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Abstract

A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, 

quantified using anatomical diffusion imaging, in terms of their “controllability”, drawing on 

concepts and methods of control theory. They reported that brain activity is controllable from a 

single node, and that the topology of brain networks provides an explanation for the types of 

control roles that different regions play in the brain. In this work, we first briefly review the 

framework of control theory applied to complex networks. We then show contrasting results on 

brain controllability through the analysis of five different datasets and numerical simulations. We 

find that brain networks are not controllable (in a statistical significant way) by one single region. 

Additionally, we show that random null models, with no biological resemblance to brain network 

architecture, produce the same type of relationship observed by Gu et al. between the average/

modal controllability and weighted degree. Finally, we find that resting state networks defined 

with fMRI cannot be attributed specific control roles. In summary, our study highlights some 

warning and caveats in the brain controllability framework.
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1. Introduction

There is large consensus within the neuroscience community on the usefulness of network 

theory in contributing to describe the complex, self-organizing structure of the human brain 

(Bullmore and Sporns, 2009; Sporns, 2014). In the last two years, an increasing number of 

studies have applied the tools of control theory on brain networks (Kenett et al., 2018; John 

Dominic Medaglia et al., 2017a, 2017b; Tang et al., 2017; Wu-Yan et al., 2017) to quantify 

how anatomical network structure, defined by human connectome data (i.e., white matter 

pathways derived from diffusion tensor or diffusion spectrum imaging), constrain or 

facilitate changes in brain state trajectories. Indeed, the analysis of controllability has the 

potential to unveil how specific nodes, and/or sets of nodes, control the dynamics of the 

entire network (Medaglia et al., 2017b) and thus might provide insights on whether and how 

manipulating the local activity of specific nodes would fully or partially affect network 

functions and the activity of the other brain regions (see section 2.1 and below for in-depth 

discussion).

The idea of applying network control theory to neuroscience is thus based on the hypothesis 

that we can describe the dynamics of neuronal activity at brain resting state via a set of 

differential equations (Abdelnour et al., 2014; Galán, 2008; Messé et al., 2015; Saggio et al., 

2016) linearized around the resting state, which is itself a first strong assumption (see 

section 2.3). In this context, most of the studies on brain controllability have investigated if a 

single brain region can control the whole-brain dynamics via external stimulation, and 

attempted to identify the brain regions that possess a prominent control role.

Controllability of brain networks is important not only on theoretical grounds, but 

potentially also for clinical studies (Muldoon et al., 2016). Indeed, modern brain stimulation 

(NIBS) techniques, including deep brain stimulation (DBS), vagal stimulation (VS), 

transcranial magnetic (TMS) and electrical stimulation (TES) have the potential to enhance 

normal cognitive functions, and restore functions impaired by the effects of brain injuries or 

diseases either directly or by potentiating rehabilitation or drug therapies (Dayan et al., 

2013; Figee et al., 2013). The potential of these methods would be tremendously increased if 

supported by computational models of the brain controllability that define target sites 

according to a rigorous mechanistic framework.

Recently, Gu and collaborators (Gu et al., 2015) proposed to quantify the ability of a single 

brain region (i.e., network node) to control the brain dynamics by measuring the average and 

modal controllability (see section 2.2 for the mathematical definition). For example, they 

found that regions characterized by high average controllability have high node strength and 

this would facilitate the brain to easily reach many of its cognitive states. In contrast, high 

modal controllability, characterized by low node strength, would promote the transition to 

difficult-to-reach states. Furthermore, Gu et al. found that brain activity is controllable from 

a single node, and the topology of brain networks provides an explanation for the types of 

control roles that different regions play in the brain.

Here we present new results based on the analysis of four human anatomical brain 

connectivity datasets, data on C. Elegans connectomes and numerical simulations, 
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highlighting some warning and caveats in the use of brain controllability. In particular we 

show that there is no statistical evidence that brain networks are controllable from one single 

region and that biophysically irrelevant null models produce identical quantitative results as 

in prior work, highlighting the crucial role of proper experimental control and hypothesis-

testing. We end with a discussion of how the brain controllability framework should be 

theoretically developed to fulfill the aim of modeling the effect of the external perturbation 

on brain functions.

2. Material and Methods

2.1 Controllability Framework

In a broader context, controllability defines whether or not a dynamical system can be 

controlled through one or more external inputs. In mathematical terms, consider a system 

composed by n entities (e.g., brain regions) each described at time t by a state variable xi(t) 
(e.g., its activity). Assume that dynamics is described by the discrete time equation x(t + 1) 

= Ax(t), where x(t) = {x1(t),x2(t),…,xn(t)} is the column vector collecting all the states, A is 

a matrix depending on the network anatomical connectivity and incorporating the effective 

interactions in the (linear) dynamics between the states. We will specify it for the case of 

brain networks in section 2.3.

Controllability is a property of dynamical system with inputs, namely of systems of the form

x t + 1 = Ax t + Bu t , (1)

where u(t) = {u1(t),u2(t),…,up(t)} is a column vector collecting the p external inputs and B is 

a n × p matrix, called input matrix, whose entry Bij is one if the input uj(t) affects the state 

xi(t), otherwise it is zero. Systems of this form are said to be controllable if any desired final 

state xf = x(t → ∞) is achievable through a suitable choice u(t) It can be proved that a 

system is controllable if the so-called n × np Kalman controllability matrix C = [B AB A2B 
… An−1B] has full rank (Chen, 1995; Kalman, 1963). There exists an equivalent condition 

for controllability. If all eigenvalues of A lie in the unit circle1, namely the system Eq. (1) is 

stable, then it can be proved that the equation W − AWA′ = BB′2 has a unique solution W 

that is W = ∑m = 0
∞ AmBB′(A′)m that is called the discrete controllability Gramian. It has been 

shown that the system is controllable if and only if W is positive definite or equivalently if 

the minimum eigenvalue of W is strictly larger than zero (Chen, 1995).

In order to avoid confusion, we need to distinguish between “controllability” as originally 

defined by Kalman (Chen, 1995; Gu et al., 2015) and “structural controllability” (Dion et al., 

2003; Lin, 1974; Shields and Pearson, 1976). Indeed, while controllability is a property 

depending on the system matrices A,B and hence also on the weights of the network, 

structural controllability depends only on the system (topological) structure or graph, which 

is given by fixing all nonzero entries of the systems matrices A and B. Therefore, the system 

1For continuous systems, all eigenvalues of A must have negative real parts.
2The prime superscript represents the transpose operation.
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structure can be defined by the binary matrices (i.e. graphs) A and B and a realization of the 

structure is any weighted matrix (i.e. network) pair A, B in which we allow the entries to be 

nonzero only where the entries of A, B are nonzero. A system structure is structurally 

controllable if there exists any realization A, B which yields a Kalman controllable system 

(Lin, 1974; Tu, 2015).

In many cases, the weights of the matrix A are not known, or they are known only 

approximately, or it is known only which weights are zero, i.e., only the graph associated 

with A is available from data. For this reason the notion of structural controllability has been 

promoted as the right tool in these cases since it depends only on the topological properties 

of the network (Lin, 1974; Shields and Pearson, 1976; Reinschke, 1988; Dion et al., 2003; 

Liu et al., 2011; Godsil, 2012). In particular, Liu et al. (Liu et al., 2011) developed analytical 

tools to assess the minimum number of driver nodes ND able to structurally control the 

system. They mapped the problem into a matching problem (i.e., finding independent edge 

set in a direct graph (Liu et al., 2011)) showing that: (i) if there is a perfect matching in the 

network, then ND is equal to one; (ii) otherwise, ND coincides with the number of 

unmatched nodes with respect to any maximum matchings (see Liu et al., 2011 for more 

details).

Nevertheless, we think that, at the current stage, these results are of limited interest to 

understand the controllability of human brain anatomical networks for two main reasons. 

First, the networks derived from diffusion imaging techniques are symmetric, and thus the 

above theorems cannot be used. Second, even if a network is structurally controllable, it may 

happen that the energy of the input needed to control the system is so huge that the system is 

not controllable in practice.

In order to have a way to actually understand how controllable is our system, we can define 

the “energy” needed to control a network. Since there are many inputs u(t) driving the 

system from the initial state x0 = 0 to the desired final state xf, then one can try to find the 

input with minimum energy. It is known that this minimum energy depends on the 

controllability Gramian W and, in the worst case, coincides with the inverse of its minimum 

eigenvalue, i.e. ϵmin = λmin
−1 W . Notice that, if ϵmin is very high, then the system is very 

difficult to control (Pasqualetti et al., 2014). In fact, the energy to control the entire network 

with one node increases exponentially with the number of nodes in the graph (Kim et al., 

2017).

2.2 Controllability of the Brain Network

Gu and collaborators (Gu et al., 2015) focused their study on the Kalman controllability of 

the brain network. In particular, referring to a previous theoretical work (Pasqualetti et al., 

2014), they considered the average controllability and the modal controllability of a 

network. The first is defined as the average input energy from a set of control nodes and over 

all possible target states (Marx et al., 2004; Shaker and Tahavori, 2013). From this 

definition, it follows (Pasqualetti et al., 2014) that it can be calculated as the trace of the 

inverse of the Gramian matrix, i.e. (Wk
−1), where Wk is the Gramian calculated from the 

node k. However, in practice and in our case of interest (brain networks), the Gramian may 
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result very close to be singular (i.e., very ill-conditioned). Therefore, Gu and collaborators 

proposed to use the trace of the Gramian as a reliable measure of the network average 

controllability. In this way it is also natural to define the average controllability of the k-th 

node of the network by dk = Tr(Wk). Finally, they assumed that regions with high average 

controllability are, on average, most influential in the control of network dynamics over all 

different target states. Note that, as defined by Eq. (1), controllability is a property of a 

system with respect to external inputs u. When assessing the control role of a given region 

(or node) we are always considering the effectiveness of the external input uk applied on the 

brain region k, in coordinating other brain regions activity state. This is not the same as 

saying that the internal, spontaneous activity of region k (which crucially depends on its 

dynamics) can easily control other regions (in the absence of the external input uk). In other 

words, one cannot embed a region as a state variable in a dynamical system, while also 

treating it as an external input. While there may be situations in which this is true, it is not 

true in general.

On the other hand, the modal controllability is calculated from the eigenvalues and 

eigenvectors of the matrix A, i.e., it is given by ϕi = ∑ j = 1
n (1 − λ j A 2)νi j

2  where vij is {i,j}-th 

entry of eigenvector matrix and (λ1,⋯,λn) are the corresponding eigenvalues of A. The 

modal controllability is interpreted as the ability of a node to control the dynamics of the 

network toward “difficult to reach” states, i.e. states with high energy with respect to the 

other states. Nevertheless, we highlight that this is more an interpretation than a quantitative 

result, as the definition of modal controllability involves all the eigenvalues and eigenvectors 

of the linearized system dynamics given by the matrix A. We cannot offer an alternative 

interpretation of this quantity, as it is far from evident how it is related to the Gramian 

controllability matrix.

2.3 Whole Brain Modelling Framework

As explained above, in order to apply Control Theory to the brain network, we need to 

specify the equations describing the dynamics of the system activity. In our case the system 

is the brain, and thus we need a model that is able to capture, at least qualitatively, the neural 

activity of the brain regions during resting state. Following Gu et. al. (see Supplementary 

Material of their work, section 1), we employed a simplified linear discrete-time neural 

dynamics model. This model is a noise-free variation of the Galán model (Galán, 2008) and 

can be derived from the linearization of a general Wilson-Cowan system (for strengths and 

weakness of this model see (Galán, 2008; Honey et al., 2009; Muldoon et al., 2016)). We 

then discretized the linearized dynamics and obtained the explicit form of the linearized 

dynamics given by the matrix A:

A = 1 − αΔt I + cMΔt (2)

where α is the inverse of the relaxation time (i.e., the characteristic time needed to return to 

a quiescent state after a burst of activity), Δt is the time step that we use to update the brain 

state in time, I is the n × n identity matrix, M is the matrix describing the anatomical 

connectivity of the brain and c is a normalization constant. As we will explain in the 
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following subsection, we characterized the anatomical connectivity matrix M in different 

ways, from computer-generated random networks, with no or little biological realism, to real 

brain networks based on diffusion tensor or diffusion spectrum imaging (DTI/DSI) data 

from different studies (Brown et al., 2012, 2011; Hagmann et al., 2008). We compared our 

results with those reported by Gu and collaborators who however did not use Eq. (2) in their 

controllability framework but directly derived the matrix A from DTI and diffusion spectrum 

imaging (DSI) data. Although we do not agree on this procedure that neglects the 

differences between the linearized system dynamics given by the matrix A and the brain 

connectivity structure given by the matrix M, we note that, for the case of the Wilson-Cowan 

modeling framework, in practice there is no relevant difference between the two approaches 

on the final results. However, some critical issues should be highlighted at this point:

1. Depending on the model, the relation between the linearized matrix A and the 

structural (i.e., anatomical) connectivity M will be different. From a 

methodological point of view, it is worth noting that Gu et al. did not derive the 

matrix A from any model, but they used directly the anatomical structural 

connectivity. If one uses the DTI (weighted) graph as the (linear) dynamical 

model A (as in Gu et al. work), then the analysis of the dynamical model reduces 

to the analysis of the graph, thus assessing dynamics features (and, consequently 

control properties) from strictly static data.

2. The networks A for the different datasets are always unstable. Adopting the Gu 

et al. approach implies the necessity to perform a normalization (i.e., Anorm = 

A/(1 + λmax(A)), where λmax(A) is the maximum absolute value of the 

eigenvalues of the matrix A) to ensure that the controllability metrics in question 

are well-defined. Therefore, the edge weights of the networks (i.e. the intrinsic 

linear dynamics of each brain region) are set on the basis of mathematical 

convenience, without a proper analysis on the limitations or biological meaning 

of this procedure.

3. The premise that the brain can be linearized about a dominant fixed point is a 

strong assumption. In fact, at local circuit levels it is generally accepted that 

neurons can embody quite different dynamical regimes (e.g., synchronization, 

oscillations, etc.) depending on the overall network state, which cannot be 

accounted for by linear generative models. Thus, any conclusions made through 

this framework only hold locally in what is likely a very limited region of the 

actual traversed state space of neural activity.

We finally note that Gu and collaborators did not perform any comparison with random null 

models. The use of a null model, as we will now show, is crucial to formally assess the 

specific role of the brain topology in determining the observed results, and it is a standard 

approach in network science (Grilli et al., 2017; Molloy and Reed, 1995; Newman, 2010).

2.4 Brain Networks: Data, Synthetic Random Networks and Random Null Models

Human Brain Data—We first applied the controllability framework to four empirical 

datasets of anatomical (DTI or DSI) brain networks. All datasets are open access and were 

obtained from the Human Connectome Project (“USC Multimodal Connectivity Database,” 
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n.d.), i) the APOE-4 dataset (Brown et al., 2011) (N = 30 APOE-4 non-carrier and N = 25 

APOE-4 carrier individuals; gray matter parcellation into n = 110 large scale regions); ii) the 

Rockland dataset (Brown et al., 2012) (N = 195 healthy subjects, n = 188 large scale 

regions); iii) the Hagmann dataset (Hagmann et al., 2008) (average matrix corresponding to 

N = 5 healthy subjects, n = 66 cortical regions) and iv) the Autism dataset (Brown et al., 

2012) (N = 94 healthy subjects, n = 264 large scale regions). For more specific details on the 

data acquisition and preprocessing we refer to the original studies.

C. Elegans data—As previously noted, for directed graphs the minimum set of driver 

nodes making the system structural controllable can be computed. Therefore, we employed 

the framework of structural controllability (see section 2.1) to investigate the minimum 

number of driver nodes to control the directed connectome of C. Elegans. It is interesting to 

compare the results on the number of minimum control nodes using different methods 

(Kalman vs. structural) on different datasets (human vs. C. Elegans). We considered the 

neuronal connectivity of the N2U (a hermaphrodite adult) and the JSH (a L4 male) worms. 

Both data were taken from the Worm Atlas (WormAtlas, n.d). Network connectivity 

encompasses chemical synapses and gap junctions. Because the edge weights do not affect 

the analysis of structural controllability, we just considered the corresponding directed 

binary networks by assigning 1 if there existed a connection between neurons i and j, i.e. Mij 

= 1, and zero otherwise. Following the methodology proposed by Liu et al., 2011, we 

applied the analysis directly on the C. Elegans connectome M. The N2U network included a 

giant connected component composed by 190 neurons and 2815 edges as well as 12 isolated 

nodes; while L4 network contained a single giant connected component composed by 202 

neurons and 3007 edges.

Synthetic Random Networks—We generated three types of synthetic brain anatomical 

random networks, namely, the Barabasi-Albert (BA) scale-free, Small-World (SW) and 

Erdős–Rényi (ER) networks (Newman, 2010). We used the same node number, connectivity 

and edge weight distribution of the averaged DTI matrix of the APOE-4 brain dataset. The 

synthetic random networks were generated using standard routines available in the 

Mathematica software. We applied the controllability framework to synthetic random 

networks to assess the number of the minimum subset of control nodes (Table 1) for a fixed 

amount of energy, and the controllability profile of the average and modal controllability 

(Figure 1).

Random Null Models—We also generated random null models of the brain network data 

by randomizing the network structure of the DTI matrices M with the exception of some 

topological properties (Newman, 2010). In this way one can understand which and how 

much the specific properties of network explain the observed results. This approach is 

widespread in the study of ecological and biological networks (Maslov and Sneppen, 2002; 

Suweis et al., 2013). If some properties of the complex system are observed (for example 

stability to perturbations), is there something characteristic in the way species interact that 

lead to the observed phenomena? To answer this question, we need to compare the results 

observed for real data, with those generated by networks that have, for example, the same 

size and connectivity, but different high order network structure (e.g., degree distribution, 
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cluster coefficient, etc.). We designed two different random null models to understand the 

specific role of the brain network topology on the results of controllability analyses. In the 

first one we randomly rewired all links of a real brain network, keeping only the symmetry 

and the diagonal entries of the original matrix. The resulting null model has the same 

number of nodes, connectivity, diagonal, and edge weight list of the original data, but all the 

other properties are free to vary over permutations. We applied the controllability framework 

to random rewired networks in order to investigate the relations between weighted degrees 

and average/modal controllability (Figure 2). In the second null model, beyond the 

constraint of null model 1, we also kept the in-degree and out-degree of each node. This is 

also called configuration model/network and it conserves also the average degree sequences 

of the original networks (Maslov and Sneppen, 2002; Molloy and Reed, 1995; Suweis et al., 

2015). Other high order topological properties (clustering coefficient, motifs, etc.) are 

instead different. We use the configuration network to assess the role of the topological 

properties of the resting state networks (RSNs) in the modes of controllability (Figure 3).

2.5 Centrality measures

We investigated in both real and synthetic random networks the role of node centrality with 

respect to its impact on average network controllability (see Result section). In network 

science, centrality addresses the question of which are the most important nodes in a 

network, from different perspectives. Degree centrality considers that node’s importance as 

depending on the number of connections to other nodes and it refers to the number of links 

for a given node to other nodes (Newman, 2010). Betweenness centrality considers that 

node’s importance as depenings on the number of the shortest paths that pass through the 

node v and is given by ∑s ≠ v ≠ t nst v /nst where nst is the total number of shortest paths from 

node s to node t and nst(v) is the number of those paths that pass through the node (Newman, 

2010). Eigenvector centrality considers that node’s importance as depending on the 

connections to other nodes that are themselves important and it is given by the vector c 

which solves the equation c = 1
λ ATc, where A is the adjacency matrix and λ is the 

corresponding largest eigenvalue (Newman, 2010). Page-rank centrality considers that 

node’s importance as depending on the number and quality of edges to a node and it given 

by the vector x which solves the equation x = αAD−1x + β1, where 1 is the vector (1, 1, 1, 

…), D is the diagonal matrix with elements Dii = max ki
out, 1  and ki

out is the out-degree of 

node i (Newman, 2010). For random networks, all these centralities measures are correlated 

one to another.

3. Results

3.1 Brain controllability with finite energy and role of node centralities

We first applied the controllability framework to the four empirical open access datasets of 

large-scale anatomical brain connectivity. Following the original work of Galán (Galán, 

2008), we fixed α = 1.0,Δt = 0.2. The input matrix BK identifies the set of control points K 

in the brain, where K = {k1,⋯,kp} and BK = ek1
, · · · , ekp

, where ei denotes the i-th 

canonical vector of dimension n. We found that, when K contains only one node/region, all 
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the minimum eigenvalues of the controllability Gramian associated with the brain networks 

we analyzed were negative: λmin WK = − 2.137 ⋅ 10−14 ± 4.821 ⋅ 10−14 (Rockland dataset), 

λmin WK = − 8.555 ⋅ 10−17 ± 2.298 ⋅ 10−17 (APOE-4), 

λmin WK = − 7.68 ⋅ 10−16 ± 2.990 ⋅ 10−15 (Autism dataset) and 

λmin WK = − 7.650 ⋅ 10−17 ± 3.352 ⋅ 10−17 (Hagmann dataset). Nevertheless, all the 

λmin(WK) are statistically compatible with zero and thus the associated controllability 

Gramian cannot be inverted. These results show that it is not possible to infer one node 

controllability of the brain numerically.

Next, we studied the role of nodes’ topological properties in controlling the brain network, 

but in a more practical way by fixing an upper bound on the minimum level of energy 

allowed to control the system. We arbitrarily set this threshold to ϵmin = 1010 and we then 

search for the minimum number of nodes that are needed to control the system spending a 

minimum energy not greater than ϵmin. If we remove the upper bound (ϵmin → ∞), we find 

that we cannot assess the theoretical controllability of the brain, i.e., a threshold is necessary 

if we want to numerically study the brain controllability in a meaningful way. The results 

presented in Table 1 have been obtained using the averaged DTI matrix for each group of 

individuals (Mav). In the Hagmann dataset, the average fraction of nodes to control the 

system with energy not greater than ϵmin is 0.3. For the other two datasets, the precise 

computation of the minimum fraction of nodes to control the system with ϵ ≤ ϵmin becomes 

computationally unfeasible (too large network sizes).

Following Gu and collaborators’ claim on the importance of nodes centrality (Gu et al., 

2015), we first ranked all networks nodes according to five distinct centrality measures (see 

Methods section) following both the ascending and descending order. Then we generated a 

list of nodes in random order, irrespective of the nodes properties. For each of these two 

nodes sequences (“low” and “high”), we determined the minimum subset of nodes needed to 

control the brain network with an energy ϵmin = λ−1(WK). We have repeated this analysis for 

the APOE-4 datasets as well as for synthetic brain networks generated with a desired 

network topology. Table 1 presents the results for the number of the minimum subset of 

control nodes with respect to the five different centralities measures for the APOE-4 data 

(Brown et al., 2011) (n = 110 nodes), synthetic random Barabasi-Albert network (BA), 

Small-World network (SW) and Erdős–Rényi network (ER) (Newman, 2010). All synthetic 

random networks have the same node number, connectivity and edge weight distribution of 

the APOE-4 dataset to allow a proper comparison.

No matter which centrality measure is adopted and how we generated the node sequences, 

the size of the minimum subset was similar in all cases (and as expected larger than one). 

This result suggests that the topological characteristic of the single brain region may play a 

specific role in the one node theoretical controllability (Kim et al., 2017), but in practice 

when fixing the energy all regions (nodes) seem to play an equivalent role in the average and 

modal controllability of the network. We highlight that this is not true in general for any 

networks, but in the case of not-so-sparse and undirected symmetric matrices, as in the case 

of human brain DTI/DSI networks. Pruning or introducing a direction in the network edges 
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will have thus a remarkable impact on the role of topology and hence on the network 

controllability (Kim et al., 2017), as we will also show with the analysis of the C. Elegans 

connectome.

3.2 Relation between nodes weighted degree and the corresponding average/modal 
controllability

The next step was to investigate whether the linear relationship between weighted degrees 

and the average/modal controllability observed for human brain networks (see Figure 2 in 

Gu et al., 2015) is due to the specific brain network topology, or if it also holds for random 

networks.

First, we examined the relationship between average controllability and modal 

controllability of each node in synthetic random networks of different types (see section 2.4 

and Figure 1 a-c) and compared it with results for the APOE-4 dataset. Not surprisingly, we 

found that for APOE-4 data, average and modal controllability are linearly and negatively 

correlated. Indeed, this is expected if both controllability measures correlate with the 

network weighted degree. Nevertheless, the same linear relationship also holds for all the 

synthetic random networks (see Figure 1 d). However, the range in controllability covered 

by the brain network data seems to be somehow larger with respect to the corresponding 

random synthetic networks. At the same time, the range in values of both average and modal 

controllability is extremely limited, a feature not evident in the work of Gu et al. (Gu et al., 

2015) as they showed only rank-rank plots.

Second, following the procedure adopted by Gu et. al. (Gu et al., 2015) (Fig. 2 b and d in 

their main text), we computed the average of the rank plots between one node average/modal 

controllability and weighted degree of our four brain dataset (see Figure 2; for details on 

average rank plots see Gu et al.’s methods section). As Fig. 2a and 2c show, for all the 

analyzed real data we found the same relation between controllability and network centrality 

reported by Gu et al. We then randomized the anatomical connectivity data and calculated 

average/modal controllability as a function of nodes’ properties in the random networks. 

Surprisingly, as shown in Fig. 2b and 2d, we still found exactly the same relationship as 

before. We stress that the relationships in average controllability and modal controllability 

between real and randomized networks are not an artifact of the rank-rank plots. In fact, 

controllability measures between real and randomized networks are not distinguishable also 

by examining unranked magnitudes (although the values ranges are very limited, similarly to 

what shown in Figure 1).

Indeed, as also shown by Gu et al., the relation between average node controllability and 

node centrality can be inferred analytically in the limit of “small” values of the entries of A 

(i.e., aij ≪ 1, that is always satisfied for the normalization condition). This was noted in the 

Supplementary Information of Gu et al. (p.5), where they show that the dj – average 

controllability of the node j – is simply the j-th diagonal element of the matrix 

𝕀 − A2 −1 ≈ 𝕀 + A2, where 𝕀 is the identity matrix, resulting in dj = 1 + ∑i = 1
N aij

2 , while the 

degree centrality is kj = ∑i = 1
N aij, thus proving that “a positive correlation between node 
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degree and average controllability is mathematically expected”. But this is true for any 

network satisfying aij ≪ 1, also the random ones.

We performed a linear fit y=mx +q for both data and random networks and we found that the 

angular coefficients (m) describing the relation shown in our Figure 2 between node 

controllability and degree centrality are compatible within 3 standard deviations in all 

dateset (see Table 2). In other words, there is no significant difference between the observed 

linear relations in the data and in the corresponding randomized dataset.

3.3 Role of the topological properties of the RSNs in the modes of controllability

Finally, we tested if different RSNs can be characterized in terms of different modes of 

controllability. RSNs were defined for the Hagmann dataset according to published RSNs 

templates (Sizemore et al., 2016). Following Gu et al.’s procedure, we considered the twenty 

nodes with highest average controllability, and then calculated a vector cdata, where its j-th 

component gives the percentage of the nodes that belongs to the j-th RSN. We highlight that 

the method proposed by Gu and collaborators to construct the vector c depends on how one 

defines the controllability hubs. In fact, the choice to consider hubs the twenty nodes (thirty 

in their case) with the highest average controllability are arbitrary. The problem is that the 

results of relation between RSNs networks and their controllability roles are dependent on 

this choice. We tested different rankings of highest average node’s controllability, and we 

obtained different results. This is a caveat that must be taken in account when drawing 

conclusions from these results. The data used here, and the corresponding RSN templates, 

are based on 66 regions and thus we have considered a different number of nodes with 

highest average controllability with respect to Gu et al. (who used a parcellation with 234 

regions).

We repeated the Gu et al. analysis using the configuration null model (section 2.4), obtaining 

crand from random networks that retained the degree distribution of the original dataset, but 

had lost all other higher degree topological properties. We found that both real and 

randomized networks displayed very similar results on the modes of controllability of the 

different RSNs (see Table 3 and Figure 3), as also attested by a significant Pearson 

correlation ρ = 0.762. In other words, we found that RSNs cannot be attributed to specific 

control roles based on the present controllability framework.

3.4 Controllability of the C. Elegans Connectome

We finally investigated the controllability of the anatomical brain networks of C. Elegans 

data recently presented in Yan et al., 2017. In that case, the authors aimed at understanding 

the neural path involved in the control of a given activations or tasks, using target control 

analysis (Gao et al. 2014).

Using the same data, we can also properly calculate the minimum number of nodes ND to 

control the brain of C. Elegans (see Section 2.4) using rigorous analytical results based on 

maximum matching (see Section 2.1 and Liu et al., 2011). For the two individuals analyzed 

in this work we found that ND is around 20 nodes (ND = 18 and ND = 21 to control the N2U 

and L4 individuals, respectively). Therefore, even for simple organisms like the C. Elegans 
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we found that ND is much greater than 1. Unfortunately, the current structural controllability 

framework does not allow one to infer the associated energy needed to control the system 

using the ND driver nodes.

4. Discussion and Conclusions

The idea to apply network controllability to brain resting state activity is a remarkable 

contribution to neuroscience, opening up many fascinating avenues. The seminal work of Gu 

and collaborators (Gu et al., 2015) has been an inspiration for many subsequent studies in 

the attempt to better understand and master brain network controllability. But in science, 

progress goes in hand with understanding limits and inaccuracies of previous theories. Our 

work aims to help the progress in understanding how network control theory can be applied 

in neuroscience by highlighting some warnings and caveats in the current theoretical 

framework.

In order to study single node controllability (in Kalman sense), Gu and collaborators (Gu et 

al., 2015) calculated the controllability Gramian from each node of a network derived from 

average anatomical connectivity (DTI/DSI) data (as we have done in section 2.1). Their first 

finding was that the brain network can be theoretically controllable by a single region/node, 

i.e., the smallest (in absolute value) of the eigenvalues of the controllability Gramian 

λmin(WK) from each brain region taken as a control node was greater than zero. However, in 

agreement with our results, they found that the energy needed to control the system is so 

large (i.e., ϵmin = λmin
−1 WK = 10−23) that in practice the system is not controllable. Indeed, as 

the same authors recognized in a subsequent paper (Menara et al., 2017), in order to assess 

the controllability of the brain network from one region in a proper way, it is not necessary 

to compute λmin(WK) (which may also be not statistically different from zero, as in our 

cases and in Gu et al. (Gu et al., 2015)), but one has to prove that existence of a Hamiltonian 

path from each control region. That is, one has to prove that the brain network is 

Hamiltonian-connected (Menara et al., 2017). This is a NP hard problem (Alspach, 2012), so 

it may not be trivial to infer that the brain network is controllable from one single region.

A second important result of Gu et al. (Gu et al., 2015) is that average controllability was 

strongly correlated with the weighted degree, whereas modal controllability was strongly 

anti-correlated with the weighted degree. From these results they concluded that single brain 

regions have different control roles due to their different centrality in the brain network, 

suggesting a relation between the specific brain network topological structure and the 

control role of the different brain regions.

Finally, Gu et al. also evaluated the control contribution of different brain sub-networks 

associated with known cognitive process (i.e., resting state networks (RSNs)), and found that 

different RSNs have different control roles. In particular they suggested that 30% of average 

control hubs laid in the default mode system, while 32% of modal control hubs laid in the 

front-parietal cingulo-opercular cognitive control systems, supporting the hypothesis that the 

average and modal controllability deal with different control role. However, the present 

study shows that the same results hold for random computer-generated networks without 

biological realism. Indeed, we also found that the relationships between average/modal 
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controllability and weighted degree also hold for randomized data, which implies that this 

method cannot be used to attribute specific control roles to different RSNs. In other words, 

the results of the controllability analysis do not reveal a specific or optimized network 

organization in the brain, but are simply a consequence on the definition of average and 

modal controllability, which in their definitions encapsulate also a correlation with the node 

degree (positive and negative, respectively). The positive correlation between average 

controllability and weighted degree can be explained analytically.

Though theoretically intriguing, our understanding of the relationship between 

controllability and anatomical brain network remains elusive. In particular, using high 

precision data on C. Elegans connectomes (Yan et al., 2017), we have shown that even small 

connectomes cannot be controlled from a single node. This is highly probably true for the 

human brain, although current numerical analysis cannot confirm this result. Indeed, 

directionality of the anatomical brain connectivity is an important information to perform 

rigorous analysis for structural controllability. Nevertheless, as we have shown in this work, 

developing reliable methods for estimating directed resting state effective connectivity 

(Gilson et al., 2016; Jobst et al., 2017; Saggio et al., 2016), which yields to accurate directed 

graphs is only but one aspect of the resolution of the underlying model formulation problem. 

Moving to a controllability framework beyond linear models, where the dynamical 

complexity is effectively captured, is also a fundamental gap in the current literature. 

Another future step of crucial importance is to move from one node to multiple nodes 

controllability analysis of the brain network. Indeed, as we have shown, results obtained 

with one-node controllability Gramian have no or very limited practical (e.g., clinical) 

applicability. In fact, many experimental results suggest that Network-Based Statistic (NBS) 

techniques are unlikely to change brain states from one node. It is hard to modify fMRI 

connectivity using Transcranial Magnetic Stimulation (TMS), as long as only a single region 

is stimulated (Capotosto et al., 2014; Fox et al., 2014). On the other hand, concurrent 

stimulation of several locations on the scalp may be feasible in the near future (possibly 

synchronized with electrical activity in a given frequency band) (Baker et al., 2017; 

Vosskuhl et al., 2016) and developing a theoretical framework to understand the multi-node 

controllability of brain network is an primary and timely objective for future studies.

Controllability is not a monolithic concept, nor is the notion of a brain network (which can 

be defined at multiple spatial and temporal scales). Attempting to understand the 

controllability of the brain in some all-encompassing sense is ill-defined. In this work we 

have highlighted many critical issues that must be tackled in its specificity if we want to 

move from a purely theoretical approach to experimental applications to real brains. We 

believe that the potential of theoretical tools based on control theory are of inestimable value 

for neuroscience and that further development of this framework might bridge the gap 

between theoretical brain controllability and possible application in translational 

neuroscience.
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Figure 1: 
This figure shows that empirical data and different network models have inherently similar 

controllability profiles. Panels a, b and c show an example of the different synthetic random 

networks used in this study: Barabasi-Albert network (BA); Small-World network (SW) and 

Erdős–Rényi network (ER). The number of nodes and edges in these networks are 

approximately the same of those in the brain networks of APOE-4 dataset. Similarly, the 

weights are drawn from the empirical distribution estimated from the dataset. Panels d, e 

show that brain networks cannot be uniquely distinguished in this 2-dimensional 

controllability space (modal vs. average controllability), although their structure differs from 

classic random network models. For each type of network model, the number of the 

generated realization is the same as the instances (number of individuals) of the 

corresponding empirical brain networks in the dataset. In panel d, we report the average 

values computed over all networks and each point represents a node. In panel e, we report 

the average values computed over all nodes and each point represents a network.
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Figure 2: 
Comparing controllability measures between empirical data and randomized data. Scatter 

plot of the average of the ranks for weighted degrees versus average of the ranks of the 

average controllability for (a) the empirical data and (b) their randomized counterpart. 

Scatter plot of the average of ranks for weighted degrees versus the average of ranks of the 

modal controllability for (c) empirical data and (d) their randomized counterpart.
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Figure 3: 
Comparison between real brain networks (Hagmann dataset) and the corresponding 

configuration null model (see Section 2.4 for details) in terms of how average controllability 

would assign control roles to different resting state networks (RSNs). The similarity 

suggests that the control role of the RSNs mainly depends on their overall degree centrality 

rather than other higher degree topological properties.
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Table 1:

The minimum number of nodes (and fraction with respect the size of the network) that are needed to control 

the system spending a minimum energy not greater than ϵmin = 1010. We here show results for the APOE-4 

data and the corresponding Barabasi-Albert network (BA), Small-World network (SW) and Erdős–Rényi 

network (ER) (of same size, connectivity and edge weight distribution) following the procedure described in 

the main text. For a given sequence, “High” is the rank from the largest to the smallest, while “Low” is the 

rank from the smallest to the largest.

Data BA SW ER

Centrality measure Low High Low High Low High Low High

Degree centrality 51/0.46 49/0.45 44.64/0.41 42/0.38 45/0.41 43.5/0.40 44.64/0.41 42/0.38

Betweenness centrality 52/0.47 46/0.42 45/0.41 42.52/0.38 46/0.42 42.5/0.39 45/0.41 42.52/0.39

Eigenvector centrality 50/0.45 51/0.46 45.76/0.42 42.16/0.38 46/0.42 44/0.4 45.76/0.42 42.16/0.38

Page-rank centrality 51/0.46 47/0.42 44.84/0.41 42.36/0.39 47.5/0.43 43/0.39 44.84/0.41 42.36/0.39

Random sequence 46/0.41 47/0.42 44.08/0.40 43.48/0.40 45.5/0.41 43.81/0.40 44.08/0.40 43.48/0.40
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Table 2.

For each element of the table, we show the results of the linear fit describing the relation between node 

controllability and degree. Upper row: empirical brain data; lower row: the corresponding randomized 

networks. Each cell includes an angular coefficient, its standard error and the goodness of fit (R2).

Rockland APOE-4 Autism Hagmann

Average controllability m=0.93 ±0.021 R2=0.91
m=0.90±0.024 R2=0.88

m=0.76±0.038 R2=0.79
m=0.83±0.023 R2=0.92

m=0.88±0.031 R2=0.75
m=0.86±0.016 R2=0.92

m=0.96±0.036 R2=0.92
m=0.92±0.05 R2=0.84

Modal controllability m=−0.97±0.014 R2=0.96
m=−0.88±0.028 R2=0.84

m=−0.76±0.038 R2=0.79
m=−0.83±0.023 R2=0.92

m=−0.84±0.019 R2=0.88
m=−0.84±0.016 R2=0.91

m=−0.94±0.043 R2=0.88
m=−0.91±0.053 R2=0.82
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