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Abstract

We study the problem of receding horizon control for stochastic discrete-time systems with bounded control inputs and
incomplete state information. Given a suitable choice of causal control policies, we first present a slight extension of the
Kalman filter to estimate the state optimally in mean-square sense. We then show how to augment the underlying optimization
problem with a negative drift-like constraint, yielding a second-order cone program to be solved periodically online. We prove
that the receding horizon implementation of the resulting control policies renders the state of the overall system mean-square
bounded under mild assumptions. We also discuss how some quantities required by the finite-horizon optimization problem
can be computed off-line, thus reducing the on-line computation.
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1 Introduction

A considerable amount of research has been devoted to
deterministic receding horizon control, see, for example,
[35,32] and references therein. This resulted in proofs of
recursive feasibility and stability of receding horizon con-
trol laws in the noise-free deterministic setting. These
techniques can be extended to the robust case, i.e., when-
ever there is exogenous noise or parametric uncertainty
of bounded nature entering the system. The counterpart
for stochastic systems subject to process noise, imper-
fect state measurements, and bounded control inputs,
however, is still lacking. The principal obstacle is posed
by the fact that it may not be possible to determine an
a priori bound on the support of the noise, for exam-
ple, whenever the noise is additive and Gaussian. This
extra ingredient complicates both the stability and the
feasibility proofs: the noise, at least in the additive case,
eventually drives the state outside any bounded set no
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matter how large the latter is taken to be, and employing
any standard linear state feedback means that any hard
bounds on the control inputs will eventually be violated.

In this article we propose a solution to the general re-
ceding horizon control problem for linear systems with
noisy process dynamics, imperfect state information,
and bounded control inputs. Both the process and
measurement noise sequences are assumed to enter the
system in an additive fashion, and we require that the
designed control policies satisfy hard bounds. Periodi-
cally at times t = 0, Nc, 2Nc, · · · , whereNc is the control
horizon, a certain finite-horizon optimal control prob-
lem is solved over a prediction (or optimization) horizon
N > Nc. The cost to be minimized is the standard
expectation of the sum of cost-per-stage functions that
are quadratic in the state and control inputs [7,8]. We
can also include at the design level some variance-like
bounds on the predicted future states and inputs—this
is one possible way to impose soft state constraints that
are in spirit similar to integrated chance-constraints,
e.g., in [26,27].

There are several key challenges inherent to our setup.
First, since the state information is imperfect one needs
a filter to estimate the state. Second, in the presence of
unbounded (e.g., Gaussian) noise, it is not possible in
general to ensure any bound on the control values gener-
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ated via linear state feedback; the additive nature of the
noise ensures that the state exits from any fixed bounded
set at some time almost surely, implying the necessity of
nonlinear feedback policies. This issue is further compli-
cated by the fact that only incomplete state information
is available. Third, it is unclear whether the application
of the bounded control policies stabilizes the system in
any reasonable sense. For a deterministic discrete-time
linear system, xt+1 = Axt + But, it is not possible to
globally asymptotically stabilize the system, if the ma-
trixA has unstable eigenvalues, see, for example, [46] and
references therein. Moreover, in the presence of stochas-
tic process noise the hope for achieving asymptotic sta-
bility is obviously not realistic. In this article we relax
the notion of stability to mean-square boundedness of
the state and impose the extra conditions that the sys-
tem matrix A is Lyapunov (or neutrally) stable and that
the pair (A,B) is stabilizable.

The main contributions of this paper can be summa-
rized as follows: Given a suitable subclass of bounded
causal feedback policies, we show how to augment the
finite-horizon optimal control problem to be solved
periodically every Nc steps with a stability constraint
and that the resulting optimization problem can be
approximated to a globally feasible second-order cone
program (SOCP). Under the assumption that the pro-
cess and measurement noise are Gaussian, (even though
the bounded inputs requirement makes the problem
inherently nonlinear and the process statistics are non-
Gaussian,) it turns out that Kalman filtering techniques
can indeed be utilized. We rely on a low-complexity
algorithm (essentially similar to standard Kalman fil-
tering) for updating the conditional density of the state,
given the history of the previous outputs, and report
tractable solutions for the off-line computation of the
time-dependent variance and covariance matrices in the
optimization program. Finally, we show that the recur-
sive application of the resulting control policies renders
the state of the overall system mean-square bounded.
This article builds upon and generalizes the earlier sta-
bility results in [39,21] that were derived for the perfect
state information case. Also, the current results gener-
alize those in [20,16] from the perfect state information
case to the imperfect state information case. In par-
ticular, if we have full state information available, the
control policy proposed in this article reduces to that
proposed in [20] and to a special case of the policies
proposed in [16] where the vector space is spanned by
a single function. However, none of the earlier results,
including those in [22], are able to deal with recursive
feasibility and stability for the setup of this article.
Moreover, the control policy structure in this article is
different from that in [22].

Related Work The research on stochastic receding
horizon control is broadly subdivided into two paral-
lel lines: the first treats multiplicative noise that enters
the state equations, and the second caters to additive

noise. The case of multiplicative noise has been treated
in [38,14,18]. In [38], the noise enters the state equa-
tion multiplicatively and mixed hard state-input con-
straints are relaxed into expectation constraints. Termi-
nal constraints are imposed as well that render the over-
all MPC scheme stable under full state feedback. The
authors in [18] treat the case of uncertain output mea-
surement matrix (C) and solve the MPC problem under
probabilistic constraints on the outputs and full state
feedback. In [14] the stochastic MPC problem is treated
under full state feedback and multiplicative noise enter-
ing the state equation. The proposed scheme comprises
a pre-stabilizing linear state feedback control part and
an open-loop part. The pre-stabilizing feedback gain is
computed off-line and only the open-loop part is opti-
mized online. The results in [15] extend those in [14] to
the case of additive noise as well. However, both results
[15] and [14] involve a pre-stabilizing state feedback con-
troller and hence no hard input bounds can be imposed.

We focus in this article on the additive noise case. The
approach proposed here stems from and generalizes
the idea of affine parametrization of control policies
for finite-horizon linear quadratic problems proposed
in [3,2], utilized within the robust MPC framework in
[2,30,19] for full state feedback, and in [43] for output
feedback with Gaussian state and measurement noise
inputs. More recently, this affine approximation was
utilized in [41] for both the robust deterministic and the
stochastic setups in the absence of control bounds, and
optimality of affine policies in the scalar deterministic
case was reported in [10]. In [9] the authors reformulate
the stochastic programming problem as a determinis-
tic one with bounded noise support and solve a robust
optimization problem over a finite horizon, followed by
estimating the performance when the noise can take
unbounded values, i.e., when the noise is unbounded,
but takes high values with low probability. A similar ap-
proach was utilized in [36] as well. There are also other
approaches, e.g., those employing randomized algo-
rithms as in [1,11,33]. Results on obtaining lower bounds
on the value functions of the stochastic optimization
problem have been recently reported in [44], and a novel
stochastic MPC scheme based on the scenario approach
has appeared in [5]. Other works employing probabilistic
constraints may be found in [40,29]. In [34], an input-
to-state stability approach is employed and stability is
shown under full state feedback and bounded additive
process noise. An MPC scheme for systems with imper-
fect state information has been proposed in [45] under
general hypotheses with probabilistic constraints. How-
ever, the ability to deal with noise of an unbounded
nature (for example Gaussian) is still absent, in which
stability and recursive feasibility could not be proven in
[45] under bounded control inputs.

The rest of this article is organized as follows. We for-
mulate the stochastic receding horizon control problem
with all the underlying assumptions, the construction
of the estimator, and the main optimization problem to
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be solved in Section 2. We provide the main results per-
taining to tractability of the optimization problem and
mean-square boundedness of the closed-loop system in
Section 3. We comment on the obtained results and pro-
vide some extensions in Section 4. We then present nu-
merical examples in Section 5 and conclude in Section
6. Finally, we provide the proofs in the Appendix.

Notation Let (Ω,F,P) be a general probability space.
We denote the conditional expectation given the sub-σ
algebra F′ of F as EF′ [.]. For any random vector s we let
Σs := E[ssT] and EYt

[.] denote the conditional expecta-
tion given Yt. Hereafter we let N+ := {1, 2, . . .} and N :=
N+∪{0}. We let tr(·) denote the trace of a square matrix,
‖·‖p denote the standard p-norm, and simply ‖·‖ denote
the Euclidean norm. We denote by ‖s‖M :=

√
sTMs the

weighted 2-norm, forM =MT > 0. In a Euclidean space
we denote by Br the closed Euclidean ball of radius r cen-
tered at the origin. For any twomatricesA andB of com-
patible dimensions, we denote byRk(A,B) the k-th step

reachability matrix Rk(A,B) :=
[

Ak−1B · · · AB B
]

.

For any matrix M , we let σmin and σmax be its mini-
mal and maximal singular values, respectively. We let
(M)i1:i2 denote the sub-matrix obtained by selecting the
rows i1 through i2 of M and (M)i denote the i-th row
of M . For any positive real number s, ⌈s⌉ denotes the
smallest integer that upper-bounds s.

2 Problem Setup

Consider the following affine discrete-time stochastic dy-
namical model:

xt+1 = Axt +But + wt, (1a)

yt = Cxt + vt (1b)

where t ∈ N, xt ∈ R
n is the state, ut ∈ R

m is the control
input, yt ∈ R

p is the output,wt ∈ R
n is a randomprocess

noise, vt ∈ R
p is a random measurement noise, and A,

B, and C are known matrices. We posit the following
standing assumption:

Assumption 1

(i) The pair (A,B) is stabilizable [6, Chapter 12].
(ii) The matrix A is Lyapunov stable [6, Chapter 12],

i.e., the eigenvalues {λi(A) | i = 1, . . . , n} lie in
the closed unit disc, and those eigenvalues λj(A)
with

∣

∣λj(A)
∣

∣ = 1 have equal algebraic and geometric
multiplicities.

(iii) The initial condition and the process and measure-
ment noise vectors are mutually independent and
normally distributed, i.e., x0 ∼ N (0,Σx0

), wt ∼
N (0,Σw), and vt ∼ N (0,Σv), with Σw > 0 and
Σv > 0.

(iv)
(

A,Σ
1/2
w

)

is controllable and (A,C) is observable.
(v) The control inputs satisfy

‖ut‖∞ 6 Umax ∀t ∈ N. (2)

Without loss of generality, we assume that A is given in
real Jordan canonical form. Indeed, given a linear sys-
tem described by the system matrices

(

Ã, B̃
)

, there ex-
ists a coordinate transformation in the state-space that
brings the pair

(

Ã, B̃
)

to the pair (A,B), where A is in
real Jordan form [23, p. 150]. In particular, choosing a
suitable ordering of the Jordan blocks, we can ensure

that the pair (A,B) has the form

([

As 0

0 Ao

]

,

[

Bs

Bo

])

,

where As ∈ R
ns×ns is Schur stable, and Ao ∈ R

no×no

has its eigenvalues on the unit circle. By Assumption
1-(ii), Ao is therefore block-diagonal with the diagonal
blocks being either ±1, or 2 × 2 rotation matrices. As
a consequence, Ao is orthogonal. Moreover, since (A,B)
is stabilizable, the pair (Ao, Bo) must be reachable in a
number of steps κ 6 no that depends on the dimension
of Ao. Therefore, we can start by considering that the
state equation (1a) has the form

[

xst+1

xot+1

]

=

[

Asx
s
t

Aox
o
t

]

+

[

Bs

Bo

]

ut +

[

wst

wot

]

, (3)

where As is Schur stable, Ao is orthogonal, and there ex-
ists a nonnegative integer κ 6 no such that the subsys-
tem (Ao, Bo) is reachable in κ steps. This reachability
index κ is fixed throughout the rest of the article.

For each t ∈ N, let Yt := {y0, · · · , yt} denote the set
of output observations up to time t. Fix a prediction
horizon N ∈ N+, with N > κ, and define the cost Jt as

Jt=EYt

[

N−1
∑

k=0

(

‖xt+k‖2Qk
+ ‖ut+k‖2Rk

)

+‖xt+N‖2QN

]

, (4)

where Qk = QT

k > 0, QN = QT

N > 0, and Rk = RT

k > 0
are given matrices of appropriate dimension, for k =
0, . . . , N − 1.

The evolution of the system (1a)-(1b) over a single pre-
diction horizon N , starting at t, can be described in a
compact form as

Xt = Axt + BUt +DWt, Yt = CXt + Vt, (5)

where Xt =





xt
xt+1

...
xt+N



, Ut =





ut
ut+1

...
ut+N−1



, Wt =





wt
wt+1

...
wt+N−1



, Yt =





yt
yt+1

...
yt+N



, Vt =





vt
vt+1

...
vt+N



, A =





I
A
...
AN



,

B =













0 ··· ··· 0

B
. . .

...

AB B
. . .

...
...

. . . 0
AN−1B ··· AB B













, D =













0 ··· ··· 0

I
. . .

...

A I
. . .

...
...

. . . 0
AN−1 ··· A I













, and
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C = diag{C, · · · , C}. The cost function (4) at time t can
also be written compactly as

Jt = EYt

[

‖Xt‖2Q + ‖Ut‖2R
]

, (6)

where Q = diag{Q0, · · · , QN} and R = diag{R0,
· · · , RN−1}. The cost Jt in (4) is a conditional ex-
pectation given the observations up to time t, the
evaluation of which requires the conditional density
f(xt|Yt) of the state given the previous and current
measurements. For t, s ∈ N, define x̂t|s = EYs

[xt] and

Pt|s = EYs
[(xt − x̂t|s)(xt − x̂t|s)T].

The following result is a slight extension of the standard
Kalman filter. A proof may be found in [28, p.102].

Proposition 2 Let Assumption 1-(iii) hold and assume
that ut is a deterministic function of Yt. Then f(xt|Yt)
and f(xt+1|Yt) are the probability densities of Gaus-
sian distributions N (x̂t|t, Pt|t) and N (x̂t+1|t, Pt+1|t),
respectively, with Pt|t > 0 and Pt+1|t > 0. For
t = −1, 0, 1, 2, . . . , their conditional means and co-
variances can be computed iteratively starting at
(x̂0|−1, P0|−1) := (0,Σx0

), as follows:

x̂t+1|t+1 = x̂t+1|t

+ Pt+1|tC
T(CPt+1|tC

T +Σv)
−1(yt+1 − Cx̂t+1|t) (7)

Pt+1|t+1 = Pt+1|t

− Pt+1|tC
T(CPt+1|tC

T+Σv)
−1CPt+1|t (8)

x̂t+1|t = Ax̂t|t +But (9)

Pt+1|t = APt|tA
T +Σw. (10)

Proposition 2 states that the conditional mean and co-
variances of xt can be propagated by an iterative algo-
rithm which resembles the Kalman filter. In particular,
the matrix Pt|t together with x̂t|t characterize the con-
ditional density f(xt|Yt), which is needed in the compu-
tation of the cost (4) (or equivalently (6)). We note here
that in the receding horizon control case considered in
this paper ut will be a nonlinear function of {y0, · · · , yt};
therefore we cannot assume that all the probability dis-
tributions in the problem are Gaussian as in the case of
LQG; in fact, the a priori distributions of xt and of Yt
are not. Hereafter, we shall denote for notational conve-
nience by x̂t the estimate x̂t|t, and let

x̂t =
[

(x̂st )
T (x̂ot )

T

]T

, (11)

which corresponds to the Jordan decomposition in (3).
Let Kt := (APt|tA

T + Σw)C
T(C(APt|tA

T + Σw)C
T +

Σv)
−1 and define Γt := I −KtC and Φt := ΓtA. Then,

we can write the estimation error vector over a single
prediction horizon N as

Et := Xt − X̂t = Ftet + GtWt −HtVt, (12)

where et = xt−x̂t, X̂t =

[

x̂t

...
x̂t+N

]

,Ft =







I
Φt

Φt+1·Φt

...
Φt+N−1···Φt






,

Gt =















0 · · · 0 0

Γt · · · 0 0

Φt+1Γt · · · 0 0

.

.

.

.

.

.

.

.

.

Φt+N−2 · · ·Φt+1Γt · · · Γt+N−2 0

Φt+N−1 · · ·Φt+1Γt · · · Φt+N−1Γt+N−2 Γt+N−1















,

Ht =















0 0 · · · 0 0

0 Kt · · · 0 0

0 Φt+1Kt · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 Φt+N−2 · · ·Φt+1Kt · · · Kt+N−2 0

0 Φt+N−1 · · ·Φt+1Kt · · · Φt+N−1Kt+N−2 Kt+N−1















.

The innovations sequence can be written as

Yt − Ŷt = CFtet + CGtWt + (I − CHt)Vt, (13)

where Ŷt := CX̂t. Consequently, the innovations se-
quence over the prediction horizon is independent of the
input vector Ut. Also, under the forgoing assumptions,
the error vector et is a Gaussian random variable with
mean zero and variance Pt|t.

2.1 Optimization Problem and Control Policies

We would like to minimize the cost (4) over the class
of all causal feedback policies. However, this optimiza-
tion problem is extremely difficult to solve in general
[7,8]. Therefore, we restrict attention to a subclass of
causal feedback policies for which the optimization
problem is tractable. Guided by our earlier approach in
[20,16,22,21] and given a control horizon Nc > 1 and a
prediction horizon N > Nc, we would like to periodi-
cally minimize the cost (4) at times t = 0, Nc, 2Nc, · · ·
over the following class of control policies

ut+ℓ = ηt+ℓ +
ℓ
∑

i=0

θt+ℓ,t+iϕi(yt+i − ŷt+i), (14)

where ℓ = 0, 1, · · · , N − 1, ŷi = Cx̂i is the output of the

estimator, and for any vector z =
(

z1, · · · , zp
)

∈ R
p,

ϕi(z) =
(

ϕi,1(z1), · · · , ϕi,p(zp)
)

, where ϕi,j : R → R is

any function with sup
s∈R

|ϕi,j(s)| 6 ϕmax < ∞ for some

ϕmax > 0. The feedback gains θℓ,i ∈ R
m×p and the affine

terms ηℓ ∈ R
m are the decision variables. The value of

ut+ℓ in (14) depends on the values of the measured out-
puts from the beginning of the prediction horizon at time
t up to time t + ℓ only, which requires finite memory.
Note that we have chosen to saturate the measurements
we obtain from the vectors (yi − ŷi) before employing
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them in the control policy. This allows us to consider
unbounded noise and yet ensure bounded policies; nei-
ther the process noise nor the measurement noise distri-
butions are defined over a compact domain, in contrast
to robust deterministic receding horizon control [35] or
other stochastic receding horizon control approaches as
in [13]. Moreover, the choice of element-wise saturation
functions ϕi(·) is left open. As such, we can accommo-
date standard saturation, piecewise linear, and sigmoidal
functions, to name a few. The control policy (14) at time
t can be compactly written as

Ut = ηt +Θtϕ(Yt − Ŷt), (15)

where Θt has the following (causal) lower block trian-
gular structure

Θt :=









θt,t 0 ... 0

θt+1,t θt+1,t+1

...
...

...
. . . 0

θt+N−1,t θt+N−1,t+1 ... θt+N−1,t+N−1









, (16)

ηt :=





ηt
ηt+1

...
ηt+N−1



, and ϕ(Yt−Ŷt) :=
[

ϕ0(yt−ŷt)

...
ϕN−1(yt+N−1−ŷt+N−1)

]

.

Since the innovations vector Yt− Ŷt in (13) is not a func-
tion of ηt and Θt, the control inputs Ut in (14) remain
affine in the decision variables. This fact is important to
show convexity of the optimization problem, as will be
seen in the next section. Finally, the constraint (2) can
be rewritten as:

‖Ut‖∞ 6 Umax ∀t = 0, Nc, 2Nc, · · · . (17)

Summarizing, the optimization problem to be solved pe-
riodically at times t = 0, Nc, 2Nc, · · · is given by

min
(ηt,Θt)

{

Jt
∣

∣

∣
(5), (15), (16), (17)

}

(18)

3 Main Results

Even if problem (18) is successively feasible every Nc
steps, in general the resulting control actions do not
guarantee stability of the resulting receding horizon
controller. Unlike standard deterministic stability argu-
ments utilized in MPC, see, for example, [35], we cannot
assume the existence of a compact robust positively in-
variant terminal region, since the process noise sequence
does not have a compact support. Instead, we introduce
an additional stability constraint which, if recursively
feasible, renders the state of the closed-loop system
mean-square bounded. Guided by the argument in [39],
we then show that this constraint is indeed recursively
feasible.

For t = 0, Nc, 2Nc, · · · , the state estimate at time t+Nc

can be written as

x̂t+Nc
= ANc x̂t +RNc

(A,B)

[ ut

...
ut+Nc−1

]

+ Ξt, (19)

where RNc
(A,B) is the reachability matrix as defined

earlier and Ξt is defined as

Ξt :=[ANc−1KtCA ANc−2Kt+1CA ··· Kt+Nc−1CA ]

[ et
...

et+Nc−1

]

+ [ANc−1KtC ANc−2Kt+1C ··· Kt+Nc−1C ]

[ wt

...
wt+Nc−1

]

+ [ANc−1Kt A
Nc−2Kt+1 ··· Kt+Nc−1 ]

[ vt+1

...
vt+Nc

]

. (20)

In order to show boundedness of the state variance, we
require that theNc-step iteration (19) has bounded vari-
ance. However, this estimate has the term Ξt, which in-
volves the error in the state estimation process as well as
the process and measurement noise vectors. This term
Ξt may be viewed as ‘noise’ entering the system, with
bounded fourth moment. In particular, we require that
there exists, at least after some time T ′, a uniform bound
on its first moment. This is captured by the following
Proposition.

Proposition 3 There exists an integer T ′ and a positive
constant ζ, depending on the given problem parameters,
such that

EYt
[‖Ξt‖] 6 ζ for all t > T ′. (21)

Using the constant ζ, we now require the following “drift
condition” to be satisfied: for any chosen constant ε > 0
and for every t = 0, Nc, 2Nc, · · · , Ut ∈ U is designed such
that the following condition is satisfied

∥

∥

∥

∥

∥

ANc

o x̂ot +RNc
(Ao, Bo)

[ ut

...
ut+Nc−1

]
∥

∥

∥

∥

∥

6
∥

∥x̂ot
∥

∥− (ζ + ε
2 )

whenever
∥

∥x̂ot
∥

∥ > ζ + ε. (22)

As will be shown later, condition (22) above guaran-
tees that on average the state norm contracts every
Nc steps, a crucial ingredient towards showing mean-
square boundedness of the closed-loop system. More-
over,Nc needs to be chosen appropriately (depending on
the reachability index κ) in order to ensure that the con-

straint is feasible. Note that

[ ut

...
ut+Nc−1

]

= (ηt)1:Ncm +

(Θt)1:Ncmϕ(Y − Ŷ ). (For notational convenience, we

have retained ϕ(Y −Ŷ ) with the knowledge that the ma-
trix (Θt)1:Ncm causally selects the first Nc output vec-
tors as they become available, see (16).) We augment
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problem (18) with the stability constraint (22) to obtain

min
(ηt,Θt)

{

Jt
∣

∣

∣
(5), (15), (16), (17), (22)

}

. (23)

The ingredients of our stochastic receding horizon con-
trol problem corresponding to (23) are summarized in
Algorithm 1.

Algorithm 1 Basic Stochastic Receding Horizon Algo-
rithm
Require: density f(x0|Y−1) := N (0,Σx0

)
1: set t← 0, x̂0|−1 ← 0, and P0|−1 ← Σx0

2: loop
3: for i = 0 to Nc − 1 do
4: measure yt+i
5: calculate x̂t+i(= x̂t+i|t+i) and Pt+i|t+i using

(7)-(8)
6: if i = 0 then
7: solve the optimization problem (23) for the

optimal policy {u∗t , · · · , u∗t+N−1}
8: end if
9: using the obtained control policy above, com-

pute and apply u∗t+i
10: calculate x̂t+i+1|t+i and Pt+i+1|t+i using (9)-

(10)
11: end for
12: set t← t+Nc
13: end loop

Assumption 4 We require that:

(i) The control and prediction horizons satisfy N >

Nc = κ, where κ is the reachability index of the
orthogonal subsystem (Ao, Bo) in (3).

(ii) The control authority Umax > U∗
max, where U

∗
max :

= σmin(RNc
(Ao, Bo))

−1
(

ζ + ε
2

)

and RNc
(Ao, Bo)

is the Nc-step reachability matrix of the orthogonal
subsystem.

In fact, choosing any control horizon Nc > κ turns out
to be sufficient in order to have a feasible control vector
Ut for problem (23) with an upper bound Umax = U∗

max;
however, we will take Nc = κ for simplicity.

Theorem 5 Consider the system (1a)-(1b), and sup-
pose that Assumptions 1 and 4 hold. Then:

(i) For every time t = 0, Nc, 2Nc, · · · , the optimization
problem (23) in Algorithm 1 is convex and can be
conservatively approximated and solved via the fol-
lowing globally (hence recursively) feasible second-
order cone program (SOCP):

minimize
(z1,z2,z3,ηt,Θt)

z1 (24)

subject to

‖ηt +ΘtΛ
ϕ
t ‖

2
M + tr

(

ΘT

tMΘt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

+

2x̂Tt ATQBηt + 2tr
(

ΘT

t BTQ(DΛwϕt +AΛxϕt )
)

6z1

(25)

|(ηt)i|+ ‖(Θt)i‖1 ϕmax 6 Umax ∀ i = 1, · · · , Nm,
(26)

∥

∥ANc
o x̂ot +RNc

(Ao, Bo)(ηt)1:Ncm

∥

∥ 6 z2

‖RNc
(Ao, Bo)(Θt)1:Ncm‖∞ 6 z3

z2 +
√
noϕmaxz3 6

∥

∥x̂ot
∥

∥− (ζ + ε
2 )















whenever
∥

∥x̂ot
∥

∥>ζ+ε

(27)

the structure of Θt in (16),

whereM := R+ BTQB, and

Λϕt := EYt
[ϕ(Yt − Ŷt)], Λxϕt := EYt

[xtϕ(Yt − Ŷt)T],
Λwϕt := EYt

[Wϕ(Yt − Ŷt)T],
Λϕϕt := EYt

[ϕ(Yt − Ŷt)ϕ(Yt − Ŷt)T]. (28)

(ii) The application of Algorithm 1 via the SOCP ap-
proximation in part (i) above renders the closed-loop
system mean-square bounded, i.e., for any initial Y0,
there exists a (computable) finite constant γ > 0, de-
pending on the given problem parameters, such that

sup
t∈N

EY0

[

‖xt‖2
]

6 γ. (29)

In practice, it may be also of interest to further impose
constraints both on the state and the input vectors. For
example, one may be interested in imposing linear and
/ or quadratic constraints on the state of the form

EYt

[

‖Xt‖2S + LTXt

]

6 αt, (30)

where S = ST > 0 and αt > 0. Moreover, expected
energy expenditure constraints can be posed as follows

EYt

[

‖Ut‖2S̃
]

6 βt, (31)

where S̃ = S̃T > 0 and βt > 0. In the absence of hard
input constraints, such expectation-type constraints are
commonly used in the stochastic MPC [38,17] and in
stochastic optimization in the form of integrated chance
constraints [26,27]. This is partly because it is not pos-
sible, without posing further restrictions on the bound-
edness of the process noise wt, to ensure that hard con-
straints on the state are satisfied. For example, in the
standard LQG setting nontrivial hard constraints on the
system state would generally be violated with nonzero
probability. Moreover, in contrast to chance constraints
where a bound is imposed on the probability of con-
straint violation, expectation-type constraints tend to
give rise to convex optimization problems under weak
assumptions [17,26,27]. We can augment problem (23)
with the constraints (30) and (31) to obtain

min
(ηt,Θt)

{

Jt
∣

∣

∣
(5), (15), (16), (17), (22), (30), (31)

}

. (32)
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Notice that the constraints (30) and (31) are not nec-
essarily feasible at time t for any choice of parameters
αt and βt. As such, problem (32) may become infeasible
over time if we simply apply Algorithm 1. We therefore
modify step 7 in Algorithm 1 to generate Algorithm 2.
In this new version of the algorithm, problem (32) is ei-
ther feasible at step 7 with the given αt and βt, or a bi-
section search is implemented (steps 12 to 26), with αt
and βt as lower bounds, and upper bounds

α∗
t := 3tr

(

ATSAEYt

[

xtx
T

t

]

+DTSDΣw
)

+ LTAx̂t
+ 3Nmσmax(BTSB)U2

max +
∥

∥LTB
∥

∥

1
Umax

β∗
t := Nmσmax(S̃)U2

max (33)

that guarantee feasibility. The search is iterated until
the change in α and β falls below a prespecified precision
number δ or a maximal number of iterations ν̄ is reached,
which is used to keep the computational burden limited.

Corollary 6 Consider the system (1a)-(1b), and sup-
pose that Assumptions 1 and 4 hold. Then:

(i) For every time t = 0, Nc, 2Nc, · · · the optimization
problem (32) in Algorithm 2 is convex and can be con-
servatively approximated and solved via the following
globally (hence recursively) feasible (at either step 7
or step 13) second-order cone program (SOCP):

minimize
(z1,z2,z3,ηt,Θt)

z1

subject to

‖ηt +ΘtΛ
ϕ
t ‖

2
M + tr

(

ΘT

tMΘt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

+

2x̂Tt ATQBηt + 2tr
(

ΘT

t BTQ(DΛwϕt +AΛxϕt )
)

6 z1

|(ηt)i|+ ‖(Θt)i‖1 ϕmax 6 Umax ∀ i = 1, · · · , Nm,
∥

∥ANc
o x̂ot +RNc

(Ao, Bo)(ηt)1:Ncm

∥

∥6z2

‖RNc
(Ao, Bo)(Θt)1:Ncm‖∞ 6 z3

z2 +
√
noϕmaxz3 6

∥

∥x̂ot
∥

∥− (ζ + ε
2 )















whenever
∥

∥x̂ot
∥

∥>ζ+ε

‖ηt+ΘtΛ
ϕ
t ‖

2
BTSB+tr

(

ΘT

t BTSBΘt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

+ 2x̂Tt ATSBηt + 2tr
(

ΘT

t BTS(DΛwϕt +AΛxϕt )
)

+ LTB(ηt +ΘtΛ
ϕ
t ) + tr

(

ATSAEYt

[

xtx
T

t

])

+ tr

(

DTSDΣw
)

+ LTAx̂t 6 αt (34)

‖ηt +ΘtΛ
ϕ
t ‖

2
S̃ + tr

(

ΘT

t S̃Θt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

6 βt

(35)

the structure of Θt in (16),

where all the required constant matrices are defined
as in Theorem 5.

(ii) The application of Algorithm 2 via the SOCP ap-
proximation in part (i) above renders the closed-loop
system mean-square bounded, i.e., for any initial Y0,
there exists a (computable) finite constant γ > 0, de-

pending on the given problem parameters, such that

sup
t∈N

EY0

[

‖xt‖2
]

6 γ. (36)

Algorithm 2Modified Stochastic Receding Horizon Al-
gorithm

Require: density f(x0|Y−1) := N (0,Σx0
)

1: set t← 0, x̂0|−1 ← 0, and P0|−1 ← Σx0

2: loop
3: for i = 0 to Nc − 1 do
4: measure yt+i
5: calculate x̂t+i(= x̂t+i|t+i) and Pt+i|t+i using

(7)-(8)
6: if i = 0 then
7: solve the optimization problem (32) using the

given αt and βt
8: if step 7 is feasible then
9: save the optimal sequence

{u∗t , u∗t+1, · · · , u∗t+N−1}
10: goto step 28
11: else
12: set α← α∗

t , α← αt, β ← β∗
t , and β ← βt

13: solve the optimization problem (32) us-
ing α and β to obtain the sequence
{u∗t , u∗t+1, · · · , u∗t+N−1}

14: set ν ← 1
15: repeat
16: set αt ← (α+α)/2 and βt ← (β+ β)/2
17: solve the optimization problem (32) us-

ing the new αt and βt
18: if step 17 is feasible then
19: set α← αt and β ← βt
20: save the new optimal sequence

{u∗t , u∗t+1, · · · , u∗t+N−1}
21: else
22: set α← αt and β ← βt
23: end if
24: set ν = ν + 1
25: until (|α − α| 6 δ and |β − β| 6 δ) or

(ν > ν̄)
26: end if
27: end if
28: apply u∗t+i
29: calculate x̂t+i+1|t+i and Pt+i+1|t+i using (9)-

(10)
30: end for
31: set t = t+Nc
32: end loop

4 Discussion

4.1 Recursive Feasibility

The SOCPs solved in Theorem 5 and Corollary 6 are
globally feasible, independently of the initial conditions
of the plant and the estimator. As such, there is no a
priori requirement for an initially feasible and invariant
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set of initial conditions, as is the case in nominal or ro-
bust receding horizon control [35]. This guarantee of re-
cursive feasibility is shown in the proofs of Theorem 5
and Corollary 6 by providing a feasible control law that
satisfies all the constraints in the SOCPs.

4.2 Mean-Square Boundedness

The mean-square boundedness conditions (29) and (36)
provide an on-average guarantee that the state does not
grow arbitrarily large. This is a weaker notion of stabil-
ity than, for example, asymptotic stability or input-to-
state stability (ISS) that have been utilized in nominal
and robust receding horizon control, respectively. How-
ever, in the presence of possibly unbounded process and
measurement noise, it is virtually impossible to guaran-
tee that the state converges to the origin or that it is ul-
timately bounded in some compact set for every initial
condition and every realization of the noise processes. In
this case, similarly to LQG (i.e., even with unbounded
control authority), mean-square boundedness is the best
that can be aimed for within our setting, given the un-
boundedness of the noise processes and the limited con-
trol authority. The constants γ in (29) and (36) may be
computed using the derivations in the Appendix and the
formulas in the Remark in [37, pp.145].

4.3 More General Policies

It is not difficult to show that one can also use quadratic
policies of the form

Ut = ηt +Θtϕ(Yt − Ŷt) + Θ̃tϕ̃(Yt − Ŷt), (37)

instead of (14), where Θ̃t has the same causal struc-

ture of of Θt and ϕ̃(Yt − Ŷt) := [ ϕ̃0(yt−ŷt)
Tϕ̃0(yt−ŷt) ...

ϕ̃N−1(yt+N−1−ŷt+N−1)
Tϕ̃N−1(yt+N−1−ŷt+N−1) ]T, with

sup
s∈R

|ϕ̃i(s)| 6 ϕ̃max < ∞ for some ϕ̃max > 0. The un-

derlying optimization problems (23) and (32) with the
policy (37) are still convex and both Theorem 5 and
Corollary 6 still apply with minor changes.

4.4 Off-Line Computation of the Λ Matrices

The optimization problems (23) and (32) solved in The-
orem 5 and in Corollary (6), respectively, are second-
order cone programs (SOCP) for which efficient numer-
ical solvers are available via software packages such as
yalmip [31]. As such, the optimizationmay be performed
online. However, at any time t = 0, Nc, 2Nc, · · · , our
ability to solve the optimization problems in Theorem 5
and Corollary 6, respectively, hinges upon the computa-
tion of the matrices in (28).

Recall that Yt − Ŷt is the innovations sequence that
was given in (13), and that x̂t is the optimal mean-
square estimate of xt given the history Yt. The ma-
trices (28) may be computed by numerical integration
with respect to the independent Gaussian measures of
wt, . . . wt+N−1, of vt, . . . vt+N , and of (xt − x̂t) given
Yt. Due to the large dimensionality of the integration

space, this approach may be impractical for online com-
putations. One alternative approach relies on the ob-
servation that Λϕt , Λ

wϕ
t , and Λϕϕt depend on xt via the

difference xt − x̂t. Since xt − x̂t is conditionally zero-
mean given Yt, we can write the dependency of (28)
on the time-varying statistics of xt given Yt as follows:
Λxϕt (x̂t, Pt|t) = Λeϕt (Pt|t)+ x̂tΛ

ϕ
t (Pt|t)

T
, Λwϕt (Pt|t), and

Λϕϕt (Pt|t), where Λeϕt := EYt
[(xt − x̂t)ϕ(Yt − Ŷt)T]. In

principle one may compute off-line and store the matri-
ces Λeϕt (Pt|t),Λ

ϕ
t (Pt|t),Λ

wϕ
t (Pt|t), and Λϕϕt (Pt|t), which

depend on the covariance matrices Pt|t but not on x̂t,
and just update online the value of Λxϕt (x̂t, Pt|t) as the
estimate x̂t becomes available. However, this poses se-
rious requirements in terms of memory. A more appeal-
ing alternative is to exploit the convergence properties
of the covariance matrix Pt|t. The following result can
be inferred, for instance, from [25, Theorem 5.1].

Proposition 7 Under Assumption 1-(iii) and (iv) the
discrete-time algebraic Riccati equation in P ∈ R

n×n,
P = A[P − PCT(CPCT + Σv)

−1CP ]AT + Σw, has a
unique solution P ∗ > 0. The sequence Pt+1|t defined
by (8) and (10) converges to P ∗ as t tends to∞, for any
initial condition P0|−1 > 0.

As a consequence, from (8) one sees that Pt|t converges

to P ◦ = P ∗ − P ∗CT(CP ∗CT + Σv)
−1CP ∗,which is the

asymptotic error covariance matrix of the estimator x̂t.
Thus, neglecting the initial transient, one may just com-
pute off-line and store the matrices Λeϕt (P ◦), Λϕt (P

◦),
Λwϕt (P ◦), and Λϕϕt (P ◦), and just update the matrix
Λxϕt (x̂t, P

◦) for new values of the estimate x̂t.

5 Simulations

Consider the system (1a)-(1b) with the following matri-

ces: A =

[

0.9 0 0 0
0 1 0 0
0 0 cos(ψ) − sin(ψ)
0 0 sin(ψ) cos(ψ)

]

, B =

[

0
1
0
1

]

, and C = I,

where ψ = π
2 . The orthogonal part of the state is 3-

dimensional, and the controllability index of the orthog-
onal part is κ = 3.

Example 1. The simulation data was chosen to be: x0 ∼
N (0, I), wt ∼ N (0, 10I), vt = N (0, 10I), Q = I, R = 1,
N = 5, Nc = κ = 3, and ϕ the usual piecewise linear
saturation function with ϕmax = 1. For this example the
theoretical bound on the input is Umax=̃453 for a choice
of ε = 10.

We simulated the system above using Algorithm 1 for
the discrete-time interval [0, 100]. In comparison, we sim-
ulated also the policy (38) proposed by the authors in
[39] whenever the state is estimated using a Kalman fil-
ter, with the understanding that this goes beyond the
results in [39], since [39] deals only with the case of per-
fect state information. We also simulated the standard
LQG controller for this system with post-saturation of
the obtained controls. The average state norm as well as
the standard deviation of the state norm using the three
strategies are depicted in Figure 1 and the total costs are
plotted in Figure 2. Figure 2 shows approximately 16%
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improvement in the cost after 100 time steps by using
Algorithm 1 versus the policy (38) in [39] coupled with a
Kalman filter. The performance of our policy is close to
that of clipped LQG, which remains mean-square ‘op-
timal’ since the theoretical upper bound on the con-
trol authority is never reached by the LQG policy, i.e.,
the LQG policy is never clipped (for our choice of ini-
tial condition x0). The optimization problem was solved
using yalmip [31] and sdpt3 [42] and the solver times
were as follows: minimum = 0.1238 second, maximum
= 0.5831 second, average = 0.1691 second, and stan-
dard deviation = 0.0144 second. This data pertains to
an Intel(R) Core(TM)2 Duo CPU running at 2.66GHz,
with a Linux operating system. The computation of the
matrices Λeϕ(P ◦), Λϕ(P ◦), Λwϕ(P ◦), and Λϕϕ(P ◦) was
done off-line using the steady state error covariance ma-
trix P ◦, as discussed in the previous section, via classical
Monte Carlo integration using 105 samples.
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Fig. 1. Average and standard deviation of the state norm for
Umax = 453
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Fig. 2. Total cost for Umax = 453

Example 2.We also simulated the same system as before
with Q = 100I and R = 1. In this case the theoretical
bound ζ = 336.6 and the corresponding Umax = 440.45.

As this theoretical bound on ζ is conservative, we re-
duced ζ down to 2 and chose ε = 0.5, which result in
Umax = 3.2664. This choice of ζ is far below the re-
quired theoretical bound (which was given in Example
1 above) and as such the stability guarantees in the ar-
ticle do not apply anymore, i.e., there is no theoretical
guarantee that the closed-loop system is mean-square
bounded. However, it is apparent from Figures 3 and 4
that our policy is stabilizing. It is important to notice
that the clipped LQG policy hits the saturation level
Umax quite often, whereas our policy does not, as seen
in Figure 5. However, despite the fact that our strategy
does not take full advantage of the available control au-
thority, it is still able to outperform the clipped LQG as
well as the adapted policy in [39].
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Fig. 3. Average and standard deviation of the state norm for
Umax = 3.2664
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Fig. 4. Total cost for Umax = 3.2664

6 Conclusions

We presented a method for stochastic receding hori-
zon control of discrete-time linear systems with process
and measurement noise and bounded input policies. We
showed that the optimization problem solved periodi-
cally is successively feasible and convex. Moreover, we il-
lustrated how a certain stability condition can be utilized
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to ensure that the application of the receding horizon
controller renders the state of the system mean-square
bounded. We discussed how certain matrices in the cost
function can be computed off-line and provided exam-
ples that illustrate our approach, showing conditions un-
der which it outperforms certain competing approaches.
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Appendix: Proofs

We begin by considering the estimation equation in
(7) and combining it with (9) and the system dy-
namics (1a)-(1b) to obtain (recall that x̂t is used
instead of x̂t|t for notational simplicity) x̂t+1 =

Ax̂t + But + Kt

(

CA(xt − x̂t) + Cwt + vt+1

)

,where

Kt = (APt|tA
T +Σw)C

T
(

C(APt|tA
T +Σw)C

T +Σv
)−1

and Pt|t is the error covariance matrix defined in (8).
Both Kt and Pt are uniformly norm-bounded as shown
in the following Lemma:

Lemma 8 Consider the system (1a)-(1b), and let As-
sumption 1-(iv) hold. In addition, assume that P0|0 > 0.
Then, there exists a time T ′ ∈ N and constants ρ, ρm > 0
such that tr

(

Pt|t
)

6 ρ and ‖Kt‖ 6 ρm, ∀t > T ′.

PROOF. First, observe that
∑κ1−1
i=0 AiΣw(A

i)T =
[

Σ
1/2
w AΣ

1/2
w · · · Aκ1−1Σ

1/2
w

][

Σ
1/2
w AΣ

1/2
w · · · Aκ1−1Σ

1/2
w

]T

,

and since (A,Σ
1/2
w ) is controllable by Assumption 4-

(iv), we see that there exists κ1 ∈ N+ such that for all

k > κ1 the rank of
[

Σ
1/2
w AΣ

1/2
w · · · Aκ1−1Σ

1/2
w

]

= n;

indeed, κ1 is the reachability index of (A,Σ
1/2
w ).

Thus,
∑κ1−1
i=0 AiΣw(A

i)T is positive definite, and
therefore, there exists some δ′1, δ

′
2 > 0 such that

δ′1I 6
∑κ1−1
i=0 AiΣw(A

i)T 6 δ′2I. Second, observe

that
∑κ2−1
i=0 (Ai)TCTΣ−1

v CAi =





C
CA
...

CAκ2−1





T

(

Iκ2
⊗

Σ−1
v

)





C
CA
...

CAκ2−1



, where ⊗ denotes the standard Kro-

necker product. Since (A,C) is observable by assump-
tion, there exists κ2 ∈ N+ such that the rank of the

matrix
[

CT ATCT · · · (Aκ2−1)TCT

]T

is n. The matrix

Iκ2
⊗ Σ−1

v is clearly positive definite by Assumption
4-(iv), and therefore, we see that there exists δ′′1 , δ

′′
2 > 0

such that δ′′1 I 6
∑κ2−1
i=0 (Ai)TCTΣ−1

v CAi 6 δ′′2 I. Third,
the conditions of Lemma 7.1 in [24, pp. 234] are satisfied,
for a choice of δ1 = min{δ′1, δ′′1 } and δ2 = max{δ′2, δ′′2 },
and the bound Pt|t 6 ρ′I for some ρ′ > 0 is established
for all t > T ′ := max{κ1, κ2}. The assertion now fol-

lows immediately from: EYt

[

‖xt − x̂t‖2
]

= tr

(

Pt|t
)

6

nλmax(Pt|t) 6 nρ′ =: ρ. Since by assumption Σv > 0,

one possible bound on
(

‖Kt‖
)

t>T ′ is given by ‖Kt‖ 6

‖APt|tA
T+Σw‖‖CT‖

λmin(Σv)
6

(

‖Σw‖+‖A‖2‖Pt|t‖
)

‖CT‖
λmin(Σv)

=: ρm. 2
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Using the bounds in Lemma 8, we can proceed to prove
Proposition 3.

PROOF. [Proof of Proposition 3] Recall the expres-
sion of Ξt in (20) and define the following quantities:

Ft :=
[

ANc−1KtCA ANc−2Kt+1CA · · · Kt+Nc−1CA
]

,

Gt :=
[

ANc−1KtC ANc−2Kt+1C · · · Kt+Nc−1C
]

,

Ht :=
[

ANc−1Kt A
Nc−2Kt+1 · · · Kt+Nc−1

]

. Using

Lemma 8, we have that ‖Ft‖ 6 Nc ‖CA‖ ‖Kt‖ 6

Ncρm ‖CA‖, ‖Gt‖ 6 Nc ‖C‖ ‖Kℓ‖ 6 Ncρm ‖C‖, and
‖Ht‖ 6 Nc ‖Kℓ‖ 6 Ncρm, for all t > T ′. It fol-

lows that EYt
[‖Ξt‖] 6 Ncρm ‖CA‖EYt

[∥

∥

∥

∥

∥

et
...

et+Nc−1

∥

∥

∥

∥

∥

]

+

Ncρm ‖C‖EYt

[
∥

∥

∥

∥

∥

wt

...
wt+Nc−1

∥

∥

∥

∥

∥

]

+NcρmEYt

[
∥

∥

∥

∥

∥

vt+1

...
vt+Nc

∥

∥

∥

∥

∥

]

6 Nc
3/2ρm

(

‖CA‖√ρ+‖C‖
√

tr(Σw)+
√

tr(Σv)
)

=: ζ,

for all t > T ′. 2

Proof of Theorem 5 We begin by showing the first
claim in Theorem 5.

Lemma 9 Consider the system (1a)-(1b), and suppose
that Assumption 4 holds. Then assertion (i) of Theorem
5 holds.

PROOF. Convexity: It is clear that XT

t QXt+UT

t RUt
is convex in Xt and Ut, and both Xt and Ut are
affine functions of the design parameters (ηt,Θt) for
every realization of the noise sequences (wt)t∈N and
(vt)t∈N. Since taking expectation of a convex func-
tion retains convexity [12], we conclude that the cost
Vt = EYt

[

XT

t QXt + UT

t RUt
]

is convex in (ηt,Θt).
Similarly, the constraints (17) and (22) are convex in
(ηt,Θt) as they are a composition of convex and affine
functions [12].
SOCP Formulation: Substituting the augmented dy-
namics (5) into the objective function (6), we have

that Jt = EYt

[

‖Axt + BUt +DWt‖2Q + ‖Ut‖2R
]

=

EYt

[

‖Ut‖2M+2UT

t BTQ(Axt+DWt)
]

+EYt

[

‖Wt‖2DTQD+

‖xt‖2ATQA

]

, where we have used the fact that the noise

Wt is zero-mean (and M = R + BTQB). Note that
the last term above does not depend on the decision
variables so we shall henceforth drop it from the opti-
mization. Now, substituting the policy (15) into the last
equation and completing the square yieldsJt=̃EYt

[

(ηt+

Θtϕ(Yt − Ŷt))
TM(ηt + Θtϕ(Yt − Ŷt)) + 2(ηt +

Θtϕ(Yt − Ŷt))
TBTQ(Axt + DWt)

]

‖ηt +ΘtΛ
ϕ
t ‖

2
M +

tr

(

ΘT

tMΘt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

+ 2ηT

t BTQAx̂t
+2tr

(

ΘT

t BTQ(AΛxϕt +DΛwϕt )
)

. Note that Λϕϕt −
Λϕt Λ

ϕ
t
T

> 0, so we can further write the quadratic

term in Θt in a symmetric fashion, i.e., since Λϕϕt −
Λϕt Λ

ϕ
t
T

is positive semidefinite, there exists a ma-

trix L so that Λϕϕt − Λϕt Λ
ϕ
t
T

= LLT. It follows that

tr

(

ΘT

tMΘt(Λ
ϕϕ
t − Λϕt Λ

ϕ
t
T
)
)

= tr

(

ΘT

tMΘtLL
T

)

=

tr

(

LTΘT

tMΘtL
)

. Using the epigraph formulation gives

the cost (24) and constraint (25).

Concerning the constraint (26), we have shown in [20,16]
that combining the constraint ‖ut‖∞ 6 Umax and the
class of policies (15) is equivalent to the constraints
|(ηt)i| + ‖(Θt)i‖1 ϕmax 6 Umax for all i = 1, . . . , Nm.
Substituting (15) into the stability constraint (22), we
obtain
‖ANc

o x̂ot +RNc
(Ao, Bo)(ηt)1:Ncm

+RNc
(Ao, Bo)(Θt)1:Ncmϕ(Yt − Ŷt)‖

6
∥

∥ANc

o x̂ot +RNc
(Ao, Bo)(ηt)1:Ncm

∥

∥

+
∥

∥

∥
RNc

(Ao, Bo)(Θt)1:Ncmϕ(Yt − Ŷt)
∥

∥

∥

6
∥

∥ANc

o x̂ot +RNc
(Ao, Bo)(ηt)1:Ncm

∥

∥

+
√
no

∥

∥

∥
RNc

(Ao, Bo)(Θt)1:Ncmϕ(Yt − Ŷt)
∥

∥

∥

∞

6
∥

∥ANc

o x̂ot +RNc
(Ao, Bo)(ηt)1:Ncm

∥

∥

+
√
no ‖RNc

(Ao, Bo)(Θt)1:Ncm‖∞ ϕmax.

Enforcing that the last term above is 6 ‖x̂ot‖−
(

ζ − ε
2

)

,

whenever
∥

∥x̂ot
∥

∥ > ζ + ε, is equivalent to the con-
straint (27), where the decision variables are now
(z2, z3,ηt,Θt). Moreover, if the constraint (27) is sat-
isfied, then the stability constraint (22) is satisfied as
well. As such, the optimization problem solved in The-
orem 5-(i) is a conservative approximation of (23) due
to the fact that the constraint (27) is tighter than (22).
Feasibility: It remains to show that all the constraints
are simultaneously feasible. Inspired by the work in [39],
we consider the candidate controller

ũt,t+Nc−1=

[ ηt

...
ηt+Nc−1

]

=−RNc
(Ao, Bo)

†satr(A
Nc

o x̂ot ) (38)

with ηt+Nc
= ηt+Nc+1 = · · · = ηt+N−1 = 0 and

Θt = 0, where r := ζ + ε/2 and recall that satr(v) = v
if ‖v‖ 6 r and satr(v) = rv/ ‖v‖ if ‖v‖ > r.
First, we have that ‖ũt,t+Nc−1‖∞ 6 ‖ũt,t+Nc−1‖2 6

σmin(RNc
(Ao, Bo))

−1(ζ + ε/2) = U∗
max, and the con-

straint (2) is feasible. Regarding the constraint (22),
we have that

∥

∥ANc
o x̂ot +RNc

(Ao, Bo)ũt,t+Nc−1

∥

∥ =

‖x̂ot‖ − r 6 ‖x̂ot‖ − (ζ + ε/2), whenever
∥

∥x̂ot
∥

∥ > ζ + ε,
where the first equality follows from the orthogonality
of Ao (see [39]), and the constraint (22) is also feasible.

Finally, it is easy to see that the cost (24) is linear
and (25) through (27) are second-order cone constraints,
hence the optimization program is a SOCP [4]. 2

The following result pertains to mean-square bounded-
ness of the Schur subsystem x̂st of the estimator, i.e.,
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x̂st+1 = Asx̂
s
t + Bsut + (Kt)1:ns

(

CA(xt − x̂t) +Cwt +

vt+1

)

,where (Kt)1:ns
are the first ns rows of the gainKt.

Lemma 10 Let Assumption 1 hold. Then there exists a
constant γs > 0, depending on the given problem param-

eters, such that EYT ′

[∥

∥x̂st
∥

∥

2]
6 γs, ∀t > T ′, where T ′ is

as defined in Proposition 3.

PROOF. Since the matrix As is Schur stable, there
exists a positive definite matrix M ∈ R

ns×ns that
satisfies AT

sMAs − M = −I, see [6, Proposition
11.10.5]. Pick a constant ν ∈

]

0,min
{

1, 1/λmax

(

M
)}[

such that AT

sMAs − M 6 −νM . Then for any

t ∈ N, EYt

[

∥

∥x̂st+1

∥

∥

2

M

]

− ‖x̂st‖2M 6 −ν ‖x̂st‖2M +

2EYt

[

(x̂st )
TAT

sMBsut
]

+

EYt

[

‖(Kt)1:ns
(CA(xt − x̂t) + Cwt + vt+1)‖2M

]

, where

‖x‖2M := xTMx. Using Young’s inequality and As-

sumption 1, we have that 2EYt

[

(x̂st )
TAT

sMBsut
]

6

εEYt

[
∥

∥Asx̂
s
t

∥

∥

2

M

]

+ 1
εEYt

[∥

∥Bsut
∥

∥

2

M

]

6 εEYt

[
∥

∥Asx̂
s
t

∥

∥

2

M

]

+
mσmax(B

T
s MBs)
ε U2

max, for ε > 0 and for all t ∈ N.
Also, using Lemma 8 and Assumption 1, we have
that EYt

[

‖(Kt)1:ns
(CA(xt − x̂t) + Cwt + vt+1)‖2M

]

6

3λmax(M)ρ2m

(

‖CA‖2 ρ+ ‖C‖2 tr(Σw) + tr(Σv)
)

. Choose

an ε 6
ν

2‖As‖
2
M

and let c :=
mσmax(B

T
s MBs)
ε U2

max +

3λmax(M)ρ2m

(

‖CA‖2 ρ + ‖C‖2 tr(Σw) + tr(Σv)
)

, then

we have EYt

[

∥

∥x̂st+1

∥

∥

2

M

]

6
(

1− ν
2

)

‖x̂st‖2M + c, for

all t > T ′. Iterating the last inequality, we have

EYT ′

[

‖x̂st‖2M
]

6
(

1− ν
2

)(t−T ′) ‖x̂sT ′‖2M +
t−T ′−1
∑

i=0

(

1− ν
2

)i
c

6 ‖x̂sT ′‖2M +
(

1− ν
2

)−1
c, for all t > T ′. Setting

γs := ‖x̂sT ′‖2M +
(

1− ν
2

)−1
c, completes the proof. 2

We consider next the orthogonal subsystem of the esti-
mator and show that the process (x̂ot )t∈N is mean-square
bounded. We shall rely on the following fundamental re-
sult pertaining to mean-square boundedness of a general
random sequence (ξt)t∈N; it is an immediate consequence
of [37, Theorem 1].

Proposition 11 Let (ξt)t∈N be a sequence of nonnega-
tive random variables on some probability space (Ω,F,P),
and let (Ft)t∈N be any filtration to which (ξt)t∈N is
adapted. Suppose that there exist constants ε > 0, and
J,M <∞, such that ξ0 6 J, and for all t ∈ N:

EFt

[

ξt+1 − ξt
]

6 −ε
2

on the event {ξt > J} (39)

and Eξ0,...,ξt

[

|ξt+1 − ξt|4
]

6M. (40)

Then there exists a constant γ = γ(ε, J,M) > 0 such
that sup

t∈N

E
[

ξ2t
]

6 γ.

Lemma 12 Let Assumptions 1 and 4 hold. Then there
exists a constant γo > 0, depending on the given problem
parameters, such that

EYT

[

‖x̂ot‖2
]

6 γo, ∀t > T := Nc⌈T ′/κ⌉. (41)

PROOF. Consider the subsampled process
x̂ot+Nc

= ANc
o x̂ot +RNc

(Ao, Bo)ut,t+Nc−1+(Ξt)n−no+1:n

for t = 0, Nc, 2Nc, · · · , where Ξt is as defined in (20) and

ut,t+Nc−1 :=

[ ut

...
ut+Nc−1

]

. We shall first verify the two

conditions (39) and (40) of Proposition 11 for the pro-
cess (ξt)t=0,Nc,2Nc,··· = (‖x̂ot‖)t=0,Nc,2Nc,···. Using the

triangle inequality, we have that EYt

[

∥

∥x̂ot+Nc

∥

∥−‖x̂ot‖
]

6

EYt

[
∥

∥

∥
ANc
o x̂ot + RNc

(Ao, Bo)ut,t+Nc−1

∥

∥

∥
− ‖x̂ot‖

]

+

EYt

[

‖(Ξt)n−no+1:n‖
]

.We know from Proposition 3 that

there exists a uniform (with respect to time t) upper
bound ζ for the last term on the right-hand side of
the last inequality for t > T := Nc⌈T ′/κ⌉. Accord-

ingly, we have EYt

[

∥

∥x̂ot+Nc

∥

∥ − ‖x̂ot‖
]

6 EYt

[

‖ANc
o x̂ot

+RNc
(Ao, Bo)ut,t+Nc−1‖ − ‖x̂ot‖

]

+ ζ 6 − ε2 whenever
∥

∥x̂ot
∥

∥ > ζ + ε for all t = T, T +Nc, T + 2Nc, · · · , where
the last inequality follows from the satisfaction of the
stability constraint (22); condition (39) of Proposition
11 is satisfied. By orthogonality of Ao, we have that
‖x̂ot‖ =

∥

∥ANc
o x̂ot

∥

∥. It follows by the triangle inequality
that, for all t = T, T +Nc, T + 2Nc, · · ·
E{(‖x̂o

i‖
)

i=T,T+Nc,··· ,t

}

[

(∥

∥x̂ot+Nc

∥

∥− ‖x̂ot‖
)4
]

= E{(‖x̂o
i‖
)

i=T,T+Nc,··· ,t

}

[

(∥

∥x̂ot+Nc

∥

∥−
∥

∥ANc
o x̂ot

∥

∥

)4
]

6 E{(‖x̂o
i‖
)

i=T,T+Nc,··· ,t

}

[(

‖RNc
(Ao, Bo)ut,t+Nc−1‖

+ ‖(Ξt)n−no+1:n‖
)4 ]

. Using the inequality (a + b)2 6

2a2 + 2b2, it follows that

E{(‖x̂o
i‖
)

i=T,T+Nc,··· ,t

}

[

(∥

∥x̂ot+Nc

∥

∥− ‖x̂ot‖
)4
]

6 8E{(‖x̂o
i‖
)

i=T,T+Nc,··· ,t

}

[

‖RNc
(Ao, Bo)ut,t+Nc−1‖4

+ ‖(Ξt)n−no+1:n‖4
]

. By design ‖ui‖∞ 6 Umax. Also,

Ξt is independent of (‖x̂oi ‖)i=T,T+Nc,··· ,t
, Gaussian, and

has its fourth moment bounded. Therefore, there exists
a constant M > 0 such that

E{(‖x̂o
i‖
)

i=T,T+Nc,··· ,t

}

[

‖RNc
(Ao, Bo)ut,t+Nc−1‖4

+ ‖(Ξt)n−no+1:n‖4
]

6 M , for all t > T . The two con-

ditions of Proposition 11 are verified for the sequence
(‖x̂ot‖)t=T,T+Nc,T+2Nc,···. Thus, by Proposition 11, there
exists a constant γ′o > 0, depending on the given prob-

lem parameters, such that EYT

[
∥

∥x̂ot
∥

∥

2]
6 γ′o, for all
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t = T, T + Nc, T + 2Nc, · · · . Finally, using a standard
argument (as in [39]) we can show the existence of an-
other constant γo > γ′o such that the condition (41)
holds. 2

PROOF. [Proof of Theorem 5] Claim (i) of Theo-
rem 5 was proved in Lemma 9. It remains to show
claim (ii). We start by asserting the following inequal-

ity EYT

[

‖xt‖2
]

6 2EYT

[

‖xt − x̂t‖2
]

+ 2EYT

[

‖x̂t‖2
]

,
for all t > T = Nc⌈T ′/κ⌉. We know from Lemma 8

that EYT

[

‖xt − x̂t‖2
]

6 ρ for all t > T > T ′. We

have that ‖x̂t‖2 =
∥

∥x̂st
∥

∥

2
+
∥

∥x̂ot
∥

∥

2
, where x̂s and x̂o

are states corresponding to the Schur and orthogonal
parts of the system, respectively. It then follows that

EYT

[

‖x̂t‖2
]

= EYT

[∥

∥x̂st
∥

∥

2]
+ EYT

[∥

∥x̂ot
∥

∥

2]
. Using Lem-

mas 10 and 12 we conclude that EYT

[∥

∥x̂t
∥

∥

2]
6 γs + γo,

for all t > T , and therefore,EYT

[

‖xt‖2
]

6 2ρ+2(γs+γo),
for all t > T . Since the sequence (xt)t∈N in (1a) is gener-
ated through the addition of independent mean-square
bounded random variables and a bounded control in-
put, and since T < ∞, it follows that there exists a
constant γ > 0 such that EY0

[

‖xt‖2
]

6 γ, for all t ∈ N,
establishing the claim (ii) of Theorem 5. 2

PROOF. [Proof of Corollary 6] The proof of Corol-
lary 6 follows exactly the same reasoning as in the
proof of Theorem 5, except for the constraints in (34)
and (35). Rewriting the constraints (30) and (31)
as (34) and (35), respectively, can be done similarly
to the way we rewrote the cost (6) in Theorem (5).
It remains to show the upper bounds α∗ and β∗ in
(33). For the constraint (30) we have the upper-bound

EYt

[

‖Xt‖2S + LTXt

]

= EYt

[

‖Axt + BUt +DWt‖2S
+LT(Axt + BUt + DWt)

]

6 3EYt

[

‖Axt‖2S + ‖BUt‖2S
+ ‖DWt‖2S

]

+ LTAx̂t + |LTBUt| 6 LTAx̂t
+3Nmσmax(BTSB)U2

max +
∥

∥LTB
∥

∥

1
Umax

+3tr
(

ATSAEYt

[

xtx
T

t

]

+DTSDΣw
)

, where the first

inequality follows from the fact that (a + b + c)2 6

3(a2 + b2 + c2), for any a, b, c > 0, and the noise
being zero-mean; the second inequality follows from
applying norm bounds between the 2 and ∞-norms
and Hölder’s inequality. As for the constraint (31),

we have the bound EYt

[

UT

t S̃Ut
]

6 σmax(S̃) ‖Ut‖2 6

Nmσmax(S̃) ‖Ut‖2∞ 6 Nmσmax(S̃)U2
max. 2
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