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INFINITELY MANY SOLUTIONS TO KIRCHHOFF DOUBLE PHASE PROBLEMS

WITH VARIABLE EXPONENTS

KY HO AND PATRICK WINKERT

Abstract. In this work we deal with elliptic equations driven by the variable exponent double phase operator
with a Kirchhoff term and a right-hand side that is just locally defined in terms of very mild assumptions.
Based on an abstract critical point result of Kajikiya [15] and recent a priori bounds for generalized double
phase problems by the authors [14], we prove the existence of a sequence of nontrivial solutions whose
L∞-norms converge to zero.

1. Introduction

In this paper we study multiplicity results for the following Kirchhoff-type problem

−M

(∫

Ω

A(x,∇u) dx

)
divA(x,∇u) = f(x, u) in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a bounded domain in R
N with a Lipschitz boundary ∂Ω, A : Ω×R

N → R and A : Ω×R
N → R

N

are given by

A(x, ξ) :=
1

p(x)
|ξ|p(x) +

µ(x)

q(x)
|ξ|q(x), A(x, ξ) := ∇ξA(x, ξ) = |ξ|p(x)−2ξ + µ(x)|ξ|q(x)−2ξ.

In the following, for h ∈ C(Ω) we denote h− := infx∈Ω h(x) and h+ := supx∈Ω h(x).
We suppose the subsequent hypotheses:

(H1) p, q ∈ C0,1(Ω) such that 1 < p(x) < q(x) < N for all x ∈ Ω,
(

q
p

)+

< 1 + 1
N

and 0 ≤ µ(·) ∈ C0,1(Ω).

(H2) M : [0,∞) → R is a function and f : Ω× R → R is a Carathéodory function such that the following
conditions are satisfied:
(i) there exist positive constants t0,m0 such that M ∈ C[0, t0] and m0 ≤ M(t) ≤ M(t0) for all

t ∈ [0, t0];
(ii) there exists ε0 > 0 such that f : Ω × [−ε0, ε0] → R is odd with respect to the second variable

and sup|t|≤ε0
|f(·, t)| ∈ L∞(Ω);

(iii) there exists a nonempty open ball B ⊂ Ω such that

lim
t→0

F (x, t)

|t|p
−

B

= ∞ uniformly for a. a.x ∈ B,

where F (x, t) :=
∫ t

0
f(x, τ) dτ and p−B := infx∈B p(x).

We shall look for solutions to problem (1.1) in the Musielak-Orlicz Sobolev space
(
W 1,H

0 (Ω), ‖ · ‖
)
, where

H(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω × [0,∞) (see Section 2 for the definitions). We call a function

u ∈ W 1,H
0 (Ω) a solution of problem (1.1) if f(·, u) ∈ L1

loc(Ω) and if

M

(∫

Ω

A(x,∇u) dx

)∫

Ω

A(x,∇u) · ∇v dx =

∫

Ω

f(x, u)v dx

is satisfied for all v ∈ C∞
c (Ω).

Our main result reads as follows.

2020 Mathematics Subject Classification. 35A15, 35J15, 35J60, 35J62.
Key words and phrases. Double phase operator, Kirchhoff term, multiple solutions, variable exponents, variational methods.

1

http://arxiv.org/abs/2210.02895v2


2 K. HO AND P. WINKERT

Theorem 1.1. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.1) admits a sequence of solutions

{un}n∈N with ‖un‖+ ‖un‖∞ → 0 as n → ∞, where ‖ · ‖∞ is the norm in L∞(Ω).

The proof of Theorem 1.1 is based on an abstract critical point result of Kajikiya [15] (see also Theorem
2.2) and recent a priori bounds for generalized double phase problems by the authors [14] in which new
embedding results of the form W 1,H(Ω) →֒ LΨ(Ω), with

Ψ(x, t) := tr(x) + µ(x)
s(x)
q(x) ts(x) for (x, t) ∈ Ω× [0,∞),

where r, s ∈ C(Ω) satisfy 1 < r(x) ≤ Np(x)
N−p(x) =: p∗(x) and 1 < s(x) ≤ Nq(x)

N−q(x) =: q∗(x) for all x ∈ Ω are

presented.
The novelty of our work is the fact that we combine the variable exponent double phase operator with a

Kirchhoff term and a reaction term that are both locally defined. As far as we know, there is no other work
dealing with a Kirchhoff term along with the variable exponent double phase operator. In case the exponents
p, q are constants, we refer to the work of Fiscella-Pinamonti [12] who considered the problem

−m

[∫

Ω

(
|∇u|p

p
+ a(x)

|∇u|q

q

)
dx

]
La
p,q(u) = f(x, u) in Ω, u = 0 on ∂Ω, (1.2)

where f : Ω × R → R is a Carathéodory function that satisfies subcritical growth and the Ambrosetti-
Rabinowitz condition and

La
p,q(u) := div

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
, u ∈ W 1,H

0 (Ω). (1.3)

By applying the mountain-pass theorem, the existence of a nontrivial weak solution of (1.2) is shown. Re-
cently, Arora-Fiscella-Mukherjee-Winkert [1] studied singular Kirchhoff double phase problems given by

−m

[∫

Ω

(
|∇u|p

p
+ a(x)

|∇u|q

q

)
dx

]
La
p,q(u) = λu−γ + ur−1 in Ω, u = 0 on ∂Ω,

with La
p,q as in (1.3), where a suitable Nehari manifold decomposition provides the existence of two different

solutions. Another interesting work in the context of Kirchhoff constant exponent double phase problems
has been published in [11] with nonlinear boundary condition based on variational tools. All these works use
different methods than in our paper.

It should be noted that the occurrence of a nonlocal Kirchhoff term was first introduced by Kirchhoff [17].
Such problems have a strong background in several applications in physics. Existence results on degenerate
and nondegenerate Kirchhoff problems for different type of problems can be found, for example, in the works
[2, 10, 13, 19, 20, 23] and the references therein.

If m(t) ≡ 1 for all t ≥ 0, problem (1.1) reduces to a double phase problem with variable exponents. In
this case, only few and very recent results exist. We refer to the papers [3, 8, 16, 18, 22, 24], see also the
references therein. If p and q are constants, we point out that the double phase operator in (1.1) is associated
to the functional

u 7→

∫

Ω

(
1

p
|∇u|p +

µ(x)

q
|∇u|q

)
dx, (1.4)

which occurred for the first time in the work of Zhikov [25]. Such functionals are used to describe mod-
els for strongly anisotropic materials in the context of homogenization and elasticity. In the past decade,
functionals of the form (1.4) have been studied by several authors concerning regularity properties of local
minimizers, we refer to the papers [4, 5, 6, 7], see also [21] for variable exponents and the recent paper [9]
about nonautonomous integrals.

2. Preliminaries and Notations

In this section we recall the main properties about Musielak-Orlicz Sobolev spaces and the double phase
operator with variable exponents along with an abstract critical point result.

To this end, let Ω be a bounded domain in R
N with Lipschitz boundary ∂Ω and let M(Ω) be the space of

all measurable functions u : Ω → R. We denote by Lr(Ω) the usual Lebesgue space endowed with the norm
‖ · ‖r for any 1 ≤ r ≤ ∞. Suppose (H1) and let H : Ω× [0,∞) → [0,∞) be the nonlinear function defined by

H(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,∞).
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The corresponding modular to H is given by

ρH(u) =

∫

Ω

H(x, |u|) dx =

∫

Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx

and the associated Musielak-Orlicz space LH(Ω) is then defined by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞}

endowed with the Luxemburg norm ‖u‖H = inf
{
τ > 0 : ρH

(
u
τ

)
≤ 1

}
. When µ(·) ≡ 0, we write Lp(·)(Ω) in

place of LH(Ω). Similarly, the Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}

equipped with the norm ‖u‖1,H = ‖u‖H + ‖∇u‖H, where ‖∇u‖H = ‖ |∇u| ‖H. Moreover, W 1,H
0 (Ω) is the

completion of C∞
0 (Ω) in W 1,H(Ω). We know that LH(Ω), W 1,H(Ω) and W 1,H

0 (Ω) are reflexive Banach spaces

and we can equip W 1,H
0 (Ω) with the equivalent norm ‖ · ‖ := ‖∇ · ‖H, see [8].

Moreover, we have

‖u‖p
−

− 1 ≤ ρH(|∇u|) ≤ ‖u‖q
+

+ 1 for all u ∈ W 1,H
0 (Ω), (2.1)

‖u‖q
+

≤ ρH(|∇u|) ≤ ‖u‖p
−

for all u ∈ W 1,H
0 (Ω) with ‖u‖ < 1, (2.2)

and

W 1,H
0 (Ω) →֒ Lr(·)(Ω) (2.3)

is compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for all x ∈ Ω, see [8, Propositions 2.13 and 2.16].

Let B : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ be the nonlinear map defined by

〈B(u), v〉 :=

∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx (2.4)

for all u, v ∈ W 1,H
0 (Ω), where 〈 · , · 〉 is the duality pairing between W 1,H

0 (Ω) and its dual space W 1,H
0 (Ω)∗.

The operator B : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ has the following properties, see [8, Theorem 3.3].

Proposition 2.1. Let hypotheses (H1) be satisfied. Then, the operator B defined in (2.4) is bounded,

continuous, strictly monotone and of type (S+), that is, un ⇀ u in W 1,H
0 (Ω) and lim supn→∞ 〈Bun, un−u〉 ≤

0, imply un → u in W 1,H
0 (Ω).

Let X be a Banach space, let X∗ be its dual space and let ϕ ∈ C1(X,R). We say that {un}n∈N ⊆ X
is a Palais-Smale sequence ((PS)-sequence for short) for ϕ if {ϕ(un)}n∈N ⊆ R is bounded and ϕ′(un) →
0 in X∗ as n → ∞. We say that ϕ satisfies the Palais-Smale condition ((PS)-condition for short) if any
(PS)-sequence {un}n∈N of ϕ admits a convergent subsequence in X . The proof of Theorem 1.1 is based on
the following abstract critical point result due to Kajikiya [15, Theorem 1].

Theorem 2.2. Let (X, ‖ · ‖) be an infinite dimensional Banach space and J ∈ C1(X,R) such that the

following two assumptions hold:

(J1) J is even, bounded from below, J(0) = 0 and it satisfies the (PS)-condition.
(J2) For any k ∈ N, there exist a k-dimensional subspace Xk of X and a number rk > 0 such that

supXk∩Srk
J(u) < 0, where Srk = {u ∈ X : ‖u‖ = rk}.

Then, the functional J admits a sequence of critical points {vk}k∈N
satisfying ‖vk‖ → 0 as k → ∞.

3. Proof of the main result

In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Since the the conditions on the Kirchhoff and reaction terms are given locally, the
corresponding energy functional associated with problem (1.1) may not be well defined. In order to deal with
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this difficulty and get the symmetry of the associated energy functional, we first modify the functions M and

f as follows: We define M0, M̂0 : [0,∞) → R given by

M0(t) :=

{
M(t) if 0 ≤ t ≤ t0,

M(t0) if t > t0,
and M̂0(t) :=

∫ t

0

M0(s) ds.

It is clear that M0 ∈ C([0,∞),R) and

m0 ≤ M0(t) ≤ M(t0) for all t ∈ [0,∞), (3.1)

m0t ≤ M̂0(t) ≤ M(t0)t for all t ∈ [0,∞). (3.2)

Next, let η ∈ C∞
c (R) be a function such that 0 ≤ η(t) = η(−t) ≤ 1 for t ∈ R and

η(t) = 1 for |t| ≤
ε0
2
, η(t) = 0 for |t| ≥ ε0,

where ε0 is given in (H2)(ii). For x ∈ Ω we define

h(x, t) :=

{
η(t)f(x, t) if |t| ≤ ε0,

0 if |t| ≥ ε0,
and H(x, t) :=

∫ t

0

h(x, s) ds.

Obviously, we have
sup
t∈R

|h(x, t)| ≤ sup
|t|≤ε0

|f(x, t)| =: f0(x) for a. a.x ∈ Ω. (3.3)

Furthermore, H is even with respect to the second variable and

sup
t∈R

|H(x, t)| ≤ ε0f0(x) for a. a. x ∈ Ω. (3.4)

Note that f0 ∈ L∞(Ω) by hypothesis (H2)(ii).
Now, we consider the following modified problem

−M0

(∫

Ω

A(x,∇u) dx

)
divA(x,∇u) = h(x, u) in Ω, u = 0 on ∂Ω. (3.5)

We point out that if {vk}k∈N is a sequence of solutions to problem (3.5) satisfying ‖vk‖ + ‖vk‖∞ → 0 as
n → ∞, then {vk}k≥k0 is a sequence of solutions to problem (1.1) for some k0 ∈ N. In order to derive the

desired conclusion, we will apply Theorem 2.2 for (X, ‖ · ‖) := (W 1,H
0 (Ω), ‖∇ · ‖H) and

J(u) := M̂0

(∫

Ω

A(x,∇u) dx

)
−

∫

Ω

H(x, u) dx, u ∈ X.

First, we see that J : X → R is of class C1 and its Fréchet derivative J ′ : X → X∗ is given by

〈J ′(u), v〉 = M0

(∫

Ω

A(x,∇u) dx

)∫

Ω

A(x,∇u) · ∇v dx−

∫

Ω

h(x, u)v dx

for all u, v ∈ X . Clearly, any critical point of J is a solution of problem (3.5). We will verify that J satisfies
conditions (J1) and (J2) of Theorem 2.2.

Step 1: J fulfills (J1)
Clearly, J is even and J(0) = 0. By (3.2), (3.4) and (2.1), we have

J(u) ≥ m0

∫

Ω

A(x,∇u) dx− ε0

∫

Ω

f0(x) dx ≥
1

q+

(
‖u‖p

−

− 1
)
− ε0‖f0‖1 for all u ∈ X.

This implies that J is coercive and bounded from below on X since p− > 1. For verification of the (PS)-
condition for J , let {un}n∈N be a (PS)-sequence for J , that is

J ′(un) → 0 in X∗ (3.6)

and
sup
n∈N

|J(un)| < ∞. (3.7)

Then, the coercivity of J and (3.7) guarantee the boundedness of {un}n∈N in X . Thus, up to a subsequence
if necessary, we have

un ⇀ u in X and un → u in L1(Ω), (3.8)
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by (2.3). On the other hand, we have

M0

(∫

Ω

A(x,∇un) dx

)∫

Ω

A(x,∇un) · (∇un −∇u) dx =
〈
J ′(un), un − u

〉
+

∫

Ω

h(x, un)(un − u) dx.

Combining this with (3.1) and (3.3) yields

m0

∣∣∣∣
∫

Ω

A(x,∇un) · (∇un −∇u) dx

∣∣∣∣ ≤ ‖J ′(un)‖X∗‖un − u‖+ ε0‖f0‖∞‖un − u‖1.

Invoking (3.6), (3.8) and the boundedness of {un}n∈N in X , from the last inequality it follows that∫

Ω

A(x,∇un) · (∇un −∇u)dx → 0 as n → ∞.

Hence, un → u in X in view of Proposition 2.1. Thus, J satisfies the (PS)-condition and so (J1) is fulfilled.
Step 2: J fulfills (J2)
Let k ∈ N be given and set Xk := span{ϕ1, ϕ2, · · · , ϕk}, where ϕn is an eigenfunction corresponding to

the n-th eigenvalue of the eigenvalue problem −∆u = λu in B, u = 0 on ∂B, and it is extended on Ω by
putting ϕn(x) = 0 for x ∈ Ω \B. Since Xk is finitely dimensional, all norms on Xk are equivalent. Thus, we
find positive constants αk, βk such that

βk‖u‖∞ ≤ ‖u‖ ≤ αk‖u‖p−

B
for all u ∈ Xk. (3.9)

By condition (H2)(iii) we can choose

Mk >
M(t0)α

p
−

B

k

p−
and δk ∈ (0, ε0/2) (3.10)

such that
H(x, t) = F (x, t) ≥ Mk|t|

p
−

B , (3.11)

for a. a.x ∈ B and for all |t| < δk.
Let rk ∈

(
0,min{1, β−1

k δk}
)
. Then, from (3.9) we have

‖u‖ < 1 and ‖u‖∞ ≤ β−1
k rk < δk <

ε0
2

for all u ∈ X ∩ Srk , (3.12)

where Srk = {u ∈ X : ‖u‖ = rk}. Utilizing (3.2), (3.11) and then (3.12) with noticing supp(u) ⊂ B we
obtain

J(u) = M̂0

(∫

Ω

A(x,∇u) dx

)
−

∫

Ω

H(x, u) dx ≤ M(t0)

∫

Ω

A(x,∇u) dx −

∫

Ω

F (x, u) dx

≤
M(t0)

p−

∫

B

[
|∇u|p(x) + µ(x)|∇u|q(x)

]
dx−Mk

∫

B

|u|p
−

B dx

for all u ∈ Xk ∩ Srk . Invoking (2.2) and (3.9) we infer from the last inequality that

J(u) ≤
M(t0)

p−
‖u‖p

−

B −Mk‖u‖
p
−

B

p
−

B

≤
M(t0)

p−
‖u‖p

−

B −Mk(α
−1
k ‖u‖)p

−

B =

(
M(t0)

p−
−Mkα

−p
−

B

k

)
r
p
−

B

k .

Thus, we obtain supXk∩Srk
J(u) < 0 due to (3.10). Hence, J satisfies (J2).

Applying Theorem 2.2 we find a sequence of critical points {vk}k∈N of J satisfying J(vk) < 0 for all k ∈ N

and ‖vk‖ → 0 as k → ∞. Therefore, vk are nontrivial solutions of problem (3.5), which can be rewritten as

− divA(x,∇u) = g(x, u) in Ω, u = 0 on ∂Ω,

where

g(x, u) :=
h(x, u)

M0

(∫

Ω

A(x,∇u)dx

) with |g(x, t)| ≤
‖f0‖∞
m0

for a. a.x ∈ Ω and for all t ∈ R. According to Theorem 4.2 and Proposition 3.7 of the authors [14], we also
have that ‖vk‖∞ → 0 as k → ∞. Hence {vk}k≥k0 for some k0 ∈ N are solutions to our original problem (1.1)
and satisfy ‖vk‖+ ‖vk‖∞ → 0 as k → ∞. This finishes the proof. �
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[3] A. Bahrouni, V.D. Rădulescu, P. Winkert, Double phase problems with variable growth and convection for the Baouendi-

Grushin operator, Z. Angew. Math. Phys. 71 (2020), no. 6, 183, 14 pp.

[4] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015),
206–222.

[5] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential
Equations 57 (2018), no. 2, Art. 62, 48 pp.

[6] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218

(2015), no. 1, 219–273.
[7] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2,

443–496.
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