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Abstract

A set of vertices S ⊆ V (G) is a resolving set of a graph G if for each x, y ∈ V (G)

there is a vertex u ∈ S such that d(x, u) 6= d(y, u). A resolving set S is a fault-tolerant

resolving set if S \ {x} is a resolving set for every x ∈ S. The fault-tolerant metric

dimension (FTMD) β′(G) of G is the minimum cardinality of a fault-tolerant resolving

set. It is shown that each twin vertex of G belongs to every fault-tolerant resolving

set of G. As a consequence, β′(G) = n(G) iff each vertex of G is a twin vertex, which

corrects a wrong characterization of graphs G with β′(G) = n(G) from [Mathematics

7(1) (2019) 78]. This FTMD problem is reinvestigated for Butterfly networks, Benes

networks, and silicate networks. This extends partial results from [IEEE Access 8

(2020) 145435–145445], and at the same time, disproves related conjectures from the

same paper.
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1 Introduction

Let G = (V (G), E(G)) be a connected graph. The number of edges of a shortest u, v-path

in G is equal to the distance dG(u, v) (or simply d(u, v) whenever G is understood) between

the vertices u and v of G. A finite collection of vertices S ⊆ V (G) is a resolving set of

G if for every pair a, b ∈ V (G) there is a u ∈ S such that d(a, u) 6= d(b, u). The metric

dimension β(G) is the lowest cardinality of a resolving set of G.

This problem was initially investigated in the 1970s [15, 39], and has been extensively

investigated afterwards. The topic was first surveyed in 2003 by Chartrand and Zhang [8].

Very recently, a new excellent review on the metric dimension and its applications was

written by Tillquist, Frongillo, and Lladser [41]. The survey includes 117 references,

we point here only to applications of resolving sets to verification of networks [6], robot

navigation [23], and geometric routing protocols [27].

Chartrand and Zhang in [8] also suggested using the members of a resolving set as

sensors. Provided that, there will be a defective sensor leading to failure to acknowledge

the burgler in the network. The idea arose from the assumption that a faulty sensor will

not cause device failure because the remaining sensors will still be able to deal with the

invasion force. It was formally introduced in [19]. A resolving set F of a (connected) graph

G is a fault-tolerant resolving set if F r {u} is a resolving set of G for each u ∈ F . In

other words, F ⊆ G is a fault-tolerant resolving set if for every distinct x, y ∈ V (G) there

exist u, v ∈ F such that d(u, x) 6= d(u, y) and d(v, x) 6= d(v, y). The least positive integer

representing the cardinality of F is β′(G). The fault-tolerant metric dimension, like that

of the metric dimension, has already been widely investigated, cf. [1, 4, 21, 36, 37, 38].

In [11], Estrada-Moreno, Rodŕıguez-Velázquez, and Yero introduced and studied the

k-metric dimension, k ≥ 1, as a common generalization of the metric dimension (the

case k = 1) and the fault-tolerant metric dimension (the case k = 2). The concept was

later investigated in several papers, cf. [2, 10, 12]. We also emphasize that in [5] the k-

metric dimension was investigated on general metric spaces, while the fractional k-metric

dimension is the core concept of [22]. In parallel to the survey [41], another excellent

survey was posted by Kuziak and Yero [25]. The latter survey focuses on variants of
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the metric dimension, and in particular gives a thorough list on results on the k-metric

dimension with a special attention to the case k = 2, that is, to the fault-tolerant metric

dimension.

In the next section, we observe that each twin vertex of G is a member of a fault-

tolerant resolving set. As a consequence, we deduce that β′(G) = n(G) iff each v of G is a

twin. (Here and later, n(G) denotes the order of G.) This result corrects a characterization

with β′(G) = n(G) that was incorrect in [35]. In Section 3, we determine the FTMD of

Butterfly, Benes, and silicate networks. For each of these networks, partial results were

reported in [17]. Moreover, our results disprove related conjectures from the same paper.

2 Twin vertices

The open neighborhood of a vertex u ∈ V (G) is N(u) = {v ∈ V (G) : uv ∈ E(G)}, the

closed neighborhood of u is N [u] = N(u) ∪ {u}. Different vertices u, v ∈ V (G) are twins if

either N [u] = N [v] or N(u) = N(v). We further say that u is a twin vertex, if there exists

v 6= u such that u and v are twins. Note that if N [u] = N [v], then uv ∈ E(G), and if

N(u) = N(v), then uv /∈ E(G). Twins are a very natural concept, hence no wonder that

they were differently named in the literature. For instance, many authors say that u and v

are true twins or adjacent twins when N [u] = N [v] holds, and false twins or non-adjacent

twins when N(u) = N(v), cf. [3, 26].

The role of twins for the metric dimension has been clarified in [18]. For the fault-

tolerant metric dimension, we have the following observation.

Lemma 2.1 If u is a twin vertex of a graph G, and S is a fault-tolerant resolving set of

G, then u ∈ S. In particular, if S is the set of twin vertices of G, then β′(G) ≥ |S|.

Proof. Let u be a twin vertex of G and let v 6= u be a vertex such that u and v are twins.

Let S is a fault-tolerant resolving set of G. Since d(u, x) = d(v, x) for every x 6= u, v

(cf. [18, Lemma 2.3]), and since S is a resolving set, at least one of u and v belongs to S.

If u ∈ S there is nothing to prove. Assume hence that v ∈ S. Since S is a fault-tolerant

resolving set, the set S \ {v} is a resolving set. If u /∈ S, then the twins u and v have the

same distance to all the vertices of the resolving set S \ {v}, a contradiction. �
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Lemma 2.1 will be very useful in our consideration of interconnection networks in the

next section. Before that, we point to a couple of errors from [35].

Chartrand, Eroh, Johnson, and Oellermann [7] proved that (i) β(G) = n(G) − 1 iff

G is complete; and that (ii) if n(G) ≥ 4, then β(G) = n(G) − 2 ⇔ G belongs to one of

the following graph classes Ks + Kt (s ≥ 1, t ≥ 2), Ks,t (s, t ≥ 1), and Ks + (K1 ∪ Kt)

(s, t ≥ 1). Parallel results to (i) and (ii) were erroneously claimed in [35, Theorem 7]

and [35, Theorem 8], respectively. In particular, in the first of these results the authors

claim that β′(G) = n(G) ⇔ G is complete. The correct result reads as follows.

Proposition 2.2 Let G be a connected graph. Then β′(G) = n(G) if and only if each

vertex of G is a twin vertex.

Proof. If each vertex of G is a twin vertex, then β′(G) = n(G) by Lemma 2.1.

Conversely, suppose that u ∈ V (G) is not a twin vertex. Then we claim that V (G)\{u}

is a fault-tolerant resolving set. To show it, we only need to consider a pair of vertices u

and x, where x is an arbitrary vertex from V (G) \ {u}. Clearly, 0 = d(x, x) < d(u, x). In

addition, since u and x are not twins, there exits a vertex y adjacent to exactly one of u

and x. Hence d(u, y) 6= d(x, y). We conclude that if G contains a vertex which is not a

twin, then β′(G) < n(G). �

The graphs from Proposition 2.2 can be described as follows. Its vertex set can be

divided into disjoint parts of the order at least two, each part containing vertices that are

pairwise twins. Moreover, each of these parts induces either a full graph or a null graph.

Between each pair of these parts, there are either all possible edges or none at all.

As mention in the introduction, the fault-tolerant metric dimension is just the 2-metric

dimension, and the two results of this section were actually already established in [11].

In particular, our Proposition 2.2 is [11, Corollary 5]. We have nevertheless derived these

results also here from the following reasons. First, in this way we are self-sufficient.

Second, the arguments are fairly simple. And finally, [11, Corollary 5] is deduced from [11,

Proposition 4], where the latter result is stated in a slightly different and more involved

language.

4



3 Butterfly, Benes, and silicate networks

The illustration of a multistage interconnected model as graph has processors as vertices

and interconnections between processors as edges. The structural features of interconnec-

tion networks were investigated in [24]. Here, we determine the fault-tolerant metric di-

mension for two classes of such networks—butterfly networks and Benes networks. These

networks were presented by Manuel et al. [29], and investigated from differents angles,

see [29] for their metric dimension, [20] for their degree-based topological indices, [34]

for their Wiener index, [33] for their Zagreb indices and polynomials, and [30] for their

crossing number.

For r ≥ 3, the r dimensional butterfly network BF (r) is defined as follows. Its vertices

are pairs [s, j], where s runs over all r-bit binary strings, and j ∈ {0, 1, . . . , r}. The vertices

[s, j] and [s′, j′] are adjacent iff |j − j′| = 1, and either s = s′ or s and s′ differ precisely in

the jth bit. Note that the order and the size of BF (r) are 2r(r+1) and r2r+1, respectively.

In the normal representation of BF (r), the first coordinate of the vertex is interpreted as

the row of the vertex and its second coordinate is a column called level of the vertex. See

Fig. 1 where BF (3) is drawn.

[000,0] [000,1] [000,2] [000,3]

[001,0] [001,1] [001,2] [001,3]

[010,0] [010,1] [010,2] [010,3]

[011,0] [011,1] [011,2] [011,3]

[100,0] [100,1] [100,2] [100,3]

[101,0] [101,1] [101,2] [101,3]

[110,0] [110,1] [110,2] [110,3]

[111,0] [111,1] [111,2] [111,3]

Figure 1: Normal representation of BF (3)
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In [17, Corollary 5.3] it was proved that β′(BF (r)) ≤ 4 · 2r and conjectured [17,

Conjecture 5.4] that the equality holds here, that is, β′(BF (r)) = 4 ·2r. In our next result

we determine β′(BF (r)) which disproves the conjecture.

Theorem 3.1 If r ≥ 3, then β′(BF (r)) = 2r+1.

Proof. From the definition of BF (r) we infer that the vertices [i−1, 0] and [i−1+2r−1, 0]

are twins for each i ∈ [2r−1]. (We use the convention [n] = {1, . . . , n}.) Moreover, for each

i ∈ [2r−1], the vertices [2i − 2, r] and [2i − 1, r] are also twins. That is, each vertex from

the first and the last level of BF (r) is a twin vertex. Hence BF (r) contains (at least) 2r+1

twin vertices, therefore β′(BF (r)) ≥ 2r+1 by Lemma 2.1.

To prove that β′(BF (r)) ≤ 2r+1, we are going to show that the set X consisting of

the vertices from the first and the last level of BF (r) forms a fault-tolerant resolving set.

For this sake, let [s, i] and [t, j] be arbitrary vertices of BF (r). We need to show that

they are distance distinguished by two vertices of X. If at least one of [s, i] and [t, j] lies

in X, then the conclusion is clear, hence we may assume in the rest that i, j ∈ [r − 1].

Suppose first that i 6= j and assume w.l.g that i < j. Then d([s, i], [s, 0]) < d([t, j], [s, 0])

and d([t, j], [t, r]) < d([s, i], [t, r]). As [s, 0], [t, r] ∈ X, we have required two vertices in this

case.

It remains to consider vertices [s, i] and [t, i], where i ∈ [r − 1] and s 6= t. Let

s = s1 . . . sr and t = t1 . . . tr. The following facts will be used in subsequent lines. If x =

x1 . . . xr and d([x, 0], [s, i]) = i, then xi+1 = si+1, . . . , xr = sr. Similarly, if d([x, r], [s, i]) =

r − i, then x1 = s1, . . . , xi = si. The binary labels s and t are different, hence they

differ in at least one coordinate. Assume first that there exists an index k > i such that

sk 6= tk. Then we infer that d([s, 0], [s, i]) = i < d([s, 0], [t, i]) and that d([t, 0], [t, i]) = i <

d([t, 0], [s, i]). Hence the vertices [s, 0], [t, 0] ∈ X distinguish [s, i] and [t, j]. In the second

case we may thus assume that si+1 = ti+1, . . . , sr = tr. Let k be an index such that sk 6= tk.

By the case assumption, k ≤ i. Consider now the vertices [s, r] and [t, r]. Suppose that

d([s, r], [s, i]) = r−i = d([s, r], [t, j]). Then, by the above fact, t1 = s1, . . . , ti = si. But this

means that t = s, a contradiction. It follows that d([s, r], [s, i]) = r − i < d([s, r], [t, i]).

Similarly we obtain that d([t, r], [t, i]) = r − i < d([t, r], [s, i]). Hence in this case the
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vertices [s, r] and [t, r] from X distinguish [s, i] and [t, j] and we are done. �

For r ≥ 3, the r-dimensional Benes network B(r) is defined similarly as BF (r). The

vertices are again ordered pairs [s, i], where s runs over all r-bit binary strings, but now

i ∈ {0, 1, . . . , 2r}. The edges in B(r) up to level r are just as in BF (r), while later on,

the edges are vertically reflected. The formal definition should be clear from Fig. 2, where

B(3) is shown in its normal representation.

[000,0] [000,1] [000,2] [000,3] [000,4] [000,5] [000,6]

[001,0] [001,1] [001,2] [001,3] [001,4] [001,5] [001,6]

[010,0] [010,1] [010,2] [010,3] [010,4] [010,5] [010,6]

[011,0] [011,1] [011,2] [011,3] [011,4] [011,5] [011,6]

[100,0] [100,1] [100,2] [100,3] [100,4] [100,5] [100,6]

[101,0] [101,1] [101,2] [101,3] [101,4] [101,5] [101,6]

[110,0] [110,1] [110,2] [110,3] [110,4] [110,5] [110,6]

[111,0] [111,1] [111,2] [111,3] [111,4] [111,5] [111,6]

Figure 2: B(3) drawn in its normal representation

The order and the size of B(r) are 2r(2r+1) and r2r+2, respectively. In [17, Corollary

4.3] it was proved that β′(B(r)) ≤ 13 · 2r−1 and conjectured [17, Conjecture 4.4] that the

equality holds here, that is, β′(B(r)) = 13 ·2r−1. In our next result we determine β′(B(r))

which disproves the conjecture.

Theorem 3.2 If r ≥ 3, then β′(B(r)) = 3 · 2r.

Proof. Following the arguments adopted in Theorem 3.1, we observe first that each vertex

from the first, the middle, and the last level of B(r) is a twin vertex. Hence B(r) contains

(at least) 3 · 2r twins, therefore β′(B(r)) ≥ 3 · 2r by Lemma 2.1.

To prove that β′(B(r)) ≤ 3 ·2r , we claim that the set X consisting of the vertices from

the first, the middle, and the last level of B(r) forms a fault-tolerant resolving set. To

7



show it we take arbitrary vertices [s, i] and [t, j] of B(r). If at least one of them is in X,

then two vertices from X clearly distinguish them. Hence we may assume i, j ∈ [2r−1]. If

i 6= j, where i < j, then d([s, i], [s, 0]) < d([t, j], [s, 0]) and d([t, j], [t, 2r]) < d([s, i], [t, 2r]).

Hence it remains to consider vertices [s, i] and [t, i], where i ∈ [2r − 1] and s 6= t. If

i ∈ [r − 1], then we proceed analogously as in the proof of Theorem 3.1, hence we omit

the details. And if i ∈ {r+1, . . . , 2r− 1}, then by the vertical symmetry of B(r) over the

level r (with respect to the normal representation of B(r)) we get the required conclusion

is an analogous way. �

For Benes and butterfly networks, it was also conjectured in [17, Conjecture 7.1] that

the FTMD problem is polynomially solvable. Theorems 3.1 and 3.2 clearly confirm the

conjecture.

The last networks we consider are the silicate networks SL(n), n > 1, which can

be defined as follows. Begin with the nth member of the circumcoronene homologous

series Hn, which consists of the central hexagon and n − 1 layers of hexagons around it.

(Metric-based resolvability of these polycyclic aromatic hydrocarbons were very recently

investigated in detail in [1].) Then subdivide each edge of it, and finally append a K4

around the original vertices of Hn, where for each outer vertex of Hn we need to add an

additional vertex to accomplish K4. The construction should be clear from Fig. 3, where

SL(2) is drawn.

More generally, the anionic substructure of silicates comprises (SiO4) tetrahedra, which

can crosslink by sharing common corners. Their primary variety has been widely explored,

starting from mineralogy and topography to chemical, physical, and computer sciences.

From a synthetic perspective, the tetrahedron’s focal hub represents the silicon particle,

while the corner ions speak to the oxygen atoms, while the corner vertices represent oxy-

gen atoms. We get distinct silicate structures by arranging different ways of tetrahedra.

Papers [16, 28, 31] derive some topological features of the silicate networks. This net-

work family is a multi-stage interconnection network comparable to the hexagonal [9] and

honeycomb [40] networks used in computer science networks [40]. This is achieved by

suggesting an addressing scheme to the vertices of the silicate networks as suggested for

8



x1,1 x1,2

y1,1 y1,2 y1,3 y1,4 y1,5 y1,6

x2,1 x2,2 x2,3

y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8

x3,1 x3,2 x3,3 x3,4

y3,1 y3,2 y3,3 y3,4 y3,5 y3,6 y3,7 y3,8

x4,1 x4,2 x4,3

y4,1 y4,2 y4,3 y4,4 y4,5 y4,6

x5,1 x5,2

Figure 3: SL(2) and its twins

hexagonal in [13] and honeycomb [40].

The metric dimension of the silicate networks SL(n) was determined in 2011 as follows.

Theorem 3.3 [32] If n ≥ 2, then β(SL(n)) = 6n.

For the FTMD of silicate networks it was proved in [17, Proposition 6.4] that

6n+ 1 ≤ β′(SL(n)) ≤ 21n .

In our last result, we give an exact formula for FTMD of silicate networks.

Theorem 3.4 If n ≥ 2, then β′(SL(n)) = 12n.

Proof. SL(n) contains 6n pairs of twin vertices, as shown in Fig 3 for SL(2). Hence

SL(n) contains 12n twin vertices and thus β′(SL(n)) ≥ 12n by Lemma 2.1. To prove

the reverse inequality, we claim that these 12n vertices form a fault-tolerant resolving set.

Instead of proving it directly, we recall from the proof of [32, Theorem 5] that the set of

boundary vertices (the 6n outermost vertices in the standard drawing of SL(n), cf. Fig. 3)

of SL(n) is a (minimum) resolving set of SL(n). But then it straightforwardly follows

9



that these boundary 6n vertices, together with their respective twins, form a (minimum)

fault-tolerant resolving set. �

Acknowledgements
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