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Abstract

Recent advances in neuroimaging methods and analysis have led to an expanding body of research 

that investigates how large-scale brain network organization dynamically adapts to changes in 

one’s environment, including both internal state changes and external stimulation. It is now 

possible to detect changes in functional connectivity that occur on the order of seconds, both 

during an unconstrained resting state and during the performance of constrained cognitive tasks. It 

is thought that these dynamic, time-varying changes in functional connectivity, often referred to as 

dynamic functional connectivity (dFC), include features that are relevant to behavior and 

cognition. This review summarizes four aspects of the nascent literature directly testing that 

assumption: 1) how changes in functional network organization on the order of task blocks relate 

to differences in task demands and to cognitive ability; 2) how differences in dFC variability 

between different contexts relate to cognitive demands and behavioral performance; 3) how 

ongoing fluctuations in dFC impact perception and attention; and 4) how different patterns of dFC 

correspond to individual differences in cognition. The review ends by discussing promising 

directions for future research in this field. First, it comments on how dFC analyses can help to 

elucidate the mechanisms of healthy cognition. Next, it describes how dFC processes may be 

disrupted in disease, and how probing such dysfunction can increase understanding of neural 

etiology, as well as behavioral and cognitive impairments, observed in psychiatric and neurologic 

populations. Last, it considers the potential for computational models to uncover neuronal 

mechanisms of dFC, and how both healthy cognition and disease emerge from network dynamics.
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1. Introduction

The brain has an incredible ability to dynamically adjust to a constantly changing 

environment. This ability enables adaptive changes in cognition and behavior that allow 

humans and animals to successfully navigate a complex and inconstant world. An 

appreciation of the role of dynamic neuronal signaling in adaptive cognition and behavior is 

not new (e.g., Hebb, 1949). What is new is the ability to measure large-scale neural 

functioning across the entire brain at high enough temporal and spatial resolution to detect 

these dynamic changes while individuals are engaging in complex cognition. A growing 

body of research, predominantly–but not exclusively–using functional magnetic resonance 

imaging (fMRI), indicates that brain network organization dynamically changes when a 

constrained cognitive context changes. This could be, for example, a change from an 

intrinsic, resting state to the performance of a cognitive task; or between pairs of tasks that 

have different cognitive demands (for a review, see: Medaglia et al., 2015). This literature 

estimates what has been termed the “functional connectome”, or a complete description of 

the functional connections between regions distributed throughout the entire brain (Bullmore 

and Bassett, 2011). Pairwise estimates of the functional connectivity (FC) between brain 

regions are combined to form a description of whole-brain FC patterns, in which distinct 

functional networks that interact with each other can be detected. This literature largely 

assumes that FC remains constant across a block of rest or a cognitive task and assesses 

changes in FC patterns across those blocks, on the order of minutes. As an example, it was 

recently demonstrated that whole-brain functional network organization changed 

systematically during both a task probing motor execution and a task probing working 

memory as compared to rest, with increased network segregation underlying successful 

motor execution and increased network integration underlying successful working memory 

(Cohen and D’Esposito, 2016). With recent advances in analysis techniques, it is now 

possible to detect time-varying changes in FC measurements on the order of seconds. This 

rapid time-varying FC is often referred to as dynamic FC (dFC). Much dFC research to date 

has focused on three aspects of time-varying FC patterns. First, on characterizing dFC 

within resting state scans, both within and across populations (i.e., across development or 

diagnoses). Second, on assessing the validity of dFC as measured with fMRI and on 

improving dFC estimation techniques to minimize artifacts and spurious findings. And third, 

on relating fMRI estimates of dFC to those acquired via electrophysiological methods to 

determine the neuronal source of these dynamic fluctuations in FC patterns. Informative 

reviews of this literature have already been written (Calhoun et al., 2014; Hutchison et al., 

2013; Preti et al., 2016). The current review takes a novel approach and highlights progress 

to date regarding how these dFC measurements, during both rest and cognitive tasks, relate 

to behavior and cognitive ability. With proper methodological implementation, if 

characteristics of these measurements are reliably related to behavioral and cognitive 

outcomes it indicates that there are aspects that are likely neural in origin.

1.1. Introduction to common dFC estimation methods

Optimal methods for estimating dFC are still being developed (for reviews, see: Hutchison et 

al., 2013; Preti et al., 2016). This section summarizes existing methods to provide context 

for the following discussion of the literature. Pre-processing of raw fMRI data for a dFC 
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analysis requires the same steps as static FC analyses, which have been discussed in detail 

elsewhere (for a recent review, see: Ciric et al., 2017). Just as with static FC analyses, the 

brain is then parcellated into regions of interest, or nodes (Figure 1A). This is often executed 

using structural or functional brain atlases, or via data-driven approaches such as 

independent component analysis. Once data has been sufficiently processed, there are two 

main categories of methods that can be used to quantify what is referred to as dFC. First, and 

more common, are various approaches to estimating short segments of static FC that, when 

combined, allow for the investigation of time-varying dynamics in FC across those 

segments. Second are approaches that estimate activity patterns at individual data acquisition 

timepoints, or changes in activity patterns, and how those fluctuate across time.

The most commonly used method for quantifying dFC is the sliding window approach. 

Here, FC connectivity matrices are computed over fixed-length segments (“windows”) of the 

fMRI time-series. There are limits regarding how short that length should be to minimize 

spurious dynamics. Suggestions range from 40–100 s depending on features of the collected 

data as well as processing steps implemented (Leonardi and Van De Ville, 2015; Zalesky 

and Breakspear, 2015). The sliding window approach allows for multiple connectivity 

matrices to be computed for each fMRI run. Typically, separate windows overlap 

substantially (Figure 1B). Connectivity matrices can then be compared across windows to 

assess how FC dynamically varies from one window to the next (Figure 1C). Observations 

within a window can be given equal weight or, alternatively be down-weighted at the 

beginning and end of the window. This latter method is termed a tapered sliding window. 

Within each window, FC is computed as it would be in a standard, static FC analysis. With 

fMRI data, this is often achieved via calculating the correlation or coherence amongst all 

pairs of nodes.

An emerging method to calculate a series of FC matrices throughout the scan is the dynamic 

conditional correlation (DCC) approach (Choe et al., 2017; Lindquist et al., 2014). This is a 

model-based approach that accounts for certain aspects of fMRI data that traditional sliding 

window approaches cannot account for. For example, window lengths do not have to be set 

in advance or equal across the length of the scan, allowing for greater flexibility to detect 

non-regular changes in FC. Further, past timepoints can be taken into account and 

appropriately weighted. The DCC method has been show to improve reliability and to better 

fit fMRI data than sliding window approaches (Choe et al., 2017; Lindquist et al., 2014).

Once multiple FC matrices are constructed, there are two common methods to quantify 

dynamic changes in FC. First, all connectivity matrices across all windows and participants 

can be clustered into groups of similar matrices. This can be accomplished using a clustering 

method such as k-means. With this method, each cluster centroid of a group of individual 

matrices is then termed a functional “brain state”1. Different brain states can be compared to 

each other, as can characteristics such as how often one transitions from one brain state to 

1The use of the term “state” to describe a reoccurring pattern of whole-brain connectivity is in parallel to the use of “state” in the 
human psychology literature to describe brief, temporary aspects of an individual’s arousal or emotional response (as opposed to 
stable characteristics of an individual, termed “traits”). Similarly, the phrases “resting state” or “cognitive task state” are used to refer 
to brief, sustained periods with a single set of instructions to a participant that vary across conditions but are presumably maintained 
within a condition. In each instance, “state” refers to a temporary condition, although the duration of each condition can be quite 
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another or how long one remains in a single brain state before changing to another (Calhoun 

et al., 2014). Second, graph theoretical analyses can be conducted on each FC matrix. In 

graph theoretical analyses, each region of interest or independent component is considered 

to be a node of a graph, and each functional connection between pairs of nodes is an edge. 

Various metrics to summarize brain network organization or the roles of individual nodes 

can then be calculated, and the variability of those metrics across time can be quantified 

(Bullmore and Sporns, 2009).

Another method used to characterize dFC is via co-activation patterns (Liu and Duyn, 2013). 

Here, significant BOLD activation at each data acquisition time point is assessed, and 

similar patterns of co-activation are clustered together. Co-activation patterns produce 

networks that look similar to networks created using seed-based FC analysis or independent 

component analysis, but have higher temporal resolution and require fewer assumptions than 

sliding window FC approaches. Co-activation patterns can be clustered and their temporal 

features characterized similarly to FC-derived brain states.

An alternative to using co-activation patterns with similar temporal resolution is via the 

multiplication of temporal derivatives (Shine et al., 2015). This method calculates the 

change in BOLD activation from one timepoint to the next. The similarity of the change 

across two regions of interest is a quantification of the functional coupling between those 

two regions. Pairwise FC matrices across all regions of interest are populated by functional 

coupling values. FC matrices are estimated at each timepoint, which can then be treated like 

any other FC matrices, as described above. Typically in this approach multiple FC matrices 

are averaged together in a sliding fashion to produce more reliable estimates of functional 

coupling at each timepoint. This method has been demonstrated to be relatively more robust 

to head motion and other sources of noise (Shine et al., 2015).

Lastly, psychophysiological interaction (PPI) analyses (Friston et al., 1997) can be used to 

quantify dFC. PPI analyses are conducted within the context of a general linear model. The 

key regressor in the model describes the interaction between a behavioral regressor (e.g., 

response time or block timing) and a physiological regressor (the activity within a seed 

region of interest at each time point). The interaction term describes whether the FC between 

the seed region and any other voxels dynamically changes as a function of the behavioral 

regressor. In this manner a PPI analysis can detect behaviorally meaningful time-varying 

changes in FC.

More research is needed to confirm which dFC method(s) most accurately reflect true 

variation in FC across time, as well as appropriate timescales for measuring such 

fluctuations. It is likely that the optimal method changes depending on timescale and 

research question. Current research, discussed in more detail below, indicates that sliding 

window correlations may be particularly susceptible to noise and physiological artifacts 

variable. As an example, “task states” often last between seconds to minutes, while “arousal states” often last between minutes to 
hours. “Brain states” can be thought of as the neural underpinnings of both task and arousal states (and are likely a combination of 
both), thus their timescale can range from seconds to hours. As this review refers to each of these uses of the term “state”, throughout I 
will refer to “brain states” as opposed to “arousal states” or “task states”.
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(including head motion). Model-based methods such as DCC, as well as methods focusing 

on patterns and derivatives of co-activation, are promising avenues for future investigations.

1.2. Potential mechanisms of dFC as measured with fMRI

It is critical to establish the validity of observed dynamics in FC measurements, especially in 

light of recent literature questioning whether variation in FC within a scan reflects relevant 

neural information (Hindriks et al., 2016; Laumann et al., 2016; Liégeois et al., 2017). 

Dynamic FC estimations likely include a combination of meaningful neuronal activity, 

physiological signals (difference in rate or volume of blood flow, respiration, heart rate, 

spurious effects of motion) and noise of acquired data. It has recently been asserted that 

observed fluctuations in correlation strength of BOLD signals, in particular using sliding 

window analytical approaches, may be due to sampling variability and detected even when 

the underlying FC is stationary (Handwerker et al., 2012; Laumann et al., 2016). Further, the 

amount of fMRI data typically collected is underpowered to detect dynamics in the data 

when appropriate statistical comparisons are made, even if such dynamics do exist. It has 

been demonstrated that with 5 minutes of resting state data there is a 15% chance that true 

dynamics would be detected (Hindriks et al., 2016). Critically, if artifacts such as motion are 

not appropriately controlled for, the observation of dynamics in FC data increases spuriously 

(Laumann et al., 2016), as do relationships between FC and cognitive and behavioral 

outcome variables (Siegel et al., 2016). It is encouraging that in both cases spurious effects 

are greatly mitigated if motion and other artifacts are sufficiently removed from the data. 

These findings underscore the importance of appropriately accounting for motion, including 

the exclusion of high motion participants, before conducting any FC analyses. Notably, in 

cases where meaningful dFC is expected because the known arousal or cognitive state of a 

participant has changed, it can be successfully detected. For example, FC matrices change as 

a participant shifts between sleep and wake, as well as between a resting state and cognitive 

tasks (Laumann et al., 2016). It is worth pointing out that one metric of non-stationarity, 

kurtosis, is increased both during cognitive tasks and during rest as compared to surrogate 

data that has been constructed as stationary (Laumann et al., 2016). However, whether 

increased kurtosis during rest is due only to fluctuations in arousal, or to both arousal 

fluctuations and changes in other ongoing cognitive processes, is still up for debate. 

Research relating brain states during rest to stages of sleep based on simultaneous EEG 

recordings has found that much of the variability across brain states can be accounted for by 

sleep stage (Haimovici et al., 2017). Taken together, these studies emphasize the importance 

of measuring and controlling for changes in arousal when estimating dFC before attributing 

dFC measurements to cognition.

Much of the above literature has focused on data using sliding window approaches. As 

discussed above, alternate methodology to detect dFC has been developed. Evidence exists 

that some of these methods may more accurately differentiate between static and dynamic 

FC. As an example, the DCC approach is more likely to result in stable FC estimates as 

compared to the sliding window approach when the underlying data is designed to be 

stationary (Lindquist et al., 2014). It is also more reliable and better able to separate signal 

from noise (Choe et al., 2017). Co-activation patterns (Liu and Duyn, 2013), which 

recapitulate static FC networks consistent with connectivity approaches, are another 
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promising method to assess dFC. These instantaneous (on the order of data acquisition 

timing) co-occurring fluctuations of activity level may better explain brain dynamics as 

assessed via fMRI than fluctuations in FC (Liégeois et al., 2017). While more research 

remains to be conducted, these investigations imply that it is possible to detect dFC in 

BOLD data both during cognitive tasks and during rest using either appropriately-modeled 

correlation approaches (DCC) or changes in activation (co-activation patterns or 

multiplication of temporal derivatives) – provided that there is sufficient data, appropriate 

nuisance regression and methodology, and relevant null models to determine significance. 

While much of the below literature has used the sliding window approach and may not 

appropriately implement null models, by relating observed dynamics to measurable 

behavioral and cognitive outcome, as well as by measuring statistical changes across known 

cognitive contexts, it extends the field by providing important initial investigations into the 

behavioral and cognitive relevance of observable fluctuations in FC.

Another manner by which to validate BOLD dFC estimates is to use multimodal imaging 

techniques that relate FC measurements as assessed using fMRI to more direct measures of 

neuronal functioning. This literature demonstrates relationships between BOLD dFC and 

electrophysiological measures of neural functioning, including electroencephalography 

(EEG), magnetoencephalograpy (MEG), electrocorticography (ECoG) and local field 

potential (LFP; Keilholz, 2014; Tagliazucchi and Laufs, 2015). As an example, time-varying 

infraslow (<1 Hz) fluctuations have been observed when using fMRI BOLD measurements, 

ECoG in participants undergoing seizure monitoring and LFP measurements from implanted 

electrodes in rats (Ko et al., 2011; Majeed et al., 2011; Pan et al., 2013; Thompson et al., 

2014). Interestingly, these fluctuations in all modalities occur in a quasiperiodic pattern and 

include semi-regular alterations within the default mode network (DMN) and between the 

DMN and task-positive networks (TPNs). Both infraslow electrical activity and DMN-TPN 

FC as measured with fMRI have been linked to task performance, implying shared 

underlying neural mechanisms (Keilholz, 2014). Dynamic changes in BOLD FC in the same 

infraslow range have also been linked with higher frequencies of LFP FC. In sliding window 

analyses, the change in BOLD FC between left and right primary somatosensory cortices in 

rats is correlated with the change in LFP FC within theta, high beta and gamma bands 

(Thompson et al., 2013b). In humans using non-invasive electrophsyiological measurements 

(EEG), changes in FC using sliding window analyses are associated with changes in EEG 

power within the alpha, beta and gamma bands (Chang et al., 2013; Tagliazucchi et al., 

2012). Finally, whole-brain dFC derived from both sliding windows and co-activation 

patterns during simultaneous calcium imaging and BOLD measurements in mice is 

significantly correlated, both within method and across method. More specifically, sliding 

window BOLD dFC is related to both sliding window and co-activation pattern calcium 

imaging dFC (Matsui et al., 2017).

It has been proposed that low frequency electrical activity contributes to large-scale 

coordination across the brain, while higher frequencies organize local activity. Further, it is 

well established that synchronization across multiple frequencies contributes to cognition 

and behavior (Canolty and Knight, 2010). Therefore, while dFC as measured with BOLD 

may not have the temporal or spatial resolution to reflect rapid changes in local neuronal 

activity, it could reflect large-scale coordination across distinct brain regions that emerges 
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from local changes. It is reasonable, therefore, that this large-scale coordination underlies 

changes in cognitive state observed with behavioral measures.

In addition to probing the neuronal basis of BOLD dFC estimates and validating estimation 

techniques, a third manner by which to validate the neural relevance of dFC is to relate dFC 

measurements to individual differences in cognition and behavior. This line of research aims 

to determine which aspects of dFC are cognitively meaningful and therefore likely to arise 

from brain function. It is this category of literature that is the focus of the remainder of the 

current review.

2. Current Literature

2.1. Early dynamic functional connectivity research: changes in network organization due 
to changing task demands

While still an emerging body of literature in its own right, a precursor to probing rapid 

dynamic alterations of FC (on the order of seconds) is measuring changes in FC patterns that 

occur between entire blocks of cognitive tasks with different demands. These studies have 

consistently found that there are many similarities in network structure during rest and 

during the performance of different cognitive tasks (Cole et al., 2014; Krienen et al., 2014). 

Crucially, there are also meaningful task-specific differences (Cole et al., 2013; Davison et 

al., 2015; Krienen et al., 2014). Tasks that involve integrating across multiple distinct 

cognitive processes (e.g., memory, working memory, visuospatial attention) consistently 

result in increased long-range connections that integrate across distinct intrinsic networks as 

compared to rest or simpler tasks (e.g., Braun et al., 2015; Cocchi et al., 2013; Cohen and 

D’Esposito, 2016; Cohen et al., 2014; Davison et al., 2015; Fornito et al., 2012; Kitzbichler 

et al., 2011; Spadone et al., 2015). Conversely, tasks that require less cognitive integration, 

such as those probing motor execution, result in increased segregation across distinct 

intrinsic networks (Bassett et al., 2015; Cohen and D’Esposito, 2016). Studies that have 

probed behavior have found that these dynamic changes in functional connections across 

task blocks result in improved behavioral performance (Bassett et al., 2015; Braun et al., 

2015; Cohen and D’Esposito, 2016; Cohen et al., 2014; Spadone et al., 2015). A recent 

review by Medaglia and colleagues (2015) discusses this body of literature more thoroughly.

Much of the above literature calculates average (static) FC over minutes-long task blocks. 

However, a recent study found that even with short, 15 s blocks it was possible to detect 

systematic differences in functional network organization during rest as compared to during 

a choice reaction time task (Monti et al., 2014). Specifically, cognitive-control related nodes 

of the fronto-parietal network (FPN) became more integrated during the task as compared to 

rest, while nodes of the DMN and primary sensory regions (visual, motor, auditory) did not. 

This is consistent with static FC literature indicating greater integration across networks, 

including cognitive control networks, during complex cognitive task blocks (Medaglia et al., 

2015).

A natural extension of the above work is to determine how variable these FC patterns are 

across tasks. Some studies have concluded that the majority of functional connections do not 

change between rest and cognitive tasks (Cole et al., 2014; Krienen et al., 2014). An 
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outstanding question is just how distinct are those functional connections that do change. 

With as little as 22.5 to 30 seconds of data, current task environment was successfully 

identified using a pattern classifier trained to detect whole-brain patterns of FC within 

blocks (Gonzalez-Castillo et al., 2015; Shirer et al., 2012). Tasks classified probed cognitive 

processes as varied as rest, episodic memory, music, math, attention and working memory. 

These findings confirm the validity of probing time-varying changes in FC across short 

blocks of functional neuroimaging data. Importantly, each task was characterized by distinct 

whole-brain FC patterns that were related to specific task demands. As an example, a medial 

temporal network was strongly connected during the episodic memory task, and a language 

network during the music task (Leonardi et al., 2014). Interestingly, during the resting state 

whole-brain FC patterns were better described by a combination of the FC patterns observed 

during individual tasks than by rapid alternation between the task states (Leonardi et al., 

2014). This implies that the ongoing cognitive processes that occur during a resting state are 

complex and potentially reflect multiple simultaneous cognitive domains. Notably, 

participants with better behavioral performance were more accurately classified, indicating 

that task engagement (or, perhaps, ability) was reflected in FC patterns (Gonzalez-Castillo et 

al., 2015).

Recently, data-driven methods have been developed to detect changes in FC patterns across 

nodes without requiring explicit assignment of each time point to a specific task (Cribben et 

al., 2012, 2013). This emphasizes the relevance of specialized FC patterns across brain 

regions for task performance, once again indicating that understanding dFC in the context of 

cognition is important both for our understanding of FC dynamics as well as for our 

understanding of the neural basis of cognition.

The above studies provide strong evidence for the idea that block-wise changes in FC are 

important for successful cognitive performance on a range of tasks. A natural next step is to 

understand how more rapid dFC estimates subserve cognition and behavior. Such rapid 

dynamics may not be directly tied to alterations in external task demands. Instead, they may 

indicate changes in internally-driven factors such as attention, motivation, fatigue or goals; 

or, likely, they may reflect a combination of both external and internal factors. An 

understanding of how these rapid dynamics relate to both cognitive performance and to 

general cognitive and affective state is necessary to understand the role they play in human 

cognition and behavior.

2.2. Differences in the variability of functional connections between a resting state and 
task performance

A relatively consistent finding in healthy young adults is that during a resting state, whole-

brain FC patterns (brain states) are quite variable (Calhoun et al., 2014). These brain states 

are presumed to reflect a combination of reinstantiation of past experience and preparation 

for future demands on the system. They therefore represent an exploration of possible spaces 

the brain can occupy (Deco and Corbetta, 2011; Ghosh et al., 2008). A growing body of 

literature has linked differences in functional brain network dynamics to general changes in 

arousal, including levels of consciousness. Much of the literature that manipulates drug-

induced consciousness is conducted with animals. In both monkeys and rats, reduced 
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consciousness resulted in a dose-dependent decrease of dFC variability during a resting state 

scan (Barttfeld et al., 2015; Hudetz et al., 2015; Hutchison et al., 2014). In humans, natural 

fluctuations in arousal as assessed by self-report feelings of fatigue and attention have been 

related to dFC. Higher levels of fatigue were related to more stable dFC measurements, 

while higher levels of attention were related to more variable dFC measurements within a 

single individual across repeated resting state scans (Shine et al., 2016b). Drug-induced 

arousal, such as that which occurs due to caffeine administration, has also been shown to 

result in increased variability of dFC measurements (Rack-Gomer and Liu, 2012).

A relevant question that follows from this literature is how dFC alters when a cognitive 

environment is more constrained, such as when a participant is engaged in a cognitive task 

with specific demands. Only a few studies to date have addressed this question, and they 

have consistently found that dFC variability decreases during a cognitive task as compared 

to rest in healthy young adults (Chen et al., 2015; Elton and Gao, 2015; Hutchison and 

Morton, 2015). In other words, dFC patterns are more stable during cognitive tasks that 

purportedly require sustained cognition. This appears to be a general characteristic of 

cognitive engagement, as dFC variability has been shown to decrease during a stimulus-

response compatibility task (Elton and Gao, 2015; Hutchison and Morton, 2015) and during 

a 2-back task probing working memory (Chen et al., 2015). This finding is also consistent 

across dFC methods, including seed-based sliding window correlations (Elton and Gao, 

2015; Hutchison and Morton, 2015) and co-activation patterns (Chen et al., 2015). 

Functional brain networks demonstrating more stable dFC during task performance include 

those relevant for attention and cognitive control, including the DMN, dorsal attention 

network (DAN), executive control network (ECN) and salience network (SN), as well as 

connections between these networks and primary sensory networks (Chen et al., 2015; Elton 

and Gao, 2015; Hutchison and Morton, 2015). Notably, a graded impact of task condition 

has been observed. When comparing dFC during a speeded task condition of a stimulus-

response compatibility task to dFC during a “relaxed” task condition, variability was 

decreased more for the speeded condition (Elton and Gao, 2015). This indicates that effort 

related to task difficulty may in part influence the increased stability of dFC during the 

execution of a cognitive task. Finally, participants who displayed the most stable dFC during 

task performed the best, as assessed via increased accuracy and more stable response times 

(Elton and Gao, 2015; Hutchison and Morton, 2015). These findings underscore the 

relevance of dFC within task blocks for successful cognition, highlighting a need to better 

understand this relationship.

An important direction for further research is to probe how these network dynamics are 

different across populations. Hutchison and Morton (2015) quantified the change in dFC 

between rest and a stimulus-response compatibility task in participants aged 9–32. Notably, 

they found a different pattern of dFC in children as compared to adults. As stated above, 

dFC became more stable during the task as compared to rest in adults. In children, however, 

dFC was more stable during rest and more variable during the task as compared to adults. 

This increased dFC variability during the task was related to worse behavioral performance 

as indexed by increased response time variability and increased errors. These different 

functional network dynamics were not due to differences in network structure, as both 

children and adults displayed similar whole-brain FC patterns. It has been asserted that 
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network dynamics during rest may allow individuals to “explore” different possible brain 

states (Deco and Corbetta, 2011; Ghosh et al., 2008). This dynamical complexity may not 

yet be developed in childhood, a hypothesis supported by the finding that less dynamical 

exploration during unconstrained resting states was observed. It is also possible that adults 

can suppress spontaneous transitions between brain states during a task with specific 

cognitive constraints, but that this ability is not yet fully developed in childhood, leading to 

more variable dFC during cognitive tasks (Hutchison and Morton, 2015). Future research 

should directly probe whether the maturation of network dynamics is related to the 

emergence of cognitive ability throughout childhood and adolescence.

Literature probing how dFC alters when individuals are placed in different temporary states 

indicates systematic differences across states. This holds whether the states are drug-induced 

or natural changes in general states such as arousal (Barttfeld et al., 2015; Hudetz et al., 

2015; Hutchison et al., 2014; Rack-Gomer and Liu, 2012; Shine et al., 2016b), or specific 

cognitive states such as during task performance (Chen et al., 2015; Elton and Gao, 2015; 

Hutchison and Morton, 2015). Across multiple tasks and using multiple methods, the 

cognitively-relevant literature points to a general decrease in dFC when an individual is in a 

constrained cognitive environment (Chen et al., 2015; Elton and Gao, 2015; Hutchison and 

Morton, 2015). Decreases in dFC are also observed when arousal is decreased, whether it is 

due to fatigue or anesthesia (Barttfeld et al., 2015; Hudetz et al., 2015; Hutchison et al., 

2014; Shine et al., 2016b). An important target of future work should be to understand the 

difference between anesthesia-induced stability and task-induced stability. Some hints exist 

currently: during anesthesia, the dominant FC brain state is similar to underlying anatomical 

connectivity (Barttfeld et al., 2015). During sustained task performance, on the other hand, 

the dominant FC brain states display increased integration across cognitive control-related 

networks and between cognitive-control related networks and task-relevant networks (Elton 

and Gao, 2015; Hutchison and Morton, 2015). Further research probing the duration of 

different dFC patterns, as well as their relation to cognitive performance, will shed light on 

how these changes in dFC across different contexts contribute to cognition, both in healthy 

adults as well as across populations.

2.3. Spontaneous functional connectivity dynamics impact concurrent behavior

The literature discussed thus far relating dFC to behavior has measured overall variability of 

dFC measurements during sustained performance of a cognitive task and how that relates to 

average measures of task performance, such as accuracy and response time variability. A 

promising direction for further research that takes advantage of the timescale of dFC is 

probing how trial-by-trial changes in FC profiles relate to trial-by-trial performance. Some 

literature to date has explored this relationship, inspired by earlier research measuring 

differences in BOLD activation patterns preceding detected versus missed stimuli 

(Sadaghiani and Kleinschmidt, 2013) or errors versus correct trials (Eichele et al., 2008; 

Weissman et al., 2006).

Much existing literature probing pre-stimulus FC and how it relates to behavior focuses on 

perception and vigilance tasks, such as detecting rare visual or auditory stimuli, noisy 

coherent visual characteristics such as color or motion, or faint, near-threshold stimuli. It has 
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been observed that rare visual or auditory stimuli are more likely to be detected, and 

detected more quickly, when FC just preceding the stimulus is characterized by a stronger 

anticorrelation between the DMN and TPNs, including those that are related to cognitive 

control (Thompson et al., 2013a; Wang et al., 2016). Stronger positive correlations amongst 

cognitive control networks, and between cognitive control and primary sensory networks 

related to the stimulus domain, have also been associated with faster and more accurate 

stimulus detection (Ekman et al., 2012; Sadaghiani et al., 2015; Wang et al., 2016). Further, 

whole-brain modularity, or the degree to which the brain separates into distinct networks 

with only sparse connections across networks, has been shown to be reduced before misses 

as compared to hits (Sadaghiani et al., 2015). In other words, greater integration across 

networks, the DMN and task-irrelevant sensory networks in particular, increases the 

likelihood that stimuli will be missed. Notably, relationships between pre-stimulus FC and 

stimulus detection have been shown to be stronger in individuals with faster average 

response times (Thompson et al., 2013a). An interesting link to the arousal literature 

discussed above is that performance has been shown to be faster and more accurate when 

task FC preceding to-be-detected stimuli was more similar to FC during high arousal periods 

of a resting state scan. Conversely, poorer performance was characterized by pre-stimulus 

FC that was more similar to FC during low arousal periods of a resting state scan (Wang et 

al., 2016). Critically, hits and misses can be successfully differentiated by a pattern classifier 

trained on a combination of pre-stimulus activity and pre-stimulus FC. Including FC 

measures increased the accuracy of the classifier (Sadaghiani et al., 2015). Taken together, 

these results indicate that a more connected DMN during a task that requires sustained 

attention impairs performance. Additionally, dFC of the DMN with other networks can alter 

on a moment-to-moment basis, influencing observed fluctuations in behavior in systematic 

ways (Sadaghiani et al., 2015; Thompson et al., 2013a; Wang et al., 2016).

A different approach to probing how spontaneous dFC may impact concurrent behavior was 

executed by Kucyi and colleagues (2017). To avoid the potential confound of an external 

stimulus such as a visible color change or auditory tone, participants were trained to press a 

button every 600 ms in a self-paced task. This design removed external stimulation while 

still allowing for behavioral assessment by comparing blocks of trials that were 

characterized by stable response times to blocks of trials that were characterized by more 

variable response times. Increased response time variability was interpreted as indicating 

periods of increased fatigue or distraction. Using a PPI analysis, it was found that periods of 

high response time variability were characterized by higher FC within the DMN, as well as 

between the DMN and SN. For a thorough review of literature measuring changes in FC due 

to internal distraction, see Kucyi (2017) in this issue. These findings support theories stating 

that increased DMN connectivity to task-relevant networks may underlie lapses of attention 

(Sonuga-Barke and Castellanos, 2007; Weissman et al., 2006).

The studies described in this section took advantage of the relatively fast timescale of 

measurable dFC in humans using fMRI, which can detect changes in FC on the order of 

seconds instead of minutes. They moved beyond relating average characteristics of FC to 

average behavioral performance, and compared transient dFC patterns to performance on a 

trial-by-trial basis. This technique allows one to better characterize within-participant 

differences in performance by associating different types of trials with different patterns of 
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functional brain network organization. It also provides external validity to estimates of 

within-block FC dynamics as they relate to arousal and cognition, although the degree to 

which dFC measurements relate to general arousal versus specific cognitive processes is still 

up for debate. Extant literature in this domain is focused on attention and stimulus detection 

paradigms, but future work could study how dFC relates to remembered versus forgotten 

events, successful versus failed response control, risky versus safe decisions, and other 

complex cognitive processes.

2.4. Differences in patterns of dynamic functional connectivity correspond to individual 
differences in cognition

By directly relating cognitive ability to features of dFC, a greater understanding of the 

neural mechanisms underlying specific aspects of cognition, including both successes and 

failures, can be achieved. A small number of studies to date have related time-varying dFC 

on the order of seconds to both general and specific cognitive abilities. These studies ask 

similar questions to those described above, but they extend that literature in two critical 

ways. First, they extend the literature discussed in the Early dynamic functional connectivity 
research: changes in network organization due to changing task demands section by focusing 

on rapid changes in dFC as opposed to sustained FC across brief task blocks. Second, they 

seek to understand how dFC patterns change in reaction to alterations in external cognitive 

demands, which is distinct from the Spontaneous functional connectivity dynamics impact 
concurrent behavior section that emphasizes how intrinsic changes in dFC impact responses 

to future external events.

As an example, Chen and colleagues (2016) took advantage of data from the Human 

Connectome Project (https://www.humanconnectome.org/) to probe dFC during rest in a 

large sample of participants. They probed how resting state dFC related to cognitive 

flexibility assessed behaviorally. Static resting state FC has been associated with general 

cognitive abilities such as IQ, executive functioning, episodic memory and reading ability, 

among others (for a review, see: Vaidya and Gordon, 2013). An ability such as cognitive 

flexibility relies upon the flexible engagement of a range of cognitive processes, including 

attention, processing speed, response inhibition and general executive functioning. 

Therefore, it is likely that it requires the flexible engagement of different networks 

depending on specific current demands. It was found that dFC of the SN, which is 

hypothesized to underlie the processing and facilitation of goal-relevant stimuli, was most 

flexible during rest (Chen et al., 2016). In other words, the SN was more likely to flexibly 

interact with many other networks across time than other networks. Other cognitive control-

related networks such as the FPN and cingulo-opercular network (CON) had intermediate 

levels of flexible interactions with other networks as assessed via dFC. Sensory and motor 

networks had the most stable dFC and interacted with the fewest number of other networks. 

Crucially, when relating brain network flexibility to behavior, it was found that higher SN 

flexibility was related to cognitive flexibility, but that flexibility of the FPN and CON was 

not. This study demonstrates that the SN may be a critical hub for coordinating complex 

cognition and that its role in cognition may be distinct from that of other cognitive control 

networks (Chen et al., 2016). Further, it indicates that dFC measurements assessed during 

rest have cognitive relevance. This underscores the importance of future research relating 
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these dynamic network characteristics to cognition and behavior. Another study that utilized 

dFC measurements during rest to better understand the cognitive role of intrinsic functional 

networks focused its analyses on networks arising from different functional subdivisions of 

posteromedial cortex (PMC), a key node of the DMN (Yang et al., 2014). Findings from 

static FC studies indicate that the PMC is a highly integrated hub node that communicates 

with multiple other networks. The dFC analysis implemented in this study identified five 

different whole-brain dFC profiles that involved PMC, each of which a was a combination of 

multiple distinct intrinsic networks. This finding supports the idea of PMC as a brain region 

that is highly integrated across multiple networks. Further, increased time during a resting 

state in one of those connectivity profiles, which was characterized by positive correlations 

between a PMC subregion and cognitive control-related networks, was related to poorer 

cognitive flexibility (specifically, flexibility of thinking and concept formation; Yang et al., 

2014). These findings are consistent with prior literature implicating DMN-cognitive control 

connections in impaired cognitive performance (Kucyi et al., 2017; Sadaghiani et al., 2015; 

Thompson et al., 2013a; Wang et al., 2016), and again support the relationship between 

characteristics of dFC and general cognitive ability.

Shine and colleagues (2016a) measured dFC during both a resting state and a battery of 

cognitive tasks, also using data from the Human Connectome Project. They found that 

functional brain network organization dynamically altered between a brain state that was 

characterized by greater network segregation, and a brain state that was characterized by 

greater network integration. During task engagement, more time was spent in the integrated 

brain state as compared to during rest, although specific task demands altered the proportion 

of integration. During simpler tasks, such as a task probing repetitive movements of various 

effectors, relatively more time was spent in the segregated brain state. Conversely, during 

complex tasks with a greater combination of cognitive demands, such as an n-back task 

probing working memory, relatively more time was spent in the integrated brain state. This 

is consistent with previous research measuring reconfiguration of static FC on the level of 

task blocks (Cohen and D’Esposito, 2016), as well as research relating overall dFC during a 

complex stimulus-response compatibility task to that during rest (Elton and Gao, 2015). 

Moreover, during a resting state these dynamic fluctuations between a segregated brain state 

and an integrated brain state were associated with pupil diameter, which is considered to be 

a proxy for arousal. A greater pupil diameter was observed during brain states characterized 

by greater network integration. In other words, a transient integrated brain state during rest 

was associated with greater arousal, and during task was associated with more complex 

cognitive demands (as well as better performance; Shine et al., 2016a).

Taken together, the results of these studies extend earlier research observing task-specific 

reconfiguration of functional network organization in direct response to changing cognitive 

demands (for a review, see: Medaglia et al., 2015). They demonstrate that functional 

network reconfiguration can occur rapidly and transiently, during both rest and during 

cognitive tasks, and that it is related to measures of arousal, general cognitive ability and 

cognitive task performance.
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3. Promising Directions

3.1. Elucidating the mechanisms of cognition

There is already a long history of using task-based fMRI to understand the neural 

underpinnings of human cognition and behavior. Neural measurements can be used to 

confirm and update cognitive models of behavior (D’Esposito, 2007; Frank and Badre, 

2015). Likewise, further investigations into dFC and how it relates to cognition will increase 

our understanding of how different aspects of cognition operate. For example, it is already 

well-established that average FC across a block relates to average task performance on a 

range of cognitive tasks (Bassett et al., 2015; Braun et al., 2015; Cohen and D’Esposito, 

2016; Cohen et al., 2014; Spadone et al., 2015), as well as to general cognitive ability (for a 

review, see: Vaidya and Gordon, 2013). But the same individual may perform differently in 

different contexts, due to a combination of external stimuli (i.e., task demands) and internal 

changes (i.e., attention, drowsiness; Finn et al., 2017; Poldrack et al., 2015; Shine et al., 

2016b). Initial research has related dFC to arousal (Haimovici et al., 2017; Laumann et al., 

2016; Shine et al., 2016b; Wang et al., 2016) and to arousal-related changes in performance 

(Wang et al., 2016). Interestingly, low arousal states are characterized by decreased network 

dynamics (Barttfeld et al., 2015; Hudetz et al., 2015; Hutchison et al., 2014; Shine et al., 

2016b), as are states of high task engagement, presumably accompanied by relatively high 

arousal and attention (Chen et al., 2015; Elton and Gao, 2015; Hutchison and Morton, 2015). 

It is thought that the stability observed during low arousal states may reflect underlying 

anatomical connections (Barttfeld et al., 2015), while the stability observed during active 

engagement in complex cognition may reflect greater integration across networks relevant to 

the specific task and to control processes (Elton and Gao, 2015; Hutchison and Morton, 

2015). A highly integrated brain state is more costly metabolically (Bullmore and Sporns, 

2012) and, while perhaps necessary for successful cognition, may only be sustainable for 

brief periods of time. Further research characterizing specific dFC differences during low 

arousal and high arousal, and how those relate to changes in performance across a range of 

cognitive tasks, would inform our understanding of different underlying sources of 

functional network stability, as well as how brain state transitions contribute to cognition 

above and beyond general arousal levels.

This literature could capitalize on the findings from static FC literature that has 

characterized network reconfiguration across sustained cognitive task conditions. As an 

example of an instance of this strategy, using static FC methods it has been found found that 

functional network organization during the performance of a task probing motor execution 

was similar to that during rest and characterized by network segregation, whereas network 

organization during the performance of a task probing working memory was characterized 

by network integration (Cohen and D’Esposito, 2016). Using complementary dFC methods, 

Shine and colleagues (2016a) found that during both rest and specific tasks, the brain 

dynamically alternated between a segregated brain state and an integrated brain state. The 

most time spent in the segregated brain state was during rest, closely followed by a task 

probing motor execution. The most time spent in the integrated brain state was during a task 

probing working memory. The results from these two studies are consistent, but the dFC 

analysis adds extra information about how dFC underlies cognitive performance that cannot 
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be detected using static FC methods (Figure 2). Further refinement of these methods to 

relate the occurrence of different dFC brain states to performance on specific trials would 

expand literature probing the impact of concurrent dFC patterns on within-participant 

performance differences.

To date, there has been some research investigating how dFC impacts trial-by-trial 

differences in performance. Much of this literature has focused on slow perception tasks 

with the shortest interval between trials being 4 s, and the longest 480 s (Sadaghiani et al., 

2015; Thompson et al., 2013a; Wang et al., 2016). This literature has indicated that specific 

patterns of FC that are ongoing before a stimulus occurs impact detection of that stimulus. 

These findings extend literature that has observed that different ongoing patterns of brain 

activity impact current behavior (for a review, see: Sadaghiani and Kleinschmidt, 2013). 

Future research can apply these techniques to more complex cognitive tasks in order to learn 

more about how dynamics of functional brain network organization contribute to various 

aspects of cognitive performance, such as errors on tasks, improved learning, identification 

of ambiguous stimuli, or successful remembering as compared to forgetting. Further, these 

techniques may shed light on features of functional network organization that underlie 

phenomena such as priming by stimuli that do not reach awareness.

Importantly, the high overlap in overall FC patterns between rest and various task states 

(Cole et al., 2014; Krienen et al., 2014) implies that cognitively-relevant changes are 

minimal, while the consistent relationships to performance imply that those changes are 

meaningful. Better characterizing the functional connections that are task- or cognitive 

process-specific on the level of task blocks would allow for systematic investigations of the 

dynamics of those connections across a block in relation to behavioral performance. With 

precise hypotheses and appropriate methodology, such research would be able to concretely 

link dynamic changes in FC strength between specific brain regions (or groups of regions) to 

specific aspects of cognition. As an example, a recent study took advantage of the high 

temporal resolution of MEG data to examine differences in FC between specific pairs of 

brain regions within individual trials during a learning task (Fatima et al., 2016). Participants 

who learned the task quickly displayed strong FC between left inferior parietal cortex and 

left posterior cingulate cortex during the first 200ms of each trial, while slower learners 

displayed strong FC between those two regions during the last 200ms of each trial. Inferior 

parietal-posterior cingulate FC was correlated with visuospatial ability in all participants, but 

with early FC strength in fast learners and with late FC strength in slow learners.

Crucially, if patterns of dFC linked to specific cognitive processes are identified, and those 

same patterns are recapitulated during resting state scans, this literature could help inform 

whether dynamics during rest may be linked in part to ongoing cognitive processes. 

Additionally, examining the relationship between activation changes and FC changes, which 

are thought to be distinct and to have additive properties on network organization and on 

behavior (Gratton et al., 2016; Khambhati et al., 2017 in this issue), would further elucidate 

the dynamic mechanisms underlying specific aspects of cognition. In this manner, we can 

inform cognitive theory by implementing novel neuroscience techniques (Frank and Badre, 

2015).
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3.2. Clinical relevance

An extremely consistent finding across the static FC literature, and that is emerging in the 

newer dFC literature, is that there are reliable differences in both static FC and dFC between 

psychiatric and neurologic patients and healthy individuals (for reviews, see: Calhoun et al., 

2014; Xia and He, 2011). To date, most of the literature finding differences in dFC across 

groups has focused on describing differences in the resting state. Interestingly, specific brain 

states appear to be quite similar between patients and healthy control participants. In other 

words, it is not the whole-brain patterns of FC that differentiate groups. Instead, it is the 

number and form of dynamical transitions across brain states, as well as the frequency of 

brain states. As an example, it was found that throughout the course of a resting state scan 

patients with schizophrenia dynamically transitioned between five different brain states with 

similar FC patterns to those observed in healthy control participants (Damaraju et al., 2014). 

However, patients with schizophrenia spent significantly more time in a disconnected brain 

state that displayed lower overall FC within and between functional networks. Further, they 

transitioned less often than control participants to more highly integrated brain states 

(Damaraju et al., 2014).

It is interesting to note that a striking result of multiple studies is that individual whole-brain 

patterns of reoccurring functional brain states are similar across conditions or groups. This 

has been shown to be the case when comparing rest to tasks (Hutchison and Morton, 2015; 

Shine et al., 2016a), when comparing children to adults (Hutchison and Morton, 2015) and 

when comparing patients with schizophrenia to healthy individuals (Damaraju et al., 2014). 

The critical difference, therefore, appears not to be in brain state FC organization itself, but 

in the dynamics of the brain states. It is thus possible that by improving our understanding of 

how each of these brain states relates to specific aspects of cognition, we can additionally 

improve our understanding of ongoing internal processes in patients as compared to healthy 

individuals. With powerful data-driven methods that can detect brain state transition points 

without requiring advance knowledge of internal state transitions (Cribben et al., 2012, 

2013), future research can clarify the timing of these transitions and how it varies across 

patient groups. This technique may be particularly useful in populations in which it is hard 

to collect reliable behavioral data during an MRI scan, such as in young children, patients 

with dementia or patients with severe cognitive deficits.

DFC methods additionally allow us to test hypotheses related to rapid changes in FC that 

have previously been difficult to test directly using functional neuroimaging data. As an 

example, it has been proposed that attention lapses in attention deficit hyperactivity disorder 

(ADHD) result from intrusions of the DMN into active task states, during which DMN 

activity and connectivity with other networks is often reduced or anticorrelated in healthy 

individuals (Sonuga-Barke and Castellanos, 2007). This hypothesis could be directly tested 

with dFC methods during a cognitive task in which indices of attention lapses, such as 

prolonged response times or increased errors, can be measured and dFC patterns preceding 

those periods can be related to behavior. Further, it has already been observed in healthy 

individuals that increased time during a resting state scan of a particular dFC pattern 

involving the PMC region of the DMN is related to reduced cognitive flexibility (Yang et al., 

2014). If one were to observe more time spent in a brain state related to attention lapses 
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during a task in ADHD than in healthy control participants, this would provide support for 

the default mode interference hypothesis. This could be a biomarker for ADHD specifically 

or for any population characterized by greater inattention. As another example, autism 

spectrum disorder (ASD) is characterized by cognitive and behavioral inflexibility. It has 

been shown that there are fewer differences in static network connectivity between two 

different tasks (an arithmetic task and a social attention task) in patients with ASD than in 

healthy individuals, and that greater network similarity across those two tasks is related to 

more severe repetitive behaviors (Uddin et al., 2015). Analyses taking advantage of dFC 

methods could directly test the hypothesis that brain network inflexibility is a characteristic 

of individuals with ASD.

Research probing dFC differences across cognitive task states in healthy individuals has 

successfully identified different task conditions using pattern classification (Gonzalez-

Castillo et al., 2015; Shirer et al., 2012). These methods could be applied to clinical data to 

determine whether patients can be successfully differentiated from healthy individuals based 

on their dFC characteristics, both during a resting state and during specific cognitive tasks. 

During a resting state, it has been demonstrated that healthy individuals, patients with 

schizophrenia and patients with bipolar disorder could be differentiated from each other at 

approximately 84% accuracy by including dFC features in a classifier. A classifier based 

solely on static FC features was only able to accurately classify the groups at 59% accuracy, 

which is significantly higher than chance (35%) but significantly lower than that obtained 

using dFC features (Rashid et al., 2016). This is a promising approach that should be 

extended to other disorders. It is likely that in patients dFC differs in meaningful ways both 

during rest and during tasks, therefore combining both resting state and task data may 

increase our ability to differentiate across diagnoses and to better understand how dFC 

patterns during rest are related to dFC during externally-driven cognitive processes. 

Moreover, by identifying the features that contribute most to classification accuracy, a 

greater understanding of differences across patient groups may be obtained. This is 

particularly relevant for disorders that are difficult to differentiate clinically (e.g., 

schizophrenia and bipolar disorder), as well as for disorders that show high comorbidity 

(e.g., ADHD and ASD). If critical classification features overlap with specific cognitive task 

states that have been observed in healthy individuals, this line of research could further our 

understanding of what differentiates patients from control participants.

It is important to acknowledge that much of the research probing dFC in patient populations 

utilizes sliding window correlations to characterize dynamics. As has been noted, it is 

possible that many of the group differences are due to various sources of noise, such as 

differences in motion or respiration rate across groups or to general changes in arousal, 

which also may be systematically different across groups. Future research could confirm 

whether the significant differences across populations include a neurally-based component 

by implementing methodology that is less susceptible to noise, utilizing appropriate null 

models and tracking general levels of arousal. Additionally, if brain states identified during 

rest match those identified during cognitive tasks, it may be possible to glean differences in 

ongoing cognition across populations from resting state dFC.
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3.3. Computational modeling

Currently, dFC characteristics can be estimated but the mechanisms underlying these 

measurements, as well as the degree to which they are of neural origin, are unknown. A 

critical next step in our understanding of dFC and how it relates to behavior and cognition is 

to move beyond descriptive measures of dFC, and to probe how these dynamic functional 

connections evolve, as well as how cognition arises from these dynamics (Bargmann and 

Marder, 2013; Kopell et al., 2014). As stated earlier, a growing body of literature is using 

multimodal imaging in an attempt to uncover the neuronal mechanisms that give rise to dFC 

(Keilholz, 2014; Kopell et al., 2014; Tagliazucchi and Laufs, 2015). Another method that 

can be used to reveal the mechanisms of network dynamics and how such dynamics underlie 

cognition is biologically plausible computational modeling. Reviews exist that describe 

state-of-the-art computational modeling techniques that detail how neuronal firing can give 

rise to dynamic large-scale network structure as measured during fMRI (Breakspear, 2017; 

Cabral et al., 2017; Deco and Corbetta, 2011; Deco et al., 2013). While features of existing 

models differ, they uniformly make two assumptions. First, that underlying anatomical 

connectivity constrains large-scale functional network connectivity. Second, that observable 

variations in FC arise from a combination of noise, internal state and external stimulation, 

among other characteristics. One interesting feature of these models is that there are multiple 

stable states, termed attractors. Noise introduced to the system can push a model from one 

relatively stable state to another, just as external stimuli from cognitive tasks, or internal 

states such as arousal, have been shown to be systematically related to different dFC brain 

states. Notably, the idea of alternating between more segregated and more integrated brain 

states depending upon cognitive task demands (Shine et al., 2016a) has been confirmed with 

computational models (Deco et al., 2015). Further, computational models can successfully 

predict the functional network dynamics observed during sleep and awake states, in disease 

(schizophrenia), and in successful treatment of disease (the effects of deep brain stimulation 

in Parkinson’s Disease; Deco and Kringelbach, 2014).

Not much work has been conducted to date exploring how computational models of dynamic 

large-scale network functioning predict dFC alterations in response to changes in cognitive 

demands, so this is a fruitful avenue for further research. For example, these models may 

explain the decrease in dFC both when under anesthesia as well as when focused on a 

cognitive task, and how those two brain states with increased stability differ from each other. 

Further, by introducing the structural and functional changes that occur throughout the 

lifespan to a computational model, we may be able to better understand how dFC changes 

and perhaps underlies cognitive development and decline. Last, the models that successfully 

explain characteristics of certain diseases, such as schizophrenia, may help us understand 

how both symptoms and cognitive deficits emerge from underlying dysfunctional network 

dynamics, as well as identify targets for treatment.

4. Conclusion

In conclusion, the observation of dFC patterns using fMRI has opened the door to an entire 

field of research exploring the mechanisms and the meaning of these functional network 

dynamics. While this field is still in its infancy, important early work has identified 
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characteristics of dFC that systematically vary with changes in arousal and cognitive 

demands, and that are related to cognitive ability. Critically, changes in dFC track changes in 

behavior within an individual, underscoring its potential importance for human cognition. 

Further work remains to be conducted to uncover the neuronal underpinnings of dFC, to 

separate relevant neural dynamics from physiological and other noise, to improve 

methodology and the accuracy of dFC estimates and, critically, to determine how dFC 

translates to behavior and cognition. A greater understanding of functional network 

dynamics will contribute to our knowledge of the mechanisms underlying healthy cognition, 

as well as cognitive impairments and symptoms observed in neurologic and psychiatric 

disorders.
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Figure 1. Steps to conduct a dFC analysis
A) First, the brain is parcellated into nodes, which can consist of anatomical or functional 

regions of interest, or components derived from a data-driven method such as independent 

component analysis. B) Second, the time-series across all pairs of nodes are related to each 

other, often by computing correlations or coherence, but other methods such as co-activation 

patterns or temporal derivatives can be used as well. Commonly, this is repeated within pre-

specified and overlapping “windows” of fixed length (as pictured), but novel methods that 

do not require the assumptions of sliding window approaches can also be utilized, such as 

dynamical conditional correlations (Lindquist et al., 2014), multiplication of temporal 

derivatives (Shine et al., 2015) or co-activation patterns (Liu and Duyn, 2013). C) Last, 

individual connectivity matrices are computed for each window. Once multiple FC matrices 

are computed for each time-series, dFC analyses quantifying how the matrices differ from 

each other can be conducted.
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Figure 2. DFC analyses complement and extend static FC analyses
A) Using static FC methods, whole-brain functional network organization was found to 

reconfigure between rest and an n-back task that probed working memory (Cohen and 

D’Esposito, 2016). In the left panel each color represents a network, each colored line 

represents a within-network edge, and each black line represents a between-network edge. 

On the top, nodes are depicted based on connections; nodes with more shared connections 

are closer together. On the bottom, nodes are depicted in brain space; each circle 

corresponds to the coordinates of the center of each node. Note that there is greater 

integration across distinct networks during the n-back task as compared to rest. In the right 

panel, the number of connector hub nodes is compared across rest, n-back, and during a 

sequence tapping task that probed motor execution. Connector hubs are nodes with high 

inter-network connectivity. The number of connector hubs did not change during sequence 

tapping as compared to rest, but it increased during the n-back task as compared to rest. 

Figure adapted with permission from Cohen and D’Esposito (2016). **p < .01. B) Using 

dFC methods, participation coefficient (BT) was found to fluctuate as current task changed 

(Shine et al., 2016a). Participation coefficient measures how connected a node is across 

networks; connector nodes are defined as nodes with high participation coefficients. The left 

panel demonstrates that using dFC analyses, average participation coefficient (thick black 

line; individual participant data plotted in gray) varied along with task blocks (task 

regressors plotted in blue). The right panel demonstrates the extent to which whole-brain FC 

profiles shifted toward a more integrated brain state (high BT) during different tasks as 

compared to rest. Consistent with Cohen and D’Esposito (2016), during motor task 

performance the extent of integration was most similar that during rest, while during n-back 
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performance the extent of integration was much stronger. Figure adapted with permission 

from Shine et al. (2016a).
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