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Highlights 
 

• Our study describes an effective machine learning method that combines super- 

vised and unsupervised algorithms in an innovative way to yield useful clinical 

insights using complex time series data. 

• De-identified compensation data was provided by the Australian Transport 

Accident Commission. Utilization of physiotherapy and psychology services 

was analysed. Datasets contained 788 psychology and 3,115 physiotherapy 

claimants and 22,522 and 118,453 episodes of service utilization, respectively. 

• Data were processed to generate multidimensional sequences and time series 

clustering was applied using multichannel mixture of hidden Markov models. 

Combinations of hidden states and clusters were evaluated and optimised using 

the Bayesian information criterion. 

• Cluster membership was investigated statistically using multinomial logistic 

regression and classified using gradient boosting machines (GBM), along with 5-

fold cross-validation. 

• Many administrative datasets contain similar timeseries data and, as such, the 

method presented has the potential to guide substantial further clinical research 

efforts. This work has the potential to be a well-cited article in the annals 

of clinical research as the field of applied machine learning continues to grow 

exponentially. 
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Abstract 
 
 

Background. Motor vehicle accidents (MVA) represent a significant burden on health 

systems globally. Tens of thousands of people are injured in Australia every year 

and may experience significant disability. Associated economic costs are substantial. 

There is little literature on the health service utilization patterns of MVA patients. 

To fill this gap, this study has been designed to investigate temporal patterns of 

psychology and physiotherapy service utilization following transport-related injuries. 

 
Method. De-identified compensation data was provided by the Australian Transport 

Accident Commission. Utilization of physiotherapy and psychology services was anal- 

ysed. The datasets contained 788 psychology and 3,115 physiotherapy claimants and 

22,522 and 118,453 episodes of service utilization, respectively. 582 claimants used 

both services, and their data were preprocessed to generate multidimensional time 

series. Time-series clustering was applied using a mixture of hidden Markov models 

to identify the main, different patterns of service utilization. Combinations of hidden 

states and clusters were evaluated and optimized using the Bayesian information cri- 

terion and interpretability. Cluster membership was further investigated using static 

covariates and multinomial logistic regression, and classified using high-performing 

classifiers (extreme gradient boosting machine, random forest and support vector 

machine) with 5-fold cross-validation. 
 

Results.   Four clusters of claimants were obtained from the clustering of the time series 

of service utilization.  Service volumes and costs increased progressively from clusters 

1 to 4. Membership of cluster 1 was positively associated with nerve damage and 
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negatively associated with severe ABI and spinal injuries. Cluster 3 was positively 

associated with severe ABI, brain/head injury and psychiatric injury. Cluster 4 was 

positively associated with internal injuries. The classifiers were capable of classifying 

cluster membership with moderate to strong performance (AUC: 0.62-0.96). 
 

Conclusion. The available time series of post-accident psychology and physiotherapy 

service utilization were coalesced into four clusters that were clearly distinct in terms 

of patterns of  utilization.  In  addition,  pre-treatment  covariates  allowed  prediction 

of a claimant’s post-accident service utilization with reasonable accuracy.  Such re- 

sults can be useful for a range of decision-making processes, including the design of 

interventions aimed to improve the claimants’ care and recovery. 

Keywords: hidden Markov models, artificial intelligence, time-series analysis, traffic 

accidents, health service utilization 
 

 
Introduction and background 

 
Injuries from motor vehicle accidents represent a significant health burden world- 

wide [1, 2]. Tens of millions of people suffer non-fatal injuries yearly, with many 

experiencing a consequent disability [3].   In Australia,  around forty-five thousand 

5 people are seriously injured every year and require hospitalization following trans- 

port accidents, with the age-standardized rate per person increasing by almost 0.9% 

annually [4, 5]. Additionally, while a large number of people endure minor injuries 

that do not require hospitalization, their ability to undertake regular daily activities, 

including work, is often reduced [4, 6]. The injury rate from road accidents is ap- 

10 proximately 27 times the fatality rate in Australia, with injuries accounting for 40% 

of the total social cost of road accidents, spread over disability-related costs, medical 

expenses and out-of-work productivity losses [7, 8]. In 2016, the total cost came in 

at over $33 billion1, a 22% increase from 2006 [5, 9]. According to a 2016 report 

from the Australian National University [9], the cost of road accidents amounts, on 

15 average, to $7.8 million per fatality, $310,094 per serious injury and $3,057 per minor 

injury. 

Despite progress brought about by successful road safety programs, motor ve- 

hicle accidents (MVAs) still cause approximately 7, 800 serious hospitalizations per 

year in the Australian state of Victoria alone. MVAs are ranked as the second most 

20 important cause of hospitalization due to injury, after falls [10, 11]. The Transport 

Accident Commission (TAC) is a Victorian Government-owned organization that pro- 

motes road safety, funds treatment and rehabilitation services and provides financial 

 
1In this paper, all costs are reported in Australian Dollars. 
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support for those who have been injured in transport-related accidents (including 

drivers, passengers, pedestrians, motorcyclists and cyclists) [12, 11, 4]. Unlike trans- 

25 port insurance schemes in many other jurisdictions that are tort-based, the scheme 

administered by the TAC is a no-fault injury compensation scheme, meaning that 

benefits may be paid to an injured person regardless of who caused the accident 

[12, 11, 4]. For the administration of this scheme, the TAC must collect data of the 

healthcare service payments made to its claimants. The data are organized as time 

30    series, where each time series is uniquely identified by a claim identification number 

and records all the service utilizations made by a claimant. In turn, each utilization 

episode includes the date of the service, its cost and its type, categorized according 

to three increasing levels of detail. In addition, the TAC possesses other data about 

claims commonly called “covariates” (or features) [13], such as the age and gender of 

35 the claimant, their mode of transportation at the time of accident, the type of injuries 

sustained, and others. These are grouped into the broader categories of demographic, 

injury and accident data. 

Although accident and injury prevention should be the ultimate societal goal, 

much can be done to minimize the adverse impact of the accident injuries that do 

40 occur despite the best prevention efforts [14]. Appropriate post-accident care should 

aim to limit the suffering caused by the injury, and ensure the survivor’s best possible 

recovery and quality of life [15, 14]. To this aim, the analysis of health service utiliza- 

tion following a transport-related injury may provide useful insight into a patient’s 

health status months and years after the injury. Further, it may be possible to predict 

45 a patient’s future health service utilization based on data collected at the time of the 

accident to facilitate care planning. This information may help healthcare providers 

to pre-empt patient care needs and tailor bespoke care plans for their patients to op- 

timize clinical outcomes and improve the efficiency of service delivery. However, with 

the exception of severely injured patients [16, 17, 18, 19], we found little published 

50    information regarding patterns of healthcare utilization following transport injuries in 

the literature [12, 13]. In particular, to the best of our knowledge, no published work 

has addressed the utilization of multiple health services following transport injuries. 

In terms of methods of analysis, multivariate time-series clustering can glean struc- 

ture and discover patterns in large time series datasets when little knowledge about 

55 potential underlying classes is available [20]. Such identification of structure may 

also prove useful as a preprocessing step for further analysis tasks [21]. Many algo- 

rithms and evaluation criteria have been developed for time-series clustering to date 

[22, 23, 24, 25], and they have found application in domains ranging from genomics 

to stock market analysis [21, 26].   In medicine, these methods have been applied, 

60       among other, to the analysis of magnetic resonance imaging data for brain mapping, 
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cerebrovascular disease diagnosis and the identification of cancer [27, 28]. However, a 

review of the literature shows that the application of time-series clustering to health- 

care datasets has been more limited. Therefore,  there  is  an  opportunity  to  apply 

these methods to the healthcare domain and explore their potential for generating 

65    clinically-useful insights. 

This research project has set out to investigate temporal patterns of post-accident 

utilization of multiple health services using de-identified compensation data provided 

by the TAC from the Australian state of Victoria. Claimants who lodged a claim in 

2009 were included in the study, and utilization data were collected for the subsequent 

70 nine years. The measure of health service utilization was defined as the number of 

monthly visits to service providers such as psychologists, physiotherapists, chiroprac- 

tors, physicians and other healthcare practitioners. Utilization was divided by type 

of service (details are provided in the following section), and the pool of claimants 

for a given type of service included all those who utilized it at least once. The main 

75 goals of this study were to (1) identify the main, distinct patterns of utilization for 

multiple health services and describe their main characteristics in terms of amount 

and speed of decay, and (2) describe the characteristics of, and classify, claimant 

groups in terms of covariates to understand client profiles associated with particular 

service utilization behavior patterns. 

80  This work is primarily intended to present a general methodology that can be ap- 

plied to healthcare problems beyond the specific research questions considered herein. 

Given the importance of mental health and physical recovery for the clients of the 

TAC, we have chosen psychology and physiotherapy as joint services to illustrate our 

approach. The healthcare literature suggests that these services exercise a synergis- 

85 tic influence on outcomes. For instance, studies [29, 30] have shown that the use of 

psychology services enhances physiotherapy outcomes. In its own right, physiother- 

apy is beneficial for a range of injuries and the physiotherapists’ ability to encourage 

motivation in their patients can be key to their recovery [29]. In cases where patient 

motivation is low, psychological support services can prove beneficial in enhancing 

90       physiotherapy treatment [29, 30]. For these reasons, we believe that the joint analysis 

of these two services can shed some light on the nature of patient recovery, and assist 

with resource planning and intervention design. 

 
Methodology 

 
In this section, we describe the data and analytic methods used in this work. 

95 Subsection “Data” describes the raw data and the preprocessing. Subsection “Time- 

series clustering” describes the algorithm used for clustering the time series of service 

utilization, i.e.  a mixture of hidden Markov models (MHMM). Subsection “Model 
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selection” discusses the choice of hyperparameters for the model. Finally, after the 

clusters are identified, subsection “Characterizing the clusters with covariate analysis” 

100      analyzes the claimants’ membership in the clusters using a set of available covariates. 
 

Data 
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Two claims datasets for transport-related injuries were provided by the TAC re- 

garding the claimants who sustained an accident and lodged their claim in 2009. The 

first dataset contained one record per claimant with all the information required for 

the management of their compensation claim, including demographic (gender, current 

age, age at accident), accident data (date, claimant security risk type, claim devel- 

opment month, number of claims, road user type), and injury classification (fatal, 

brain/head, severe acquired brain injury (ABI), concussion, degloving, burns, spinal 

injuries, amputation, quadriplegia, paraplegia, nerve damage, soft tissue injuries, 

dislocation, internal injuries, sprains/strains, limb fractures, general fractures, contu- 

sion/abrasion, sight/eyes, and general injuries, i.e. contusions, minor strains, minor 

sprains, minor lacerations and minor external bleeding). The second dataset included 

longitudinal data of service utilizations and payments for 9, 328 unique claimants (for 

a total of 1, 048, 576 service utilizations), spanning January 2009-October 2017 (i.e., 

106 consecutive months). Each service utilization was labeled with three service cate- 

gories at an increasing level of detail, with 30, 75 and 226 unique values, respectively, 

across the dataset. The analysis deployed in this paper can be carried out using 

categories from any of the recorded levels and any combination thereof. However, 

since the third level was the most detailed, we chose to focus on it. The two datasets 

were linked and de-identified for the analysis, and the ethics committees of University 

of Technology Sydney (UTS) and the TAC approved its use (UTS Human Research 

Ethics Committee Application ETH182331). 

For the two chosen services, “psychology” and “physiotherapy”, the longitudinal 

data contained, respectively, 788 and 3, 115 claimants, for a respective total of 22, 522 

and 118, 453 service utilizations. The average number of utilizations per claimant was 

29 and 38, respectively. This showed that, in general, the number of claimants utiliz- 

ing physiotherapy was higher than those using psychology. The number of claimants 

who used both services  was 582, for a total of  18, 472  and 40, 631  psychology and 

physiotherapy service utilizations, respectively. The  number  of  episodes  of  these 

two services was correlated. When the number of physiotherapy utilization episodes 

increased to 70 or above, the number of psychology episodes increased as well to 

approximately 32. This suggested that, on average, claimants who received more 

physiotherapy treatments also utilized more psychological services. 

We built 582 time series for this population of claimants by aggregating their 
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utilizations by month. We formed the time series of service utilization by using the 

date of the accident as the first month/slot. In recent work [13], Esmaili et al. used 

the month of first service utilization as the first month of the time series and only used 

the number of days between the accident date and the first service utilization as a 

covariate for cluster analysis. However, in our paper we chose to use the accident date 

as the first element of the time series to capture the effect of the time elapsed between 

the accident date and that of the first utilization in the clustering. In addition, our 

analysis covered multiple services and a common time reference was required. Each 

time series thus started from the month of the claimant’s accident and ended in 

October 2017. Therefore, the time series had variable length, from a minimum of 97 

months to a maximum of 106. The time series were not trimmed or normalized to a 

common length to avoid curtailing or distorting their information. The average total 

number of service utilizations per claimant was approximately 31 for psychology and 

69 for physiotherapy. The number of service utilizations per month ranged between 0 

and 24 for psychology and between 0 and 30 for physiotherapy. For ease of reference, 

utilization is displayed with unique colors throughout the paper (e.g., zero is white, 

one is yellow, and so on). Fig 2 shows a “stacked plot” visualization of the 582 time 

series for both services. The height of each colored bar is proportional to the number 

of time series with the corresponding number of utilizations. Table 1 shows the main 

characteristics of the claimants who used psychology services, physiotherapy services 

and both services in terms of demographic, accident and injury covariates. This table 

reports injuries for which the corresponding population has at least 1% coverage. As 

such, some injuries (e.g., quadriplegia, amputation, burns and fatal) do not appear. 

In addition, Table 1 shows that the descriptive statistics of the 9, 328 claimants in 

the dataset of service utilization (the second dataset) are comparable to those in 

the complete dataset (the first dataset), so that the former can be regarded as a 

representative sample of the entire population. 

 
Time-series clustering 

The monthly utilizations of health services for a given claimant were treated as 

random variables and are noted in the following as xt, t = 1 . . . T . In turn, each 

observation, xt, consisted of multiple channels, xc, c = 1 . . . C, one per type of service. 

For instance, in our case a notation such as x7 = {x1 = 2, x2 = 4} means that the 

claimant received two psychological consultations and four physiotherapy sessions in 

the seventh month since the date of their accident. Given the time series of service 

utilizations of a population of claimants, our goal was to group them into clusters 

170      that could be as homogeneous as possible and describe the main, distinct patterns of 

service utilization. 
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Table 1:   Descriptive statistics for demographic, accident and injury covariates. 
Variables Psychology Physiotherapy Both First dataset Second dataset 

Sample size 788 3,115 582 93,633 9,327 

Accident injuries (percentage of cases)  

General injuries 95% 91% 95% 85% 85% 

Contusion abrasion 67% 58% 66% 57% 61% 

Soft tissue 53% 50% 58% 49% 49% 

Limb fractures 37% 40% 40% 25% 28% 

General fractures 38% 27% 38% 20% 21% 

Internal injuries 29% 18% 28% 16% 15% 

Sprains strains 24% 24% 28% 17% 18% 

Brain head injury 24% 11% 23% 9% 10% 

Dislocation 19% 19% 21% 8% 10% 

Concussion 19% 11% 18% 9% 10% 

Spinal 8% 5% 9% 4% 4% 

Severe ABI 7% 2% 8% 1% 1% 

Psych flag 3% 1% 3% <1% <1% 

Degloving 2% 2% 2% 1% 1% 

Nerve damage 2% 1% 2% 1% 1% 

Paraplegia 1% 1% 1% <1% <1% 

 
Role in transport accident 

Driver 47% 40% 49% 47% 44% 

Passenger 22% 14% 21% 19% 21% 

(Motor/) Cyclist 16% 34% 16% 24% 26% 

Pedestrian 12% 10% 12% 8% 9% 

Witness 3% 1% 2% 1% 1% 

Gender 

Male 48% 56% 53% 54% 54% 

Female 52% 44% 47% 46% 46% 

 
Age group (at accident) 

< 30-year-old 35% 31% 17% 33% 34% 

30-40-year-old 22% 21% 19% 18% 19% 

40-50-year-old 21% 22% 24% 17% 17% 

50-60-year-old 13% 14% 22% 14% 13% 

> 60-year-old 9% 13% 18% 19% 16% 
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To tackle data clustering with a solid statistical foundation, we used a mixture 

distribution which is a probability distribution obtained from the combination of 

multiple component distributions. If each component is set into correspondence with 

175 a distinct pattern of utilization, the mixture describes all patterns of utilizations of an 

entire population. Formally, the probability distribution of a time series of T months, 

x1:T , in a mixture with M components is defined as: 
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M 

pmixture(x1:T ) = p(x1:T |m)p(m) (1) 
m=1 

where p(x1:T |m) is the m-th component distribution and p(m) is its prior probability. 

Eq (1) can be easily proved using Bayes’ rule and marginalization [31]. Given a generic 

time series, x1:T , a simple inference step can be used to assign it to its most similar 

pattern in the mixture: 
 
 

m∗(x1:T ) = argmax p(x1:T m)p(m) (2) 
m=1...M 

In this way, the mixture distribution models the patterns of the entire population 

and, at the same time, it partitions its samples into the patterns. However, it remains 

to be chosen how to define the component distribution, p(x1:T |m), of each pattern, 

m = 1 . . . M . A powerful model to describe time series is the hidden Markov model 

(HMM), a probabilistic graphical model that assumes that each observation, xt, t = 

1 . . . T , in a time series is generated by a latent, discrete-valued “state”, yt. In turn, 

the sequence of the states, y1:T , forms a Markov chain that embeds all the sequential 

properties of the model. An HMM is referred to as a “factorized model” that defines 

the probability of the observations as: 
 
 

pHMM (x1:T ) = 
y

 

1:T  

 

 

 
 
p(y1) 

 
 

t

 

=2 

 
p(yt|yt−1) 
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p(xt|yt)
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The terms on the right hand side of Eq (3) fully define the HMM and include: 

1) the probability of the initial state, p(y1); 2) the probability of transitioning from 

the state at time t − 1 to the state at time t, p(yt|yt−1); and 3) the probability of 

observation xt when in state yt, p(xt|yt). Such terms are commonly referred to as 

initial-state, transition and observation probabilities. Each state variable is a latent 

categorical variable with an arbitrary number of values; let us say, S:  therefore 

both p(y1) and p(yt|yt−1) can be modeled by conventional categorical distributions. 

Conversely, each observation, xt, can consist of any combination of numerical and 

categorical values and p(xt|yt) is chosen accordingly. In our case, each observation 

is a multichannel vector with C values, which we assume independent conditional 

T T 
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p(x |y ) = p(x |y )
 (4)t t  t 

  

t 

t 

on the state. Please note that this does not equate to the values being assumed 

independent: the values are modeled jointly through the dependencies accounted for 

by the state variable. This is a rather general hypothesis that models well many real 

multichannel time series. To model p(xt|yt) we have used a multinomial distribution 

205      simply to limit further assumptions. 
 
 

C 
c 
t 

c=1 
 

With their assumptions, HMMs often well reflect real sequential data, and for 

this reason they have found wide adoption in fields as diverse as computer vision [32], 

signal processing [33], natural language processing [34], financial prediction [35], gene 

finding [36] and inpatient journey analysis [37]. 

210  By using an HMM to model each component distribution, the mixture distribu- 

tion specializes as a mixture of hidden Markov models (MHMM). Such a mixture 

simultaneously a) describes the multiple patterns of utilization and b) properly mod- 

els each pattern by taking into account its temporal nature. The overall probability 

distribution is obtained by incorporating Eqs (3,4) in the mixture model (Eq 1): 

 
M 

pMHMM (x1:T ) = pHMM (x1:T |m)p(m) 
m=1 

 
   

=
 

p(y1|m) 
  

p(yt|yt−1, m) 
   

 p(xc|yt)

l

 
 
p(m) (5) 

m=1 y1:T t=2 t=1 c=1 
 

215  Based on the model in Eq 5, it is also possible to infer the sequence of states 

with highest probability for a given time series and a given cluster by replacing the 

marginalization of the states with a maximization: 
 

 
y1

∗
:T (x1:T , m) = 

 
  

p(y1|m) 
  

p(yt|yt−1, m) 
   

 p(xc|yt)

l

 

 
 
p(m) (6) 

t=2 t=1 c=1 
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The inferability of the states is a key property of this model since the inferred 

states can be used to extensively characterize and contrast the found clusters. 

Operationally, the probability distribution in Eq (5) has a number of parameters 

that need to be set before it  can be evaluated.  Such parameters include (1)  the 

prior probability of each component, p(m) (M − 1 free parameters); (2) the initial 

state probabilities of each component (M (Sm−1) free parameters, where Sm notes the 
number of states of the m-th component distribution); (3) the transition probabilities 

of each component (MSm(Sm − 1) free parameters), and (4) the observation proba- 

bilities of each component (MSmC(V − 1) free parameters, where V  is the number 

T T 

T T M C 

C 
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1:T
 

of distinct values for the observations of each channel). By noting them collectively 

as Θ, we can make them explicit in the probability as pMHMM (x1:T |Θ).  Given a set 

of time series, X = {xi }, i = 1 . . . N , the parameters can then be estimated with a 
230      common maximum-likelihood criterion [38]: 

 
 
 

 

Θ∗ = argmax   
    

ln p 

 
 
 

MHMM 
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1:Ti |Θ) (7) 

Θ i=1 
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Efficient solvers exist for Eq (7) and we use the expectation-maximization algo- 

rithm for the experiments in this paper [38, 39]. To implement the model, we have 

used R and its seqHMM and RColorBrewer packages [40, 41, 42, 43, 39]. However, 

two further parameters need to be set outside of the maximum-likelihood framework: 

the number of HMMs in the mixture, M , and the number of states in each HMM, 

Sm, m = 1 . . . M . These parameters cannot be set using the maximum-likelihood 

criterion because the estimation would lead to overly-complex models, and for this 

reason they are often referred to as “hyperparameters”. The usual approach for set- 

ting a model’s hyperparameters is to minimize a trade-off between its likelihood and 

its complexity such as the Bayesian information criterion (BIC) [44] or the Akaike in- 

formation criterion (AIC) [45], or to utilize external knowledge such as the judgment 

of domain experts. This selection is discussed in the following subsection. 

 
Model selection 

To find optimal hyperparameters (i.e., the number of clusters and the number of 

states in each cluster), we first used the TAC’s expertise to determine a plausible 

range for the clusters (i.e. m ∈ {2, · · · , 6}) and the states (i.e. Sm ∈ {3, · · · , 9}). 

Choosing the number of clusters and hidden states is a model selection problem, and 

although this problem has been vastly studied for both mixture models and HMM, the 

optimal selection of the number of hyperparameters for these models is still partially 

unresolved [46, 47, 48]. 

In general, model selection consists of choosing a suitable trade-off between fitting 

the available data and preventing over-fitting. In this context, over-fitting means 

fitting the available sample “too tightly” with a model with too many degrees of 

freedom, rather than modelling its true generating distribution. This trade-off can be 

achieved by using a criterion that balances the model’s goodness of fit and complexity 

such as the BIC, the AIC and their variants. In order to find the best model, we have 

run our analysis using BIC, AIC, consistent AIC (CAIC), corrected AIC (AICc), 

AIC3, AICu and the Hannan-Quinn criterion (HQC) (for details of these criteria, 

the reader is referred to [49]).  Based on the TAC’s opinion on the interpretability 

of the resulting models, we have chosen the BIC as the primary selection criterion 

N 

(
 



11 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

265 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
270 

for the number of the states. The BIC consists of two terms: a term that measures 

the negative log likelihood of the data, and a term that grows logarithmically with 

model complexity; therefore, lower values of BIC are preferable. To avoid biasing the 

mixture model toward any components, we only considered models with the same 

number of hidden states in each cluster We have chosen to use the same number of 

hidden states for each cluster (e.g., six clusters with five states each, (5, 5, 5, 5, 5, 5)) to 

avoid favoring some clusters with more degrees of freedom than others, and therefore 

biasing the number of members toward them. For the number of the clusters, we 

have simply accepted the judgment of the TAC’s domain experts on the results that 

offered the best interpretability. 
 

Characterizing the clusters with covariate analysis 
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Interpretation of the clusters produced by an unsupervised clustering algorithm 

requires  external  information  and  validation  criteria.  To  this  aim,  we  were  able 

to exploit the set of demographic, accident and injury covariates available for each 

individual claimant. The first analysis has been conducted with multinomial logistic 

regression, using the covariates as inputs and the claimants’ memberships to the 

clusters inferred from the MHMM as outputs. Multinomial logistic regression is likely 

the most widely adopted method for the analysis of factors of influence of a categorical 

variable. The approach uses a simple multinomial logistic regression classifier to 

predict a categorical variable based on a set of inputs commonly referred to as the 

“covariates”. It repeatedly fits the classifier onto a subset of the available training 

data and applies a  statistical  test  of  stability  to  the  estimated  coefficients,  rating 

the coefficients as stable or unstable, and the corresponding inputs as significant or 

not significant. Cluster 1 was used as the multinomial reference. Covariate reference 

categories were driver, general injuries, female, and age <30. Covariates were removed 

from the multinomial logistic regression model if they demonstrated a z-score < 0.02 

and the model was subsequently retrained [50, 51].  A standard significance threshold 

of p < 0.05 was used. This analysis was conducted using the statsmodels [52] package 

in Python 3.6. 

In addition to the multinomial regression analysis, we carried out an exploration of 

clusters membership using supervised classifiers. Extreme gradient boosting machine 

(XGBM), random forest (RF) and support vector machine (SVM) classifiers were 

trained to predict membership of each of the derived clusters. As inputs to the 

classifiers, we used the features included in the final multinomial logistic regression 

model. As target outputs, we used the claimant memberships to the clusters inferred 

from the MHMM. The synthetic minority oversampling  technique  (SMOTE)  was 

used to address class imbalance [53]. XGBM is a classifier based on the combination 
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(ensemble learning) of multiple “weak” classifiers, trained in a sequential manner 

so that each classifier attempts to “boost” the performance of the previous. RF is 

another ensemble-learning classifier that combines the outputs of multiple decision 

trees, often displaying better generalization than the individual trees. SVM is a 

classifier that is able to empirically maximize the separation between the various 

classes in a kernel space.  In turn,  SMOTE is an oversampling method that creates 

new, synthetic samples for the minority classes by leveraging the k nearest neighbors 

of the actual samples. All of these approaches have reported a very strong empirical 

performance in a number of domains and data classification contexts [54, 55, 56, 

50, 57, 58, 59, 60] and were adopted as a consequence. Optimal parameters for the 

supervised classifiers were found using grid search with 5-fold cross-validation. The 

performance of the final models was reported as the highest over the 5-fold cross- 

validation, averaged over three runs for each model. The performance was measured 

in terms of the area under the receiver operating characteristic (AUC) metric. Early 

stopping was used to mitigate over-fitting. In addition, Shapley additive explanations 

(SHAP) values were calculated and plotted to determine feature importance for the 

XGBM classification models (SHAP is an approach based on game theory that can be 

used to elucidate feature importance in tree-based machine learning models and can 

assist in explaining their output [61, 62, 63]). This analysis was conducted using the 

scikitlearn [64], xgboost [65] and shap [61] packages in Python 3.6. Figure 1 shows 

an overview of our overall methodology. 

 
Experiments and results 

 
As a preliminary analysis of the data, Table 1 shows that the three most common 

injuries in this sample were general injuries, contusion/abrasion and soft tissue in- 

juries. Injuries related to the head such as brain/head injury, concussion and severe 

ABI were more common among the psychology-only sample and the sample that used 

both services, than the physiotherapy-only sample. The two most common roles in 

the accident for the psychology-only sample were driver and passenger, while they 

were driver and motorcyclist/cyclist for the physiotherapy-only sample. Women were 

slightly more likely to use psychology services; usage amongst females was 4% higher 

than males. Males were more likely to use physiotherapy services; usage amongst 

males was 12% higher than females. The age distributions for these two samples 

were similar, but the sample that had received both services was significantly older. 

For further inspection, Fig 3 shows the weighted directed graph of injury co- 

occurrence for the 582 claimants. The most frequently co-occurring injuries are dis- 

played as a set of vertices connected by edges. For each injury type, the graph has an 

edge pointing toward the injury that most frequently occurs with it, with the edge 
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Figure 1: Methodology overview. 
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Table 2:     BIC for four clusters within a plausible range of hidden states (i.e.   Sm ∈ 
{3, · · · , 9}). Each row shows BIC of an MHMM model with four clusters and a different 

number of hidden states. The MHMM model with five hidden states has the minimum 

BIC, therefore, it is the optimal model. 
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thickness proportional to the frequency of co-occurrence. For example, for quadriple- 

gia and paraplegia, the most frequent co-occurring injury was general fractures. In 

turn, the most frequent co-occurring injury with general fractures was general in- 

juries. General injuries were by far the most frequently co-occurring injuries overall, 

followed by general fractures and contusion/abrasion. 

 
Results from the joint analysis of psychology and physiotherapy service utilization 
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For the model selection of the MHMM, the results with four clusters offered the 

best interpretability according to the TAC’s domain experts. For the number of the 

states, we chose instead the value with the minimum BIC in the explored range. 

Table 2 reports the BIC values with four clusters and different numbers of hidden 

states, showing that the optimal value was attained with five hidden states. The 

resulting clusters have been named simply as clusters 1, 2, 3 and 4, and ended up 

containing 180, 116, 226 and 60 members, respectively (roughly 31%, 20%, 39% and 

10% of the entire sample). For each time series, the sequence of hidden states is 

determined jointly from both services. To attach a meaningful interpretation to the 

inferred states, we first looked at the range of service utilizations associated with each 

of the 4 * 5 = 20 states in the MHMM. We then named the various levels of service 

utilizations for each individual service as “zero”, “low”, “medium”, and “high”. Such 

levels have been defined by sub-dividing the range of utilizations into approximately 

uniform intervals. When looking at the levels of service utilization for both psychology 

and physiotherapy for all 20 states and across the entire population, we observed the 

following 10 combinations of service level: (zero, zero), (zero, low), (zero, medium), 

(zero, high), (low, zero), (low, low), (medium, zero), (medium, high),(high, medium), 

MHMM model BIC 

MHMM (2,2,2,2) 130999.9 

MHMM (3,3,3,3) 122572.3 

MHMM (4,4,4,4) 120437.2 

MHMM (5,5,5,5) 120311.3 

MHMM (6,6,6,6) 121420.6 

MHMM (7,7,7,7) 123385.7 

MHMM (8,8,8,8) 124945.8 

MHMM (9,9,9,9) 127958.7 
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and (high, high). In the rest of this section, we use these labels to refer to the 10 

distinguishable states in our MHMM. The existence of some states of comparable 

service level across the various clusters is not in itself a sign of an overly-complex 

model, since these states have different transition probabilities and evolve from and 

toward different states. In addition, for ease of visualization, we use three different 

color shades to visualize the different states in all following plots and figures: orange 

for (non-zero, zero), blue for (zero, non-zero) and green for (non-zero, non-zero). 

Figures 4 and 5 show stacked plots of the number of monthly utilizations of the 

psychology and physiotherapy services and stacked “state paths” for all four clusters. 

The right legend lists the numbers of monthly service utilizations while the bottom 

legend lists the state labels. The stacked “state paths” show the traversed sequences 

of states for the claimants in each cluster. For further insight, Figure 6 shows 

five random individual trajectories (utilizations for both services and inferred states) 

in each cluster. These figures show that the four clusters manifestly correspond 

to different typical trends of joint service utilization. In the following paragraphs, 

we study the various attributes (balance, amount, decay), pattern and behavior of 

monthly service utilizations for both services separately, and we leverage the hidden 

states to explore the latent relationship between the utilization of these two services. 

Figures 4 and 6 show that cluster 1 contains psychology time series with mostly 

0, 1 or 2 utilizations, and physiotherapy time series in a medium to high range of 

utilizations, with both decaying very fast to zero. The hidden states, too, rapidly 

decay toward state (zero, zero), reflecting the fast decay of the joint time series. The 

non-zero hidden states for this cluster are (low, zero), (zero, low) and (zero, high), 

showing that these claimants usually do not utilize both services. The trend in this 

cluster is for claimants to start with a high utilization of physiotherapy and to receive 

one or two psychology consultations after their first physiotherapy treatment. After 

that, they mainly receive only physiotherapy treatments. After 36 months from the 

accident, only 25% of these claimants use either service. The individual trajectories in 

Fig 6 confirm these observations. Overall, we believe that this is a group of claimants 

with rapid recovery and that it would be desirable to design interventions that could 

move more claimants to this cluster. 

The trend in cluster 2 is more intense compared to cluster 1 and the duration of 

utilization is longer. At month 12, more than 60% of the claimants have used either of 

these services while the same figure is 30% for cluster 1. Based on the non-zero hidden 

states (i.e., (zero, low), (zero, medium) and (low, low)), we observe that most of the 

claimants either did not use the psychology service at all or they used low levels while 

instead using physiotherapy. Based on the amounts of non-zero hidden states, we can 

conclude that claimants in this cluster have, on average, used physiotherapy for much 
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longer than those in cluster 1. Figure 7 illustrates the weighted directed graph of the 

most likely co-occurring injuries for each cluster. This graph shows two extra injuries 

in cluster 2 compared to cluster 1 – amputation and burns – which are both significant 

injuries. Also, the edges of some of the significant injuries such as spinal are thicker. 

This gives some evidence that the claimants in cluster 2 have likely suffered from 

more major injuries than those in cluster 1. The differences between clusters 1 and 2 

are even more pronounced in the samples in Fig 6 (trajectories 1 to 5 vs trajectories 

6 to 10). The imbalance between physiotherapy and psychology services may suggest 

that seeking more and early psychology services should be considered as a possible 

intervention for the members of this cluster. 

In cluster 3, physiotherapy and psychology service utilizations seem intense in the 

first year after the accident. This is the only cluster that starts with 100% non-zero 

hidden states at the beginning of the time series.  At month 6,  more than 80% of 

the claimants have used at least either service. Unlike the previous two clusters, 

physiotherapy utilization decays faster than psychology. However, the physiotherapy 

time series are still longer than those in clusters 1 and 2. This may suggest that 

claimants in this cluster use psychology alongside physiotherapy to enhance their 

recovery. Fig 5 shows that the majority of the utilizations take place in the first three 

years after the accident and that they decay at a rate comparable with cluster 2 after 

the third year. The hidden states in this cluster are (low, zero), (zero, low), (zero, 

medium) and (medium, high), reflecting the higher average utilization. 

Cluster 4 is the most distinctive cluster. As a general trend, its members used 

both psychology and physiotherapy more extensively than in any other cluster, and 

for a sustained period of time. There are claimants in this cluster that have used 

a high level of psychology or/and physiotherapy even eight years after the accident. 

In the sample in Fig 6, trajectories 16, 17 and 19 used long and relatively high 

levels of psychology services. Trajectory 18, in particular, intensely used psychology 

and physiotherapy years after the accident. In trajectory 20, the utilization of both 

services started long after the accident, possibly indicating a late onset of problems. 

Overall, the common pattern in this cluster is the use of both services long after the 

accident. The graph in Fig 7 shows the presence of most severe injuries such as spinal 

and brain/head injuries. This is the only cluster where brain/head injuries are the 

most frequently co-occurring injuries with general injuries (for other clusters, they 

are contusion/abrasion). 

Table 3 shows the cost analysis per claimant for psychology and physiotherapy 

services. The overall number of service utilizations for this pool of 582 claimants was 

397, 229. The total service cost increases progressively from cluster 1 through cluster 

4. The average cost of psychology services for cluster 4 claimants is substantially 
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higher than that seen in the other clusters, and it is also much higher than the average 

physiotherapy cost in that cluster. The average psychology cost is also higher than 

the physiotherapy cost in cluster 3. This is in line with the more frequent use of 

psychology services in this cluster. Conversely, in clusters 1 and 2, physiotherapy 

service costs outweigh the cost of psychology services. 

Finally, we discuss the complexity of the model with respect to the available data. 

Like for any model, the number of parameters of our model is independent of the num- 

ber of claimants; however, their ratio can be easily computed. Our model has 1, 179 

total parameters, accounting for the parameters of the transition probabilities, initial 

state probabilities, prior probabilities of the clusters, and observation probabilities, 

which are, in order: M ×Sm×(Sm−1), M ×(Sm−1), M −1, and M ×Sm×C ×(V −1), 
where M (= 4), Sm(= 5), C(= 2) and V (= 28) are the number of clusters, the number 

of states in each cluster, the number of channels, and the number of distinct values 

for the observations of each channel. Since the number of claimants is 582, the total 

number of parameters to be estimated per claimant is 1, 179/582 = 2.03. More so, the 

total number of observations is 59, 103, including 18, 472 and 40, 631 for psychology 

and physiotherapy, respectively, so we have 59, 103/1, 259 = 50.12 observations per 

parameter. All in all, the number of parameters seems reasonable, and the model, 

effective and easily computable. 

 
Results of the covariate analysis 

 
After clustering the joint time series of psychology and physiotherapy services, 

we applied various classification algorithms to predict cluster membership based on 

demographic, injury and accident role covariates. Using external covariates to pre- 

dict cluster membership allowed us to characterize and understand claimant profiles 

associated with differing service utilization patterns. This analysis also allowed us to 

determine whether the claimant covariate profile available at the time of the accident 

could be used as an appropriate and effective indicator of the extent of future service 

utilization over the lifetime of the patient’s claim. 

Multinomial logistic regression elucidated associations between covariates and 

cluster membership (Table 4). The multinomial logistic regression model was statis- 

tically significant (p < 0.01). Marginal effects derived from the multinomial logistic 

regression model (Table 5) suggested that severe ABI and other spinal injuries were 

significantly and negatively associated with membership of cluster 1, while nerve in- 

juries were significantly and positively associated with membership of this cluster. No 

covariates were significantly associated with membership of cluster 2. Membership of 

cluster 3 was significantly and positively associated with severe ABI, brain/head in- 

juries and psychiatric injury. Membership of cluster 4 was significantly and positively 
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Figure 2: “Stacked plot” of the number of monthly utilizations of psychology and phys- 

iotherapy services. Each figure shows the 582 time series as a “stacked plot”. The height of 
the colored bars is proportional to the number of time series with the corresponding number of 
utilizations. 

 
 
 
 
 
 
 
 
 
 
 

Table 3:   Cost analysis per claimant. 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Num. of claimants 180 116 226 60 

Ave. psych. cost 1,874 1,755 4,042 18,449 

Ave. physio. cost 2,710 3,684 2,818 5,256 

Ave. total psych. and physio. cost 4,584 5,439 6,860 23,705 
 

Percentage of psych. and physio. 

to total cost 

 
4.80% 8.93% 13.58% 14.44% 
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Figure 3: “Weighted directed graph” of injury co-occurrence for the 582 claimants. This 
graph shows the most frequent injury co-occurrences as a set of vertices connected by edges. For each 
injury type, the graph has an edge showing the injury that most frequently occurs with it. Example: 
for quadriplegia and paraplegia, the most frequent co-occurring injury is general fractures; the most 
frequent co-occurring injury with general fractures is general injuries. The thickness of each edge is 
proportional to the frequency of co-occurrence. For a balanced layout, the graph is centered on the 
most frequently co-occurring injury overall (general injuries). 
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Figure 4: Stacked plots of the number of monthly utilizations of psychology and phys- 

iotherapy services and stacked “state paths” for cluster 1 (180 claimants) and cluster 

2 (116 claimants).   The stacked “state paths” chart shows the traversed sequences of states of 
the claimants in each cluster. The legend to the right shows monthly service utilization in the time 
series and the legend below shows the interpretation of the hidden states in the clusters. 
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Figure 5: Stacked plots of the number of monthly utilizations of psychology and phys- 

iotherapy services and stacked “state paths” for cluster 3 (226 claimants) and cluster 

4 (60 claimants). 
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Figure 6: Individual trajectories of the number of monthly and “state paths” for five 

random claimants per cluster (20 claimants in total). These plots confirm the different 
utilization patterns in the four clusters. The plots show the good correspondence between the 
transitions in amounts of service utilizations and the transitions in inferred states, giving further 
evidence to the effective empirical fit of the model. HS, Hidden States. S1, Service 1 (psychology). 
S2, Service 2 (physiotherapy). 
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Figure 7: “Weighted directed graph” of the most likely injuries for all clusters 
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associated with internal injuries and negatively associated with dislocation injuries. 

Odds ratios derived using multivariate logistic regression demonstrated that pa- 

tients with nerve damage were almost 7 times more likely to be members of cluster 

1 than patients with general injuries. Patients with severe ABI were 9.5 times more 

likely to be members of cluster 3 than patients with general injuries. Patients with 

severe brain/head injury were 9.9 times more likely to be members of cluster 3 than 

patients with general injuries. Patients with a psychiatric injury were almost 5 times 

more likely to be members of cluster 3 than patients with general injuries. Patients 

with internal injuries were almost twice as likely to be a member of cluster 4 than 

patients with other general injuries. 

XGBM, RF and SVM classifiers, coupled with SMOTE, were capable of predict- 

ing cluster membership, based on demographic, injury and accident covariates, with 

moderate to strong performance (Table 6). Mean AUC statistics ranged from 0.62 to 

0.96. The 470 clusters were formed based on a particular sequential model and time 

series, and it was not unexpected that the predictive accuracy based on the given 

(static) covariates may vary significantly across clusters. Results demonstrated that 

demographic, injury and accident covariates could be used to effectively predict future 

psychology and physiotherapy service utilization patterns after a traffic accident, with 

the potential to facilitate service planning. The SHAP plots of Figs 8 and 9 visualize 

feature importance for each of the four XGBM classifiers. The SHAP results were 

consistent with the statistical results gleaned from the multinomial logistic regression 

analysis. For example, the SHAP plot of cluster 4 shows that internal injuries exerted 

a heavy positive influence on the classification of cluster 4 membership. Correspond- 

ingly, the internal injuries covariate was significantly and positively associated with 

membership of cluster 4 in the multinomial logistic regression analysis. 

 
Discussion, future work and conclusions 
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The purpose of this research was to identify the main, distinct patterns of joint 

service utilization behavior of multiple health services from a sample of MVA sufferers. 

The resulting analysis can inform policy makers and facilitate resource planning, 

intervention design and be used to improve MVA claimant recovery trajectories. To 

analyze claimant behaviors in terms of multiple service utilizations over time, we 

have used an approach known as the multichannel mixture of hidden Markov models 

(MHMM). To the best of our knowledge, this is the first application of this model to 

the joint analysis of the utilization of multiple healthcare services. 

Given the synergistic relationship between physiotherapy and psychology services 

[29, 30], we have chosen these two health services to illustrate the capabilities of our 

joint analysis. However, the same approach can be applied to any other combination 
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Table 4:   Multinomial logistic regression results demonstrating statistical associations. 

Note: Cluster 1 used as reference. ABI, acquired brain injury. 
 

 Covariate coef std err z P>[z] [0.025 0.975] 

 
Cluster 2 

 
Male 

 
0.11 

 
0.24 

 
0.45 

 
0.66 

 
-0.37 

 
0.59 

 Age 30-40 years 0.16 0.34 0.47 0.64 -0.51 0.83 
 Age 41-50 years -0.22 0.33 -0.67 0.50 -0.87 0.43 
 Age 51-60 years -0.05 0.35 -0.14 0.89 -0.74 0.64 
 Age >60 years -0.08 0.44 -0.18 0.86 -0.95 0.79 
 Injury: Severe ABI 1.57 0.99 1.58 0.11 -0.37 3.51 
 Injury: Brain Head 0.28 0.35 0.82 0.42 -0.40 0.96 
 Injury: Other Spinal 0.49 0.46 1.08 0.28 -0.41 1.40 
 Injury: Internal Injuries -0.04 0.30 -0.12 0.90 -0.63 0.55 
 Injury: Degloving -0.50 0.87 -0.57 0.57 -2.21 1.21 
 Injury: Limb Fractures -0.03 0.29 -0.12 0.90 -0.60 0.53 
 Injury: Other Fractures -0.19 0.28 -0.68 0.50 -0.74 0.36 
 Injury: Dislocation 0.30 0.29 1.01 0.31 -0.28 0.87 
 Injury: Soft Tissue -0.23 0.27 -0.84 0.40 -0.76 0.31 
 Injury: Sprains Strains 0.16 0.26 0.62 0.53 -0.35 0.67 
 Injury: Concussion -0.10 0.35 -0.29 0.77 -0.78 0.58 
 Injury: Nerve Damage -1.87 1.13 -1.67 0.10 -4.08 0.33 
 Injury: Contusion Abrasion 0.26 0.27 0.95 0.34 -0.27 0.79 
 Injury: Psych Flag -0.83 1.64 -0.51 0.61 -4.05 2.39 
 Pedestrian 0.52 0.36 1.46 0.15 -0.18 1.22 
 Motorcyclist 0.26 0.40 0.63 0.53 -0.53 1.04 
 Car passenger 0.17 0.33 0.50 0.61 -0.48 0.82 
 Cyclist -0.36 0.65 -0.56 0.58 -1.62 0.91 
 Constant -0.86 0.40 -2.12 0.03* -1.65 -0.07 

 
Cluster 3 

 
Male 

 
-0.41 

 
0.43 

 
-0.95 

 
0.34 

 
-1.25 

 
0.43 

 Age 30-40 years -0.70 0.56 -1.24 0.21 -1.80 0.40 
 Age 41-50 years -0.35 0.52 -0.67 0.50 -1.37 0.67 
 Age 51-60 years -1.07 0.69 -1.55 0.12 -2.42 0.29 
 Age >60 years -1.35 0.92 -1.48 0.14 -3.14 0.44 
 Injury: Severe ABI 3.38 0.93 3.64 0.00** 1.56 5.20 
 Injury: Brain Head 2.42 0.50 4.83 0.00** 1.43 3.40 
 Injury: Other Spinal 1.04 0.59 1.75 0.08 -0.13 2.20 
 Injury: Internal Injuries -0.11 0.48 -0.22 0.83 -1.05 0.84 
 Injury: Degloving -1.36 1.71 -0.79 0.43 -4.72 2.00 
 Injury: Limb Fractures 0.20 0.45 0.43 0.67 -0.69 1.08 
 Injury: Other Fractures 0.14 0.49 0.28 0.78 -0.82 1.09 
 Injury: Dislocation 0.20 0.48 0.42 0.68 -0.74 1.13 
 Injury: Soft Tissue -0.05 0.46 -0.11 0.91 -0.96 0.86 
 Injury: Sprains Strains 0.00 0.46 0.01 1.00 -0.90 0.91 
 Injury: Concussion -0.73 0.53 -1.36 0.17 -1.77 0.32 
 Injury: Nerve Damage -0.75 1.10 -0.68 0.49 -2.90 1.40 
 Injury: Contusion Abrasion -0.63 0.44 -1.44 0.15 -1.48 0.23 
 Injury: Psych Flag 1.24 1.32 0.94 0.35 -1.34 3.82 
 Pedestrian -0.40 0.67 -0.60 0.55 -1.71 0.91 
 Motorcyclist -0.39 0.71 -0.55 0.59 -1.79 1.01 
 Car passenger -0.26 0.53 -0.49 0.62 -1.31 0.78 
 Cyclist -0.98 0.95 -1.03 0.30 -2.85 0.88 
 Constant -1.79 0.64 -2.78 0.01* -3.05 -0.53 

 
Cluster 4 

 
Male 

 
0.26 

 
0.22 

 
1.18 

 
0.24 

 
-0.18 

 
0.70 

 Age 30-40 years -0.02 0.31 -0.05 0.96 -0.62 0.58 
 Age 41-50 years -0.37 0.29 -1.25 0.21 -0.94 0.21 
 Age 51-60 years -0.57 0.34 -1.69 0.09 -1.23 0.09 
 Age >60 years -0.24 0.39 -0.62 0.53 -1.00 0.52 
 Injury: Severe ABI 1.63 0.93 1.75 0.08 -0.19 3.46 
 Injury: Brain Head 0.14 0.33 0.44 0.66 -0.50 0.79 
 Injury: Other Spinal 0.86 0.40 2.15 0.03* 0.08 1.64 
 Injury: Internal Injuries 0.60 0.26 2.29 0.02* 0.09 1.11 
 Injury: Degloving 0.03 0.70 0.04 0.97 -1.34 1.40 
 Injury: Limb Fractures 0.01 0.27 0.03 0.98 -0.51 0.53 
 Injury: Other Fractures -0.38 0.26 -1.44 0.15 -0.89 0.14 
 Injury: Dislocation -0.47 0.30 -1.58 0.11 -1.06 0.11 
 Injury: Soft Tissue -0.11 0.25 -0.44 0.66 -0.61 0.39 
 Injury: Sprains Strains -0.08 0.24 -0.33 0.75 -0.56 0.40 
 Injury: Concussion -0.02 0.32 -0.07 0.94 -0.65 0.60 
 Injury: Nerve Damage -2.51 1.11 -2.26 0.02* -4.69 -0.33 
 Injury: Contusion Abrasion -0.11 0.24 -0.45 0.65 -0.57 0.36 
 Injury: Psych Flag -0.59 1.38 -0.43 0.67 -3.29 2.11 
 Pedestrian -0.02 0.36 -0.06 0.95 -0.73 0.69 
 Motorcyclist 0.11 0.38 0.30 0.77 -0.63 0.86 
 Car passenger 0.21 0.29 0.71 0.48 -0.36 0.78 
 Cyclist -0.17 0.57 -0.31 0.76 -1.29 0.94 
 Constant -0.09 0.36 -0.25 0.81 -0.80 0.62 
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Table 5: Marginal effects associated with membership of each of the four clusters. No 
marginal effects were significant for cluster 2. ABI, acquired brain injury. 

 Covariate dy/dx std err z P>—z— [0.025 0.975] 

Cluster 1 Male -0.03 0.04 -0.76 0.45 -0.11 0.05 

 Age 30-40 years 0.00 0.06 0.02 0.98 -0.11 0.12 

 Age 41-50 years 0.07 0.06 1.22 0.22 -0.04 0.18 

 Age 51-60 years 0.09 0.06 1.48 0.14 -0.03 0.21 

 Age >60 years 0.06 0.07 0.81 0.42 -0.08 0.20 

 Injury: Severe ABI -0.38 0.19 -2.04 0.04* -0.75 -0.01 

 Injury: Brain Head -0.09 0.06 -1.46 0.15 -0.20 0.03 

 Injury: Other Spinal -0.16 0.08 -2.06 0.04* -0.31 -0.01 

 Injury: Internal Injuries -0.06 0.05 -1.28 0.20 -0.16 0.03 

 Injury: Degloving 0.06 0.14 0.46 0.64 -0.21 0.33 

 Injury: Limb Fractures 0.00 0.05 -0.03 0.97 -0.10 0.10 

 Injury: Other Fractures 0.06 0.05 1.19 0.23 -0.04 0.15 

 Injury: Dislocation 0.03 0.05 0.49 0.63 -0.08 0.13 

 Injury: Soft Tissue 0.03 0.05 0.70 0.48 -0.06 0.13 

 Injury: Sprains Strains 0.00 0.05 -0.10 0.92 -0.09 0.08 

 Injury: Concussion 0.02 0.06 0.41 0.68 -0.09 0.14 

 Injury: Nerve Damage 0.46 0.17 2.66 0.01* 0.12 0.80 

 Injury: Contusion Abrasion 0.00 0.05 0.05 0.96 -0.09 0.09 

 Injury: Psych Flag 0.11 0.28 0.40 0.69 -0.44 0.67 

 Pedestrian -0.03 0.07 -0.51 0.61 -0.16 0.10 

 Motorcyclist -0.03 0.07 -0.38 0.70 -0.17 0.11 

 Car passenger -0.03 0.06 -0.60 0.55 -0.14 0.08 

 Cyclist 0.07 0.11 0.65 0.52 -0.14 0.27 

Cluster 3 Male -0.03 0.02 -1.32 0.19 -0.07 0.01 

 Age 30-40 years -0.04 0.03 -1.38 0.17 -0.10 0.02 

 Age 41-50 years -0.01 0.03 -0.30 0.77 -0.06 0.04 

 Age 51-60 years -0.04 0.04 -1.24 0.21 -0.12 0.03 

 Age >60 years -0.07 0.05 -1.38 0.17 -0.16 0.03 

 Injury: Severe ABI 0.13 0.03 4.35 0.00** 0.07 0.18 

 Injury: Brain Head 0.12 0.03 4.68 0.00** 0.07 0.18 

 Injury: Other Spinal 0.03 0.03 1.08 0.28 -0.03 0.09 

 Injury: Internal Injuries -0.02 0.02 -0.73 0.46 -0.07 0.03 

 Injury: Degloving -0.07 0.09 -0.74 0.46 -0.24 0.11 

 Injury: Limb Fractures 0.01 0.02 0.47 0.64 -0.03 0.06 

 Injury: Other Fractures 0.02 0.03 0.72 0.47 -0.03 0.07 

 Injury: Dislocation 0.02 0.02 0.69 0.49 -0.03 0.06 

 Injury: Soft Tissue 0.00 0.02 0.12 0.91 -0.04 0.05 

 Injury: Sprains Strains 0.00 0.02 -0.02 0.98 -0.05 0.05 

 Injury: Concussion -0.04 0.03 -1.39 0.16 -0.09 0.02 

 Injury: Nerve Damage 0.04 0.06 0.68 0.50 -0.07 0.15 

 Injury: Contusion Abrasion -0.04 0.02 -1.58 0.11 -0.08 0.01 

 Injury: Psych Flag 0.09 0.04 2.13 0.03* 0.01 0.18 

 Pedestrian -0.03 0.03 -0.84 0.40 -0.10 0.04 

 Motorcyclist -0.03 0.04 -0.74 0.46 -0.10 0.05 

 Car passenger -0.02 0.03 -0.77 0.44 -0.07 0.03 

 Cyclist -0.04 0.05 -0.91 0.36 -0.14 0.05 

Cluster 4 Male 0.05 0.04 1.36 0.18 -0.02 0.13 

 Age 30-40 years 0.00 0.05 0.03 0.98 -0.10 0.11 

 Age 41-50 years -0.05 0.05 -0.99 0.32 -0.15 0.05 

 Age 51-60 years -0.09 0.06 -1.43 0.15 -0.21 0.03 

 Age >60 years -0.01 0.07 -0.20 0.84 -0.15 0.12 

 Injury: Severe ABI 0.15 0.13 1.17 0.24 -0.11 0.41 

 Injury: Brain Head -0.04 0.06 -0.72 0.47 -0.15 0.07 

 Injury: Other Spinal 0.12 0.07 1.79 0.07 -0.01 0.25 

 Injury: Internal Injuries 0.12 0.05 2.74 0.01* 0.04 0.21 

 Injury: Degloving 0.07 0.13 0.51 0.61 -0.19 0.32 

 Injury: Limb Fractures 0.00 0.05 -0.01 0.99 -0.09 0.09 

 Injury: Other Fractures -0.07 0.05 -1.40 0.16 -0.16 0.03 

 Injury: Dislocation -0.12 0.05 -2.23 0.03* -0.22 -0.01 

 Injury: Soft Tissue -0.01 0.05 -0.15 0.88 -0.10 0.08 

 Injury: Sprains Strains -0.03 0.04 -0.59 0.55 -0.11 0.06 

 Injury: Concussion 0.02 0.06 0.31 0.76 -0.09 0.13 

 Injury: Nerve Damage -0.36 0.22 -1.68 0.09 -0.79 0.06 

 Injury: Contusion Abrasion -0.02 0.04 -0.56 0.57 -0.11 0.06 

 Injury: Psych Flag -0.09 0.21 -0.44 0.66 -0.51 0.32 

 Pedestrian -0.03 0.06 -0.44 0.66 -0.15 0.10 

 Motorcyclist 0.01 0.07 0.22 0.83 -0.12 0.15 

 Car passenger 0.04 0.05 0.70 0.48 -0.07 0.14 

 Cyclist 0.01 0.10 0.09 0.93 -0.19 0.21 



Figure 8: SHAP feature importance plots for the Cluster 1 and 2 XGBM classifiers. 

The feature values are binary, so the values of each appear as either blue (zero, absent) or red (one, 
present) points, with the vertical spread on each line indicating relative case frequency. Features 
most strongly related to classification of the cluster in question appear at the top of each plot. The 
plots show that the presence (red) or absence (blue) of a covariate increases or decreases (or has 

27 
little or no effect on) the likelihood of classifying the cluster membership, with positive or negative 
SHAP values, respectively, displayed on the X-axis. ABI: acquired brain injury. 

 

 



Figure 9: SHAP feature importance plots for the Cluster 3 and 4 XGBM classifiers. 

The feature values are binary, so the values of each appear as either blue (zero, absent) or red (one, 
present) points, with the vertical spread on each line indicating relative case frequency. Features 
most strongly related to classification of the cluster in question appear at the top of each plot. The 
plots show that the presence (red) or absence (blue) of a covariate increases or decreases (or has 28 
little or no effect on) the likelihood of classifying the cluster membership, with positive or negative 

SHAP values, respectively, displayed on the X-axis. ABI, acquired brain injury. 
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of services. After an extensive analysis with nearly nine years of compensation data 

for these two services, we determined that four clusters of utilization patterns, each 

with five hidden states, comprised the most suitable model. We have interpreted the 

hidden state of the MHMM as the latent “level of service” of the joint physiother- 

apy and psychology services. By examining the relationship between hidden states 

and observations across the entire population, we have identified four levels for the 

individual services (“zero”, “low”, “medium” and “high”) and ten distinct values for 

the joint services ((zero, zero), (zero, low), (zero, medium), (zero, high), (low, zero), 

(low, low), (medium, zero), (medium, high), (high, medium), and (high, high)). We 

have used these ten values as the distinct values of the hidden state, and employed 

them extensively to characterize and contrast the found clusters. While alternative 

models and factorizations could be used for this task [66, 67, 68, 69], the adopted 

model has displayed good fitting and interpretability. 

It was evident that a small number of injury covariates were significantly related 

to membership of three of the four derived clusters. These significant relationships 

offer insight into the clinical theme of these clusters and, from a clinical perspective, 

are logically supported by the services and levels of service accessed by patients. The 

first found cluster contained claimants who used psychology services occasionally soon 

after their accident, and physiotherapy services for a relatively short period of time. 

Based on the analysis of co-occurring injuries, the members of this cluster seemed 

to be those who suffered less serious injuries than in other clusters. Cluster 1 was 

defined by nerve damage but not ABI or spinal injuries, suggesting a group of lower 

acuity patients with relatively minor injuries. Patients in this cluster required the 

lowest level of psychology and physiotherapy support. 

The second found cluster contained claimants who used services more intensely 

and for a longer duration than those in cluster 1. Its graph of co-occurring injuries 

showed two injuries – amputation and burns – that did not appear in cluster 1, 

and a higher co-frequency of spinal injuries. However, statistical relationships with 

covariates were not forthcoming and did not suggest whether these injuries were major 

or minor. Assuming that injuries were generally more serious than those in cluster 

1, the imbalance between physiotherapy and psychology services may suggest that 

seeking more psychology services should be explored as a possible early intervention 

for the members of this cluster. 

The third cluster contained claimants who sought substantial psychological help 

alongside their physiotherapy treatment. These claimants used psychology services 

moderately but persistently. Unlike in the two previous clusters, physiotherapy ser- 

vice utilization decayed more rapidly than psychology service utilization. Cluster 3 

was defined statistically by severe ABI, brain/head injuries and psychiatric injury. 
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These higher acuity patients required a higher level of care to treat their accident- 

related injuries than those in clusters 1 and 2. A number of explanations may exist 

for this pattern of behavior: one is that seeking more substantial psychological treat- 

ment may lead to a quicker physical recovery. On the other hand, this population 

is likely to have suffered from more psychological harmful events than members of 

clusters 1 and 2. 

The fourth and final cluster contained the claimants who used both services in- 

tensely even years after the accident. This cluster was defined primarily by internal 

injuries, which may have included severe events like splenic, vascular or bowel rup- 

ture, renal or liver laceration or cardiothoracic injuries [70]. Cluster 4 appeared to 

describe patients with high-severity injuries and these people required a much higher 

level of care over a longer period of time than those in any of the other clusters. 

The injury co-occurrence graph showed that the most frequently co-occurring injury 

with general injuries (which, by themselves, occured in 95% of cases) are brain in- 

juries. From a cost perspective, the average cost per claimant for psychology and 

physiotherapy services in this cluster is at least four times that of any of the other 

clusters. Since the number of claimants in this cluster was small, it may be possible 

to contact the members individually to acquire  additional  information  about  their 

case and design tailored interventions to facilitate more rapid recovery. 

Next, this paper deployed supervised machine learning methods (XGBM, RF and 

SVM) to investigate claimant profiles associated with each cluster. The supervised 

classifiers, coupled with SMOTE, were able to effectively predict cluster member- 

ship using data available at the time of the accident. Statistical relationships were 

supported by the calculated SHAP values elucidating feature importance within the 

XGBM models. Results demonstrated that demographic, injury and accident covari- 

ates could be used to effectively predict future psychology and physiotherapy service 

utilization patterns after a traffic accident.  These methods can be used to predict 

the long term care needs of patients and facilitate care planning [71, 72]. 

With regard to limitations, the scope of the service analysis was undeniably nar- 

row. The focus on physiotherapy and psychology services provides some indication 

of injury severity and patient trajectory. However, the inclusion of medical services 

in the analysis would be useful to facilitate the interpretation of the identified clus- 

ters and guide clinical practice and policy improvements with greater confidence and 

precision. The analysis of other combinations of clinical services is an opportunity 

for future research projects. Another limitation of this project was that the super- 

vised learning analysis yielded mixed results, and these models are therefore of mixed 

practical utility. 

With regard to future work, we plan to use these methods to investigate addi- 
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tional clinical research questions. Time-series clustering, coupled with supervised 

learning approaches, appear to be useful in generating insights that may beneficially 

guide policy development and clinical care.  It may be clinically useful to investigate 

the prevalence of post-traumatic stress disorder (PTSD) among claimants who have 

suffered a whiplash injury. It is reported that whiplash injury and PTSD following 

motor vehicle accidents are comorbid, and there is evidence that symptoms of PTSD 

are prevalent in whiplash-injured individuals following an accident, with approxi- 

mately 25% meeting the diagnostic criteria for PTSD [73, 74]. There is an ongoing 

debate between researchers regarding prognostic factors; however, psychological fac- 

tors including PTSD have been confirmed as indicators of a poor prognosis[73]. A 

multichannel MHMM analysis may shed light on the service utilization of this group 

of claimants and may improve guidance of their recovery. Furthermore, we plan to 

apply the clustering approach to all health services that a claimant might use. In this 

case, the number of time series for each claimant will be different and the number of 

channels will therefore be different for each claimant, requiring slight adaptations to 

our model.  All in all, our primary goal is to better describe the behaviors of claimants 

to help them to “get back on track”. 
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arXiv preprint arXiv:1911.01914 (2019). 

[60] A. Fernández, S. Garcia, F. Herrera, N. V. Chawla, Smote for learning from im- 

balanced data: progress and challenges, marking the 15-year anniversary, Journal 

of artificial intelligence research 61 (2018) 863–905. 

[61] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, 

in: Advances in neural information processing systems, 2017, pp. 4765–4774. 

[62] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, 

J. Himmelfarb, N. Bansal, S.-I. Lee, From local explanations to global under- 



37  

standing with explainable ai for trees, Nature machine intelligence 2 (1) (2020) 

2522–5839. 
 
 
 
 
 

765 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

770 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

775 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

780 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

785 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

790 

[63] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, 

D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, et al., Explainable machine- 

learning predictions for the prevention of hypoxaemia during surgery, Nature 

biomedical engineering 2 (10) (2018) 749–760. 

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine 

learning in Python, Journal of Machine Learning Research 12 (Oct) (2011) 2825– 

2830. 

[65] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in:  Proceedings 

of the 22nd ACM SIGKDD international conference on knowledge discovery and 

data mining, 2016, pp. 785–794. 

[66] F. Bartolucci, Likelihood inference for a class of latent markov models under 

linear hypotheses on the transition probabilities, Journal of the Royal Statistical 

Society: Series B (Statistical Methodology) 68 (2) (2006) 155–178. 

[67] F. Bartolucci, A. Farcomeni, F. Pennoni, Latent Markov models for longitudinal 

data, CRC Press, 2012. 

[68] L. Catania, R. Di Mari, Hierarchical Markov-switching models for multivariate 

integer-valued time-series, Journal of Econometrics (2020). 

[69] C. Keribin, Consistent estimation of the order of mixture models, Sankhyā:  The 
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Table 6: Mean 5-fold cross-validation performance of the supervised classifiers trained 

to classify membership of each of the four clusters. Mean AUC is based on three sets of 5-
fold cross-validation AUC statistics. AUC, area under the receiver operating characteristic curve. 

 
Mean 5-fold cross validation AUC 

 

Cluster index/classifier XGBM RF SVM 

Cluster 1 0.65 0.62 0.69 

Cluster 2 0.76 0.68 0.79 

Cluster 3 0.95 0.90 0.96 

Cluster 4 0.71 0.65 0.74 
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