote by
‖ux(t)‖∞ its respective maximum norm, i.e., ‖ux(t)‖∞ =
maxx∈[0,1] |ux(x, t)|. For a vector valued function p ∈
C[0, 1] we denote by ‖p(t)‖∞ its respective maximum norm,
i.e., ‖p(t)‖∞ = maxx∈[0,1]

√
p1(x, t)2 + . . .+ pn(x, t)2.

For a vector valued function px ∈ C[0, 1] we de-
note by ‖px(t)‖∞ its respective maximum norm, i.e.,
‖px(t)‖∞ = maxx∈[0,1]

√
p1x(x, t)2 + . . .+ pnx(x, t)2.

We denote by Cj(A;E) the space of functions that take
values in E and have continuous derivatives of order j on A.

2 Problem Formulation and Predictor-Feedback Con-
trol Design

We consider the following system

Ẋ(t) = f (X(t), u(0, t)) (1)
ut(x, t) = v (u(x, t))ux(x, t) (2)
u (1, t) =U(t), (3)

where X ∈ Rn and u ∈ R are ODE and PDE states, re-
spectively, t ≥ 0 is time, x ∈ [0, 1] is spatial variable, U

is control input, and f : Rn × R → Rn is a continuously
differentiable vector field that satisfies f(0, 0) = 0.

The following assumptions are imposed on system (1)–(3).

Assumption 1 Function v : R→ R+ is twice continuously
differentiable and there exists a positive constant v such that
the following holds

v (u) ≥ v, for all u ∈ R. (4)

Assumption 2 System Ẋ = f (X,ω) is strongly forward
complete with respect to ω.

Assumption 3 There exists a twice continuously differen-
tiable feedback law κ : Rn → R, with κ(0) = 0, which
renders system Ẋ = f (X,κ(X) + ω) input-to-state stable
with respect to ω.

Assumption 1 is a prerequisite for the well-posedness of the
predictor state, which is defined in the next paragraph. It
guarantees that transport is happening only in the direction
away from the input, or, in other words (see also the discus-
sion in the next section), it ensures that the input delay is
positive as well as uniformly bounded. Assumption 2 (see,
e.g., [1]) and Assumption 3 (see, e.g., [38]) are standard in-
gredients of the predictor-feedback control design method-
ology (see, e.g., [3], [30], [31]). The former implies that the
state X of system (1) doesn’t escape to infinity before the
control signal U reaches it, no matter the size of the delay
(see, e.g., [3], [30], [31]), while the latter guarantees the ex-
istence of a nominal feedback law that renders system (1)
input-to-state stable in the absence of the transport actuator
dynamics (i.e., in the absence of the input delay).

The predictor-feedback control law for system (1)–(3) is
given by

U(t) = κ (p (1, t)) , (5)

where for all t ≥ 0

p (x, t) =X(t) +

∫ x

0

f (p(y, t), u(y, t))

×Γ (u(y, t), uy(y, t), y) dy, x ∈ [0, 1] (6)

with 2

Γ (u(x, t), ux(x, t), x) =
1

v (u(x, t))

−xv
′ (u(x, t))ux(x, t)

v (u(x, t))
2 ,

x ∈ [0, 1]. (7)

2 Note that Γ can be written as Γ (u(x, t), ux(x, t), x) =
∂ x
v(u(x,t))

∂x
.
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For implementing the predictor-feedback law (5)–(7), be-
sides measurements of the ODE state X(t) and the PDE
state u(x, t), x ∈ [0, 1], for all t ≥ 0, the availability of the
spatial derivative of u, namely, ux(x, t), x ∈ [0, 1], for all
t ≥ 0, is required. The latter may be obtained either via di-
rect measurements of ux or by a numerical computation of
ux, employing the measurements of u. The implementation
and approximation problems of predictor-feedback control
laws are tackled, for example, in [26], [34], [41].

In order to guarantee the well-posedness of the predictor
state (6) and the system the following feasibility condition
on the closed-loop solutions and the initial conditions needs
to be satisfied

−M <
v′ (u(x, t))ux(x, t)

v (u(x, t))
< 1,

for all x ∈ [0, 1] and t ≥ 0, (8)

for some M > 0. In the next section we provide some ex-
planatory remarks on the feasibility condition (8) and As-
sumption 1, capitalizing on the relation of the PDE-ODE
cascade (1)–(3) to a system with a delayed-input-dependent
input delay.

Example 1 To illustrate the control design and its imple-
mentation we present here a rather pedagogical example,
which results in a predictor-feedback law defined explicitly
in terms of X , u, and ux. Consider an unstable, scalar linear
system with actuator dynamics governed by a quasilinear,
first-order hyperbolic PDE given by

Ẋ(t) =X(t) + u(0, t) (9)
ut(x, t) =

(
u(x, t)2 + 1

)
ux(x, t) (10)

u(1, t) =U(t). (11)

System (9)–(11) satisfies all of the Assumptions 1–3 and
a nominal control law may be chosen as U(t) = −2X(t).
Thus, the predictor-feedback control law is given by

U(t) = −2p(1, t), (12)

where, exploiting the fact that Γ =
∂ x
u(x,t)2+1

∂x as well as the
linearity of the system, the predictor state p, defined in (6),

may be written in the present case as 3

p(x, t) = e
x

u(x,t)2+1

(
X(t) + u(0, t)

+

∫ x

0

e
− y

u(y,t)2+1uy(y, t)dy

)
− u(x, t),

x ∈ [0, 1]. (13)

For the numerical computation of the integral in (13) we
employ a simple composite left-endpoint rectangular rule,
where the spatial derivates of u are numerically computed
utilizing a forward finite difference scheme. We choose the
initial conditions as

u(x, 0) = 1, for all x ∈ [0, 1] (14)
X(0) =−0.7. (15)

In Fig. 1 we show the response of the system, whereas in
Fig. 2 we show the control effort.

3 Relation to a System with Delayed-Input-Dependent
Input Delay

In this section, we highlight the fact that the PDE-ODE
cascade (1)–(3) may be viewed as a nonlinear system with
an input delay. The fact that the transport speed depends
on the PDE state itself, gives rise to a delay that is defined
implicitly through a nonlinear equation, which incorporates
the value of the input at a time that depends on the delay
itself.

The reasons for emphasizing this alternative representation
of system (1)–(3) are not merely pedagogical. Capitalizing
on this relation, enables both, readers who are experts on
PDEs and readers who are experts on delay systems, to di-
gest the key conceptual ideas as well as the technical intri-
cacies of our design and analysis methodologies, such as,
for example, to better understand some of the inherent lim-
itations of the stabilization problem for such systems (see
Section 3.2). Moreover, this alternative point of view, offers
to the designer two alternative control law representations
(see Section 3.3), which may be very useful since, depend-
ing on the specific application, one representation may be
more descriptive of the actual physical process as well as
more suitable for implementation than the other (consider,

3 To see this note that, for the case of system (9)–(11), the pre-
dictor state p in (6) satisfies, for each t, the ODE in x given

as px(x, t) = (p(x, t) + u(x, t))
∂ x
u(x,t)2+1

∂x
, with initial condi-

tion p(0, t) = X(t). Thus, solving this initial-value problem

with respect to x we obtain p(x, t) = e
∫ x
0

∂
y

u(y,t)2+1
∂y

dy
X(t) +∫ x

0
e
∫ x
y

∂ r
u(r,t)2+1

∂r
dru(y, t)

∂ y

u(y,t)2+1

∂y
dy. Expression (13) then

follows evaluating the integral in the first term of this relation and
employing one step of integration by parts in the integral in the
second.
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Fig. 1. Response of system (9)–(11) with initial conditions (14),
(15) under the predictor-feedback law (12), (13).

t

0 1 2 3 4 5

U
(t
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Control effort (12), (13).

for example, the case of control of traffic flow versus the
case of control over a network).

3.1 Derivation of the Delayed and Prediction Times

Employing the method of characteristics (for details, see,
e.g., [14]), it can be shown, see, e.g., [35], that the following
holds

u(0, t) = U

(
t− 1

v (u(0, t))

)
. (16)

Thus, defining the delayed time φ, i.e., the time at which
the value of the control signal U that currently affects the
system, namely, u(0, t), was actually applied, as

φ(t) = t− 1

v (u(0, t))
, (17)

we re-write system (1)–(3) as

Ẋ(t) = f (X(t), U (φ(t))) , (18)

where φ is defined implicitly, for all t ≥ 0, through relation

φ(t) = t− 1

v (U (φ(t)))
. (19)

The prediction time σ, i.e., the time at which the value of the
control signal U currently applied, namely, U(t) = u(D, t),
will actually reach the system, is defined as the inverse func-
tion of φ, namely,

σ(t) = t+
1

v (U(t))
. (20)

The invertibility of φ is guaranteed when the derivative of
(19), given by

φ̇(t) =
1

1− v′(U(φ(t)))U ′(φ(t))

v(U(φ(t)))2

, for all t ≥ 0, (21)

is positive for all times, or, equivalently, when the derivative
of (20), given by

σ̇ (t) = 1− v′ (U (t))

v (U (t))
2U
′ (t), for all t ≥ 0. (22)

is positive for all times.

3.2 Interpretation of Assumption 1 and Condition (8)

From (19) it is evident that the positivity assumption of v
guarantees that the delay is always positive, i.e., it guarantees
the causality of system (18), and thus, also of system (1)–
(3). Moreover, relation (4) guarantees the boundness of the
delay, i.e., it guarantees that the control signal eventually
reaches the plant (18), and thus, also (1).
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The interpretation of condition (8) is less obvious. When the
derivative of the prediction (or the delayed) time is bounded
and strictly positive both the prediction and delayed times
are well-defined. Via (3), it is evident from (22) that this
requirement is satisfied when condition (8) holds. In fact,
condition (8) guarantees that the quasilinear first-order hy-
perbolic PDE (2), (3) exhibits smooth solutions and that the
appearance of shock waves is avoided.

To see this, note that when the right-hand side of (8) is vi-
olated the derivative of the delayed time becomes infinite
(or, equivalently, the derivative of the prediction time be-
comes zero), that is, the delay disappears instantaneously
(with slope approaching negative infinity). This implies that
the delayed time becomes a multivalued function, which in
turn is related to loss of regularity of the solutions to (2), (3)
and the formation of a shock wave. From that point and on,
the delayed time becomes a decreasing function, and thus,
the plant receives all the more older information than already
received (despite the fact that the direction of transport re-
mains leftward since the transport speed is always positive).

Moreover, when u is bounded, the regularity assumption on
v implies that the left-hand side of (8) may be violated when
ux reaches negative infinity. In terms of the delay represen-
tation, it guarantees that the time derivative of the prediction
time cannot become infinite, and thus, the predictor state
remains well-posed.

3.3 Predictor-Feedback Control Design for the Equivalent
Delay System

Defining

F (U) =
1

v (U)
, (23)

the predictor-feedback control law for system (18) with an
input delay defined via (19) is given by

U(t) = κ (P (t)) , (24)

where the predictor P is given for all t ≥ 0 by

P (θ) =X(t) +

∫ θ

φ(t)

(
1 + F ′ (U(s)) U̇(s)

)
×f (P (s), U(s)) ds, for all φ(t) ≤ θ ≤ t. (25)

The predictor-feedback control law (25) is implementable
since, for all t ≥ 0, it depends on the history of U(s), over
the window φ(t) ≤ s ≤ t, the ODE state X(t), which
are assumed to be measured for all t ≥ 0, as well as on
U̇(s), over the window φ(t) ≤ s ≤ t, which is assumed to
either be measured directly or computed from the values of
U(s), φ(t) ≤ s ≤ t. Moreover, the implementation of the
predictor-feedback design requires the computation at each

time step of the delayed time φ. This can either be performed
by numerically solving relation (19), using the history of
the actuator state, or by employing the following integral
equation

φ (θ) = t−
∫ σ(t)

θ

ds

1 + F ′ (U (φ(s)))U ′ (φ(s))
,

for all t ≤ θ ≤ σ(t), (26)

where σ is defined in (20). The issue of implementation and
approximation of nonlinear predictor feedbacks is addressed
in detail in [24], [25], [26].

4 Stability Analysis

Theorem 1 Consider the closed-loop system consisting of
the plant (1)–(3) and the control law (5)–(7). Under As-
sumptions 1, 2, and 3, there exist a positive constant δ and
a class KL function β such that for all initial conditions
X(0) ∈ Rn and u(·, 0) ∈ C1 [0, 1] which satisfy

|X(0)|+ ‖u(0)‖∞ + ‖ux(0)‖∞ < δ, (27)

as well as the compatibility conditions

u (1, 0) = κ (p (1, 0)) (28)

ux (1, 0) =
∂κ (p (1, 0))

∂p
f (p (1, 0) , u (1, 0))

×Γ (u(1, 0), ux(1, 0), 1) , (29)

there exists a unique solution to the closed-loop system with
X(t) ∈ C1[0,∞), u(x, t) ∈ C1 ([0, 1]× [0,∞)), and the
following holds

Ω(t)≤ β (Ω(0), t) , for all t ≥ 0 (30)
Ω(t) = |X(t)|+ ‖u(t)‖∞ + ‖ux(t)‖∞. (31)

The proof of Theorem 1 is based on the following lemmas
whose proofs can be found in Appendix A.

Lemma 1 The variable

u(x, t)− κ (p(x, t)) = w(x, t), (32)

where p is defined in (6), satisfies

wt(x, t) = v (u(x, t))wx(x, t) (33)
w(1, t) = 0. (34)

Moreover, system (1) can be written as

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) . (35)
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Note that, differently with previous work on predictor-
feedback design, the variable w is just viewed as a new
variable, which is expressed in terms of the state (X,u) via
(32), (6), (7), rather than as a transformation of the original
state u. Thus, an inverse transformation is not required,
which doesn’t affect the analysis (see Lemma 4 below and
its proof in Appendix A). The reason for this alternative
point of view is that the expression for the potential inverse
transformation would require the definition of an alterna-
tive, rather complex representation of the predictor state p
that would depend on the new variable w, which would add
unnecessary complexity in the analysis.

The next lemma establishes an asymptotic stability estimate
for state variables (X,w(x)), x ∈ [0, 1], exploiting the cas-
cade structure of system (33)–(35).

Lemma 2 There exists a classKL function βw such that for
all solutions of the system satisfying (8) the following holds

Ωw(t)≤ βw (Ωw(0), t) , for all t ≥ 0 (36)
Ωw(t) = |X(t)|+ ‖w(t)‖∞ + ‖wx(t)‖∞. (37)

In Lemmas 3–5 below, the equivalency of the C1 norm be-
tween the original state variables (X,u(x)), x ∈ [0, 1], and
the state variables (X,w(x)), x ∈ [0, 1], is established. The
proofs of each of Lemmas 3 and 4, utilize different argu-
ments and employ different assumptions. For this reason,
the proof of the norm equivalency, between the original and
the new state variables, is decomposed into three different
lemmas.

Lemma 3 There exists a classK∞ function ρ1 such that for
all solutions of the system satisfying (8) the following holds

‖p(t)‖∞ + ‖px(t)‖∞ ≤ ρ1 (|X(t)|+ ‖u(t)‖∞) ,

for all t ≥ 0. (38)

Lemma 4 There exists a classK∞ function ρ2 such that for
all solutions of the system satisfying (8) the following holds

‖p(t)‖∞ + ‖px(t)‖∞ ≤ ρ2 (|X(t)|+ ‖w(t)‖∞) ,

for all t ≥ 0. (39)

Lemma 5 There exist class K∞ functions ρ3 and ρ4 such
that for all solutions of the system satisfying (8) the following
hold

Ωw(t)≤ ρ3 (Ω(t)) , for all t ≥ 0 (40)
Ω(t)≤ ρ4 (Ωw(t)) , for all t ≥ 0, (41)

where Ωw is defined in (37) and Ω is defined in (31).

An estimate of the region of attraction of the predictor-
feedback control law (5)–(7) within the feasibility region,
defined by condition (8), is derived in the next two lemmas.

Lemma 6 There exists a positive constant δ1 such that all
of the solutions that satisfy

|X(t)|+ ‖u(t)‖∞ + ‖ux(t)‖∞ < δ1, for all t ≥ 0, (42)

they also satisfy (8).

Lemma 7 There exists a positive constant δ such that for
all initial conditions of the closed-loop system (1)–(3), (5)–
(7) that satisfy (27), the solutions of the system satisfy (42),
and hence, satisfy (8).

Proof of Theorem 1 Estimate (30) in Theorem 1 is proved
combining Lemmas 2 and 5 with

βu(s, t) = ρ4 (βw (ρ3 (s) , t)) . (43)

We show next the well-posedness of the system. We start by
proving the well-posedness of the predictor

P (t) = p(1, t), (44)

where p is defined in (6). Differentiating definition
(6) with respect to t and using integration by parts
in the integral, taking into account that p satisfies
pt(x, t) = v (u(x, t)) px(x, t) (see relation (A.1) in Ap-
pendix A) and employing relations (3), (5) we obtain that

Ṗ (t) = v (κ (P (t))) f (P (t), κ (P (t)))

×Γ (u(1, t), ux(1, t), 1) . (45)

From the definition of Γ in (6) and (7), using (2) we obtain
from (3), (5) that

Γ (u(1, t), ux(1, t), 1) =
1

v (κ (P (t)))

−v
′ (κ (P (t)))ut(1, t)

v (κ (P (t)))
3 , (46)

and thus, from (45) we arrive at

1

v (κ (P (t)))
=

(
1 +

v′ (κ (P (t)))

v (κ (P (t)))
2

× ∂κ (P (t))

∂P
f (P (t), κ (P (t)))

)
×Γ (u(1, t), ux(1, t), 1) . (47)

Since condition (8) guarantees the positivity and bound-
ness of Γ (see also relations (A.43), (A.46) in Appendix A),
it follows from (47) and Assumption 1 that the term 1 +
v′(κ(P (t)))

∂κ(P (t))
∂P f(P (t),κ(P (t)))

v(κ(P (t)))2
is positive. Hence, solving

6



(47) with respect to Γ and substituting the resulting expres-
sion into (45) we arrive at

Ṗ (t) =
1

1 +
v′(κ(P (t)))

∂κ(P (t))
∂P f(P (t),κ(P (t)))

v(κ(P (t)))2

×f (P (t), κ (P (t))) . (48)

Under the regularity assumptions on v and κ, which follow
from Assumptions 1 and 3, respectively, one can conclude
that the right-hand side of (48) is Lipschitz with respect to
P . Therefore, the compatibility conditions (28), (29) guar-
antee that there exists a unique solution P (t) ∈ C1[0,∞).
Moreover, employing estimates (30), (38), one can conclude
that δ in the statement of Theorem 1 can be chosen suffi-
ciently small such that all the conditions of Theorem 1.1 in
[33] (Chapter 5) are satisfied, and hence, the existence and
uniqueness of u(x, t) ∈ C1 ([0, 1]× [0,∞)), which satisfies
(2), (3), (5), follows (see also the discussion in, e.g., [13],
[37]). The fact that u(x, t) ∈ C1 ([0, 1]× [0,∞)) and the
regularity properties of f imply from (1) the existence and
uniqueness of X(t) ∈ C1[0,∞).

5 Conclusions and Future Work

We presented a predictor-feedback control design methodol-
ogy for nonlinear systems with actuator dynamics governed
by quasilinear, first-order hyperbolic PDEs. We proved that
the closed-loop system, under the developed feedback law,
is locally asymptotically stable, utilizing Lyapunov-like ar-
guments and ISS estimates. We also emphasized the relation
of the considered PDE-ODE cascade to a system with input
delay that depends on past input values.

A topic of future research may be the problem of boundary
stabilization of general, quasilinear systems of first-order
hyperbolic PDEs coupled with nonlinear ODE systems, as
it is done in [18] for the case in which both the PDE and
ODE parts of the system are linear.

Appendix A

Proof of Lemma 1

We first show that

pt(x, t) = v (u(x, t)) px(x, t). (A.1)

Differentiating (6) with respect to t and using (1), (2) as well
as the fact that p(0, t) = X(t), which immediately follows

from (6) with x = 0, we get that

pt(x, t) = f (p(0, t), u(0, t)) +

∫ x

0

∂f (p(y, t), u(y, t))

∂p

×pt(y, t)Γ (u(y, t), uy(y, t), y) dy

+

∫ x

0

∂f (p(y, t), u(y, t))

∂u
v (u(y, t))uy(y, t)

×Γ (u(y, t), uy(y, t), y) dy

+

∫ x

0

f (p(y, t), u(y, t)) Γu (u(y, t), uy(y, t), y)

×v (u(y, t))uy(y, t)dy +

∫ x

0

f (p(y, t), u(y, t))

×Γuy (u(y, t), uy(y, t), y)
(
v′ (u(y, t))uy(y, t)2

+ v (u(y, t))uyy(y, t)) dy. (A.2)

Differentiating (6) with respect to x we get that

v (u(x, t)) px(x, t) =

∫ x

0

∂Λ(y, t)

∂y
dy + v (u(0, t))

×f (p(0, t), u(0, t))

×Γ (u(0, t), uy(0, t), 0) (A.3)
Λ(y, t) = v (u(y, t)) f (p(y, t), u(y, t))

×Γ (u(y, t), uy(y, t), y) , (A.4)

and hence,

v (u(x, t)) px(x, t) = v (u(0, t)) f (p(0, t), u(0, t))

×Γ (u(0, t), uy(0, t), 0)

+

∫ x

0

∂f (p(y, t), u(y, t))

∂p

×py(y, t)v (u(y, t))

×Γ (u(y, t), uy(y, t), y) dy

+

∫ x

0

∂f (p(y, t), u(y, t))

∂u

×uy(y, t)v (u(y, t))

×Γ (u(y, t), uy(y, t), y) dy

+

∫ x

0

f (p(y, t), u(y, t))

×Γu (u(y, t), uy(y, t), y)

×v (u(y, t))uy(y, t)dy

+

∫ x

0

f (p(y, t), u(y, t))

×Γuy (u(y, t), uy(y, t), y)

×v (u(y, t))uyy(y, t)dy

+

∫ x

0

f (p(y, t), u(y, t))

×Γy (u(y, t), uy(y, t), y)

×v (u(y, t)) dy

+

∫ x

0

f (p(y, t), u(y, t))

×Γ (u(y, t), uy(y, t), y)
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×v′ (u(y, t))uy(y, t)dy. (A.5)

Comparing (A.2) with (A.5) and using the fact that
Γ (u(0, t), uy(0, t), 0) = 1

v(u(0,t)) , which follows from (7)
for y = 0, we arrive at

P (x, t) =

∫ x

0

∂f (p(y, t), u(y, t))

∂p
P (y, t)

×Γ (u(y, t), uy(y, t), y) dy

+

∫ x

0

f (p(y, t), u(y, t))

×Γuy (u(y, t), uy(y, t), y)

×v′ (u(y, t))uy(y, t)2dy

−
∫ x

0

f (p(y, t), u(y, t))

×Γy (u(y, t), uy(y, t), y)

×v (u(y, t)) dy

−
∫ x

0

f (p(y, t), u(y, t))

×Γ (u(y, t), uy(y, t), y)

×v′ (u(y, t))uy(y, t)dy, (A.6)

where we defined

P (x, t) = pt(x, t)− v (u(x, t)) px(x, t). (A.7)

Using the definition of Γ in (7) we get that

Γuy (u(y, t), uy(y, t), y) =−yv
′ (u(y, t))

v (u(y, t))
2 (A.8)

Γy (u(y, t), uy(y, t), y) =−v
′ (u(y, t))uy(y, t)

v (u(y, t))
2 . (A.9)

Combining (A.8), (A.9) and using (7) we arrive at

Γuy (u, uy, y) v′ (u)u2y = Γy (u, uy, y) v (u)

−
yv′ (u)

2
u2y

v (u)
2 +

v′ (u)uy
v (u)

(A.10)

Γ (u, uy, y) v′ (u)uy =
v′ (u)uy
v (u)

−
yv′ (u)

2
u2y

v (u)
2 . (A.11)

Since the right-hand sides of (A.10), (A.11) are equal, from
(A.6) it follows that

P (x, t) =

∫ x

0

∂f (p(y, t), u(y, t))

∂p
P (y, t)

×Γ (u(y, t), uy(y, t), y) dy. (A.12)

Therefore, for each t ≥ 0, the function P satisfies for all
x ∈ [0, 1]

Px(x, t) =
∂f (p(x, t), u(x, t))

∂p
×Γ (u(x, t), ux(x, t), x)P (x, t) (A.13)

P (0, t) = 0. (A.14)

Hence,

P ≡ 0, (A.15)

which proves that indeed (A.1) holds. Therefore, differenti-
ating (32) with respect to t we get that

wt(x, t) = ut(x, t) +
∂κ (p(x, t))

∂p
v (u(x, t))

×px(x, t). (A.16)

Differentiating (32) with respect to x we get that

v (u(x, t))wx(x, t) = v (u(x, t))ux(x, t)

+
∂κ (p(x, t))

∂p
v (u(x, t))

×px(x, t). (A.17)

Combining (A.16) with (A.17) and using (2) we arrive at
(33). Furthermore, since from (6) it holds that p(0, t) =
X(t), relation (35) follows from (1) and (32) for x = 0.
Finally, relation (34) follows from (32) for x = 1 and (5),
(3).

Proof of Lemma 2

Consider the following Lyapunov functional

Lc,m(t) =

∫ 1

0

e2(c+λ)xmw(x, t)2mdx

+

∫ 1

0

e2(c+λ)xmwx(x, t)2mdx, (A.18)

for any c > 0 and any positive integer m, where (under
Assumption 1)

wxt(x, t) = v′ (u(x, t))ux(x, t)wx(x, t)

+v (u(x, t))wxx(x, t) (A.19)
wx(1, t) = 0. (A.20)

Under Assumption 1 (positivity of v), taking the time
derivative of (A.18) along the solutions of (33)–(35), (A.19),
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(A.20) we get using integration by parts that

L̇c,m(t)≤−
∫ 1

0

e2(c+λ)xmw(x, t)2m

× (2m(c+ λ)v (u(x, t))

+v′ (u(x, t))ux(x, t)) dx

−
∫ 1

0

e2(c+λ)xmwx(x, t)2m

× (2m(c+ λ)v (u(x, t)) + v′ (u(x, t))ux(x, t)

−2mv′ (u(x, t))ux(x, t)) dx. (A.21)

Using (8) and the fact thatm ≥ 1 we obtain for all x ∈ [0, 1]
and t ≥ 0

2m (−λ+M) v (u(x, t))≥−2mλv (u(x, t))

−v′ (u(x, t))ux(x, t) (A.22)
2m (−λ+ 1) v (u(x, t))≥−2mλv (u(x, t))− (1− 2m)

×v′ (u(x, t))ux(x, t). (A.23)

Therefore, choosing any λ such that λ ≥ 1 +M , it follows
from (A.21) that

L̇c,m(t)≤−2mcv

∫ 1

0

e2(c+λ)xmw(x, t)2m

−2mcv

∫ 1

0

e2(c+λ)xmwx(z, t)2mdx, (A.24)

where we also used (4). Thus 4 ,

L̇c,m(t)≤−2mcvLc,m(t), (A.25)

which implies that

L
1

2m
c,m(t)≤ e−cv(t−s)L

1
2m
c,m(s), for all t ≥ s ≥ 0. (A.26)

Moreover, from (A.18) it follows that

Ξc,m(t) ≤ 2e−cv(t−s)Ξc,m(s), for all t ≥ s ≥ 0, (A.27)

where

Ξc,m(t) =

(∫ 1

0

e2(c+λ)xmw(x, t)2mdx

) 1
2m

+

(∫ 1

0

e2(c+λ)xmwx(x, t)2mdx

) 1
2m

. (A.28)

Taking the limit of (A.27) asm goes to infinity, with the def-
inition of the maximum norm, i.e., with relation ‖θ(t)‖∞ =

4 Note that although the estimate (A.25) for Lc,m is derived for
u that is of class C2 (and thus, so is w satisfying (A.19), (A.20)),
the estimate (A.25) remains valid (in the distribution sense) when
u is only of class C1, see, e.g., [13].

limm→∞

(∫ 1

0
|θ(x, t)|2mdx

) 1
2m

, we obtain from (A.28)

Ξc(t) ≤ 2e−cv(t−s)Ξc(s), for all t ≥ s ≥ 0. (A.29)

where

Ξc(t) = max
0≤x≤1

∣∣∣ex(c+λ)w(x, t)
∣∣∣

+ max
0≤x≤1

∣∣∣ex(c+λ)wx(x, t)
∣∣∣ . (A.30)

It follows, for all t ≥ s ≥ 0, that

‖w(t)‖∞ + ‖wx(t)‖∞ ≤ 2e−cv(t−s)e(c+λ)

× (‖w(s)‖∞ + ‖wx(s)‖∞).(A.31)

Under Assumption 3 (see, e.g., [38]) we obtain from (35)
that

|X(t)| ≤ β1 (|X(s)|, t− s) + γ1

(
sup
s≤τ≤t

|w(0, τ)|
)
,(A.32)

for all t ≥ s ≥ 0, some class KL function β1, and some
class K function γ1. Mimicking the arguments in the proof
of Lemma 4.7 from [27], we set s = t

2 in (A.32) to get that

|X(t)| ≤ β1
(∣∣∣∣X ( t2

)∣∣∣∣ , t2
)

+γ1

(
sup
t
2≤τ≤t

‖w(τ)‖∞

)
, (A.33)

and thus, using (A.32) for s = 0 and t→ t
2 we arrive at

|X(t)| ≤ β1

(
β1

(
|X(0)|, t

2

)

+γ1

(
sup

0≤τ≤ t2
‖w(τ)‖∞

)
,
t

2

)

+γ1

(
sup
t
2≤τ≤t

‖w(τ)‖∞

)
, for all t ≥ 0. (A.34)

Moreover, using (A.31) we get that

sup
0≤τ≤ t2

‖w(τ)‖∞ ≤ 2e(c+λ) (‖w(0)‖∞ + ‖wx(0)‖∞)(A.35)

sup
t
2≤τ≤t

‖w(τ)‖∞ ≤ 2e−cv
t
2 e(c+λ) (‖w(0)‖∞

+‖wx(0)‖∞) . (A.36)
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Therefore, combining (A.34) with (A.35), (A.36) and using
(A.31) we get (36) with

βw (s, t) = β1

(
β1 (s, 0) + γ1

(
2e(c+λ)s

)
,
t

2

)
+2e−cvte(c+λ)s+ γ1

(
2e−cv

t
2 e(c+λ)s

)
. (A.37)

Proof of Lemma 3

Differentiating relation (6) with respect to x we get that, for
each t, p satisfies the following ODE in x

px(x, t) = f (p(x, t), u(x, t)) Γ (u(x, t), ux(x, t), x) (A.38)
p(0, t) =X(t). (A.39)

Under Assumption 2 there exists a smooth function R :
Rn → R+ and class K∞ functions α1, α2, and α3 such that
(see, e.g., [1], [30], [31])

α1 (|X|)≤R (X) ≤ α2 (|X|) (A.40)
∂R (X)

∂X
f (X,ω)≤R (X) + α3 (|ω|) , (A.41)

for all (X,ω)
T ∈ Rn+1. From relation (8) it follows that

v (u(x, t))− xv′ (u(x, t))ux(x, t)> 0, for all x ∈ [0, 1]

and t ≥ 0, (A.42)

which can be seen considering separately the cases
v′ (u(x, t))ux(x, t) ≤ 0 and v′ (u(x, t))ux(x, t) > 0, and
using (4). Hence, from the definition of Γ in (7) and (4) we
conclude that

Γ (u(x, t), ux(x, t), x)> 0,

for all x ∈ [0, 1] and t ≥ 0. (A.43)

Thus, from (A.41) it follows that

Π(x, t)≤ Γ (u(x, t), ux(x, t), x) (R (p(x, t))

+ α3 (|u(x, t)|)) (A.44)

Π(x, t) =
∂R (p(x, t))

∂p
f (p(x, t), u(x, t))

×Γ (u(x, t), ux(x, t), x) . (A.45)

From (7), using relations (4) and (8) it also follows that

Γ (u(x, t), ux(x, t), x)≤ 2 +M

v
,

for all x ∈ [0, 1] and t ≥ 0, (A.46)

and thus, from (A.44) we get using (A.38) that

∂R (p(x, t))

∂x
≤ 2 +M

v
(R (p(x, t)) + α3 (|u(x, t)|)) .(A.47)

Employing the comparison principle and using (A.39) we
arrive at

R (p(x, t))≤ e
2+M
v x

R (X(t)) +
2 +M

v

×
∫ x

0

e
2+M
v (x−y)

α3 (|u(y, t)|) dy, (A.48)

for all x ∈ [0, 1] and t ≥ 0. Hence, using (A.40) we get

‖p(t)‖∞ ≤ α4 (|X(t)|+ ‖u(t)‖∞) , (A.49)

where

α4(s) = α−11

(
e

2+M
v (α2(s) + α3(s))

)
. (A.50)

Since f is continuously differentiable with f(0, 0) = 0 we
conclude that there exists a class K∞ function α5 such that

|f(X,ω)| ≤ α5 (|X|+ |ω|) . (A.51)

Thus, using (A.49) and (A.46), we get from (A.38)

|px(x, t)| ≤ α6 (|X(t)|+ ‖u(t)‖∞) , (A.52)

where

α6(s) =
2 +M

v
α5 (α4(s) + s) . (A.53)

The proof is completed by taking the maximum, with respect
to x ∈ [0, 1], in both sides of (A.52) and setting ρ1(s) =
α4(s) + α6(s).

Proof of Lemma 4

We start defining the change of variables with respect to x

z(x, t) =
x

v (u(x, t))
, (A.54)

which is well-defined thanks to (4) and where t acts as a
parameter. Using the fact that

Γ (u(x, t), ux(x, t), x) =
∂z(x, t)

∂x
, (A.55)

it follows from (A.43) that the function z is strictly increas-
ing with respect to x, for each t. Thus, it admits an inverse
defined for each t as x = χ(z, t). Therefore, from relations
(A.38), (A.39), and definition (A.55) we obtain

p̄z (z, t) = f (p̄(z, t), ū(z, t)) , z ∈
[
0,

1

v (u(1, t))

]
(A.56)

p̄(0, t) =X(t), (A.57)
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where

p̄(z, t) = p (χ(z, t), t) (A.58)
ū(z, t) = u (χ(z, t), t) . (A.59)

Moreover, setting x = χ(z, t) in relation (32) we get that

ū(z, t) = κ (p̄(z, t)) + w̄(z, t), (A.60)

where

w̄(z, t) = w (χ(z, t), t) . (A.61)

Thus, we re-write (A.56) as

p̄z (z, t) = f (p̄(z, t), κ (p̄(z, t)) + w̄(z, t)) ,

z ∈
[
0,

1

v (u(1, t))

]
. (A.62)

Under Assumption 3 there exist a smooth function S : Rn →
R+ and class K∞ functions α̂1, α̂2, α̂3, and α̂4 such that
(see, e.g., [38])

α̂1 (|X|)≤ S (X) ≤ α̂2 (|X|) (A.63)
∂S (X)

∂X
f (X,κ (X) + ω)≤−α̂3 (|X|) + α̂4 (|ω|) . (A.64)

Thus, we get from (A.64) that

Θ(z, t)≤−α̂3 (|p̄(z, t)|) + α̂4 (|w̄(z, t)|) (A.65)

Θ(z, t) =
∂S (p̄(z, t))

∂p̄
×f (p̄(z, t), κ (p̄(z, t)) + w̄(z, t)) , (A.66)

and hence, using (A.62), (A.57) and integrating from 0 to z
we obtain

S (p̄(z, t))≤ S (X(t)) +

∫ z

0

α̂4 (|w̄(y, t)|) dy,

z ∈
[
0,

1

v (u(1, t))

]
. (A.67)

Using (4) and (A.63) we get from (A.67) that

|p̄(z, t)| ≤ α̂−11

(
α̂2 (|X(t)|)

+
1

v
α̂4

(
max

0≤z≤ 1
v(u(1,t))

|w̄(z, t)|

))
,

z ∈
[
0,

1

v (u(1, t))

]
. (A.68)

Taking a maximum of both sides in (A.68), with definitions
(A.58), (A.59), and (A.61) we arrive at

‖p(t)‖∞ ≤ α̂5 (|X(t)|+ ‖w(t)‖∞) , (A.69)

with α̂5(s) = α̂−11

(
α̂2(s) + 1

v α̂4(s)
)

. Under Assumption
3 (continuity of κ and the fact that κ(0) = 0) there exists a
class K∞ function ˆ̄α1 such that

|κ (X)| ≤ ˆ̄α1 (|X|) . (A.70)

Therefore, using (A.51) we get from (A.62) that

|p̄z (z, t)|≤α5

(
|p̄(z, t)|+ ˆ̄α1 (|p̄(z, t)|) + |w̄(z, t)|

)
. (A.71)

Using (A.68) we arrive at

|p̄z (z, t)| ≤ α̂6

(
|X(t)|+ max

0≤z≤ 1
v(u(1,t))

|w̄(z, t)|

)
, (A.72)

where α̂6(s) = α5

(
α̂5(s) + ˆ̄α1 (α̂5(s)) + s

)
. Using defini-

tion (A.58), from relations (A.46), (A.55) we obtain that

|px (x, t)| ≤ 2 +M

v
|p̄z (z, t)| , (A.73)

and hence, from (A.72) we arrive at

‖px(t)‖∞ ≤
2 +M

v
α̂6

(
|X(t)|

+ max
0≤z≤ 1

v(u(1,t))

|w̄(z, t)|

)
. (A.74)

With definition (A.61) we get that

‖px(t)‖∞ ≤
2 +M

v
α̂6 (|X(t)|+ ‖w(t)‖∞) , (A.75)

and hence, the lemma is proved with ρ2(s) = α̂5(s) +
2+M
v α̂6 (s).

Proof of Lemma 5

Under Assumption 3 (continuous differentiability of κ) there
exists a class K∞ function ˆ̄α2 such that

|∇κ (X)| ≤ |∇κ (0)|+ ˆ̄α2 (|X|) , (A.76)

for all X ∈ Rn. Therefore, using (38) and (A.70), we get
from (32) that

|w(x, t)|+ |wx(x, t)| ≤ |u(x, t)|+ |ux(x, t)|
+ˆ̄α1 (ρ1 (|X(t)|+ ‖u(t)‖∞))

+
(
|∇κ (0)|+ ˆ̄α2 (ρ1 (|X(t)|

+‖u(t)‖∞)))

×ρ1 (|X(t)|+ ‖u(t)‖∞) , (A.77)
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and thus, taking a maximum in both sides of (A.77), estimate
(40) follows with

ρ3 (s) = s+ ˆ̄α1 (ρ1 (s)) +
(
|∇κ (0)|+ ˆ̄α2 (ρ1 (s))

)
×ρ1 (s) . (A.78)

Similarly, using (A.70), (A.76), and (39) we get estimate
(41) with

ρ4 (s) = s+ ˆ̄α1 (ρ2 (s)) +
(
|∇κ (0)|+ ˆ̄α2 (ρ2 (s))

)
×ρ2 (s) . (A.79)

Proof of Lemma 6

Under Assumption 1 (continuous differentiability of v) we
conclude that there exists a class K∞ function ρ̂ such that

|v′ (u(x, t))| ≤ |v′(0)|+ ρ̂ (|u(x, t)|) , (A.80)

and hence, for all x ∈ [0, 1] and t ≥ 0 it holds that

|v′ (u(x, t))| ≤ |v′(0)|+ ρ̂ (‖u(t)‖∞) . (A.81)

Thus, it holds that

|v′ (u(x, t))ux(x, t)| ≤ (|v′(0)|+ ρ̂ (‖u(t)‖∞))

×‖ux(t)‖∞, (A.82)

for all x ∈ [0, 1] and t ≥ 0. From relation (4), one can
conclude that whenever

|v′ (u(x, t))ux(x, t)| ≤ ε, (A.83)

where ε is any constant such that 0 < ε < v, relation (8)
holds with anyM such thatM > ε

v . Consequently, choosing
any constant δ1 such that

δ1 ≤ ψ−1 (ε) , (A.84)

where

ψ (s) = (|v′(0)|+ ρ̂ (s)) s, (A.85)

completes the proof.

Proof of Lemma 7

Combining estimate (41) with (36) we obtain

Ω(t)≤ ρ4 (βw (Ωw(0), t)) , (A.86)

and hence, with (40) and the properties of classKL functions
we arrive at

Ω(t)≤ ρ4 (βw (ρ3 (Ω(0)) , 0)) . (A.87)

Therefore, for all initial conditions that satisfy the bound
(27) with any δ such that

δ ≤ φ−1 (δ1) , (A.88)

where

φ (s) = ρ4 (βw (ρ3 (s, 0))) , (A.89)

the solutions satisfy (42). Furthermore, from Lemma 6, it
follows that for all of those initial conditions, the solutions
verify (8).
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