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A B S T R A C T

This paper introduces a novel one-stage end-to-end detector specifically designed to detect small
lesions in medical images. Precise localization of small lesions presents challenges due to their
appearance and the diverse contextual backgrounds in which they are found. To address this, our
approach introduces a new type of pixel-based anchor that dynamically moves towards the targeted
lesion for detection. We refer to this new architecture as GravityNet, and the novel anchors as gravity
points since they appear to be “attracted" by the lesions. We conducted experiments on two well-
established medical problems involving small lesions to evaluate the performance of the proposed
approach: microcalcifications detection in digital mammograms and microaneurysms detection in
digital fundus images. Our method demonstrates promising results in effectively detecting small
lesions in these medical imaging tasks.

1. Introduction
Detection of small lesions in medical images has emerged

as a compelling area of research, which holds significant
relevance in medicine, especially in fields like Radiology
and Oncology, when a timely disease diagnosis is essen-
tial [43]. Small lesions are primarily characterized by a
limited size and can vary greatly in nature depending on
their location and the involved tissue. In numerous real-
world scenarios, the identification and classification of small
lesions is a challenging and critical diagnostic process. For
example, retinal microaneurysms are the earliest sign of
diabetic retinopathy and are caused by small local expansion
of capillaries in the retina [14]. In ischemic stroke imaging,
early identification of small occlusion is crucial to initiate
timely treatment [58]. In cancer diagnosis, many forms
of cancer originate as small lesions before they grow and
spread, such as breast calcifications, which are one of the
most important diagnostic markers of breast lesions [46], or
pulmonary nodules, which can be the first stage of a primary
lung cancer [44]. The ability to early and accurately detect
small lesions can make a difference in the treatment and
prognosis of patients and have a substantial impact on patient
health. Manual interpretation of medical images can be time-
consuming and susceptible to human error, especially when
the task involves of localization and identification of small
lesions within the full image space [13].

There is a long tradition of research on automatic lesion
detection methods [55]. Traditional image processing meth-
ods, such as thresholding, edge detection, and morphological
operations, can be effective for detecting small lesions in
images with clear and well-defined structures. However,
these methods are limited by the presence of noise and
variability in medical images. The use of Machine Learning,
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and in particular Deep Learning, helps to enhance reliabil-
ity, performance, and accuracy of diagnosing systems for
specific diseases [54]. Actually, the first lesion detection
system based on Convolutional Neural Networks (CNNs)
was proposed back in 1995 to detect lung nodules in X-
ray images [40]. However, only in the last ten years, CNNs
have acquired great popularity thanks to their remarkable
performance in computer vision [32], rapidly becoming the
preferable solution for automated medical lesion detection
[59, 17, 21, 22]. The reason for this success is due to the
ability of learning hierarchical representations directly from
the images, instead of using handcrafted features based on
domain-specific knowledge. CNNs are able to build features
with increasing relevance, from texture to higher order fea-
tures like local and global shape [33].

A typical CNN architecture for medical image analysis is
applied to subparts of an image containing candidate lesions
or background. This means that the image is divided into
patches of equal size and partially overlapping, and each
patch is processed individually. The output image is formed
by reassembling the individually processed patches [25].
Despite patch-based methods being widely used, they suffer
from several problems, especially in the case of small lesion
detection [7], where accurate detections requires both local
information about the appearance of the lesion and global
contextual information about its location. This combination
is typically not possible in patch-based learning architectures
[37], even with a multi-scale approach where the appearance
of a small lesion can be missed. An alternative is to use
anchoring object detection methods of computer vision [26],
like RetinaNet [36], which can be adapted to be used in
lesion detection problems [42]. These methods face difficul-
ties when the objects to be detected are very small, mainly
for two reasons: (i) lesions have an extremely small size
compared to natural objects; (ii) lesions and non-lesions
have similar appearances, making it difficult to detect them
effectively [6].

We propose a novel one-stage end-to-end detector based
on a new type of anchoring technique customised to small
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Figure 1: Gravity-points distribution: on the left, the feature grid of size 𝐾 ×𝐾; in the middle, the entire image 𝐻 ×𝑊 ; on the
right, the feature map 𝐻𝐹𝑀 ×𝑊𝐹𝑀 .

lesion detection in medical images. Differently from clas-
sical anchor methods, which make use of anchor boxes to
capture scale and aspect ratio of specific classes of objects,
the proposed anchor is pixel-based and moves towards the
lesion to be detected. We named GravityNet this new archi-
tecture and gravity points the new anchors, because they are
distributed over the whole image and seem to be “attracted"
by hypothetical “gravitational masses" located in the centres
of the lesions. Such gravitational anchoring reveals to be
particularly effective when small lesions have to be detected
in the whole image space. To evaluate the performance of the
proposed approach, we focused on two small lesions: micro-
calcifications on digital mammograms and microaneurysms
on digital fundus images. In both cases, the lesions occupy
only few pixels within an image, resulting in limited features
for them to be distinguished from the surrounding tissues.
Thus, their accurate localization becomes a main challenge
due to their appearance and to the heterogeneity of their
contextual backgrounds.

The paper is organized as follows. Section 2 is a brief
overview of object detection techniques in medical images
and consequently of small lesion detection methods. Sec-
tion 3 introduces the proposed method. Section 4 reports
the experimental analysis, followed by results in Section 5.
Finally, Sections 6 and 7 end the paper with discussion and
conclusions.

2. Related work
2.1. Object detection in medical images

Object detectors can be divided into two categories: (i)
two-stage detector, the most representative is Faster R-CNN
[15], (ii) one-stage detector, such as YOLO [49], and SSD
[39]. Two-stage detectors are characterized by high localiza-
tion and object recognition accuracy, whereas the one-stage
detectors achieve high inference speed [23, 67]. In a two-
stage approach, the first stage is responsible of generating
candidates that should contain objects, filtering out most of
the negative proposals, whereas the second stage performs
the classification into foreground/background classes and re-
gression activities of the proposals from the previous stage.

Recently, the most popular object detection methods
in computer vision have been applied to medical imaging
[68, 6, 21]. In [12], Faster R-CNN [15] is applied with the
VGG-16 [38] network as backbone for pulmonary nodule
detection. The YOLO architecture has been modified for
lymphocyte detection in immunochemistry [60, 50] and for
pneumothorax detection on chest radiographs [47]. In [48],
a deep learning algorithm based on the YOLOv5 detection
model is proposed for automated detection of intracranial
artery stenosis and occlusion in magnetic resonance angiog-
raphy. Other studies [29, 53, 42] exploited architectures such
as RetinaNet and Mask R-CNN for lung nodules and breast
masses localization. In [8], Mask R-CNN [19] is used by first
assigning bounding boxes for each tumor volume to perform
detection and classification of normal and abnormal breast
tissue.

2.2. Small lesion detection
Although existing object detection models have been

very successful with natural images [23, 67], in medical
images the high resolution makes the problem particularly
challenging to discover small lesions, requiring complex
architectures and the use of more than one stage for multi-
resolution detection. In [56], three CNN architectures, each
at different scale, are applied to lung nodule detection,
whereas in [27] a multi-stream CNN is designed to classify
skin lesions, where each individual stream worked on a
different image resolution. In [64], a context-sensitive deep
neural network is developed to take into account both the
local image features of a microcalcification and its surround-
ing tissue background. In [52], a multi-context architecture is
proposed, based on the combination of different CNNs with
variable depth and individually trained on image patches
of different size. In [3], the problem of class imbalance
between lesions and background is addressed by proposing
a two-stage deep learning approach where the first stage is a
cascade [2] of one-level decision trees, and the second is a
CNN, trained to focus on the most informative background
configurations identified by the first stage.

Recently, in [63] a hierarchical deep learning framework
consisting of three models each with a specific task is pro-
posed for bone marrow nucleated differential count. Some
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Figure 2: GravityNet architecture is composed of a backbone (blue) and two subnetworks, attached to the backbone output, one
for classification task (orange) and one for regression task (green). The output is a representation of the gravity points in the
grid pattern at training time and the subsequent attraction behavior towards the lesion at inference time. Gravity points in light
blue correspond to positive candidates trained to collapse toward the ground truth in light green

studies [10, 18] combined image processing techniques and
deep learning algorithms to evaluate lung tumor and liver
tumor detection respectively. In [66], the visibility of mi-
crocalcifications in mammographic images is increased by
difference filtering using the YOLOv4 model. A three-stage
multi-scale framework for the microaneurysms detection is
designed in [57], whereas multi-scale approach based on
YOLOv5 is proposed for the detection of stroke lesions [5].

3. GravityNet
This section explains the proposed network architecture

and the concept of gravity points, a new anchoring technique
designed for small lesion detection.

The code is available at this link.

3.1. Gravity points
We define a gravity point as a pixel-based anchor, which

inspects its surroundings to detect lesions. The gravity-
points distribution is generated with a grid of points spaced
by a user-defined step parameter. A base configuration is
generated in a squared reference window, named feature
grid, of size 𝐾 × 𝐾 where 𝐾 is equal to the upper integer
of the ratio between the dimensions of the image and the
feature map:

𝐾 ×𝐾 =

⌈

𝐻
𝐻𝐹𝑀

⌉

×

⌈

𝑊
𝑊𝐹𝑀

⌉

(1)

Assuming that the first gravity point is located in the upper
left corner of the feature map, the number of gravity points
in a feature grid is equal to:

𝑁𝐹𝐺
𝐺𝑃 =

( ⌊

𝐾 − 2
𝑠𝑡𝑒𝑝

⌋

+ 1

)2

(2)

where 0 < 𝑠𝑡𝑒𝑝 ≤ 𝐾−2. In cases where 𝐾−2 is multiple of
step the distribution will be equispaced in the feature grid.

Since each pixel in the feature map corresponds to a
feature grid in the image, the complete configuration is
obtained by sliding the base configuration over the whole
image. The total number of gravity points 𝑁𝐺𝑃 in the image
is equal to the base configuration times the number of feature
grids:

𝑁𝐺𝑃 = 𝑁𝐹𝐺
𝐺𝑃 ⋅𝐻𝐹𝑀 ⋅𝑊𝐹𝑀 (3)

Fig. 1 shows an example of gravity-points distribution.

3.2. Architecture
GravityNet is a one-stage end-to-end detector composed

of a backbone network and two specific subnetworks. The
backbone is a convolutional network and plays the role of
feature extractor. The first subnet performs convolutional
object classification on the backbone output, whereas the
second subnet performs convolutional gravity-points regres-
sion. Fig. 2 shows the overall architecture.

The backbone is the underlying network architecture of
a detection model and provides a feature map containing
basic features and representations of input data, which are
then processed to perform a specific task. The bottom layers
of a backbone net usually extract simple features such as
edges and corners, while the top layers learn more complex
features like parts of lesions. The feature maps generated by
these layers are used as a representation of the input image
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Figure 3: Hooking process where gravity points (light blue) are
hooked to a lesion (light green)

and fed into two models for classification and regression
tasks.

The classification subnet is a fully convolutional net-
work that outputs the probability of lesion presence at each
gravity-point location. The subnetwork applies four 3 × 3
convolutional layers, each with 256 filters, where the first
one maps the number of features output from the backbone,
followed by ReLU activations. The last layer applies a filter
with 𝑁𝐴𝑃 ⋅ 2 outputs and sigmoid activation to obtain the
binary predictions for each gravity point.

The regression subnetwork is connected to the output of
the backbone with the purpose of regressing the offset from
each gravity point to the closest lesion. The design of the
regression subnet is the same of the classification subnet.
The last layer outputs 𝑁𝐴𝑃 ⋅2 values, indicating the offsets to
move each gravity point towards a lesion. It is worth noting
that the classification and regression subnets, though sharing
a common structure, use separate parameters.

3.3. Gravity loss
Gravity Loss (GL) is a multi-task loss that contains two

terms: one for regression (denoted as 𝐺𝐿𝑟𝑒𝑔) and the other
for classification (denoted as 𝐺𝐿𝑐𝑙𝑠).

The multi-task loss can be written as:

𝐺𝐿 = 𝐺𝐿𝑐𝑙𝑠 + 𝜆𝐺𝐿𝑟𝑒𝑔 (4)

where 𝜆 is an hyperparameter that controls the balance
between the two task losses.

3.3.1. Classification loss
Since significant class imbalance between lesion and

background is usually present in medical images [3], the
classification loss is a variant of Focal Loss [36]. This loss
is designed to address the issue of class imbalance in object
detection tasks, where the majority of the examples belong
to the negative class (e.g., background) and only a few
examples belong to the positive class (e.g., lesion).

The classification loss is defined as:

𝐺𝐿𝑐𝑙𝑠 = −𝛼𝑡 ⋅ (1 − 𝑝𝑡)𝜑 ⋅ log(𝑝𝑡) (5)

where 𝑝𝑡 is the predicted probability of the true class (lesion),
𝜑 is a focusing parameter that controls the rate at which the

NMS

Figure 4: An example of NMS: on the left, gravity points and
corresponding boxes (light blue) hooked to a lesion (green);
on the right, the final candidate corresponding to the gravity
point with the highest score (blue)

modulating factor 𝛼𝑡 decreases as the predicted probability
𝑝𝑡 increases.

To evaluate 𝑝𝑡 with gravity points, we introduce a cri-
terion based on the Euclidean distance between the gravity
points and the ground-truth lesions1. We consider as belong-
ing to the positive class those gravity points with a distance
from the closest ground-truth lesion lower than a threshold
distance that we named hooking distance 𝑑ℎ. All the gravity
points within that distance are hooked to the lesion and
trained to move towards it. Fig. 3 shows an example of
gravity-points hooking process.

3.3.2. Regression loss
Let us indicate as (𝑑𝑥, 𝑑𝑦) the distance between a gravity

point and the relative hooked lesion, and as (𝑜𝑥, 𝑜𝑦) the
output of the regression subnetwork, which represents the
offset to move each gravity point towards the hooked lesion.

We evaluate the regression loss as:

𝐺𝐿𝑟𝑒𝑔 =
∑

∀ ℎ𝑜𝑜𝑘𝑒𝑑 𝐺𝑃

∑

𝑖∈{𝑥,𝑦}
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑑𝑖 − 𝑜𝑖) (6)

where 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡) is the Smooth L1 loss [15], defined as:

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡) =

{

0.5𝑡2, if |𝑡| < 1
|𝑡| − 0.5, otherwise

(7)

3.4. Inference time
The model produces two output predictions for each

gravity point for each subnetwork. Non-Maxima-Suppression
(NMS) is applied to reduce the number of false candidates
(see Fig. 4): (i) an 𝐿×𝐿 box is built for each hooked gravity
points, where 𝐿 is chosen equal to the average size of the
lesions to be detected; (ii) all boxes with an Intersection over
Union (IoU) greater than 0.5 are merged; and (iii) for each
merger, the gravity point with the highest score is considered
as final candidate. After NMS, we determine the lesion class
with a threshold 𝛾 on the classification score: all predictions
with scores above 𝛾 belong to the positive class (lesion), the
remaining ones to the negative class (no lesion).

1Without loss of generality, we consider as ground truth the center of
the smallest bounding box containing the lesion.
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4. Experiments
We proved the effectiveness of GravityNet on two de-

tection problems in medical image analysis: (i) microcalci-
fications on full field digital mammograms and (ii) microa-
neurysms on digital ocular fundus images.

Microcalcifications (MCs) are calcium deposits and are
considered as robust markers of breast cancer [41]. MCs ap-
pear as fine, white specks, similar to grains of salt, with size
between 0.1 𝑚𝑚 and 1 𝑚𝑚. Due their small dimensions and
the inhomogeneity of the surrounding breast tissue, identify-
ing MCs is a very challenging task. Moreover, mammograms
contain a variety of linear structures (such as vessels, ducts,
etc.) that are very similar to MCs in size and shape, making
detection even more complex.

Microaneurysms (MAs) are the earliest visible manifes-
tation of Diabetic Retinopathy, one of the leading causes
of vision loss globally [34]. MAs are described as isolated
small red dots of 10-100 𝜇𝑚 of diameter sparse in retinal
fundus images, but sometimes they appear in combination
with vessels. Retinal vessels, together with dot-hemorrhages
and other objects like the small and round spots resulting
from the crossing of thin blood vessels, make MAs hard to
distinguish.

4.1. Dataset
4.1.1. Microcalcifications dataset

We used the publicly available INBreast database [45],
acquired at the Breast Centre in Centro Hospitalar de S.
João (CHSJ) in Porto, Portugal. The acquisition equipment
was the MammoNovation Siemens FFDM, with a solid-
state detector of amorphous selenium, pixel size of 70 𝜇𝑚
(microns) and 14-bit contrast resolution. The image matrix
was 4, 084 × 3, 328 (243 images) or 3, 328 × 2, 560 (167
images), depending on the compression plate used in the
acquisition and according to the breast size of the patient.

The database has a total of 410 images, amounting to
115 cases, from which 90 cases are from women with both
breasts, and 25 are from mastectomy patients. Calcifications
can be found in 313 images for a total of 7, 142 individual
calcifications. In this work, only calcifications with a radius
of less than 7 pixels were considered for testing, for a total
of 5, 657 microcalcifications identified in 296 images.

Mammograms have been cropped to the size 3, 328 ×
2, 560 to have all images in the dataset with equal size. We
ensured that no MC was missed after cropping.

4.1.2. Microaneurysms dataset
We used the publicly available E-ophtha database [11],

designed for scientific research in Diabetic Retinopathy. The
acquired images have dimensions ranging from 960×1, 440
to 1, 696× 2, 544 with a 45◦ field of view (FOV) and a pixel
size of 7-15 𝜇𝑚. The database has a total of 381 images:
148 images from unhealthy patients containing 1, 306 mi-
croaneurysms, and 233 images from healthy patients.

The original retinal fundus images are RGB, but in
this work, green channel has been extracted due to its rich
information and high contrast in comparison with the other

Table 1
Data overview

INbreast Images Unhealthy MCs

1-fold 2-fold 1-fold 2-fold 1-fold 2-fold

Train 143 143 108 117 2,408 2,051

Validation 62 62 39 45 516 724

Test 205 205 154 142 2,756 2,901

E-ophtha-MA Images Unhealthy MAs

1-fold 2-fold 1-fold 2-fold 1-fold 2-fold

Train 154 151 60 60 542 552

Validation 38 38 14 14 105 107

Test 189 192 74 74 659 647

two color channels [62]. We also evaluated the average
dimensions of all the retinas in the dataset and resized all
the images to an average dimensions of 1, 216 × 1, 408.

4.2. Data preparation
For all experiments we applied 2-fold image-based

cross-validation. The dataset is divided into two equal-sized
folds, where one fold is used as training set and the other as
test set and vice versa. A subset of the training set fold is
used as validation set for parameter optimisation. See Tab. 1
for more details.

In both datasets, data augmentation techniques are used
to address class imbalance and enhance the model robustness
and accuracy [31]. Three more samples for each image are
generated by using horizontal and vertical flipping. All data
are normalized with min-max transformation.

4.3. Architecture parameters
GravityNet uses ResNet [20] as its backbone, in order

to solve the well-known vanishing/exploding gradient prob-
lems [1] by using residual connections. ResNet is composed
of 5 max-pooling layers, each halving the dimensions of
the feature map. According to the input dimensions, the
feature map size is 104 × 80 for mammograms and 38 × 44
for retina fundus images. As a consequence, according to
Eq. 1, we obtain 𝐾 = 32 and a feature grid of 32 × 32.
We generate gravity-points configurations with step multiple
of 𝐾 − 2 to ensure equi-spatiality. To take into account
the computational cost, we chose to use configurations that
did not exceed 300, 000 gravity points. Fig. 5 shows some
examples of the initial configurations used in this work. To
ensure that at least one gravity point hooks a lesion, the
hooking distance 𝑑ℎ was always chosen equal to the step.
At inference time, we use NMS with 𝐿 = 7 for MCs and
𝐿 = 3 for MAs, which correspond to the average size of the
lesions to be detected.

We train ResNet in transfer learning by using a model
pretrained on natural images [65]. Both subnetworks are
initialised with Xavier technique [16]. During training we
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Figure 5: Examples of initial gravity-points configurations represented in a reference window 𝐾 ×𝐾, where: (a) step = 5 (b) step
= 6 (c) step = 10 (d) step = 15 (e) step = 30

apply Adam optimization algorithm [30]. The learning rate
was set to an initial value of 10−4 and decreased with a factor
of 0.1 with patience equal to 3. The balance between the two
task losses (see Eq. 4) is handled by 𝜆 equal to 10. The batch
size is by default equal to 8. All training parameters were
optimized on the validation set. The training was stopped
after 50 epochs. Experiments were conducted on a GPU
NVIDIA A100 80GB.

4.4. FROC analysis
The detection quality was evaluated in terms of lesion-

based Free-Response Operating Characteristic (FROC) curve
by plotting True Positive Rate (TPR) against the average
number of False Positives per Image (FPpI) for a series of
thresholds 𝛾 on the classification score associated to each
sample.

A prediction with a value higher than 𝜃 is considered as
True Positive (TP) when its distance from the center of a
lesion is no larger than the largest side of the bounding box
containing the ground-truth lesion. Otherwise, it is consid-
ered as False Positive. Notably, (i) if multiple predictions are
associated to the same lesion, only the one with the highest
classification score is selected as TP, and (ii) all predictions
for gravity points outside the tissue were ignored.

To analyze and compare FROC curves, we chose the
non-parametric approach suggested in [4]. The figure-of-
merit is the Partial Area under the FROC curve (𝐴𝑈𝐹𝐶𝛾 ) to
the left of 𝐹𝑃𝑝𝐼 = 𝛾 calculated by trapezoidal integration.
We normalized 𝐴𝑈𝐹𝐶𝛾 by dividing with 𝛾 to obtain an
index in the range [0, 1]. In particular, for both MCs and
MAs detection, we selected 𝛾 = 10, a commonly used value
in the literature of the respective fields [9, 52]. All results are
presented in percentage values.

5. Results
5.1. Model analysis

To verify the effectiveness of the model, for both small
lesion detection problems, experiments were conducted us-
ing different gravity-points configurations for all different
depths of ResNet2. Results are reported in Tab. 2 for MCs,

2It is worth noting that, due to memory constraints, for MCs detection,
we use in training a batch size equal to 4 for ResNet-50 and 2 for ResNet-101
and ResNet-152

and in Tab. 3 for MAs together with the parameters of
the gravity-points configurations. The best result for each
backbone is shown in bold, whereas the best of all in italic.
FROC curves of the best ResNet configurations are shown
in Fig. 6.

For MCs, the best result is a 𝐴𝑈𝐹𝐶𝛾 equal to 72.25%
by using ResNet-34 and step 10. Configuration with step
10 turns to be the best for all backbones, except ResNet-
50, which achieves a 𝐴𝑈𝐹𝐶𝛾 equal to 71.25% with step 6.
Dense configurations present better results with shallower
backbones, e.g. with a ResNet-18 we obtain a 𝐴𝑈𝐹𝐶𝛾 equal
to 70.89% and 71.47% respectively with step 6 and 10 as
opposed to 65.58% and 55.90% respectively with step 15 and
30.

For MAs, the highest 𝐴𝑈𝐹𝐶𝛾 (71.53%) is obtained with
a ResNet-50 and step 6. Configuration with step 6 turns
to be the best for all backbones, except ResNet-18, which
achieves a 𝐴𝑈𝐹𝐶𝛾 equal to 65.36% with step 10. Sparse
configurations decrease the performance, even with deeper
backbones, e.g. with a ResNet-152 we obtain a 𝐴𝑈𝐹𝐶𝛾 of
67.51% and 54.18% respectively with step 15 and 30 as
opposed to 65.81% and 69.86% respectively with step 5 and
6.

Through result analysis, it becomes evident that we need
to find the appropriate density configuration for addressing
the detection problem at hand. A sparse configuration might
fail to identify all lesions, particularly in the case of small
ones, whereas a dense configuration could potentially gen-
erate a high number of lesion candidates.

5.2. Comparison with the literature
We compare our best models, that are ResNet-34 with

step 10 for MCs detection and ResNet-50 with step 6 for MAs
detection, with methods proposed in the scientific literature
for the detection problems at hand:

- Context-Sensitive CNN (CSNet) [64]: the architecture
comprises two convolutional subnetworks: one for
processing the large image context with a window of
size 96×96 pixels and another for processing the small
microcalcification texture with a window of size 9×9
pixels. The features extracted from both subnetworks
are subsequently merged and fed into a fully connected
network.
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Table 2
Results for MCs detection in terms of % of 𝐴𝑈𝐹𝐶𝛾

Backbone Configuration

𝑠𝑡𝑒𝑝 = 6 𝑑ℎ = 6 𝑠𝑡𝑒𝑝 = 10 𝑑ℎ = 10 𝑠𝑡𝑒𝑝 = 15 𝑑ℎ = 15 𝑠𝑡𝑒𝑝 = 30 𝑑ℎ = 30
𝑁𝐺𝑃=299,520 𝑁𝐺𝑃=133,120 𝑁𝐺𝑃=74,880 𝑁𝐺𝑃=33,280

ResNet-18 70.89 71.47 65.58 55.90

ResNet-34 65.08 72.25 67.44 56.17

ResNet-50 71.25 67.73 69.31 57.12

ResNet-101 58.85 64.90 41.69 53.05

ResNet-152 60.60 64.86 62.98 53.86

Table 3
Results for MAs detection in terms of % of 𝐴𝑈𝐹𝐶𝛾

Backbone Configuration

𝑠𝑡𝑒𝑝 = 5 𝑑ℎ = 5 𝑠𝑡𝑒𝑝 = 6 𝑑ℎ = 6 𝑠𝑡𝑒𝑝 = 10 𝑑ℎ = 10 𝑠𝑡𝑒𝑝 = 15 𝑑ℎ = 15 𝑠𝑡𝑒𝑝 = 30 𝑑ℎ = 30
𝑁𝐺𝑃=81,928 𝑁𝐺𝑃=60,192 𝑁𝐺𝑃=26,752 𝑁𝐺𝑃=15,048 𝑁𝐺𝑃=6,688

ResNet-18 60.95 61.42 65.36 63.17 53.88

ResNet-34 65.01 68.57 68.38 64.80 58.76

ResNet-50 68.89 71.53 64.57 68.25 54.33

ResNet-101 66.07 69.77 69.13 65.59 54.97

ResNet-152 65.81 69.86 66.84 67.51 54.18
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Figure 6: FROC results with the best gravity-points configurations for each ResNet backbone on INbreast (a) and E-ophtha-MA
(b)
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- Deep Cascade (DC) [2]: a cascade of decision stumps
able to learn effectively from heavily class-unbalanced
datasets. It builds on Haar features computed in a
small detection window of 12 × 12 pixels, which can
contain diagnostically relevant lesions, while limiting
the exponential growth of the number of features that
are extracted during training.

- MCNet with DC hard mining (DC-MCNet) [3]: a two-
stage patch-based deep learning framework, which
comprises a DC for hard mining the background sam-
ples, followed by a second stage represented by a
CNN that discriminates between lesions and the more
challenging background configurations.

- Multicontext Ensemble of MCNets (ME-MCNet) [52]:
a multi-context ensemble of CNNs aiming to learn
different levels of image spatial context by training
multiple-depth networks on image patches of different
dimensions (12 × 12, 24 × 24, 48 × 48, and 96 × 96).

To evaluate the behavior of the proposed anchoring tech-
nique, we also compared with RetinaNet [36], a well-known
one-stage object detector based on anchoring technique. We
slightly modified the original anchors configuration by using
an anchor box size ranging from 82 to 1282 in order to be
more suitable for small lesion detection. We applied it to the
whole image without any kind of rescale or patching.

We applied a statistical comparison by means of boot-
strap method [51] to test the significance of observed per-
formances. Cases were sampled with replacement 1, 000
times, with each bootstrap containing the same number of
cases as the original set. At each bootstrapping iteration,
FROC curves were recalculated, and differences in figures-
of-merit Δ𝐴𝑈𝐹𝐶𝛾 between GravityNet and each of the
compared methods were evaluated. Finally, the obtained
FROC curves were averaged along the TPR axis, and 𝑝-
values were computed as the fraction ofΔ𝐴𝑈𝐹𝛾 populations
that were negative or zero. The statistical significance level
was chosen as 𝛼 = 0.05. Average FROC curve are shown in
Fig. 7.

The statistical comparison results for MCs and MAs
detection are shown in Tab. 4 where significant perfor-
mances are indicated in bold. Results of the proposed ar-
chitecture were statistically significantly better than all the
other considered approaches. The highest improvement in
terms of 𝐴𝑈𝐹𝐶𝛾 is of +50.04% with RetinaNet for MAs
and of +42.25% with CSNet for MCs. Compared to patch-
based methods such as DC, DC-MCNet and ME-MCNet the
improvement is respectively +41.00%, +19.52%, +11.90%
for MCs and +15.72%, +10.15%, +5.90% for MAs.

6. Discussion
6.1. Gravity points configuration

The gravity points configuration depends directly on the
size of the input image and is managed by the step parameter.
This implies a higher number of gravity points for images
with larger dimensions. In the cases studied, mammograms

have a larger size than retina images and consequently have a
higher 𝑁𝐺𝑃 , so requiring much more computational efforts.

Depending on the chosen configuration, gravity-points
will behave differently. We chose to train all the configu-
rations with a 𝑑ℎ equal to the step to measure the capacity
of gravity-points to move towards ground-truth lesions. A
small 𝑑ℎ will have less impact on the movement of gravity-
points, compared to a large 𝑑ℎ that let them move more
widely, always within the specified distance value. For MCs
detection, the best configurations are those with step 10 and
thus 𝑑ℎ 10 because these values are more representative of
the size and distribution of MCs in mammographies. On the
other hand, for MAs detection, where lesions are usually
isolated, configurations with a higher density, such as step
5 and step 6, are needed. Fig. 8 shows two detection outputs
of the best GravityNet models for MCs with step 10 and
ResNet-34 and for MAs with step 6 and ResNet-50. We can
see the gravitational behaviour towards the centres of the
lesions in Fig. 8b for MCs and Fig. 8d for MAs. Hooked
gravity-points that are, at inference time, within the radius
of the lesion to be detected are shown in light blue and
are defined as predictions of possible TP. The NMS, whose
output can be seen in the right panel of the same figures,
merges all hooked gravity-points in a single detection so as
to obtain a single prediction (in blue) for each small lesion
(in green).

6.2. Comparison with anchoring methods
We compared the proposed one-stage detector with a

widespread exponent of one-stage object detection methods,
i.e. RetinaNet, which has also been usefully applied to med-
ical detection problems [24, 42]. Small lesions such as MCs
and MAs are often less than 10 pixels in diameter and, in
this case, anchoring methods face two main obstacles: (i)
the number and size of anchor boxes, and (ii) the pyramidal
approach for multi-scale resolution.

Regarding the first issue, we tried to train RetinaNet
with the original range of anchor boxes size (from 322
to 5122 according to the Feature Pyramid Network (FPN)
level), but due to the small size of the lesions, the train
failed; thus, we reduced the size in the range 82 to 1282.
The proposed anchoring technique is based on pixel-shaped
gravity points, which only require an initial configuration
setting without specifying a box size. This is advantageous,
especially in the case of small lesions with variable sizes,
as demonstrated in the MA results. In addition, considering
all FPN resolution levels, RetinaNet generates a number of
anchor boxes more than 10 times the number of gravity
points. This is a considerable advantage in computational
and temporal terms (see Section 6.4).

As to the second issue, RetinaNet adopts a multi-scale
architecture. However, this approach proves to be ineffective
because positive anchors (those containing a lesion) only
belong to the first level of FPN, which corresponds to the
highest resolution level. In GravityNet, we decided to not
use a multi-scale approach given the shape of the lesions
to be detected. For the sake of comparison, we tried to use
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Table 4
Results comparison in terms % of 𝐴𝑈𝐹𝐶𝛾

Method 𝐴𝑈𝐹𝐶𝛾 Compared to Δ𝐴𝑈𝐹𝐶𝛾 p-Value

MCs detection

RetinaNet 66.47

CSNet 30.00

DC 31.25

DC-MCNet 52.73

ME-MCNet 60.35

GravityNet 72.25 RetinaNet +5.78 = 0.037

CSNet +42.25 < 0.001

DC +41 < 0.001

DC-MCNet +19.52 < 0.001

ME-MCNet +11.9 < 0.001

MAs detection

RetinaNet 21.48

CSNet 40.03

DC 55.80

DC-MCNet 61.38

ME-MCNet 65.63

GravityNet 71.53 RetinaNet +50.04 < 0.001

CSNet +31.49 < 0.001

DC +15.72 < 0.001

DC-MCNet +10.15 < 0.001

ME-MCNet +5.9 < 0.001

(a) (b)

Figure 7: Average FROC curves for INbreast (a) and E-ophtha-MA (b) obtained from 1, 000 bootstrap iterations. Confidence
bands (semi-transparent) indicate 95% confidence intervals along the TPR axis.
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(a) (b)

(c) (d)

Figure 8: Examples of MCs and MAs detections. (a) and (c): ground-truth annotations; (b) and (d): GravityNet outputs
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RetinaNet without FPN, considering only the outputs of the
first level, but this did not improve the performance.

6.3. Comparison with patch-based methods
Patch-based methods have the computational disadvan-

tage of assembling all the individual results to obtain the
final one, as opposed to end-to-end systems like GravityNet
that obtain the final result directly.

The class imbalance between lesions and background is
another issue that affects small lesion detection. We com-
pared our approach with two existing methods, DC and
DC-MCNet, which are designed to manage this problem.
DC discards the majority of easily detectable background
samples early in the process, while DC-MCNet utilizes a
CNN on the output of DC to enhance detection performance.
In this work, we propose the Gravity Loss, a variant of Focal
Loss typically applied in deep learning methods to address
class imbalance issues.

Since small lesions do not have a clear appearance
and are similar to the surrounding background, CSNet
and ME-MCNet propose two context-sensitive patch-based
approaches, where the model is trained with patches of
different sizes and then combined. In contrast, our proposal
works with the full image without patches and is able to
identify small lesions thanks to the new anchoring technique
and the regression subnet, which focus more on the distance
to the lesion rather than its appearance.

6.4. Computational and inference time
Computational and inference time are an important as-

pect in medical imaging systems, improving interactivity
and the time taken to formulate a diagnosis. We evaluated
the computational time for all the compared methods by
measuring the average Time per Epoch (TpE) in training, and
the Time per Image (TpI) and the Throughput3 in test. Tab. 5
shows the results. We can see how patch-based methods
are computationally time-consuming, whereas our proposal
has a very high Throughput and an average TpI below one
second.

6.5. Limitations
Although our method achieves excellent results in the

detection of small lesions, there are some limitations to be
considered:

- Clinical applicability: we require a dataset with indi-
vidually annotated lesions for the training phase, and
this can be difficult to meet in a real clinical scenario.
In addition, further post-processing (e.g. benign vs.
malignant lesion classification) is needed to build a
full CAD system.

- Configuration limit: by employing an equispaced grid
configuration, the distribution of gravity points be-
comes uniform, even in areas of the image where there
is no tissue. In training this might not be advantageous.

3Throughput is defined as the maximum number of input instances that
the method can process in one second

Table 5
Computational times compared in terms of Time per Epoch
(TpE) in training, and Time per Image (TpI) and Throughput
in test

Method TpE (s) TpI (s) Throughput

MCs detection

RetinaNet 1254 0.121 14.70

CSNet 6959 822 1.2 × 10−3

DC n.a. 1.1 0.9

DC-MCNet 32 1.2 0.8

ME-MCNet 5360 386 3.8 × 10−3

GravityNet 607 0.061 19.25

MAs detection

RetinaNet 137 0.057 34.04

CSNet 1260 266 3.8 × 10−3

DC n.a. 1.3 0.7

DC-MCNet 6 1.4 0.7

ME-MCNet 1564 203 4.9 × 10−3

GravityNet 184 0.045 37.49

Different approaches to generate the initial configura-
tion can be investigated.

- Computational requirements: the number of gravity
points directly increases with the size of the image.
In case of large images, GravityNet can require con-
siderable computational resources. A solution can be
to limit the number of gravity points by using sparse
initial configuration, but this can affect the detection
performance of the method.

- Memory constraints: the use of a backbone in the
proposed model necessitates remarkable resource re-
quirements. As the backbone architecture becomes
more complex and deeper, it requires a larger memory
allocation, which can be a significant limitation for
training the model.

7. Conclusions and future work
In this work, we introduced GravityNet, a new one-

stage end-to-end detector specifically designed to detect
small lesions in medical images. The accurate localization of
small lesions, given their appearance and diverse contextual
backgrounds, is a challenge in several medical applications.
To address this point, our approach employed a novel pixel-
based anchor that dynamically moves towards the targeted
lesion during detection. Through a comparative evaluation
with state-of-the-art anchoring and patch-based methods,
our proposed approach demonstrated promising results in
effectively detecting small lesions.

Our primary future direction will involve testing Gravi-
tyNet in various detection problems, particularly those where
the target object is point-like, such as nuclei localization in
whole-slide images [22]. We will also explore the possibility
of extending the proposed architecture to address other tasks
or image dimensionality involving small lesions, such as
segmentation [35] or three-dimensional images [28, 61].
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