
Accepted Manuscript

Title: Composite adaptive locally weighted learning control
for multi-constraint nonlinear systems

Author: Tairen Sun Yongping Pan Chenguang Yang

PII: S1568-4946(17)30550-1
DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.09.011
Reference: ASOC 4458

To appear in: Applied Soft Computing

Received date: 13-4-2017
Revised date: 1-9-2017
Accepted date: 4-9-2017

Please cite this article as: Tairen Sun, Yongping Pan, Chenguang Yang,
Composite adaptive locally weighted learning control for multi-constraint
nonlinear systems, <![CDATA[Applied Soft Computing Journal]]> (2017),
http://dx.doi.org/10.1016/j.asoc.2017.09.011

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.



Page 1 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

Highlights 

1. Barrier functions are introduced into the backstepping procedure to tackle the state 

constraints and the asymmetric control saturation. 

 

2. A serial-parallel estimation model is designed to construct the prediction errors. 

 

3. A composite adaptive locally weighted learning NN that improves approximation and 

tracking accuracy is designed.  

 

4. A dynamic surface control technique is used to decrease computational complexity of the 

backstepping control. 
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Abstract

A composite adaptive locally weighted learning (LWL) control approach is pro-

posed for a class of uncertain nonlinear systems with system constraints, in-

cluding state constraints and asymmetric control saturation in this paper. The

system constraints are tackled by considering the control input as an extended

state variable and introducing barrier Lyapunov functions (BLFs) into the back-

stepping procedure. The system uncertainty is approximated by a composite

adaptive LWL neural networks (NNs), where a prediction error is constructed

via a series-parallel identification model, and NN weights are updated by both

the tracking error and the prediction error. The update law with composite error

feedback improves uncertainty approximation accuracy and trajectory tracking

accuracy. The feasibility and effectiveness of the proposed approach have been

demonstrated by formal proof and simulation results.

Key words: Barrier Lyapunov function; neural network; control saturation;

state constraint; locally weighted learning.

1. Introduction

State and control constraints exist in many mechanical systems and indus-

trial processes due to safety and performance consideration. Almost all real-

Preprint submitted to Elsevier September 11, 2017
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world systems have nonlinear dynamics and model uncertainties. Accordingly,

control of uncertain nonlinear constrained systems has become a challenging

topic and gained more and more research attention [1-4].

Control approaches for constrained systems include model predictive con-

trol (MPC) [5-7], reference governors (RGs) [8], and barrier Lyapunov functions

(BLFs) [9-15]. In MPC, system constraints are explicitly considered and the

control law is obtained by solving online receding horizon optimizations. In

RGs, system constraints are guaranteed by the redesign of reference signals ob-

tained by solving online optimizations. MPC and RGs have been considered as

effective ways to tackle state constraints. However, high computational com-

plexity and the requirement on high system modeling accuracy bring difficulties

in applications of MPC and RGs to real-time control of uncertain nonlinear sys-

tems. Recently, barrier Lyapunov function (BLF)-based control for constrained

nonlinear systems has gained more and more attention [9-13]. The function

values of BLFs will grow to infinity if the arguments approach the constraints

boundary resulting in constraints violation. The avoidance of constraints vio-

lation can be reached by bounding the BLFs [9]. BLF-based controllers have

been designed for the nonlinear systems with time-invariant output constraints

[9-11], time-varying output constraints [12], and full state constraints [13].

Neural network (NN) control has been widely developed for uncertainties

nonlinear systems due to the inherent approximation abilities of NNs [14-16].

The newly developed locally weighted learning (LWL) NNs apply independently

adjusted local models to approximate nonlinear uncertainties [17-19]. The ad-

vantages of LWL approximation include [20]: 1) Easy learning from the contin-

uous stream of training data in real time; 2) negative interference avoidance for

their abilities in retaining all training data; 3) allowance of quick identification

due to simple learning rules with a single optimum for building a local model.

Conventional adaptive NN control is directed towards achieving stability of the

closed-loop system by updating NN weights through only tracking errors. By

updating NN weights through both prediction errors and tracking errors, com-

posite adaptive control has been proposed for uncertain nonlinear systems to

2
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improve both identification accuracy and tracking accuracy [21-30].

This paper considers the adaptive control design for a class of high-order un-

certain nonlinear systems with system constraints, including state constraints

and asymmetric control saturation. The system constraints are tackled by

considering the control input as an extended state and introducing symmet-

ric/asymmetric BLFs into the backstepping procudure. Computational com-

plexity of the backstepping design is highly decreased by using a dynamic sur-

face control technology [31-32]. The system uncertainty is approximated by a

composite adaptive LWL NN, where the prediction error is constructed by a

serial-parallel estimation model through designing a NN state observer. Com-

pared with existing works, the main contributions of this study include:

1. By considering the control input as an extended state and introducing

BLFs into the backstepping procedure, the state constraints and the asym-

metric control saturation are tackled, which extends current research on

BLF-based control for nonlinear systems with state/output constraints to

state constraints and asymmetric control saturation;

2. By designing a serial-parallel estimation model and feeding the prediction

error back the update law, the composite adaptive LWL NN is designed

to approximate the system uncertainty, which improves approximation

accuracy and further improves tracking accuracy.

2. Problem construction and preliminaries

2.1. Problem Formulation

Consider the following nth order SISO nonlinear system:

ẋi = xi+1, i = 1, 2, · · · , n− 1 (1)

ẋn = f(x) + g(x)u (2)

where xi ∈ R and u ∈ R are the state variable and the control input, respec-

tively, and f(x) and g(x) are unknown nonlinear functions with x = [x1, · · · , xn]T .

3
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The system (1)-(2) is constrained by the state constraint and control saturation:

|xi| ≤ kc,i,−uc1 ≤ u ≤ uc2, i = 1, 2, .., n (3)

where kc,i, uc1 and uc2 are known positive constants. We call the control input

constraint as symmetric control saturation if uc1 = uc2 and asymmetric control

saturation if uc1 6= uc2. The objective of this paper is to design a BLF-based

LWL NN control u such that x1(t) tracks a desired trajectory yd(t) ∈ R without

violation of the system constraints described by (3).

Assumption 1. The function f(x) is locally Lipschits continuous.

Assumption 2. The function g(x) is locally Lipschits continuous and 0 <

g0 ≤ g(x) ≤ g1 for ∀x ∈ D , {x ∈ Rn : |xi| ≤ kc,i, i = 1, 2, .., n}, where

g0 > 0, g1 > 0 are positive constants with g0 being known.

Assumption 3. The reference signal yd(t) and the jth-order time derivatives

y
(j)
d (t), j = 1, 2, · · · , n are known and satisfy |yd| ≤ A0 < kc1 and |y(j)

d | ≤ Yj ,

where A0, Y1, · · · , Yn are positive constants.

2.2. LWL NN Approximation

To facilitate control design, the uncertain nonlinear function f(x) is esti-

mated by the following LWL NN:

f̂(x) =
∑N

k=1 wk(x)f̂k(x)∑N
k=1 wk(x)

, (4)

where wk(x), k = 1, · · · , N are weighted functions, and f̂k(x), k = 1, · · · , N are

given by

f̂k(x) = θ̂T
k φk(x), φk(x) = [1, (x− ck)T ]T (5)

with θ̂k and ck the weight and center of the k-th local estimator, respectively.

4
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Assume Sk = {x : wk 6= 0}, k = 1, 2, · · · , N are a series of compact sets,

which satisfy D ⊆ ∪N
k=1Sk. Then, for any x ∈ D, there exists at least one k

such that wk 6= 0.

Define the weighted functions wk(x) as

wk(x) =





(1− (||x− ck||/µk)2)2, if ||x− ck|| ≤ µk

0, otherwise
(6)

where µk is the radius of the k-th local estimator. Let w̄k(x) = wk(x)/
∑

k wk(x)

which satisfies
∑N

k=1 w̄k = 1. For ease of notation, the symbols φk, w̄k, f and

f̂ are used to represent the functions φk(x), w̄k(x), f(x) and f̂(x), respectively.

Then, the locally weighted approximation (4) can be expressed as

f̂(x) =
N∑

k=1

w̄kf̂k(x). (7)

Define the optimal weight θk for x ∈ Sk as

θk = arg min
θk

(∫

x∈D

wk(x)||f(x)− f̂k(x)||2dX

)
(8)

and the local estimation error εk as

εk =





f(x)− f̂k(x), on S̄k

0, on D − S̄k

where S̄k is the minimum compact set that containing Sk as a subset. Then,

f(x) and its NN estimator can be represented as

f =
N∑

k=1

w̄kθT
k φk +

N∑

k=1

w̄kεk, (9)

f̂ =
N∑

k=1

w̄kθ̂T
k φk (10)

Then, the estimation error f̃ , f − f̂ can be expressed as

f̃ =
N∑

k=1

w̄kθ̃T
k φk +

N∑

k=1

w̄kεk (11)

with θ̃k = θk− θ̂k. Assume that |εk| ≤ ε and ||θk|| ≤ θmax with ε and θmax being

positive constants. It is obvious that |∑N
k=1 w̄kεk| ≤ max(|εk|)

∑Ni

k=1 w̄k ≤ ε.

5
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3. Control design and stability analysis

In this section, the state constraints and the asymmetric control saturation

are tackled by considering control as an extended state and introducing a BLF

in each step of the backstepping procedure. The system uncertainty f(x) is

approximated by a LWL approximator with weights updated by a composite

error.

3.1. Locally weighted learning control

Step 1: Define z1 = x1−yd as the trajectory tracking error, whose dynamics

can be written as

ż1 = ẋ1 − ẏd = x2 − ẏd. (12)

Consider the BLF

V1 =
1
2

ln
k2

b,1

k2
b,1 − z2

1

(13)

where kb,1 is a positive design parameter. Taking time derivative of V1 and

substituting (12), yields

V̇1 =
z1

k2
b,1 − z2

1

(x2 − ẏd) (14)

Design a reference signal for x2 as

α1 = −λ1z1 + ẏd − 1
2

z1

k2
b,1 − z2

1

, (15)

with λ1 being a positive design parameter. Passing α1 through the following

low-pass filter

τ1α̇1,c = −α1,c + α1 (16)

with τ1 > 0 being a positive design parameter. Define z2 = x2 − α1,c as the

second tracking error, then, from (14-16) we can obtain

V̇1 = −λ1
z2
1

k2
b,1 − z2

1

+
z1z2

k2
b,1 − z2

1

− z2
1

2(k2
b,1 − z2

1)2
+

z1α̃1

k2
b,1 − z2

1

≤ −λ1
z2
1

k2
b,1 − z2

1

+
z1z2

k2
b,1 − z2

1

+
1
2
α̃2

1 (17)

where α̃1 = α1,c − α1.

6
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Step i(i = 2, 3, · · · , n−1): Define the tracking errors zi = xi−αi−1,c. Taking

time derivative of zi, yields

żi = ẋi − α̇i−1,c = xi+1 − α̇i−1,c (18)

Design the reference signal αi for xi+1 as

αi = −λizi −
k2

b,i − z2
i

k2
b,i−1 − z2

i−1

zi−1 − 1
2

zi

k2
b,i − z2

i

+ α̇i−1,c, (19)

where λi and kb,i are positive design parameters. Passing αi through the fol-

lowing low-pass filter

τiα̇ic = −αic + αi (20)

with τi being a positive design parameter.

Define the candidate Lyapunov functions Vi, i = 2, · · · , n as

Vi = Vi−1 +
1
2

ln
k2

b,i

k2
b,i − z2

i

(21)

whose time derivative satisfies

V̇i = V̇i−1 − λi
z2
i

k2
b,i − z2

i

+
zizi+1

k2
b,i − z2

i

− 1
2

z2
i

(k2
c,i − z2

i )2
+

ziα̃i

k2
b,i − z2

i

≤ −
i∑

j=1

λj

z2
j

k2
b,j − z2

j

+
zizi+1

k2
b,i − z2

i

+
1
2

i∑

j=1

α̃2
j (22)

with α̃i = αi,c − αi

Step n: Define zn = xn − αn−1,c. Taking time derivative of zn, yields

żn = f(x) + g(x)u− α̇n−1,c (23)

Design the reference signal αn for the control law u as

αn = g−1
0

(
−λnzn − f̂ + α̇n−1,c −

k2
b,n − z2

n

k2
b,n−1 − z2

n−1

zn−1 − 1
2

zn

k2
b,n − z2

n

)
(24)

where λn is a designed positive parameter. Passing αn through the following

low-pass filter

τnα̇n,c = −αn,c + αn. (25)

7
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Then,

żn = −λnzn − zn−1

k2
b,n − z2

n

k2
b,n−1 − z2

n−1

− 1
2

zn

k2
b,n − z2

n

+
N∑

k=1

$kθ̃T
k φk

+
N∑

k=1

$kεk + g(x)(zn+1 + α̃n) + g̃αn +
1
2

i∑

j=1

α̃2
j (26)

where g̃ = g(x)− g0, α̃n = αn,c − αn and zn+1 = u− αn,c.

The weights of composite adaptive LWL NN are updated by the tracking

error zn and the prediction error r̃ = r − r̂, where

r = xn + ln−2xn−1 + · · ·+ l0x1 (27)

with li, i = 0, · · · , n− 1 being chosen parameters such that the roots of sn−1 +

· · ·+ l1s + l0 = 0 are all negative, and r̂ is the estimation of r. The dynamics of

r and r̂ are described as follows

ṙ = f(x) + g(x)u + γ, (28)

˙̂r =
N∑

k=1

w̄kθ̂T
k φk + g0u + γ + lr̃ (29)

where γ =
∑n−1

i=1 li−1xi and l is a positive design parameter. Then, we can

obtain the following dynamics of r̃

˙̃r =
N∑

k=1

w̄kθ̃T
k φk +

N∑

k=1

w̄kεk + g̃u− lr̃. (30)

Consider the following candidate Lyapunov function Vn:

Vn = Vn−1 +
1
2

ln
k2

b,n

k2
b,n − z2

n

+
1
2q

N∑

i=1

θ̃T
k θ̃k +

χ

2
r̃2 (31)

with χ and q being positive constants. Taking time derivative of Vn and substi-

8
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tuting (22), (26) and (30) into it, yields

V̇n = V̇n−1 +
znżn

k2
b,n − z2

n

− 1
q

N∑

k=1

θ̃T
k

˙̂
θk + χr̃ ˙̃r

≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

−
N∑

k=1

θ̃T
k

( ˙̂
θk

q
−$kφk

zn

k2
b,n − z2

n

− χw̃kφkr̃

)
− lχr̃2

−1
2

z2
n

(k2
b,n − z2

n)2
+

znzn+1

k2
b,n − z2

n

g(x) +
zn

k2
bn − z2

n

(
N∑

k=1

$kεk + g̃αn + g(x)α̃n)

+χr̃(
N∑

k=1

w̄kεk + g̃u) +
1
2

i∑

j=1

α̃2
j (32)

Design the adaptive law of θ̂k as

˙̂
θk = −σkθ̂k + q$kφk

zn

k2
b,n − z2

n

+ qχw̃kφkr̃ (33)

with σk being positive design parameters. Since |∑N
k=1 w̄kεk| ≤ ε, |g̃αn| ≤

g10|αn|, |g(x)α̃n| ≤ g1|α̃n| and |g̃u| ≤ g10umax with g10 , g1 − g0 and umax =

{uc1, uc2} , then

zn

k2
bn − z2

n

(
N∑

k=1

$kεk + g̃αn + g(x)α̃n) ≤ z2
n

2(k2
bn − z2

n)2
+

1
2
(ε + g10|αn|+ g1|α̃n|)2,

(34)

χr̃(
N∑

k=1

w̄kεk + g̃u) ≤ χr̃2

2
+

χ(ε + g10umax)2

2
. (35)

Since θ̂k = θk − θ̃k and |θk| ≤ θmax, then

θ̃T
k θ̂k ≤ −1

2
θ̃2

k +
1
2
θ2

max. (36)

Substituting (33-36) into (32), we can obtain

V̇n ≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

− 1
2

N∑

j=1

σkθ̃kθ̃k− (l−0.5)χr̃2 +
znzn+1

k2
b,n − z2

n

g(x)+ρ1 (37)

where ρ1 = 1
2 (ε + g10|αn|+ g1|α̃n|)2 + χ(ε+g10umax)2

2 + 1
2

∑i
j=1 α̃2

j + N
2 θ2

max.

Step n+1: Consider the following candidate Lyapunov function:

Vn+1 = Vn +
1
2
q(zn+1) ln

k2
u2

k2
u2 − z2

n+1

+
1
2
(1− q(zn+1)) ln

k2
u1

k2
u1 − z2

n+1

(38)

9
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where ku1, ku2 are parameters to be specified latter, and q(zn+1) = 1 if zn+1 ≥ 0

and q(zn+1) = 0 if zn+1 < 0.

If zn+1 ≥ 0, then q(zn+1) = 1 and Vn+1 = Vn + 1
2 ln(k2

u2/(k2
u2 − z2

n+1)).

Taking time derivative of Vn+1, yields

V̇n+1 = V̇n +
zn+1

k2
u2 − z2

n+1

(u̇− α̇n,c) (39)

Using Young’s inequality,

znzn+1

k2
b,n − z2

n

g(x) ≤ ξ

2
[znzn+1/(k2

b,n − z2
n)]2 +

g2
1

2ξ
(40)

where ξ is a positive constant. If u̇ satisfies

u̇ = −λn+1zn+1 − ξ

2
k2

u2 − z2
n+1

(k2
b,n − z2

n)2
(znzn+1)2 + α̇n,c (41)

with λn+1 being a designed positive parameter, then

V̇n+1 ≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

− λn+1
z2
n+1

k2
u2 − z2

n+1

− 1
2

N∑

j=1

σkθ̃kθ̃k

−(l − 0.5)χr̃2 + ρ2 (42)

with ρ2 = g2
1

2ξ + ρ1.

If zn+1 < 0, then q(zn+1) = 0 and Vn+1 = Vn + ln k2
u1

k2
u1−z2

n+1
. By derivation

similar to the case zn+1 ≥ 0, if u(t) satisfies

u̇ = −λn+1zn+1 − ξ

2
k2

u1 − z2
n+1

(k2
b,n − z2

n)2
(znzn+1)2 + α̇n,c, (43)

then

V̇n+1 ≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

− λn+1
z2
n+1

k2
u1 − z2

n+1

− 1
2

N∑

j=1

σkθ̃kθ̃k

−(l − 0.5)χr̃2 + ρ2. (44)

Based on the above analysis, one can see that if designing the control law

u(t) as

u(t) = αn,c − λn+1

∫ t

0

zn+1(σ)dσ

+
∫ t

0

q(zn+1)[−1
2

k2
u2 − z2

n+1

(k2
b,n − z2

n)2
(znzn+1)2](σ)dσ

+
∫ t

0

(1− q(zn+1))[−1
2

k2
u1 − z2

n+1

(k2
b,n − z2

n)2
(znzn+1)2](σ)dσ, (45)

10
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then

u̇ = −λn+1zn+1(t) + α̇n,c(t)

+q(zn+1)[−1
2

k2
u2 − z2

n+1

(k2
b,n − z2

n)2
(znzn+1)2](t)

+(1− q(zn+1))[−1
2

k2
u1 − z2

n+1

(k2
b,n − z2

n)2
(znzn+1)2](t) (46)

and

V̇n+1 ≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

− q(zn+1)
λn+1z

2
n+1

k2
u2 − z2

n+1

− (1− q(zn+1))
λn+1z

2
n+1

k2
u1 − z2

n+1

−1
2

N∑

j=1

σkθ̃kθ̃k − (l − 0.5)χr̃2 + ρ2. (47)

3.2. Stability analysis

Lemma 1 [31]. For the filters (16), (20) and (25), if α̃i(0) = 0 and

x(t) ∈ Dn, ∀t ∈ [0, Tf ], then given µ ∈ R+, there exist τi > 0 such that

|α̃i(t)| ≤ µ, ∀t ∈ [0, Tf ], i = 1, 2, · · · , n.

Theorem. Consider the system (1-2) with system constraints (3) under As-

sumption 1-3, initial condition x(0) ∈ D, and control law (45). Let

Ai = max
[z̄T

i ,ȳT
di]

T∈Ωi

|αi(z̄i, ȳdi)|, i = 1, 2, · · · , n (48)

where z̄i = [z1, · · · , zi]T , ȳdi = [yd, y
(1)
d , · · · , y

(i−1)
d ]T , and

Ωi = {[z̄T
i , ȳT

di]
T ∈ R2i : |zi| ≤ kci, |yd| ≤ A0, |y(i−1)

d | ≤ Yi−1, i = 1, · · · , n}.
(49)

If there exist positive parameters λ1, · · · , λn+1 such that

kc,i ≥ Ai−1 + kb,i, i = 0, 1, · · · , n− 1, (50)

uc1 ≤ ku1 + An, uc2 ≥ ku2 + An (51)

then, (i) the state constraints and the asymmetric control saturation are not

violated; (ii) the tracking errors and the NN weights estimation errors in the

11
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closed-loop system are uniformly ultimately bounded and the tracking error z1

converges to a small neighborhood of zero.

Proof.

From Lemma 1, we can see that given tf > 0 and µ > 0, there exist τi > 0

such that |α̃i| ≤ µ, i = 1, 2, · · · , n. Then, ρ2 ≤ ρmax , 1
2 (ε + g10An + g1µ)2 +

χ(ε+g10umax)2

2 + 1
2

∑n
j=1 µ2 + N

2 θ2
max + g2

1
2ξ . Therefore,

V̇n+1 ≤ −
n∑

j=1

λj

z2
j

k2
b,j − z2

j

− q(zn+1)
λn+1z

2
n+1

k2
u2 − z2

n+1

− (1− q(zn+1))
λn+1z

2
n+1

k2
u1 − z2

n+1

−1
2

N∑

j=1

σkθ̃kθ̃k − (l − 0.5)χr̃2 + ρmax, ∀t ∈ [0, tf ]. (52)

It has been proved in [9-13] that ln[k2
b,i/(k2

b,i − z2
i )] ≤ z2

i /(k2
b,i − z2

i ) for

i = 1, 2, · · · , n and

q(zn+1) ln
k2

u2

k2
u2 − z2

n+1

+ (1− q(zn+1)) ln
k2

u1

k2
u1 − z2

n+1

≤ q(zn+1)
z2
n+1

k2
u2 − z2

n+1

+ (1− q(zn+1))
z2
n+1

k2
u1 − z2

n+1

(53)

Based on (52) and (53), we can obtain

V̇n+1 ≤ −1
2
λVn+1 − (

1
2
λVn+1 − ρmax), ∀t ∈ [0, tf ] (54)

where λ = min{2λi, i = 1, . . . , n + 1, qσk, k = 1, 2, · · · , N, 2(l − 0.5)}. Then,

V̇n+1 ≤ −1
2
λVn+1, if

1
2
λVn+1 ≥ ρmax, ∀t ∈ [0, tf ] (55)

Therefore, Vn+1 and the signals of the closed-loop system are bounded over

any finite time interval, by [33, Lemma A.3.2], the solution exists for t ∈
[0,∞)(i.e.Tf = ∞).

(i) From boundedness of the BLFs Vi, i = 1, 2, · · · , n + 1, we can see

the boundedness of ln k2
bi

k2
bi−z2

i
, i = 1, 2, · · · , n and q(zn+1) ln k2

u2
k2

u2−z2
n+1

+ (1 −
q(zn+1)) ln k2

u1
k2

u1−z2
n+1

. Since x(0) ∈ D, we can conclude that |zi(t)| < kb,i, i =

1, 2, · · · , n and −ku1 < zn+1(t) < ku2 for t ∈ [0,∞). Otherwise, log
k2

bi

k2
bi−z2

i
, i =

12
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1, 2, · · · , n or q(zn+1) ln k2
u2

k2
u2−z2

n+1
+ (1 − q(zn+1)) ln k2

u1
k2

u1−z2
n+1

will go to infty,

which conflicts their boundedness. Since |αi| ≤ Ai, i = 1, 2, · · · , n, from con-

struction of the low-pass filters, we can obtain |αi,c| ≤ Ai, i = 1, 2, · · · , n. Since

|x1| ≤ |z1| + |yd|, |xi| ≤ |zi| + |αi−1,c|, u = zn+1 + αn,c and the inequalities

(50), (51) hold, constraints satisfaction |xi| ≤ kc,i and −uc1 ≤ u ≤ uc2 can be

concluded.

(ii) Solving the inequality (54), one can further obtain

Vn+1(t) ≤ e−λt(Vn+1(0)− ρmax

λ
) +

ρmax

λ
(56)

Since log
k2

b,1

k2
b,1−z2

1
/2 ≤ Vn+1(t), then

1
2

ln
k2

b,1

k2
b,1 − z2

1

≤ (Vn+1(0)− ρmax

λ
)e−λt +

ρmax

λ
(57)

and

k2
b,1

k2
b,1 − z2

1

≤ exp
[
2e−λt(Vn+1(0)− ρmax

λ
) + 2

ρmax

λ

]
(58)

lim sup
t→∞

k2
b,1

k2
b,1 − z2

1

≤ exp(2ρmax/λ) (59)

from which we can further obtain

lim sup
t→∞

|z1| ≤ kb,1

√
1− exp(−2ρmax/λ). (60)

Therefore, the trajectory tracking error z1 converges to a small neighborhood

of zero by properly selecting the design parameters.

Remark 1. In the proposed NN control, the uncertainty function f(x)

is approximated by the composite adaptive LWL NN (CALWLNN) (10) with

NN weights updated in (33) by composite errors composed of estimation er-

rors r̃ and tracking errors zn. Compared with the conventional adaptive LWL

NN (ALWLNN) with weights updated only by tracking errors, the composite

errors-based update law improves smoothness of control responses resulting in

the possibility of using high adaptation gain, and thus, improves uncertainty

approximation accuracy and trajectory tracking accuracy [27]. This claim will

13
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be verified by simulation results in the next section. The combination of emerg-

ing learning techniques [29]-[31] with the current design to enhance the ability

of NN modeling during control is interesting for further studies.

4. Simulation results

To illustrate the effectiveness of the proposed BLF-based localized adaptive

NN control, simulations are carried out for the following nonlinear system

ẋ1 = x2 (61)

ẋ2 = x1x2 + 2x2 + (1.5 + 0.3 cos(x1))u (62)

with the constraints

|x1| ≤ 1, |x2| ≤ 1,−3 ≤ u ≤ 2. (63)

In the simulation, the initial system states are x1(0) = 0.2, x2(0) = 0, the

reference trajectory is yd = 0.5 sin(0.5t), and z1 = x1 − yd, z2 = x2 − α1, z3 =

u− α2 which are constrained by |z1| ≤ 0.5, |z2| ≤ 0.5,−2 ≤ z3 ≤ 1.

The control is designed to satisfy:

u̇ = −6z3 + α̇2,c + q(z3)(− 12 − z2
3

2(0.52 − z2
2)2

z2
2z2

3)

+(1− q(z3))(− 22 − z2
3

2(0.52 − z2
2)2

z2
2z2

3) (64)

where the virtual control α1, α2 are described as

α2 =
1

1.5
(−2z2 − z2

2(0.52 − z2
2)
− 0.52 − z2

2

0.52 − z2
1

z1 − f̂ + α̇1,c),

α1 = −z1 + ẏd − z1

2(0.52 − z2
1)

with f̂ being the LWL NN approximation of f = x1x2 + 2x2. The low-pass

filters are designed as α̇1,c = −10(α1,c − α1) and α̇2,c = −20(α2,c − α2).

In the NN approximation, the centers location are chosen as c1 = [−0.6, 0.8]T , c2 =

[−0.3, 0.8]T , c3 = [0, 0.8]T , c4 = [0.3, 0.8]T , c5 = [0.6, 0.8]T , c6 = [−0.6, 0.5]T , c7 =

[−0.3, 0.5]T , c8 = [0, 0.5]T , c9 = [0.3, 0.5]T , c10 = [0.6, 0.5]T , c11 = [−0.6, 0.2]T ,

14
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c12 = [−0.3, 0.2]T , c13 = [0, 0.2]T , c14 = [0.3, 0.2]T , c15 = [0.6, 0.2]T , c16 =

[−0.6,−0.2]T , c17 = [−0.3,−0.2]T , c18 = [0,−0.2]T , c19 = [0.3,−0.2]T , c20 =

[0.6,−0.2]T , c21 = [−0.6,−0.6]T , c22 = [−0.3,−0.6]T , c23 = [0,−0.6]T , c24 =

[0.3,−0.6]T , c25 = [0.6,−0.6]T , c26 = [1,−1]T , and c27 = [−1,−1]T , the ba-

sis functions are chosen as φi = [1, x1, x2]T − [0, cT
i ]T , i = 1, · · · , 27, and the

weighted functions are chosen as

wi(x) =





(1− (||x− ci||/0.5)2)2, if ||x− ci|| ≤ 0.5

0, otherwise.
(65)

From Figure 1, we can see that the circles with centers being ci, i = 1, · · · , 27

and radiuses being 0.5 cover the constrained state space D = {x = [x1, x2]T ∈
R2 : |x1| ≤ 1, |x2| ≤ 1}. In the NN observer (29), r = x2 + 5x1 and l = 10. In

the weights update, σk = 1, q = 25 and qχ = 35.

In Figures. 2-3, we present the simulation results of the proposed BLF-

based composite adaptive LWL control (CALWLC) and the BLF-based adaptive

LWL control (ALWLC), where Figure 1 presents comparison of the tracking

performance of the two controllers and the NN approximation performance of

the proposed composite adaptive LWL NN (CALWLNN) and the conventional

adaptive LWL NN (ALWLNN). From Figure 2(a) and Figure 3, we can see that

the constraints |z1| ≤ 0.5, |z2| ≤ 0.5,−2 ≤ z3 ≤ 1 and |x1| ≤ 1, |x2| ≤ 1,−3 ≤
u ≤ 2 are not violated, which illustrates effectiveness of the BLFs in tackling the

state and control constraints for the nonlinear system is obtained by bounding

the designed BLFs. From the comparison in Figure 2, we can see that the

CALWLNN approximates the system uncertainty f(x) more accurately than the

conventional ALWLNN. Compared with the BLFs-based ALWLC, the proposed

BLF-based CALWLC has better tracking performance due to the composite

adaptive LWL NN’s more accurate approximation.

5. Conclusions

This paper presents a BLF-based adaptive LWL NN control law for a class of

nonlinear systems with state and asymmetric control constraints. Our study ex-
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tends current results on BLF-based control for nonlinear systems with state and

output constraints to systems with state and asymmetric control constraints,

by considering the control input as an extended state. In the control law, the

system uncertainty is estimated and compensated for by a composite adaptive

LWL NN. The use of the prediction error in the weights update law improves

the approximation accuracy and, in turn, improves the tracking accuracy. From

simulation results, we observe that both the tracking error and the NN approx-

imation error of the constrained system converge to a small neighborhood of

zero. The effectiveness of the proposed control scheme has been verified based

on theoretical analysis and simulation results.
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Figure 1: The circles centered at ci, i = 1, · · · , 27 and the constrained state space D.
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Figure 2: Comparison of the BLF-based CALWLC and the BLF-based ALWLC: (a) Com-

parison of the tracking performance; (b) Comparison of the NN approximation errors; (c)

Comparison of the NN approximation performance.
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Figure 3: The tracking errors z2, z3, the states and the control input by the BLF-based

CALWLC: (a) The tracking errors z2 and z3; (b) The states x1, x2 and the control input u.
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