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Summary
Objective: Periventricular leukomalacia (PVL) is part of a spectrum of cerebral white matter injury
which is associated with adverse neurodevelopmental outcome in preterm infants. While PVL is
common in neonates with cardiac disease, both before and after surgery, it is less common in older
infants with cardiac disease. Pre-, intra-, and postoperative risk factors for the occurrence of PVL
are poorly understood. The main objective of the present work is to identify potential hemodynamic
risk factors for PVL occurrence in neonates with complex heart disease using logistic regression
analysis and decision tree algorithms.

Methods: The postoperative hemodynamic and arterial blood gas data (monitoring variables)
collected in the cardiac intensive care unit of Children's Hospital of Philadelphia were used for
predicting the occurrence of PVL. Three categories of datasets for 103 infants and neonates were
used-—(1) original data without any preprocessing, (2) partial data keeping the admission, the
maximum and the minimum values of the monitoring variables, and (3) extracted dataset of statistical
features. The datasets were used as inputs for forward stepwise logistic regression to select the most
significant variables as predictors. The selected features were then used as inputs to the decision tree
induction algorithm for generating easily interpretable rules for prediction of PVL.

Results: Three sets of data were analyzed in SPSS for identifying statistically significant predictors
(p < 0.05) of PVL through stepwise logistic regression and their correlations. The classification
success of the Case 3 dataset of extracted statistical features was best with sensitivity (SN), specificity
(SP) and accuracy (AC) of 87, 88 and 87%, respectively. The identified features, when used with
decision tree algorithms, gave SN, SP and AC of 90, 97 and 94% in training and 73, 58 and 65% in
test. The identified variables in Case 3 dataset mainly included blood pressure, both systolic and
diastolic, partial pressures pO2 and pCO2, and their statistical features like average, variance,
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skewness (a measure of asymmetry) and kurtosis (a measure of abrupt changes). Rules for prediction
of PVL were generated automatically through the decision tree algorithms.

Conclusions: The proposed approach combines the advantages of statistical approach (regression
analysis) and data mining techniques (decision tree) for generation of easily interpretable rules for
PVL prediction. The present work extends an earlier research [Galli KK, Zimmerman RA, Jarvik
GP, Wernovsky G, Kuijpers M, Clancy RR, et al. Periventricular leukomalacia is common after
cardiac surgery. J Thorac Cardiovasc Surg 2004;127:692–704] in the form of expanding the feature
set, identifying additional prognostic factors (namely pCO2) emphasizing the temporal variations in
addition to upper or lower values, and generating decision rules. The Case 3 dataset was further
investigated in Part II for feature selection through computational intelligence.

Keywords
Congenital heart disease; Data mining; Decision tree algorithms; Logistic regression; Prognostics;
Periventricular leukomalacia

1. Introduction
Congenital heart disease (CHD) is the most common birth defect requiring intervention in the
human, affecting approximately 8:1000 live births. Prior to the early 1970s, most forms of
complex CHD were fatal, or resulted in severe limitations in quality of life and a reduced
lifespan. However, in the current era, most centers treating even the most complex forms of
CHD can offer their patients and families a very high likelihood of survival. As mortality has
declined, there has been a growing recognition of a disturbingly high incidence of
developmental delays and behavior issues in the survivors. Recent research has shown a high
incidence of periventricular leukomalacia (PVL) both before and after surgery in these patients
[1-13]. PVL is part of a spectrum of cerebral white matter injury, and is thought to be caused
by a combination of abnormal cardiovascular hemodynamics and oxygen delivery to the brain.
In preterm newborns, PVL remains the most common cause of brain injury and the leading
cause of chronic neurologic morbidity, including cerebral palsy, mental retardation, learning
disabilities, attention deficit hyperactivity, problems with visual motor integration, and other
features [14-18]. PVL has been recognized by investigators at the Children's Hospital of
Philadelphia (CHOP) and others to be a common preoperative and postoperative finding in
infants undergoing surgery for complex CHD [4].

While there are many risk factors for brain injury in children with CHD that are unmodifiable
(e.g., prematurity, genetic syndromes, socioeconomic status and others), clinical research has
focused on potentially modifiable risk factors, particularly those in the operating room such as
the conduct and duration of cardiopulmonary bypass. Identifiable risk factors explain less than
30% of variability in outcomes [19]. While much research has been performed in the operating
room (where the potential for brain injury can be measured in hours), little is known about the
potential for additional injury that may occur in the intensive care unit following surgery
(measured in days to weeks). In particular, the immediate postoperative period is a time when
the newborn and infant brain is particularly susceptible to low-blood pressure and oxygen
levels.

Logistic regression (LR) analysis is one of the popular multivariable statistical tools used in
biomedical informatics [20-24]. LR is widely used in medical literature for relating the
dichotomous outcomes (diseased/healthy) with the predictor variables that include different
physiological data. In LR models, the predicted odds ratio (OR) of positive outcome (e.g.,
diseased = 1) is expressed as sum of products, each product formed by multiplying the value
of independent variable (covariate) and its coefficient. The probability of positive outcome is
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obtained from the OR through a simple transformation [20,21]. The independent variables
(covariates) and their coefficients are computed from the data used for model development.
LR has found widespread applications in health sciences due to its ability to predict the outcome
in terms of the selected ‘predictor’ variables that are statistically significant. The nomographic
representation of LR models [25] that can be used manually without computers is also being
developed as an alternative. Applications of LR analysis in the medical domain are numerous
[26-30]. There are also attempts to use LR along with data mining techniques such as decision
tree [31-34].LR analysis, being based on a statistical approach, has the advantage of greater
acceptability but lacks easy interpretation to be useful in practice. In contrast to this, a decision
tree (DT), if properly trained, has the advantage of generating rules which are easy to interpret.
In addition, DT algorithms, being based on the principle of maximizing information-gain, are
expected to result in more robust prediction models than LR in case of ‘noisy’ or missing data
[31,32]. In the present work, we combine the advantages of LR and DT algorithms towards
the development of a decision support system with easily interpretable rules for prediction of
PVL.

In an earlier study, a limited analysis identified postoperative hypoxemia and postoperative
diastolic hypotension to be more important factors than intraoperative total cardiopulmonary
support time in terms of association with PVL [4]. That study involved a retrospective review
of hand-written nursing ‘flowsheets’ for hemodynamic variables at 4 h intervals for the first
48 h after arrival in the intensive care unit. To facilitate the modeling analysis for identification
of potential risk factors, only three of those 13 different time points for each variable were
taken into account, the admission value, the minimum value in the 48 h epoch, and the
maximum value.

Recognizing the limitations of that approach, including missing data points throughout the
time-frame of potential brain injury, we sought to better understand the postoperative
hemodynamic variables that may be associated with PVL by applying LR and DT algorithms
to the dataset. The dataset was further analyzed to extract statistical features of temporal
distribution for each of the monitoring variables like mean, standard deviation, skewness and
kurtosis. The last two features characterize the temporal distribution of each monitoring
variable in terms of asymmetry and abrupt changes (or existence of spikes) compared to a
normal distribution. Skewness represents a measure of asymmetry of data distribution with
respect to the mean: a zero value represents a normal distribution, a negative value signifies a
distribution skewed left and a positive value denotes a distribution skewed right. Kurtosis
represents a measure of ‘peaked’ or lack of flatness of data distribution compared to a normal
distribution. For a normal distribution, kurtosis is around 0, a negative value indicates a flat
distribution whereas a positive value represents a ‘peaked’ distribution. Three categories of
data were used in the present work-–(1) original data without any preprocessing, (2) partial
data keeping the admission, the maximum and the minimum values of the monitoring variables,
similar to [4], and (3) extracted dataset of additional statistical features.

In the first of this two-part paper, the statistical tool of LR analysis and data mining technique
of DT algorithms were used to identify the suitable dataset. In the second part, the identified
dataset was further analyzed for selection of prognostic features using computational
intelligence (CI) techniques. In Part I, the datasets were given as inputs for forward stepwise
logistic regression to select the significant variables as ‘predictors’ of PVL occurrence. The
selected features from LR models were then used as inputs to the DT induction algorithm for
generating easily interpretable rules of PVL prediction. Prediction performances of DT
algorithm with and without LR selected features were compared. The present work extends
the research reported in [4] in following three areas: (1) consideration of an expanded feature
space extracted from the recorded hemodynamic data, (2) identification of additional
prognostic factors, and (3) generation of easily interpretable decision rules for prediction of
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PVL. The present work is a first attempt to combine advantages of LR and DT algorithms for
identification of potential postoperative risk factors for prediction of PVL with reasonably
simple decision rules.

The paper is organized as follows. Section 2 describes the dataset used and Section 3 deals
with the feature extraction process. Logistic regression (LR) analysis and decision tree (DT)
algorithm are briefly discussed in Sections 4 and 5, respectively. Section 6 presents the
prediction results using the proposed methods (LR and DT) along with their comparisons. In
Section 7, limitations of the present work are briefly mentioned and the concluding remarks
are summarized in Section 8.

2. Data used
The dataset consisted of handwritten paper flow-sheets and manual extraction of hemodynamic
and blood gas analysis data at admission and subsequent 4 h intervals for the first 48 h (13 time
points total) after arrival in the cardiac intensive care unit. The seven recorded monitoring
variables include heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure
(DBP), central venous filling pressure or right atrial pressure (RAP), as well as arterial blood
gas data including pH, partial pressure of carbon dioxide (pCO2), and partial pressure of oxygen
(pO2). From a total of 105 neonates and infants, data were used for 103; 2 patients were
excluded from the analysis due to missing data. For each patient, the size of the dataset was 7
× 13 (number of monitoring variables × number of values for each variable over the 48 h period
at 4 h intervals). Patient specific demographic and operative variables were excluded from the
analysis. All studies were read for the presence of PVL by a single neuroradiologist (RAZ),
blinded to clinical status. Interpretation was made from early postoperative MRIs (within 3–
14 days after surgery) of the brain for each of the patients. The mean and the standard deviation
of the average of each monitoring variable are presented with and without PVL in Table 1 for
comparison.

3. Feature extraction
Three categories of data were used for each patient. Case 1 consisted of original dataset of 13
values for each of 7 monitoring variables (X: HR, SBP, DBP, RAP, pH, pCO2, pO2) without
any preprocessing (total of 7 × 13). In some cases, an estimated average was utilized by the
primary data extractor. Two-thirds were complete with all the entries; the rest of the patients
were transitioned to a less intense care and monitoring regimen within 48 h of admission. Case
2 used partial data keeping the admission (Xadm), the maximum (Xmax), and the minimum
(Xmin) values of the monitoring variables (total of 7 × 3). In Case 3, four additional statistical
features, namely, average (Xavg or μ), standard deviation (Xstd or σ), normalized third order
moment or skewness (Xskw or γ3) and fourth order normalized moment or kurtosis (Xkrt or
γ4) in addition to admission (Xadm), maximum (Xmax), minimum (Xmin) values were extracted
(total of 7 × 7). The extracted features are defined in Eqs. (1a) and (1b) for each monitoring
variable of the patient:

(1a)

(1b)
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where xi represents the ith value of the monitoring variable X (i = 1, 13), and E represents the
expected value of the function. This reduces the size of the dataset for each patient from 7 ×
13 to 7 × 7.

The Case 1 (original) dataset was used to study if the raw recoded data without any
preprocessing would be good enough to predict the occurrence of PVL. The Case 2 (partial)
dataset represented the limited pattern of the monitoring variables in terms of three values
(admission, the maximum and the minimum), similar to a previously published report [4]. In
Case 3 (extracted) dataset, the temporal pattern in terms of average, standard deviation,
skewness and kurtosis was used as additional features. The Case 3 dataset was considered in
this paper to test if the temporal pattern would serve better than the original dataset (Case 1)
and the partial features (Case 2) of [4] for prediction of PVL.

3.1. Training and test datasets
For Case 1, the original dataset of 70 patients with complete entries was used for LR analysis.
For Cases 2 and 3, each dataset was divided randomly into two subsets for training and test
purposes, each containing about a similar proportion of positive (PVL = 1) and negative (PVL
= 0) outcomes. The training dataset included two-thirds of the samples (with 30: PVL = 1; 39:
PVL = 0), and the rest one-third was used as test dataset (with 15: PVL = 1; 19: PVL = 0).

3.2. Normalization
The extracted features from each variable (X) were normalized (XN) in the range of 0–1 for
better performance in the classification stage as follows:

(2)

where the subscripts i and j represent the patient number (i = 1, 103), and the feature number
(j =1, 7), respectively, of variable (X). Xjmin and Xjmax represent the minimum and the maximum
values of the jth monitoring variable. The subscript N indicates the normalized value. It is worth
mentioning that normalization (0 ≤ XijN ≤ 1) was necessary to treat all the variables equally in
the modeling process, especially in view of the wide ranges of their values.

4. Logistic regression analysis
Logistic regression is a nonlinear regression technique for prediction of dichotomous (binary)
dependent variables in terms of the independent variables (covariates) [20,21]. The dependent
variable can represent the status of the patient (e.g., diseased, Y = 1 or healthy, Y = 0). The
expected probability of a positive outcome P(Y = 1) for the dependent variable is modeled as
follows:

(3)

where xi, i = 1, n are the independent variables (covariates), Bi are the corresponding regression
coefficients and B0 is a constant, all of which contribute to the probability. Eq. (3) reduces to
a linear regression model for the logarithm of odds ratio (OR) of positive outcome, i.e.
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(4)

In producing the LR model, the maximum-likelihood ratio is used to determine the statistical
significance of the independent variables. Using this model, stepwise selections of the variables
and the computation of the corresponding coefficients are made through available statistical
software packages. In the present work, SPSS package was used for LR analysis.

5. Decision tree algorithms
Decision tree (DT) algorithms are used in data mining for classification and regression. The
popularity of DT is due to the availability of decision rules that are easy to interpret. Among
the various algorithms used for decision tree induction, C4.5 [31], and classification and
regression tree (CART) [32] are quite widely used. One of the main differences between CART
and C4.5 is that CART uses strictly binary tree structure (with only two branches at each internal
node) whereas C4.5 may have more than two branches at any internal node. The basic steps
involved in DT algorithms are briefly discussed here. Readers are referred to texts [31,32] for
details.

The input dataset consists of objects each belonging to a class. Each object is characterized by
a set of attributes (variables or predictors) that may have numerical and categorical (non-
numerical) values. The goal of DT is to use a training dataset with known attribute-class
combinations for generating a tree structure with a set of rules for correct classification and
prediction of a similar test dataset. The DT consists of a root, internal (non-terminal) decision
nodes and a set of terminal nodes or leaves, each representing a class. There are two phases in
DT induction: tree building and tree pruning.

5.1. Tree building
The process of tree building starts at the root (first internal node) with the entire dataset being
split into two subsets. The recursive partitioning of the dataset (S) into subsets is continued at
each internal node (q) based on a measure of information or entropy:

(5)

where pi(q) denotes the proportion of S belonging to class i at node q and c is the total number
of classes in the dataset. For a dichotomous dependent variable, c = 2. The selection of the
optimal splitting value s* among all splitting variables S at an internal node (q) is decided on
the basis of the maximum information-gain:

(6)

where qL and qR are the left and right branch nodes, E(qL) and E(qR) are the corresponding
entropies, pL and pR are the proportions of classes at the internal node q. The process is
continued recursively till all the objects (data points) in the training dataset are assigned to the
terminal (leaf) nodes.
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5.2. Tree pruning
The tree generated in the process may become unnecessarily complex to perfectly classify the
training dataset. It may lead to an over-fit model with a perfect classification in training but
may have less acceptable classification performance in the unknown test dataset. This may be
the case especially if the training dataset is ‘noisy’ or if it is not large enough to represent the
test dataset. To avoid the over-training, the generated tree is pruned by removing the
nonessential terminal branches based on cost-complexity without affecting the classification
accuracy [32]. DT leads to a set of easily interpretable rules starting from the root to each
terminal node (leaf) for predicting a class.

6. Results and discussion
Datasets were analyzed first using logistic regression for identifying the predictors of PVL
occurrence. Next, the independence of ‘predictors’ was investigated through statistical
correlation analysis. The classification results were obtained using the LR identified ‘predictor’
variables. Then, the datasets were analyzed using the decision tree induction algorithm for
identifying the ‘predictors’ of PVL. Finally, the results of PVL prediction were compared using
variables selected by DT and LR.

6.1. Stepwise forward regression
Three sets of data (Cases 1–3) were analyzed through stepwise logistic regression in SPSS for
identifying the predictors for PVL. Table 2 shows the coefficient (B), standard error (S.E.) and
significance level (p-value) for each of the selected predictors (with p < 0.05). For each case,
two sets of ‘predictors’ were selected. In the intermediate stage, four statistically significant
predictors were used in each case for comparison. Numbers of features retained finally were
5, 3 and 7 in Cases 1–3, respectively. In Case 1, the predictors represent the values of the
monitoring variables at the recorded hours. For example, SBP32 represents systolic blood
pressure (SBP) recorded at the 32nd hour. For Case 1 dataset, the retained variables include
low values for SBP32, DBP at 4th, 40th and 44th hours, and pO2 at 40th hour (each with p <
0.05) with regression coefficients (B) of −0.120, −0.138, 0.208, −0.254 and −0.068,
respectively. The negative regression coefficients of the retained variables agreed well with
the fact that the probability of PVL occurrence increases with any decrease in the values of
these variables. However, the interpretation of the probability in terms of 4-hourly variables
was not straightforward. It especially was difficult to justify the positive coefficient for DBP40
when all other coefficients were negative.

For Case 2 dataset, the selected features were SBPmin, DBPadm and pO2min, each with negative
regression coefficient (B) as expected. The retained variables (SBP, DBP and pO2) agreed
qualitatively with [4], with some differences in details. For example, in [4], the retained features
were SBPadm, DBPmin and pO2min. The difference may be attributed to the consideration of
other variables like support time, age at surgery. In [4], the diastolic hypotension (DBPmin)
was identified as one of the major predictors along with the chronologic age, but not gestational
age, at surgery. In the present study DBPmin (with p > 0.05) was eliminated from the final list
of independent variables in LR and was replaced with DBPadm for Cases 2 and 3.

For Case 3 dataset, the finally selected features were HRskw, SBPmin, SBPskw, DBPadm,
DBPskw, pCO2krt and pO2krt, each with negative regression coefficient except for SBPskw and
pCO2krt. The positive regression coefficient for SBPskw (pCO2krt) may be explained in terms
of skewed (peaked) pattern of SBP (pCO2) rather than its average value. The inclusion of
pCO2 in the set of selected variables was interesting and needed further examination as the
phenomenon of hypocarbia (low pCO2) was associated with PVL in prior reports [35,36], and
is consistent with the known physiologic effect of hypocarbia on cerebral blood flow. This
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issue is discussed further in a later section. It should also be noted that some of the variables
(SBP, DBP and pO2) were selected in all three cases though the characteristic details differed.
This further confirmed the importance of these variables as ‘predictors’ of PVL.

6.2. Correlation analysis
To study the independence of the retained features, statistical correlation was analyzed in SPSS
for each of the datasets. Table 3(a)–(c) show correlations among the variables along with the
significance level. For Case 1 dataset, Table 3(a), many of the variables were found to have
statistically significant correlation (with p < 0.05). For example, DBP4 was statistically
correlated to all other variables, similarly SBP and DBP were also correlated. For Case 2
dataset, Table 3(b), DBPmin was found to be correlated with SBPmin, DBPadm and pO2min.
This could explain the elimination of DBPmin from the final list of ‘predictors’ in Table 2. In
addition, pO2min was found to be correlated with DBPadm and DBPmin. The correlations are
consistent with results reported in [4]. For Case 3 dataset, Table 3(c), only two variables
SBPskw and DBPskw showed statistically significant correlation. This implies that the features
in Case 3, not being correlated to each other, were better suited for predicting the occurrence
of PVL than the datasets of Cases 1 and 2.

6.3. Receiver operating characteristic (ROC) curve
The selected features were used for classification of PVL incidence (yes or no) in SPSS. The
cut-off point was varied from 0.1 to 0.9 in classifying the datasets. The classification success
was represented in terms of three commonly used performance indices (PI), namely, sensitivity
(SN), specificity (SP) and accuracy (AC) [37]. Sensitivity (SN) defines the proportion of
patients with positive outcome that are correctly identified by the used dataset. Specificity (SP)
is the proportion of patients with negative outcome that are correctly identified. Accuracy (AC)
defines the overall proportion of correctly identified cases including both positive and negative
outcomes. In literature, SN and SP are also termed as true positive rate (TPR) and true negative
rate (TNR), respectively. Another term, 1-SP, is also known as false positive rate (FPR). To
compare the diagnostic capabilities of datasets and test algorithms, the sensitivity (SN) versus
(1-specificity or 1-SP) curve, or TPR versus FPR, also commonly known as receiver operating
characteristic (ROC) curve [37], are plotted for different values of the cut-off point. The area
under the ROC curve (AUROC) is used as a measure of diagnostic capability of the dataset.
For a perfect diagnostic dataset, AUROC will be 1 with a horizontal line at SN = 1 for all values
of (1-SP) whereas using a random guess about the outcome would have an AUROC of 0.5
corresponding to a straight line between (0, 0) and (1, 1) on the ROC. Receiver operating curves
were plotted for Cases 2 and 3, as shown in Fig. 1, giving AUROC of 0.796 and 0.886,
respectively. The higher AUROC value of Case 3 signifies better diagnostic capability of the
Case 3 dataset than Case 2.

6.4. Classification success
Table 4 shows the classification results for three cases of datasets without decision tree (DT).
In all three cases, higher number of features gave better classification results (in terms of SN,
SP and AC). For example, the Case 1 dataset using five features (corresponding to second
group in Table 1) gave SN, SP and AC of 83, 79 and 81%, respectively. Dataset with seven
selected features (Case 3) gave the best performance of 87, 88 and 87% for SN, SP and AC,
respectively which are within the acceptable range of 80–90%. The better performance of Case
3 dataset can be attributed to the fact that the features were without any significant correlation,
Table 3(c). The better classification success for Case 3 dataset can also be demonstrated in the
higher value of area under ROC (AUROC), Fig. 1.
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6.5. Results of decision tree
The entire datasets in Cases 2 and 3 were used for training DTs to compare the classification
success of DT and LR. Next, the training datasets of Cases 2 and 3 were used for training DTs
with and without LR selected features. Prediction results of the trained DTs were compared
using the corresponding test datasets.

6.5.1. Classification results with decision tree—Fig. 2(a) shows the decision tree
obtained from the full dataset of Case 2 with DBPadm, SBPmin, SBPadm, pCO2adm, pCO2max,
pO2adm and pO2max as the retained features. These included the features selected using LR
(Case 2, Table 2) with additional contributions from pCO2. Fig. 3(a) shows the corresponding
decision tree for Case 3 dataset with selected features as DBPadm, DBPavg, SBPmax, SBPkrt,
pCO2avg, pCO2skw, pCO2std, pO2std and pO2skw. It should be mentioned that each tree structure,
in terms of the nodal variables and their threshold values, was obtained automatically as an
output of the DT algorithm using the principle of maximum information-gain explained in
Section 5.1.

The inclusion of pCO2 in the selected set of variables for both datasets (Cases 2 and 3)
confirmed its importance in the prediction of PVL. To some extent, pCO2 can be measured
and controlled in the postoperative care setting, and inclusion here as a variable may indicate
its potential role as a modifiable factor in neurodevelopmental outcome. The selection of
pCO2 as one of the potentially modifiable postoperative risk factors for prediction of PVL
occurrence is a very interesting finding of the present study. The identification of an extended
set of postoperative prognostic factors (including pCO2) in decision trees is attributed to the
better capability of the information-theory-based DT algorithm than the LR technique. The
relative importance of the identified postoperative risk factors for PVL prediction needs to be
investigated next.

In the DT of Fig. 2(a), the root, DBPadm represents the most important variable followed by
SBPmin. The nodal variables far away from the root have less significance in classifying the
data. Rules can be extracted simply following the nodal relations along the tree branches from
the root to the terminal nodes (leaves), T1—T12. Each leaf represents a class (Y, PVL = 1 or
N, PVL = 0) depending on the majority of its class membership. In Fig. 2(a), 12 rules can be
generated corresponding to 12 terminal nodes (T1— T12). For example, rules (R1, R2) can be
obtained corresponding to the left most two leaves (T1, T2) as follows:

Similarly, the rules (R11, R12) corresponding to the leaves T11 and T12 can be written as
follows:

It is interesting to note a curious association in the two rules above, where pCO2max rising
above 43 mm Hg would seem to make the patients more likely, rather than less likely, to have
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PVL. Although the design of this study prevents definitive ascertainment, the postoperative
management style in use during the study period tended to value lower pCO2 to decrease
pulmonary vasoreactivity. Patients in the dataset with higher pCO2 may have had issues with
their ventilatory support leading to altered neurological susceptibility.

Similarly other eight nodes can be followed to extract the remaining rules which are easy to
interpret. The complete set of rules is presented in Table 5(a). It is worth mentioning that the
full DT, in an attempt to perfectly classify a training dataset, may include nonessential terminal
branches leading to possible `over-fitting' as explained earlier (in Section 5.2). The rules R11
and R12 are results from such `nonessential' terminal branches. To simplify the tree structure
without reducing significantly the classification success, the full DT was pruned automatically
to level 2 as in Fig. 2(b). In the pruning process, the original terminal nodes T1 and T2 of Fig.
2(a) were combined as T1; T3—T6, as T2; and T9—T12, as T6 in Fig. 2(b). Other terminal
nodes of Fig. 2(a), T6— T8 were renumbered as T3—T5, respectively. The DT of Fig. 2(b)
resulted in six decision rules corresponding to six terminal nodes (T1—T6) as given in Table
5(b). One of these rules, R2 can be written as follows:

In this rule, the PVL occurrence is predicted when the admission values of DBP, pCO2 and
pO2 fall below the corresponding threshold values, even if SBPmin is above 63 mm Hg. In rule
R3, no occurrence of PVL is predicted if pO2adm is higher than 34 mm Hg even if the admission
values of DBP and pCO2 are below the corresponding threshold values. This points to the fact
that the prediction of PVL occurrence depends on the combination of variables and their values
rather than the individual variables. This agrees well with literature on variable and feature
selection [38].

The decision tree of Fig. 3(a) corresponds to the Case 3 dataset of extracted features with 10
rules corresponding to 10 leaf nodes (T1—T10). Table 6(a) shows the complete set of decision
rules obtained from DTof Fig. 3(a). The first rule (R1) corresponding to the node T1 on the
left can be written as follows:

In other words, the rule (R1) corresponds to the condition of diastolic hypotension and
hypocarbia. Remaining nine rules can be obtained from the other nine leaf nodes (T2—T10).
The DT of Fig. 3(a) was pruned at level 2 to have a simpler DT of Fig. 3(b) with six terminal
nodes (T1—T6) and five retained variables (DBPadm, DBPavg, pCO2skw, pCO2std and
pO2std). The complete rule set corresponding to six terminal nodes are given in Table 6(b). The
importance of pCO2 levels and temporal variation, among other variables like DBP, pO2 on
PVL prediction is evident from the DTs of Fig. 3(a) and (b) and the corresponding rule sets,
Table 6(a) and (b).

The classification results are presented in Table 7 for full and pruned DTs in each case. The
full DTwith six features in Case 2, and eight features in Case 3 gave the same overall accuracy,
although they had some variations in sensitivity and specificity. With pruning, classification
results were better with the Case 3 dataset than Case 2. The classification results of full DTwere
better than LR analysis for datasets of both Cases 2 and 3. The better performance of the DT
may be attributed to the higher number of features retained in DT than in LR. In Table 7,
classification results are presented for a typical run of decision tree training. Next, `leave-
oneout' strategy of training and testing the decision trees was used for the entire set giving an
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average accuracy of 93% in training and 58% in test. These values were similar to the
representative results presented in Table 7.

6.5.2. Prediction results with decision tree—Next, decision trees were trained using
the training datasets of Cases 2 and 3 and tested using the corresponding test datasets. Table 8
shows training and test results for full and pruned (at level 2) decision trees. Training results
were good with a sensitivity of 73—93%, specificity of 97—100% and accuracy of 87—96%.
However, test results deteriorated with sensitivity of 27—53%, specificity of 74— 90% and
accuracy of 62—65%. One of the probable factors for lower test performance may be the
limited size of the training dataset to represent the test cases. The lower test results may also
be due to the inherent characteristics of the conventional DTs with fixed boundaries [39,40].
The issue of improvement in DT test performance needs further consideration.

6.5.3. Decision tree results with LR selected features—The selected features from
the logistic regression analysis for Cases 2 and 3 were used as inputs to the decision tree
algorithm for classification. In each case, the training dataset was used to train the decision
tree and next, the trained decision tree was tested using the test dataset. The classification
success results are shown in Table 9. Training results were reasonably good with a sensitivity
of 83—90%, specificity of 82—97%, accuracy of 83—94%. Test results were worse with a
sensitivity of 33—80%, specificity of 58—90%, and accuracy of 65%. Test results for Case 3
with seven features gave very low sensitivity and reasonably good specificity.

6.6. Comparison of LR and DT
For ease of comparison, the classification results of LR and DT with four selected features for
each (except Case 3 DT with five predictors) are shown in Fig. 4. Case 3 dataset gave better
classification success than Case 2 for both LR and DT. In either case, DT gave better results
than LR. The number of selected features was greater in full DT than LR for Case 2 and 3
datasets, though the selected variables were similar. DT gave better classification success than
LR when the entire datasets were used (Tables 4 and 7). For example, best overall classification
accuracy was 87% and 92% for LR and DT, respectively with Case 3 dataset. Comparison of
Tables 8 and 9 shows slightly better training results with DT selected features than with LR.
Test results were similar for both cases with DTand LR. However, the statistical significance
of the difference in prediction success needs to be investigated further with larger datasets. In
comparison to [4], the automatic selection of pCO2 in both LR and DT as one of the significant
variables in prediction of PVL was encouraging and confirmed the association of hypocarbia
with PVL. The role of pCO2 along with other prognostic variables in the prediction of PVL is
further investigated in Part II.

7. Limitations
The archive of postoperative monitoring data used for this analysis has significant limitations.
Waveform data in the ICU is typically sampled at 500 Hz and parametric data is typically
sampled at 2—0.001 Hz. ICU nurses typically sample the parametric and waveform data once
an hour (0.0003 Hz) with a handwritten line entry on a paper flowsheet. This dataset involved
a further reduction with values recorded every 4 h.

However, reducing the sampling rate is not without clinical value at the bedside. Use of a low-
frequency sampling rate is less resource intense than higher frequency capture systems which
can involve additional computational and analytic expense. Also, our low-frequency system
necessarily incorporates artifact and noise filters incorporated in the judgment and experience
of CHOP's professional nursing staff. Low-frequency sampling is also easier for the brain to
`process' for more rapid decision analysis for patient care. However, high-frequency data would
be useful for computer-aided analysis.
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8. Conclusions
This analysis presents results of investigations on the applicability of logistic regression and
decision tree algorithms for prediction of PVL using the postoperative hemodynamic and
arterial blood gas data. The process involved statistical feature extraction, feature selection
using logistic regression and generation of classification rules using the decision tree. The use
of a reduced number of features through LR and DT based selection process made the rules
quite tractable. Although satisfactory, the test success of the decision tree would be even better
if the datasets were less limited; the hard boundaries used in conventional decision tree
algorithm could also limit the success of the algorithm. The issues of more extensive dataset
and improvement of test success in DT will be considered in future work.

This analysis serves to confirm earlier work done in [4] where Galli et al. found an association
between incidence of PVL and postoperative hypoxemia and diastolic hypotension.
Additionally, the association of PVL incidence with variation in pCO2 provides interesting
information that is the subject of ongoing work in the authors' centers. From a clinician's point
of view, use of decision tree analysis may provide an interesting surrogate for the clinical
thought process, and it may suggest novel areas of future study to better understand ways that
postoperative care can be manipulated to improve outcome.

In this analysis, commonly measured parameters at the bedside of critically ill neonates and
infants were evaluated correlating these measurements with a surrogate predictor of
neurological outcome. While important, these measurements represent only a small fraction
of critical data available using current monitoring technology. Potential use of these analytic
techniques include improved neurological outcomes as mentioned above, but may also be
applied to reducing the frequency of hospital-acquired infections, predicting cardiac arrest,
reducing hospital length of stay and cost, and many others. We are currently exploring
techniques for higher resolution ICU data capture and analysis. In addition, the refinement of
the prognostic factors will be considered using a direct information theoretic approach.
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Figure 1.
ROC curve for logistic regression analysis.
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Figure 2.
Decision tree with Case 2 dataset: (a) full, (b) pruned (level 2).

Samanta et al. Page 16

Artif Intell Med. Author manuscript; available in PMC 2009 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Decision tree with Case 3 dataset: (a) full, (b) pruned (level 2).
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Figure 4.
Comparison of classification success of LR and DT for different datasets.
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Table 1
Mean and standard deviation for average monitoring variables with and without PVL.

Variable Without PVL With PVL

μ σ μ σ

HR (bpm) 154 14.4 161 13.6

SBP (mm Hg) 77.7 12.7 70.2 10.7

DBP (mm Hg) 44.3 8.3 37.8 6.4

RAP (mm Hg) 7.68 2.51 7.32 1.44

pH 7.48 0.03 7.49 0.04

pCO2 (mm Hg) 39.5 3.87 39.08 4.33

pO2 (mm Hg) 66.7 29.5 53.5 30.9
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Table 4
Classification results with LR identified predictors.

Dataset Number of
predictors

Classification success (%)

SN SP AC

1 4 78 77 77

5 83 79 81

2 4 76 81 78

3 69 77 74

3 4 80 83 81

7 87 88 87
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