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Abstract

Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain 

networks associated with both normal and pathological cognitive function. The objective of this 

work is to reliably compute resting state network (RSN) topography in single participants. We 

trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level 

dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN 

identities. Hard classification of maps obtained from a priori seeds was highly reliable across new 

participants. Interestingly, continuous estimates of RSN membership retained substantial residual 

error. This result is consistent with the view that RSNs are hierarchically organized, and therefore 

not fully separable into spatially independent components. After training on a priori seed-based 

maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN 

membership throughout the brain. The MLP generated RSN topography estimates in individuals 

consistent with previous studies, even in brain regions not represented in the training data. This 

method could be used in future studies to relate RSN topography to other measures of functional 

brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with 

lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel 

classification procedures, specifically, dual regression and linear discriminant analysis; the 

perceptron generated more spatially specific RSN maps than either alternative.
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1 Introduction

Biswal and colleagues first described resting state functional magnetic resonance imaging 

(fMRI) in 1995 (Biswal et al., 1995). The literature in this field has since been growing 

exponentially (Snyder and Raichle, 2012). Most of this work has been directed towards 

describing the statistical properties of intrinsic blood oxygenation level dependent (BOLD) 

signal fluctuations in health and disease (Biswal et al., 2010; Fox and Greicius, 2010; 

Pievani et al., 2011; Zhang and Raichle, 2010). Spontaneous BOLD activity recapitulates, in 

the topographies of its temporal covariance structure, task-based fMRI responses to a wide 

variety of behavioral paradigms (Smith et al., 2009). These topographies currently are 

known as resting state networks (RSNs) or, equivalently, intrinsic connectivity networks 

(ICNs). RSNs have now been mapped over virtually all of the cerebral cortex as well as 

many subcortical structures including the cerebellum (Buckner et al., 2011; Choi et al., 

2012; Lee et al., 2012; Power et al., 2011; Yeo et al., 2011). Critically, although RSN 

topographies differ across individuals (Mennes et al., 2010; Mueller et al., 2013), previously 

reported results generally have been reported at the group level. Effectively capturing 

individual differences in RSN organization would enhance the study of how intrinsic 

activity accounts for individual differences in human behavior and cognition. Reliable RSN 

mapping in individuals has multiple applications, for example, in the study of the 

physiological basis of inter-individual differences in cognition, e.g., (Cole et al., 2012; 

Koyama et al., 2011). Similarly, improved RSN mapping in individuals could be useful in 

the study of how focal lesions, e.g., strokes, lead to performance deficits (Carter et al., 2010; 

Golestani et al., 2013; He et al., 2007); such studies are difficult at the group level because 

of lesion heterogeneity. Yet another application is to improve the delineation of “eloquent” 

cortex prior to neurosurgery, to potentially reduce iatrogenic deficits (Otten et al., 2012; Tie 

et al., 2013; Zhang et al., 2009). Pre-operative task-fMRI has been used for this purpose 

(Wurnig et al., 2013) but often fails because patients are unable to comply with task 

paradigms. Lastly, individual RSN mapping could enhance functional co-registration, i.e., 

using RSN features to refine anatomical registration (Conroy et al., 2013; Sabuncu et al., 

2010).

Two analytic strategies, seed-based correlation mapping (Biswal et al., 2010) and spatial 

independent components analysis (sICA) (Beckmann, 2012), have so far dominated the field 

of resting state fMRI. RSNs obtained by sICA are theoretically unbiased by prior 

assumptions. However, ICA is not robust at the single subject level; results obtained by this 

technique invariably are reported at the group level. Seed-based correlation mapping uses 

priors if it is limited to only a few seeds. However, systematically defining many seeds over 

the entire brain (Wig et al., 2013) and analyzing the results using graph theoretic tools 

(Power et al., 2011) or inner product based clustering (Lee et al., 2012; Yeo et al., 2011) 

effectively achieves independence from priors. Both ICA and systematic seed-based 

correlation mapping exemplify unsupervised learning. Therefore, RSNs obtained by these 

methods may differ not only in topography (i.e., extent and shape), but also in topology (i.e., 

number of distinct nodes making up a single RSN), depending on the granularity of the 

recovered components within the modular hierarchy of RSNs (Meunier et al., 2010). To 

illustrate, the default mode network (DMN) is a constellation of regions including the 
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posterior cingulateprecuneus cortex (PCC), midline prefrontal cortex, lateral parietal cortex, 

superior frontal cortex and posterior cerebellum. The DMN may be recovered in its entirety 

(Fox et al., 2005) using highly supervised methods. However, unsupervised strategies 

variably recover the DMN in fragments (Kahn et al., 2008; Smith et al., 2009), or combined 

with fragments of other networks (Doucet et al., 2011; Lee et al., 2012; Yeo et al., 2011). 

Such inconsistencies stem from the fact that unsupervised learning procedures are not 

constrained to a particular topological scale; therefore, some post-hoc classification strategy 

(e.g., template matching) must be used to establish RSN identity.

The present work is fundamentally different in that the objective is not to discover RSNs nor 

to study their functional relevance, but rather to map the topography of known RSNs in 

individuals. To this end, we trained a multi-layer perceptron (MLP) to estimate RSN 

memberships of brain loci on the basis of BOLD correlation maps. A perceptron is a feed-

forward artificial neural network, originally modeled on the human visual system, trained to 

associate weighted sums of input features with pre-defined output classes (Rosenblatt, 

1958). After training, the MLP decision boundaries are fixed; thus, subsequent results are 

guaranteed to represent the same entity (at the same topological scale) across individuals or 

populations. Perhaps the best-known application of perceptrons is to recognize (classify) 

handwritten digits (Lecun et al., 1989). This application has obvious utility in automatic 

routing of letters at the post office. To distinguish between supervised vs. unsupervised 

learning, consider discovering the characters used to represent numbers in the decimal 

system by analysis of a large sample of addressed letters. This is very different from training 

a perceptron to read (classify) known numerals, e.g., zip codes on addressed letters. 

Analogously, RSN discovery, using group sICA or any other unsupervised method, is very 

different from preparing a trained MLP to map known RSNs in new subjects.

In the above example, each character must represent one and only one numeral. However, 

we do not assume that every brain region belongs to a single RSN. We allow each locus in 

the brain to belong to any RSN to a variable degree. Accordingly, RSN membership 

estimation represents regression rather than classification. However, classification and 

regression are closely related mathematically. MLP outputs, which approximate posterior 

probabilities of class membership (Ruck et al., 1990), can be converted to hard 

classifications by identifying the output class of greatest magnitude. We report both 

continuous RSN estimates and hard classifications (“winner-take-all” maps). MLP 

performance was characterized by residual error for the former and receiver operating 

characteristic (ROC) analysis for the latter (Section 2.4.3).

Our methodology represents a solution to an engineering problem, namely, mapping RSNs 

in individuals. However, MLP training performance offers valuable information about the 

structure and separability of resting-state networks. Differential performance across RSNs 

may provide insight into their relative inter-subject variability and complexity. MLP 

performance also provides an objective measure of data quality that can be used to study the 

effects of varying acquisition and preprocessing methodologies. We demonstrate this 

concept by determining the quantity of BOLD data required to reliably compute RSN 

topography in individual subjects. Similarly, we empirically determine the optimal ROI size 

for generation of correlation map training data. As a final result, two alternative strategies 
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for extending group-level RSN topographies to individuals (linear discriminant analysis and 

dual regression) are compared to the MLP. This comparison shows that the MLP provides 

superior RSN mapping specificity.

2 Methods

The Methods section is organized as follows: We first describe the fMRI datasets (section 

2.1) and neuroimaging methods (2.2). We next describe the task-fMRI meta-analyses (2.3) 

used to isolate seed ROIs. These seeds were used to generate the MLP training data. MLP-

specific methodology is divided into design (2.4) and application (2.5). The design phase 

(2.4) used correlation maps corresponding to seed ROIs with categorical RSN labels to train 

(2.4.2), evaluate (2.4.3), and optimize (2.4.4, 2.4.5) the MLP. Application of the trained 

perceptron to individuals generated voxel-wise estimates of RSN membership throughout 

the brain (2.5). MLP results then were compared to dual regression (DR) and linear 

discriminant analysis (LDA) (2.6).

2.1 Participants

Perceptron training, optimization and validation used data sets previously acquired at the 

Neuroimaging Laboratories (NIL) at the Washington University School of Medicine. A 

second, large validation data set was obtained from the Harvard-MGH Brain Genomics 

Superstruct Project (Yeo et al., 2011). All patients were young adults screened to exclude 

neurological impairment and psychotropic medications. Demographic information and 

acquisition parameters are given in Table 1.

2.2 Neuroimaging methods

2.2.1 MRI acquisition—Imaging was performed with a 3T Allegra (NIL) or Tim Trio 

(Harvard-MGH) scanner. Functional images were acquired using a BOLD contrast sensitive 

gradient echo echo-planar sequence [parameters listed in Table 1] during which participants 

were instructed to fixate on a visual cross-hair, remain still and not fall asleep. Anatomical 

imaging included one sagittal T1-weighted magnetization prepared rapid gradient echo (MP-

RAGE) scan (T1W) and one T2-weighted scan (T2W).

2.2.2 fMRI preprocessing—Initial fMRI preprocessing followed conventional practice 

(Shulman et al., 2010). Briefly, this included compensation for slice-dependent time shifts, 

elimination of systematic odd-even slice intensity differences due to interleaved acquisition 

(Supplemental text section S2.2.2) and rigid body correction of head movement within and 

across runs. Atlas transformation was achieved by composition of affine transforms 

connecting the fMRI volumes with the T2W and T1W structural images. Head movement 

correction was included with the atlas transformation in a single resampling that generated 

volumetric timeseries in (3mm)3 atlas space. Additional preprocessing in preparation for 

correlation mapping included spatial smoothing (6 mm full width at half maximum 

(FWHM) Gaussian blur in each direction), voxel-wise removal of linear trends over each 

fMRI run and temporal low-pass filtering retaining frequencies below 0.1 Hz.
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Spurious variance was reduced by regression of nuisance waveforms derived from head 

motion correction and timeseries extracted from regions (of “non-interest”) in white matter 

and CSF. Nuisance regressors included also the BOLD timeseries averaged over the brain 

(Fox et al., 2005), i.e., global signal regression (GSR). Thus, all computed correlations were 

effectively order 1 partial correlations controlling for variance shared across the brain. GSR 

has been criticized on the grounds that it artificially generates anticorrelations (Murphy et 

al., 2009). However, GSR fits well as a step preceding principal component analysis because 

it generates approximately zero-centered correlation distributions. As well, GSR enhances 

the spatial specificity in subcortical seed regions and reduces structured noise (Fox et al., 

2009). The question of whether the left tail of a zero-centered correlation distribution 

(“anticorrelations”) is “false” (Damoiseaux and Greicius, 2009) or “tenuously interpretable” 

(Yeo et al., 2011) is irrelevant in the context of supervised learning.

Correlation maps were computed using standard seed-based procedures (Fox et al., 2009), 

i.e., by correlating the timeseries averaged over all voxels within the seed against all other 

voxels, excluding the first 5 (pre-magnetization steady-state) frames of each fMRI run. 

Seeds were 5 mm radius spheres initially and 10.5 mm radius spheres after optimization (see 

section 5.4.3). Additionally, we employed frame-censoring with a threshold of 0.5% root 

mean square frame-to-frame intensity change (Power et al., 2012; Smyser et al., 2010). 

Frame-censoring excluded 3.8 ± 1.1% of all magnetization steady-state frames from the 

correlation mapping computations. Correlation maps were Fisher z-transformed prior to 

further analyses.

2.2.3 Surface processing and gray matter definition—Cortical reconstruction and 

volume segmentation were performed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 

(Dale et al., 1999). Adequate segmentation was verified by inspection of the FreeSurfer-

generated results in all datasets (Table 1). Cortical and subcortical gray matter regions were 

selected from the Training set segmentations, thresholded to obtain a conjunction of 30% of 

subjects, and then masked with an image of the average BOLD signal intensity across all 

subjects, thresholded at 80% of the mode value. This last step removed from consideration 

brain areas in which the BOLD signal is unreliable because of susceptibility artifacts. The 

resulting 30,981 voxels constituted the grey matter mask. For purposes of visualization, 

individual surfaces were deformed to a common space (Van Essen et al., 2012), producing 

consistent assignment of surface vertex indices with respect to gyral features across subjects. 

Final volumetric results for each subject were sampled onto surface vertices by cubic spline 

interpolation onto mid-thickness cortical surface coordinates.

2.3 Meta-analysis of task fMRI and generation of training data

ROIs representing distinct RSNs were isolated by meta-analysis of task-fMRI responses. We 

initially targeted 10 functional systems, each represented by a variable number of response 

foci derived from the literature (Table S1). The initial set of response foci was refined to 

ensure that all ROIs assigned to the same RSN generated maximally similar correlation 

maps and that ROIs assigned to different RSNs generated distinct correlation maps. These 

criteria yielded 169 ROIs representing 7 RSNs with high intra- and low inter-network 

correlation (Figures 1 and 2 and Table 2; see Supplemental text section 2.3 for algorithmic 
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details). Thus, 3 of the original 10 networks were subsumed into the remaining networks. To 

these were added a nuisance category consisting of 6 ROIs in cerebrospinal fluid (CSF) 

spaces. The latter enabled the MLP to separate correlation patterns representing CSF vs. true 

RSNs. Computing correlation maps for each of the 175 seed regions in all 21 Training 

subjects produced 3,675 images used as training data. Each image in the Training set was 

masked to include only grey matter voxels, producing a 3,675 × 30,981 matrix. Similarly, 

175 regions 17 subjects = 2,975 images, 175 regions · 10 subjects = 1,750 images and 175 

regions · 692 subjects = 121,100 images, were computed in the Optimization, Validation 1, 

and Validation 2 data sets, respectively.

2.4 MLP design

The core of a perceptron is an artificial neural network consisting of an input, hidden, and 

output layer, each consisting of nodes fully connecting to the next layer (all-to-all feed-

forward). Training samples are passed into this feed-forward network and the output is 

compared to the a priori assigned RSN label. The error in this comparison is used to update 

the connection weights, between layers to increase the performance of the MLP (Rumelhart 

et al., 1986).

2.4.1. Principal components analysis (PCA) preprocessing—Expressing MLP 

inputs as eigenvector weights, in other words, preceding the MLP proper with a PCA layer, 

enabled dimensionality reduction without significant loss of information (Erkmen and 

Yɪldɪrɪm, 2008). PCA preprocessing allowed the use of fewer hidden layer nodes, reduced 

the size of the weight matrices and accelerated the training process by a factor of ~500. PCA 

was performed on the matrix of gray matter masked correlation images constituting the 

Training set (21 subjects · 175 seeds = 3,675 images, each image comprised of 30,981 gray 

matter voxels). Each correlation map then was represented as its projection along some 

number of PCs. The number of PCs, and correspondingly, the number of input nodes (Ni) 

was a hyper-parameter subject to optimization (see section 2.4.4). The number of PCs used 

to optimize global performance (minimize squared error summed over classes) was 2,500 

(see Section 2.4.4).

2.4.2. MLP training—Training data, represented as vectors in PCA space, were presented 

to the MLP input layer. Each training example was associated with a desired output value 

determined by its a priori assigned RSN label. The MLP generated 8 (7 RSN and one CSF) 

output values for each training example. During training, these outputs were compared to the 

desired values (1 at the node corresponding to the a priori assigned label, 0 at other nodes). 

This comparison generated error signals used to update the connection weights. Algorithmic 

details are given in Appendix A, which includes a detailed schematic of the present MLP 

structure (Figure A1).

2.4.3. Quantitation of MLP performance—MLP error was defined as the difference 

between the MLP outputs and a priori assigned RSN labels (see above). Total RSN 

estimation performance was evaluated as root mean square (RMS) error aggregated over all 

output classes, across all training samples (participants × ROIs). Similar performance 

measures were computed for individual RSNs and individually for each participant.
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Classification performance (in the winner-take-all sense) was quantified using receiver 

operator characteristic (ROC) analysis. ROC curves define the relation between the true 

positive fraction (TPF) vs. the false positive fraction (FPF) across a range of thresholds. An 

ROC curve was generated for each RSN. Thus, e.g., for the DAN, the TPF was the fraction 

of DAN training inputs above threshold at the DAN output node. Similarly, the FPF was the 

fraction of non-DAN inputs above threshold at the DAN output node. Thus, the area under 

the ROC curve (AUC) was used as a summary statistic representing classification 

performance for each RSN.

Training was paused at logarithmically spaced intervals during the training process and 

RMS error as well as AUC were calculated in the Optimization data set. This procedure 

produced training trajectories indicating the performance over-all and for each RSN 

throughout the training process.

2.4.4. Architecture selection—The number of PCs sampled (Ni), and the number of 

nodes in the hidden layer (Nh)constitute hyper-parameters subject to optimization. Overall 

RMS error was evaluated over a densely sampled Ni ∈ 5,6600 × Nh ∈ 4,5000 space. For 

each (Ni, Nh) coordinate, a MLP was trained until Optimization set error reached a 

minimum. This procedure was repeated (minimum of eight repetitions) for each (Ni, Nh) 

coordinate to identify the architecture with the least error. This procedure identified 2,500 

PCs and 22 hidden layer nodes as the optimal architecture (see Supplemental section S2.4.4 

and Figure S2). Similar systematic evaluation MLP performance as a function of ROI size 

identified 10.5mm as the optimum (Figure 10B).

2.4.5. Performance optimization by simulated annealing—After identifying the 

optimal architecture with least error in the Optimization data set, performance was 

iteratively optimized by simulated annealing (Kirkpatrick et al., 1983), countering the 

tendency of perceptrons to become trapped in local minima. Mimicking the random 

movement of atoms aligning in cooling metal, simulated annealing uses random 

perturbations of model parameters to find the global extremum in an objective function 

(Geman and Geman, 1984). Perturbations of steadily decreasing size (specified by a 

`cooling profile') are guaranteed to find a global minimum, although, in practice, the 

necessary cooling profile is prohibitively slow (Kirkpatrick, 1984). The cooling profile was 

designed to ensure that the sum of squares of the connection weights was unaltered by the 

simulated annealing perturbations and that most weights decreased while a few weights 

sporadically increased. Additional simulated annealing details are provided in 

Supplementary content (S2.4.5).

Error in the Optimization data was used as heuristic in the above-described iterative 

optimization procedure. Therefore, to avoid underestimating generalization error, final 

performance was estimated using a fully independent Validation datasets.

2.5 Application of method to individuals

To map RSNs in individual subjects, a correlation map was generated for every voxel in the 

brain and then propagated through the optimized perceptron. An overall schematic of this 

process is depicted in Figure 2.
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2.5.1. Whole-brain analysis—Each of the 65,549 voxels in the brain generated a 

correlation map (Fig. 2A). Projecting correlation map values within the gray matter mask 

(30,981 voxels) into PCA space (see section 2.4.1) yielded 2,500 principal component 

coefficients (Fig. 2B). Thus, for each participant, the data presented to the MLP were 

contained in a 65,549 × 2,500 matrix (same 2,500 dimensional PCA space as used for MLP 

training). Each individual's data then were propagated through the perceptron (see section 

2.4.2). The first layer (Fig. 2C) reduced the data to 22 features (65,549 × 22 matrix); the 

second layer (Fig. 2D) produced MLP outputs (65,549 × 8 matrix). These outputs were used 

to compute RMS error. RMS error served as the feedback signal during training and was 

also used to assess MLP performance. For display purposes, MLP output values were rank-

order transformed to a uniform [0,1] distribution within each network. This transformation 

emphasizes topography rather than magnitude.

2.5.2. Group-level analyses—To visualize group-level results, RSN membership 

estimates were sampled onto the cortical mid-thickness surface for each participant. 

Averages were then computed across surface vertices. The standard deviation of MLP 

output values was also calculated vertex-wise to illustrate regions of high variability. To 

visualize group-level results in sub-cortical structures, MLP output values were averaged 

voxel-wise across participants. Group-average images were then re-sampled to 1mm cubic 

voxels and overlaid on a co-registered MNI152 atlas template.

2.6 Comparison of the MLP to linear discriminant analysis and dual regression

Linear discriminant analysis (LDA) is a classification algorithm that operates by projecting 

data onto vectors that maximize the ratio of between-class scatter to within-class scatter 

(Appendix B). PCA preprocessing is essential in LDA because the dimensionality of the 

input space (originally, tens of thousands of voxels) must be substantially less than the 

number of training examples (Belhumeur et al., 1997). By systematic exploration of the 

feasible PCA dimensionality range, it was determined that the lowest classification error in 

the Optimization set was obtained with 20 principal components. All present LDA results 

were obtained with this LDA design.

Dual regression (DR) is a technique commonly used subsequent to group ICA to extend 

spatial ICs discovered at the group level to individuals. Group ICA is a technique for 

discovering RSNs whereas the present work is about mapping known RSNs, not about RSN 

discovery (see Introduction). In fact, the present LAN (see section 2.3) typically is not 

obtained by group ICA, e.g., (Damoiseaux et al., 2006). Nevertheless, DR is algebraically 

well defined regardless of the origin of the group-level RSNs (Appendix B). Here, we used 

RSNs derived by meta-analysis of task-fMRI. Seed-based correlation maps were averaged 

across all participants and across all seed regions representing each class, generating 7 

spatial RSN components and one nuisance component. Dual regression was then performed 

as described in Appendix B (cf. (Zuo et al., 2010)).

Voxel-wise RSN estimates were generated using each technique (MLP, DR, LDA) and 

converted to a percentile scale as described in section 2.5.1 for visualization. To 

quantitatively compare performance across methods, RSN estimates were computed for 
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maps generated using the a priori ROIs. Seed-based covariance maps were used to evaluate 

DR performance (Eq. (B.5) in Appendix B); seed-based correlation maps were used to 

evaluate LDA and MLP performance (Eqs. (B.6) and (B.7)). These evaluations yielded RSN 

estimates for each seed for each participant for each method. From these values and the 

associated a priori RSN labels, ROC curves and AUC scores were computed for each 

network (see section 2.4.3).

3 Results

3.1 MLP training

3.1.1 Statistical properties of the training data—Temporal (Fig 3A) and spatial (Fig. 

3B) correlation maps across seeds revealed distinct clustering corresponding to RSNs. Fig 

3B exhibits two major clusters, one corresponding to the DAN, VAN, VIS and SMN 

networks, and the other corresponding to the FPC, LAN, and DMN networks. This 

dichotomy corresponds to the first principal component in Fig 3C. In the PC1 × PC2 plane 

(Fig. 3C), DAN (purple) and DMN (red) showed little overlap and appeared at opposite ends 

of the PC1 axis. VAN (magenta) and VIS (green) clusters were highly overlapping in this 

plane, but well separated in the PC3 × PC4 plane.

3.1.2 Training Process—Figure 4 shows the training performance for the perceptron 

optimized for overall performance (2,500 input PCs, 22 hidden layer nodes). For every 

correlation map, each perceptron output node value represents an estimate of membership in 

a particular RSN.

Perceptron outputs are initially centered at 0.5; as training progresses, within-class output 

values increase towards unity, while out-of-class output values decrease towards zero (see 

Fig. A3). RMS error across RSNs (Fig. 4A, black line) began near 0.5 and decreased 

monotonically until reaching peak performance (Fig. 4A, black arrow); training beyond this 

point resulted in over-fitting, i.e., decreasing performance (increasing RMS error) in the 

Optimization dataset despite increasing Training performance (see example in Figure A3).

For all networks, the AUC exhibited transient decrement in performance early in training 

(Fig. 4C). This feature corresponded to transient changes of slope in RMS error but did not 

produce concavity (local minima) in Fig. 4A. RMS error slopes indicated that class 

separation was achieved at varying numbers of iterations for different RSNs (Fig. 4B). The 

default mode network (red trace) achieved asymptotic performance earliest, and the 

language network (orange) latest. Asymptotic performance for the CSF class occurred much 

later than any true RSN.

3.2 MLP performance in the Validation datasets

3.2.1 Results in individuals—After completion of training, voxel-wise correlation maps 

were propagated through the MLP in the Validation datasets. Well-defined RSN 

topographies were obtained in all Validation dataset 1 participants (exemplars shown in Fig. 

5). RSN topography summaries are displayed as winner-take-all maps (Fig. 5, lower panel). 

The worst Validation 1 AUC was 0.993 with an RMS error of 17.5%. In Validation dataset 

2, the mean AUC was .977 with a SD of 0.0085; RMS error (mean ± SD) was 19.4% ± 
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1.73%. The systematically greater RMS error in Validation dataset 2 is accounted for by 

systematically less data (12 vs. 48 minutes; see Fig. 10A).

Figure 6 demonstrates the degree to which the MLP to captures individual variability. We 

first compared SMN topography to gyral morphology in 5 participants from Validation 

dataset 2. Participants were selected for display in Fig 6A as follows: The distribution of 

anterior-posterior (AP) positions the SMN (centroid over Talairach Z coordinate [+30,+45], 

left hemisphere, X coordinate < 15) was computed over all participants. One exemplar was 

randomly selected from each quintile. High SMN values conformed to the detailed 

morphological features of of the central sulcus in individuals (red arrows, Fig. 6A, Z = +53). 

High SMN values also tracked the AP position of the central sulcus (Fig. 6A, Z = +38). To 

obtain a quantitative measure of this tracking, the Y-coordinate of the SMN centroid and the 

fundus of the central sulcus were evaluated in Validation dataset 2 participants. The 

correlation between these positional measures was highly significant (r = 0.70, p < 10−15; 

Fig. 6B). This analysis was performed in [the first anonymized] 100 individuals because it 

required FreeSurfer segmentation of the cortical surface, which is computationally 

expensive.

3.2.2 Validation results at the group level—Figure 7 shows surface projections of 

RSN topography estimates averaged over 100 participants in Validation dataset 2. This 

figure addresses both the central tendency (top row) of each RSN, as well as inter-subject 

variability (middle row). As expected, average network topographies exhibited higher values 

(red) near locations of ROIs used to generate training maps (Fig. 1). More importantly, high 

RSN scores (in the top 25%) were consistently found in contiguous regions not used to 

generate training data. For example, a lateral temporal region was estimated as fronto-

parietal control (Fig. 7, top row, FPC column), and high language network estimates were 

assigned to a dorsal pre-motor region (LAN column). These features are also present in the 

results in individuals (Fig. 5A). The significance of these observations with respect to 

external validity is discussed below (section 4.2).

Further evidence of external validity is shown in Figure 8, which includes all 692 

participants in Validation dataset 2. For example, high SMN scores were obtained in 

thalamic voxels approximately corresponding to nucleus ventralis posterior and high VIS 

scores were obtained in posterior pulvinar (arrows), substantially in agreement with (Zhang 

et al., 2008). High VAN scores were obtained the dorso-medial nucleus, refining the 

parcellation in (Zhang et al., 2008), who identified this nucleus as functionally connected 

with “prefrontal” cortex. The posterior cerebellum (Crus I and II) and the cerebellar tonsils 

were assigned high DMN scores (Figure 7, Z = −30, Z= −47), in agreement with (Buckner et 

al., 2011). These results are noteworthy because neither cerebellar nor thalamic ROIs were 

used to generate training data. Further, no cerebellar voxels were within the grey matter 

mask, which means that the MLP correctly classified cerebellar voxels purely on the basis of 

cortical connectivity. High VAN and LAN RSN scores were asymmetrically obtained in the 

cerebellum (arrows, Z = −30), appropriately contralateral to asymmetric cerebral results (Z = 

+47).
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3.3 Comparison of the MLP to alternative RSN estimation schemes

Dual regression (DR) and linear discriminant analysis (LDA) produced RSN topographies 

that were broadly similar to MLP results at the group level (Fig. 9A). However, DR and 

LDA topographies generally had greater spatial extent and more overlap across networks 

than the MLP-derived topographies. For example, the DAN network exhibited strong 

(greater than 90th percentile) values in dorsal SMN regions for both DR and LDA, but not 

for the MLP method. Similarly, VIS topography extended to SMN and DAN regions in DR 

results, less so in LDA results, and minimally in MLP results.

A cross-methodological comparison of classification performance in terms of AUC is given 

in Table 4. RSN scores were computed as described in section 2.6. These RSN scores were 

converted to hard classifications by identifying the group-derived map yielding the greatest 

score for each seed ROI. Linear Projection (LP), the simplest possible method, is included in 

Table 4 for comparison with the other methods (see Linear Projection in Appendix B). LP 

performance was evaluated using seed-based covariance maps (Eq. (B.1) in Appendix B). 

This is essentially nearest neighbor classification. That is, LP AUC is approximately 

equivalent to the probability that a map in, e.g., in PCA space is closest to the group average 

RSN template (represented by cluster centers in Figure 3C). Table 4 reports RMS error only 

for LDA and MLP results because the outputs generated by Linear Projection and DR are 

not confined to the interval [0,1] and cannot be directly compared to a priori labels.

To illustrate the statistical covariance of RSN estimates, ROIs were plotted in planes defined 

by pairs of RSN scores (Figure 9B, top row). SMN ROIs (cyan cluster) achieved the highest 

score along the SMN axis in the SMN vs. VIS plane, and likewise for VIS ROIs. In plots for 

DR and LDA, DAN ROIs achieved relatively high scores in both dimensions (dark blue 

cluster in quadrant 1). This observation corresponds to the moderate spatial overlap between 

DAN, VIS, and SMN in DR results in Fig. 9A. SMN (cyan) and VIS (green) vectors extend 

from the median score to the center of mass of the ROI clusters. These vectors form an acute 

angle in the DR results, corresponding to generally correlated SMN vs. VIS estimates of 

network identity. LDA separates these vectors by a larger angle, which corresponds to less 

VIS-SMN spatial overlap. However, the DAN ROIs still achieve a high score on the VIS 

and SMN axes; the significant overlap of the DAN and SMN clusters corresponds to the 

spatial overlap of the DAN and SMN topographies in Fig. 9A.

In contrast, MLP showed greater within-network scores and lower across-network scores. 

For example, SMN and VIS ROIs achieved values near unity along their respective axes, 

while ROIs from other networks, notably DAN, achieved values closer to the median score. 

MLP output scores across anti-correlated networks also were closer to the median score. As 

might be expected, the contrast between MLP vs. either LDA or DR was especially marked 

in the case of difficult to separate RSNs, specifically, LAN vs. VAN and LAN vs. DMN.

Estimates of RSN identity were generally more correlated for DR and LDA methods than 

MLP. The Pearson correlation coefficient was computed (across all ROIs) for every pair of 

RSN classes, to generate inter-class correlation matrices in Figure 9C. The DR-derived 

inter-class correlation (Fig. 9C) retained more of the structure evident in Fig. 3B than the 

MLP-derived result. The magnitude of inter-class correlation was smaller for the MLP 
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method than for either DR or LDA (p<0.05 and p<10−5, respectively, Mann-Whitney U-

test), indicating that the MLP produced more orthogonal estimates of RSN membership than 

the other methods. Overall, classification performance was higher for the MLP (0.982 AUC) 

than for DR (0.954) and LDA (0.970).

4 Discussion

The perceptron in this study was trained to associate functional connectivity patterns 

(correlation maps) with 7 discrete RSNs. This number of RSNs corresponds to one 

particular scale of correlation structure of intrinsic human spontaneous fMRI activity (Lee et 

al., 2012; Yeo et al., 2011). After training, the perceptron recognized new correlation maps 

based on features of RSNs learned from the training data. Our results exploit the ability of 

the perceptron to operate outside the training data to generate voxel-wise estimates of 

network identity throughout the brain in individuals.

There are two primary measures of performance in this study. ROC analysis determines 

MLP performance as a classifier in the winner-take-all sense, i.e., categorical membership 

under the assumption that brain regions belong to a single RSN. RMS error indicates MLP 

performance as a regressor by measuring the deviation of a particular result from the ideal 

model of categorical membership. It is possible for the MLP to achieve perfect classification 

(AUC of unity) even when RMS error is far from zero. In fact, this is approximately what 

we found (Table 3). This result supports a view of the brain in which a given region may 

belong to multiple RSNs.

4.1 Inter-individual variability of MLP outputs

The present results (Figures 5–7) exhibit a high degree of face validity with respect to the 

training data and previously reported RSN results. Thus, for example, components of the 

DMN used as seeds to generate the training data were classified as DMN in all participants. 

This was true not only for easily classified networks (e.g., the DMN) but also for networks 

(e.g., VAN and LAN) that are inconsistently found by unsupervised procedures. The results 

shown in Figure 5 illustrate that the perceptron reliably classified RSNs in each individual in 

the Validation 1 group (0.984 worst case AUC), even in cases in which the RMS error was 

relatively high (> 0.175).

Analysis of voxelwise RSN membership estimates across a large cohort (100 subjects from 

Validation dataset 2) revealed RSN-specific zones of high as well as low inter-individual 

variability (Fig. 7, middle row). Voxels with high RSN scores generally showed the least 

inter-subject variability. Such regions, e.g., the posterior parietal component of the DMN 

(Fig. 7, right column), were surrounded by zones of high variability (e.g., a ring around the 

angular gyrus). The pre-and post-central gyri consistently showed high SMN RSN scores 

but were bordered by regions of high inter-subject SMN variability. Interestingly, inter-

subject variability was low also in areas with RSN scores near 0, particularly in areas 

typically anticorrelated with other networks (e.g., low DAN variance in the angular gyrus, a 

component of the DMN; low DMN variance in MT+, a component of the DAN) (Fox et al., 

2006).
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At least four factors potentially contribute to observed inter-subject MLP output variability: 

(i) limited or compromised fMRI data; (ii) limitations intrinsic to the MLP; (iii) differences 

in RSN topography attributable to anatomic variability; (iv) true differences in RSN 

topography independent of variable gyral anatomy. We consider each of the possibilities in 

turn.

(i) The fMRI data used in the present work were obtained in healthy, cooperative young 

adults. Hence, the fraction of frames excluded because of head motion (Power et al., 2012) 

was low (about 4%). The total quantity of fMRI data acquired in each individual was 

generous by current standards (Van Dijk et al., 2010). However, fMRI data quantity clearly 

affects MLP performance (see section 4.5.2 below and Figure 10A). Current results suggest 

that more data generally improves MLP performance. The requirements for fMRI data 

quality and quantity for acceptable MLP performance in clinical applications remains to be 

determined. (ii) High variability in RSN boundary regions (e.g., Fig. 7, DMN, middle row) 

may reflect uncertainty attributable to multiple RSN membership, i.e., voxels with high 

“participation coefficients” (Guimera and Amaral, 2005; Power et al., 2011). Voxels with 

multiple RSN membership may be more difficult to classify because the training data 

included only maps derived from seeds assigned to single networks.

(iii) Figure 6 indicates that the MLP captures a substantial portion of anatomic variability. 

However, some part of MLP mapping imprecision may be explained by uncorrected 

anatomical variability. To investigate this possibility, we compared the overall RSN 

standard deviation map (Fig. S3A) to sulcal depth variability (Fig. S3B) and found a weak 

spatial correlation (r = 0.2). By inspection, these maps were concordant only at a broad 

spatial scale: both showed low variability in primary motor/auditory/insular cortices and 

high variability elsewhere. Little correspondence was evident at finer scales (note lack of 

annular patterns in Fig. S3B). The degree to which anatomical variability contributes to 

spurious variance in RSN topography estimates may be addressed by measuring the degree 

to which non-linear or surface-based registration decreases inter-subject variance and 

increases overall MLP performance (higher AUC, lower RMS error).

(iv) On the other hand, inter-individual differences may reflect “true” individual variability 

in RSN topography independent of gyral anatomy (Mueller et al., 2013). Previous work has 

demonstrated that inter-individual differences in task-evoked activity correspond to 

“transition zones” in resting state networks (e.g., the boundary between parietal DMN and 

DAN regions) (Mennes et al., 2010). These same regions appear in our inter-subject 

variance maps for both DMN and DAN (Fig. 7). We also note that areas of high RSN score 

variability (pre-frontal, parietal, lateral temporal) broadly correspond to regions exhibiting 

the greatest expansion over the course of human development and evolution (Hill et al., 

2010). This correspondence may be coincidental, but it is consistent with the hypothesis that 

later developing or evolutionarily more recent areas of the brain tend to be more variable 

across individuals.

In summary, there are many potential contributions to observed RSN topographic 

variability. Because we did not use non-linear volume registration in this work, Fig. 6 retains 

individual differences in gyral anatomy. By inspection, the MLP was able to track these 
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differences. Thus, it is reasonable to expect that the MLP will find “true” differences in RSN 

topography not attributable to variable gyral anatomy. Future studies are needed to compare 

MLP-derived topographies with, e.g., task-evoked responses, after correcting for anatomical 

variability.

4.2 External Validity and Generalizability

Two distinct types of external validity, that is, correct classification outside the Training set 

(areas covered by the seed ROIs), are evident in our results. First, high overall MLP 

performance was achieved for a priori seed-based correlation maps in the Optimization 

(98.2% AUC) and Validation 1 datasets (98.8% AUC). Performance was reliable in all 

participants (97.1% worst-case AUC), which is critical in clinical applications. Second, and 

perhaps of greater scientific interest, the RSN estimates in areas not covered by seed regions 

were strongly concordant with previously reported task-based and resting-state fMRI results. 

For example, while no temporal FPC seed ROI was included in the training set, a posterior 

temporal gyrus locus was classified as FPC (Lee et al., 2012; Power et al., 2011; Yeo et al., 

2011) at the group level (Fig. 7, FPC column). Similarly, the MLP also identified the 

parahippocampal gyrus as DMN (Kahn et al., 2008).

The MLP identified as LAN components of dorsal and ventral streams previously associated 

with cortical speech processing (Hickok and Poeppel, 2004) see also (Binder et al., 2011). 

Whereas the ventral components were bilateral, the dorsal components were left lateralized 

(Fig. 8, white arrow, LAN column) (Hickok and Poeppel, 2007). This finding represents a 

strong demonstration of external validity, as the left dorsal region was not included in the 

Training set. The right inferior cerebellum was first associated with language function by 

PET studies of semantic association tasks (Petersen et al., 1988). Identification of this region 

here as part of the LAN network (Fig. 8, WTA, Z = −30 and −47) is doubly significant: 

First, no cerebellar seeds were used to generate training data and cerebellar voxels were 

excluded from the gray matter mask; hence, these voxels were not seen by the MLP. 

Second, lateralized cerebellar RSN components typically are not found by unsupervised 

seed-based correlation mapping (Buckner et al., 2011).

These findings highlight the capabilities of supervised learning applied to the problem of 

identifying RSNs in individuals. The cortical representation of language (primarily Broca's 

and Wernicke's areas) has been extensively studied using task-based fMRI (Binder et al., 

2011) and correlation mapping with a priori selected ROIs (Briganti et al., 2012; Hampson 

et al., 2006; Pravata et al., 2011; Tomasi and Volkow, 2012). However, the language 

network, as presently defined, typically is not recovered as such by unsupervised methods, 

e.g., (Power et al., 2011; Yeo et al., 2011). Rather, components of the LAN are generally 

found only at fine-scale RSN descriptions. Thus, an RSN including Broca's and Wernicke's 

areas appears as the 11th of 23 components in (Doucet et al., 2011); these same areas were 

identified as VAN by Power and colleagues (2011) and DMN by Yeo and colleagues 

(2011). Lee et al., (2012), found a component consistent with the presently defined LAN at a 

hierarchical level of 11 (but not 7) clusters. Thus, the present work demonstrates the 

potential of supervised learning to find networks that are subtle features of the BOLD 

correlation structure. These may be minor sub-components within hierarchically organized 
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RSNs or functional entities of high scientific interest or clinical value that do not fit within a 

hierarchical organization, i.e., extend over multiple levels or across multiple branches.

Because the MLP is a universal function approximator, it is subject to over-fitting. Over-

fitting refers to learning features that are particular to the training set but that do not 

generalize to other sets. To minimize over-fitting, we halt training when Optimization 

dataset error reaches a minimum (Figure 4A). However, because early stopping is 

implemented throughout optimization by simulated annealing, over-fitting may still occur 

with respect to the Optimization dataset. Therefore, we demonstrate the performance of the 

fully trained MLP in two Validation datasets (Figs. 5–8).

4.3 Comparison of the MLP to dual regression (DR) and linear discriminant analysis (LDA)

The MLP, DR, and LDA all represent different strategies for extending RSN mapping 

results obtained at the group level to individuals. The MLP showed better spatial specificity 

of RSN estimates than either DR or LDA (Fig. 9A) and produced more orthogonal estimates 

of RSN identity in a priori ROIs (Fig. 9B). These comparative results indicate greater 

statistical independence of RSN estimates obtained by the MLP. However, perfect 

separation of classes was not achieved by any method, as indicated by residual correlation of 

RSN estimates (non-zero off-diagonal elements in Fig. 9C). This residual was greatest in the 

least separable RSNs (compare Figs. 9C and 2B).

Performance differences across the three methods can be related to their underlying 

algebraic structures, which reveal interesting commonalities as well as differences 

(Appendix B). All three methods operate by transforming individual voxel-wise covariance 

or correlation matrices into 7 dimensional RSN membership estimates at each voxel. 

However, the methods differ in the strategies used to achieve separation of RSN estimates. 

LDA requires considerable dimensionality reduction by PCA preprocessing. The optimal 

number of PCs was found to be 20, but this accounted for only 70% of the variance. In 

contrast, the MLP does not strictly require PCA preprocessing although this step greatly 

reduces the computational load without sacrificing information. In fact, the MLP 

performance optimum was obtained with 2,500 PCs (Figure S2), which included 99.97% of 

the variance. DR, as conventionally implemented (Zuo et al., 2010), does not involve PCA 

preprocessing or training.

Both LDA and MLP optimize separation of classes using thousands of labeled training 

samples, which captures variability across brain regions and individuals. Therefore, the 

superior performance of the MLP is not simply attributable to a large number of training 

samples. Rather, high-dimensional non-linear classification boundaries allow the MLP to 

extract arbitrary features from a large (2,500 PCs) input space. Future work will compare the 

MLP to LDA and DR in patients with focal lesions, i.e., stroke or brain tumors. At issue is 

performance under circumstances in which RSNs exhibit altered topography.

4.4 Dynamics of perceptron training reflect hierarchical brain organization

Several studies have demonstrated that resting state networks are hierarchically organized 

(Boly et al., 2012; Cordes et al., 2002; Doucet et al., 2011; Lee et al., 2012; Marrelec et al., 
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2008). Here, the hierarchical scale of an RSN is reflected in training performance 

trajectories (Fig. 4B): the DMN was the first to be separated from other RSNs. The DMN 

arguably is the most robust feature in the correlation structure of intrinsic brain activity. Its 

topography is very similar across RSN mapping strategies, specifically, spatial ICA 

(Beckmann et al., 2005) and seed-based correlation mapping (Yeo et al., 2011). Here, the 

DMN and regions anti-correlated with the DMN (Fox et al., 2005) were well separated 

along the first principal component of the training data (Figure 3)1.

After the DMN, the sensorimotor and visual networks were next to achieve separation (Fig. 

4B). These networks are often seen at the next level down in the RSN hierarchy as offshoots 

of the anti-DMN (Lee et al., 2012) or `extrinsic system' (Doucet et al., 2011). The DAN 

achieved only a small peak in error descent compared to other `extrinsic' networks, although 

this occurred in close proximity to SMN and VIS. In contrast, the LAN and VAN were last 

to achieve separation. This corresponds to the observation that LAN and VAN systems are 

typically found by analyses extending to lower levels of the RSN hierarchy (Lee et al., 2012; 

Power et al., 2011).

4.5 MLP performance applied to the evaluation of fMRI methodology

4.5.1 Objective assessment of image quality—Modern imaging theory defines 

image quality as the capacity to enable an observer to perform a specific task (Barrett et al., 

1998; Kupinski et al., 2003). Here, the observer is a multi-layer perceptron and the task is to 

assign RSN values (or labels) to each voxel. Performance is evaluated in terms of mean 

squared error and ROC analysis. It follows that MLP performance can be used to evaluate 

image quality across a wide range of variables, e.g., scanners, and acquisition parameters 

(repetition time, run length, resolution), preprocessing strategies (nuisance regression, 

filtering, spatial smoothing) and data representations (surface or volume based). We 

demonstrate this principle by systematically evaluating MLP performance in relation to 

quantity of fMRI data and seed ROI size.

4.5.2 Quantity of fMRI data—The relation between total quantity of fMRI data and MLP 

performance is shown in Figure 10A. The plotted points represent three random resamplings 

of all data in the Validation 1 dataset. RMS error as a function of data quantity was well fit 

(r2=0.994) by a three-parameter empirically derived rational function. The parameterized 

function implies that output RMS error monotonically decreases with increasing total fMRI 

data length but ultimately asymptotes at ~15.6%. The biological significance of this 

asymptote is discussed below (Section 4.6).

4.5.3. Optimal seed ROI size—The relationship between seed ROI radius and RMS 

error was explored using the optimal MLP architecture (2,500 PCs, 22 hidden nodes) 

determined with 5 mm radius seeds. All seeds were masked to include only gray matter 

voxels. The results of systematically varying seed ROI size are shown in Figure 10B. A 

1Various labels, viz., “task-positive”/“task-negative” (Fox et al., 2005) and “intrinsic”/“extrinsic” (Doucet et al., 2011) have been 
attached to the DMN/anti-DMN dichotomy (for a critique of this nomenclature see Spreng, R.N., 2012. The fallacy of a “task-
negative” network. Frontiers in psychology 3, 145.). However, these labels refer to the cognitive operations putatively represented in 
functional systems, which topic is outside the scope of the present work.
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clear minimum in RMS error was obtained with seeds of approximately 10.5 mm radius. 

Voxel-wise RSN topographies were qualitatively similar across ROI sizes, but larger seeds 

generated less noisy RSNs with more pronounced peaks. This result is unexpected, as it 

deviates from the current standard practice of using approximately 6 mm radius seeds (e.g., 

(Marrelec and Fransson, 2011)). There are several possible explanations for this result. 

Large seeds may best match the characteristic dimensions of RSNs in the 7-network level 

description of the brain. Alternatively, large seeds may compensate for mis-registration in 

affinecoregistered, volume-preprocessed data. We anticipate that smaller seeds will be 

optimal when estimating RSN membership of surface-coregistered, geodesically smoothed 

data. Hence, the results shown in Figure 10B should not be interpreted as unambiguously 

indicating that 10.5 mm radius seeds are optimal for correlation mapping in general. Rather, 

the large optimal radius (10.5 mm) indicates that averaging over more voxels outweighs loss 

of spatial specificity in this paradigm. Alternatively, the resultant increase in blurring may 

have corrupted the training data, which can lead to a more robust classifier (Dunmur and 

Wallace, 1993).

4.6 Limitations

The present MLP results were obtained using a particular set of RSNs selected for their 

scientific and clinical value in the context of ongoing research. A different training set 

including other RSNs might be optimal in other circumstances. MLP performance may be 

expected to vary with the number and separability of RSNs being classified as well as the 

total duration (Fig. 10A) and quality of acquired resting state fMRI data.

As discussed above (section 4.1), inter-individual differences in computed RSN 

topographies may reflect multiple factors. Cross-gyral contamination due to the relatively 

large voxels used in this study (3–4 mm acquisition, 3 mm post-processing analyses) may 

limit the precision of RSN estimation in our dataset (see (Yeo et al., 2011) for a discussion 

of this issue). Of greater theoretical importance is that we cannot distinguish between 

correctly identified geodesic (parallel to the cortical surface) shifts of RSN topography 

versus morphological differences in gyral/sulcal anatomy. Potential strategies for validating 

MLP-derived results individuals include comparison with measures of structural 

connectivity (Damoiseaux and Greicius, 2009) and invasive electrophysiologic recording 

(He et al., 2008).

As shown in Figure 3B as well as in prior work (Boly et al., 2012; Doucet et al., 2011; Lee 

et al., 2012; Marrelec et al., 2008), RSNs are hierarchically organized. Thus, a major 

dichotomy separates the `extrinsic' (DAN, VAN, VIS, SMN) from `intrinsic' networks (FPC, 

LAN, DMN). At the next level of granularity, RSN blocks are distinguishable within the 

major dichotomy. However, the cognitive domains corresponding to these RSNs (e.g., 

`motor', `language', `attention', etc.) are not conventionally regarded as hierarchically 

organized. Our training labels are categorical because they were generated from task-fMRI 

responses corresponding to conventionally understood cognitive domains (Table 2). Thus, 

this work is fundamentally limited in that we impose a `flat' conceptualization of brain 

function onto an intrinsically hierarchical system. This is reflected in the fact that ROIs are 

almost perfectly classified (by the AUC measure) in all datasets, yet RMS error always 
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remains substantial (15%–20%) (Table 3, Fig. 10A). The existence of this residual may 

indicate that resting-state brain networks are inherently non-separable in the sense of 

classification. Indeed, this is consistent with the notion of “near decomposability” of 

hierarchical systems formed by multiple, sparsely inter-connected modules (Simon, 1995); 

this concept has been extended to brain networks (Meunier et al., 2010).

Another potential limitation is that all present analyses assume temporal stationarity, as do 

the overwhelming majority of extant papers on intrinsic BOLD activity. However, a 

growing literature (Chang and Glover, 2011; Kiviniemi et al 2011; Hutchinson et al 2012; 

Allen et al 2012) indicates that resting state correlation patterns fluctuate on a time scale of 

minutes. Our analysis of the effect on classifier performance of varying the total quantity of 

fMRI data (Fig. 10A) utilized contiguous epochs to the extent possible given fMRI runs of 

duration ~5 minutes. Less data reliably yielded worse performance. This result may be 

attributable either to sampling error (i.e., limited signal to noise ratio) or true temporal non-

stationarities or both. Similarly, the performance floor may reflect non-stationarities. 

Disambiguating these possibilities would require much longer contiguous acquisitions.

4.7 Summary

The MLP estimates RSN membership at the voxel level via computed correlation maps. 

After training, it reliably identifies RSN topographies in individuals. RSN estimation is 

rapid (2 minutes using Matlab running on Intel i7 processors) and automated, hence suitable 

for deployment in clinical environments. After training, operation is independent of any 

particular seed. Therefore, the trained MLP is expected to be robust to anatomical shifts and 

distortions, for example, owing to enlarged ventricles and mass effects or even loss of neural 

tissue (e.g., stroke).

In this work, the MLP was trained to operate in 3D image space for compatibility with 

clinical imaging formats. However, the MLP concept can be readily adapted to operate on 

correlation maps represented on the cortical surface. Similarly, an MLP can be trained to 

ignore anatomical abnormalities (e.g., brain tumors) by altering the domain of the training 

set, i.e., excluding tumor voxels. This possibility will be explored in future work.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A

The input to the MLP algorithm consists of correlation maps projected onto eigenvectors 

computed by PCA preprocessing of the training data (see main text section 2.4.1). Each 

input's loadings onto the i-th eigenvector, yi, is formally defined as the output value of the i-

th input layer node. This corresponds to the first layer in Fig. A1.

The total input to a hidden or output layer node, vh or vo, respectively, is computed as the 

sum of all output values from the previous layer weighted by feed-forward connections:

(A.1)

where i, h, and o index input, hidden, and output nodes; yh indicates the output value 

received from hidden layer node h; whi indicates the connection weights from input node i to 

hidden layer node h, and similarly for hidden to output layer connections woh. In this work, 

connection weights were initialized by sampling values from a uniform distribution over the 

interval [−0.01, 0.01].

Total inputs to each node are transformed into output values by layer-specific activation 

functions, φh and φo, which are the hyperbolic tangent and logistic curves, respectively:

(A.2)

where b = 0.1. The hidden node index, h, ranges from 1 to 22. The output node index, O, 

ranges from 1 to 8.

The overall transfer function of the perceptron is given in Eq. (A.3). This formula represents 

the propagation of inputs through the MLP (Figure A1):

(A.3)

After propagation of the input data, the output value for each node, yo, is compared to the a 

priori RSN output labels, do ∈ 0,1 , to find the error eo = do - yo. The total squared error, 

summed across all output nodes and all training samples, is given by E. The local gradient of 

the total error at output node o is computed as:

(A.4)

where the prime notation indicates the first derivative of φo (see application of chain rule in 

Eq. 4 in (Rumelhart et al., 1986)). Note that the derivative of the input, vo, with respect to 

the weights, woh, in Eq. (A.1) is simply the output from the previous layer, yh. The chain 
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rule can therefore be used to calculate how total error changes with respect to the weights, 

i.e., . This gradient can thus be used to adjust the connection 

weights:

(A.5)

where η is the instantaneous learning rate (see Eq. (A.9) below and Fig. A2) and k is the 

iteration index. The weights to the hidden layer from the input layer are similarly adjusted:

(A.6)

However, the local gradient of the error at hidden node h, δh, must be computed indirectly 

by back-propagation of the local gradient of error at the output layer, weighted by the 

connections between the hidden and output layers:

(A.7)

The present results were obtained using an empirically determined learning rate parameter 

schedule, η k, which depended on the iteration index, k. The range of η values yielding 

stable learning was determined, where instability was defined as divergence or oscillation of 

classifier weights or output values. The learning rate schedule adaptively increased as a 

sigmoid in log iteration index (Fig. A2):

(A.8)

Thus, A = 5·10−4 = η(0) was the initial learning rate and K = 2·10−3 = η ∞ the maximal rate; 

B=−3; M = 2.5. The presently reported η values provided stable learning with double 

precision computations for the final architecture described in this work. Architectures with 

larger weight matrices required smaller values of η.

Appendix B - Algebraic comparison of methods

This appendix describes the algebraic relationship between dual regression (DR), linear 

discriminant analysis (LDA), and the multi-layer perceptron (MLP). We demonstrate that all 

three methods act on the second-order statistics over voxel pairs (covariance for DR and 

correlation and for LDA and MLP). Each method computes subject-level descriptions of 

group-defined spatial components.

B.1 Defintion

Let Bi be the BOLD volumetric timeseries (voxels × time) for subject i after preprocessing 

and masking to include only grey matter voxels. The voxel-wise temporal covariance matrix 

is , where the superscript T indicates the matrix transpose. Similarly, the voxel-wise 
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correlation matrix is , where b is the volumetric timeseries after normalizing each voxel 

to unit variance. Let A be the matrix of group-defined RSN maps (voxels × components).

B.2 Linear Projection (LP)

Projecting voxel-wise covariance maps onto group-defined components is algebraically the 

simplest possible method for extending group results to individuals (Eq. (B.1)).

(B.1)

Eq. (B.1) generates individual, voxel-wise RSN scores for each group-derived component. 

We do not report such maps. However, we do evaluate nearest neighbor LP performance in 

comparison to DR, LDA, and MLP (main text Table 4). To perform this comparison in a 

manner comparable across methods, covariance maps were generated for all a priori seeds 

in all Optimization participants. These maps were projected directly onto the group-defined 

RSN components. The resulting scores, i.e., the inner products of each seed-based 

covariance map with each group-derived RSN component, were used to perform nearest-

neighbor classification.

B.3 Dual Regression

Dual regression generally is used to extend group-defined results derived by group sICA to 

individuals (Zuo et al., 2010). The first step of dual regression assumes a representation of 

the BOLD timeseries as a linear model of fixed group-level RSN components, A (voxels × 

components), each evolving over an associated timecourse in Ti (components × time),

(B.2)

with some error εi. Note that for comparison to our work, A was computed as averaged seed-

based correlation maps rather than independent components; nevertheless A has full column 

rank and AT A is invertible. Therefore, the left pseudoinverse can be used to find the least 

squares solution for the system of RSN timecourses specific to each individual:

(B.3)

where  is the left Moore-Penrose pseudoinverse of A. It may be noted that 

group sICA generates spatially orthogonal components AT A ∝ I, in which case . 

However, in our work, the training set of RSNs is only approximately orthogonal. The 

second step of dual regression solves for the subject-specific RSN topographies best 

described by the timeseries recovered in step 1:

(B.4)

where  indicates a right pseudoinverse of Ti. Note,  is invertible 

because Ti has full row rank. Combining Eqs. (B.2) and (B.3) yields

Hacker et al. Page 21

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B.5)

Thus, dual regression computes group-defined RSN topographies in individual i as a linear 

transformation on the voxel-wise covariance matrix, . To evaluate DR classification, 

the quantities necessary to define the final algebraic form of dual regression, i.e., A+T and 

 in Eq. (B.5), were first computed for each participant. Seed-based covariance maps 

then were generated for all ROIs and all participants and inner products with 

were computed to obtain RSN scores for each ROI in each individual.

B.4 PCA/LDA

Linear discriminant analysis (LDA) was first described in 1936 (Fisher, 1936). Briefly, this 

method computes discriminant vectors that are the basis for a reduced space (of 

dimensionality equal to the size of the feature space) in which the between-class vs. within-

class separation has been maximized across training data. LDA preceded by input feature 

space dimensionality reduction using principal components analysis (PCA) is well known, 

e.g., (Lyons et al., 1999). Here, PCA-LDA was implemented using the same input data and 

training labels as for the MLP method, except that 20 principal components gave optimal 

performance with PCA-LDA whereas 2500 components was optimal with MLP. After 

training, PCA-transformed voxel-wise correlation maps ( ) were projected onto the 

discriminant vectors (WLDA) to produce subject-specific RSN topographies:

(B.6)

B.5 PCA/MLP

The following formulation of the forward pass is simply Eq. (A.3) converted to matrix form, 

using the PCA-transformed voxel-wise correlation maps ( ) as the input.

(B.7)

Where W1 and W2 are matrix forms of the weights between the input and hidden, and the 

hidden and output layers, respectively.

B.6 Comment

DR, LDA and MLP all compute individual RSN topographies (Ai) by algebraic 

transformation of observed individual second order voxel-wise statistics, i.e., , or . 

Several differences between the methods are evident in Eqs. (B.5)–(B.7):

• LDA and DR involve strictly linear operations whereas the MLP includes nonlinear 

activating functions φh, φo.
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• The dimensionality of the LDA vs. MLP weight matrices is very different: WLDA is 

20 × 7 whereW1 is 2500 × 22 and is W2 22× 7. Thus, compared to LDA, the MLP 

has many more connection weights available for optimization.

• All three methods project  or  onto weight matrices. This operation 

amounts to computing the inner product of an individual's covariance/correlation 

matrix times a set of RSN-specific templates. In fact, to the extent that sICA-

derived templates are spatially orthogonal AT A ℝ I, the first factor in Eq. (B.5) 

reduces to a simple projection of  onto A, which is equivalent to nearest 

neighbor classification, i.e., Eq. (B.1).

• The last factor in Eq. (B.5), , compensates for non-orthogonality of RSN 

time courses in each individual. This “unmixing” operation in DR occurs is a space 

of dimensionality equal to the number of RSNs (7 in this work). In LDA, 

“unmixing” is performed in a larger feature space (20 dimensions). Interestingly, 

while the MLP extracts features from a very high dimensional space, the optimal 

number extracted features (Nh = 22) was close to the optimal LDA input 

dimensionality.

LDA, a operating with a simple linear transform, required a heavily truncated space for 

optimal performance. The optimal dimensionality, 20 PCs accounted for 70.4% of the 

variance of correlation topographies with 0.6% of variance in the 20th component. The 

optimal space for the MLP method accounted for 99.98% of the variance, including 

components of very small variance (2.7·10−7 for the 2500th, 99.98% accounted in total) in 

the training data. Performance differences indicate that the MLP more efficiently selects 

from a larger set of features (much of which can be noise) with which to model arbitrary 

relationships and thus approximates a smooth boundary. LDA must perform a harsh 

truncation because of the amplification of noise caused by small components. These PCA 

maneuvers are not applicable to conventional dual-regression (Zuo et al., 2010), which does 

not explicitly compute the covariance matrix. However, regularization and smoothing steps 

theoretically could be performed on the raw BOLD data, Bi, using ICA to exclude noise 

components from further analysis.

References

Barrett HH, Abbey CK, Clarkson E. Objective assessment of image quality. III. ROC metrics, ideal 
observers, and likelihood-generating functions. Journal of the Optical Society of America. A, 
Optics, image science, and vision. 1998; 15:1520–1535.

Beckmann CF. Modelling with independent components. NeuroImage. 2012; 62:891–901. [PubMed: 
22369997] 

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using 
independent component analysis. Philosophical transactions of the Royal Society of London. Series 
B, Biological sciences. 2005; 360:1001–1013.

Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherface: recognition using class specific 
linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence. 1997; 19:711–720.

Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC, Grabowski TJ, Langfitt JT, 
Loring DW, Lowe MJ, Koenig K, Morgan PS, Ojemann JG, Rorden C, Szaflarski JP, Tivarus ME, 
Weaver KE. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative 
study. NeuroImage. 2011; 54:1465–1475. [PubMed: 20884358] 

Hacker et al. Page 23

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magn Reson Med. 1995; 34:537–541. [PubMed: 8524021] 

Biswal, BB.; Mennes, M.; Zuo, XN.; Gohel, S.; Kelly, C.; Smith, SM.; Beckmann, CF.; Adelstein, JS.; 
Buckner, RL.; Colcombe, S.; Dogonowski, AM.; Ernst, M.; Fair, D.; Hampson, M.; Hoptman, MJ.; 
Hyde, JS.; Kiviniemi, VJ.; Kotter, R.; Li, SJ.; Lin, CP.; Lowe, MJ.; Mackay, C.; Madden, DJ.; 
Madsen, KH.; Margulies, DS.; Mayberg, HS.; McMahon, K.; Monk, CS.; Mostofsky, SH.; Nagel, 
BJ.; Pekar, JJ.; Peltier, SJ.; Petersen, SE.; Riedl, V.; Rombouts, SA.; Rypma, B.; Schlaggar, BL.; 
Schmidt, S.; Seidler, RD.; Siegle, GJ.; Sorg, C.; Teng, GJ.; Veijola, J.; Villringer, A.; Walter, M.; 
Wang, L.; Weng, XC.; Whitfield-Gabrieli, S.; Williamson, P.; Windischberger, C.; Zang, YF.; 
Zhang, HY.; Castellanos, FX.; Milham, MP. Toward discovery science of human brain function. 
Proceedings of the National Academy of Sciences of the United States of America; 2010. p. 
4734-4739.

Boly, M.; Perlbarg, V.; Marrelec, G.; Schabus, M.; Laureys, S.; Doyon, J.; Pelegrini-Issac, M.; 
Maquet, P.; Benali, H. Hierarchical clustering of brain activity during human nonrapid eye 
movement sleep. Proceedings of the National Academy of Sciences of the United States of 
America; 2012. p. 5856-5861.

Briganti C, Sestieri C, Mattei PA, Esposito R, Galzio RJ, Tartaro A, Romani GL, Caulo M. 
Reorganization of functional connectivity of the language network in patients with brain gliomas. 
AJNR. American journal of neuroradiology. 2012; 33:1983–1990. [PubMed: 22555573] 

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum 
estimated by intrinsic functional connectivity. Journal of neurophysiology. 2011; 106:2322–2345. 
[PubMed: 21795627] 

Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, 
Corbetta M. Resting interhemispheric functional magnetic resonance imaging connectivity 
predicts performance after stroke. Annals of neurology. 2010; 67:365–375. [PubMed: 20373348] 

Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic 
functional connectivity. Journal of neurophysiology. 2012; 108:2242–2263. [PubMed: 22832566] 

Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS. Global connectivity of prefrontal cortex 
predicts cognitive control and intelligence. The Journal of neuroscience : the official journal of the 
Society for Neuroscience. 2012; 32:8988–8999. [PubMed: 22745498] 

Conroy BR, Singer BD, Guntupalli JS, Ramadge PJ, Haxby JV. Inter-subject alignment of human 
cortical anatomy using functional connectivity. NeuroImage. 2013

Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. Hierarchical clustering to measure 
connectivity in fMRI resting-state data. Magnetic resonance imaging. 2002; 20:305–317. 
[PubMed: 12165349] 

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis - I. Segmentation and surface 
reconstruction. NeuroImage. 1999; 9:179–194. [PubMed: 9931268] 

Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining 
structural connectivity and resting-state functional connectivity. Brain Structure & Function. 2009; 
213:525–533. [PubMed: 19565262] 

Damoiseaux, JS.; Rombouts, SA.; Barkhof, F.; Scheltens, P.; Stam, CJ.; Smith, SM.; Beckmann, CF. 
Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of 
Sciences of the United States of America; 2006. p. 13848-13853.

Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, Jobard G, Tzourio-Mazoyer N, 
Mazoyer B, Mellet E, Joliot M. Brain activity at rest: a multiscale hierarchical functional 
organization. Journal of neurophysiology. 2011; 105:2753–2763. [PubMed: 21430278] 

Dunmur AP, Wallace DJ. Learning and Generalization in a Linear Perceptron Stochastically Trained 
with Noisy Data. Journal of Physics a-Mathematical and General. 1993; 26:5767–5779.

Erkmen B, Yɪldɪrɪm T. Improving classification performance of sonar targets by applying general 
regression neural network with PCA. Expert Systems with Applications. 2008; 35:472–475.

Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 1936; 
7:179–188.

Hacker et al. Page 24

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fox, MD.; Corbetta, M.; Snyder, AZ.; Vincent, JL.; Raichle, ME. Spontaneous neuronal activity 
distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of 
Sciences of the United States of America; 2006. p. 10046-10051.

Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Frontiers in 
systems neuroscience. 2010; 4:19. [PubMed: 20592951] 

Fox, MD.; Snyder, AZ.; Vincent, JL.; Corbetta, M.; Van Essen, DC.; Raichle, ME. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the 
National Academy of Sciences of the United States of America; 2005. p. 9673-9678.

Fox MD, Zhang DY, Snyder AZ, Raichle ME. The Global Signal and Observed Anticorrelated Resting 
State Brain Networks. Journal of neurophysiology. 2009; 101:3270–3283. [PubMed: 19339462] 

Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. 
IEEE Trans Pattern Anal Mach Intell. 1984; 6:721–741. [PubMed: 22499653] 

Golestani AM, Tymchuk S, Demchuk A, Goodyear BG. Longitudinal evaluation of resting-state FMRI 
after acute stroke with hemiparesis. Neurorehabilitation and neural repair. 2013; 27:153–163. 
[PubMed: 22995440] 

Guimera R, Amaral LA. Cartography of complex networks: modules and universal roles. Journal of 
statistical mechanics. 2005; 2005 nihpa35573. 

Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, Constable RT. Connectivity-
behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies 
with reading ability. NeuroImage. 2006; 31:513–519. [PubMed: 16497520] 

He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional 
connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron. 
2007; 53:905–918. [PubMed: 17359924] 

He, BJ.; Snyder, AZ.; Zempel, JM.; Smyth, MD.; Raichle, ME. Electrophysiological correlates of the 
brain's intrinsic large-scale functional architecture. Proceedings of the National Academy of 
Sciences of the United States of America; 2008. p. 16039-16044.

Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the 
functional anatomy of language. Cognition. 2004; 92:67–99. [PubMed: 15037127] 

Hickok G, Poeppel D. The cortical organization of speech processing. Nature reviews. Neuroscience. 
2007; 8:393–402. [PubMed: 17431404] 

Hill, J.; Inder, T.; Neil, J.; Dierker, D.; Harwell, J.; Van Essen, D. Similar patterns of cortical 
expansion during human development and evolution. Proceedings of the National Academy of 
Sciences of the United States of America; 2010. p. 13135-13140.

Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL. Distinct cortical anatomy linked to 
subregions of the medial temporal lobe revealed by intrinsic functional connectivity. Journal of 
neurophysiology. 2008; 100:129–139. [PubMed: 18385483] 

Kirkpatrick S. Optimization by Simulated Annealing - Quantitative Studies. Journal of Statistical 
Physics. 1984; 34:975–986.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220:671–
680. [PubMed: 17813860] 

Koyama MS, Di Martino A, Zuo XN, Kelly C, Mennes M, Jutagir DR, Castellanos FX, Milham MP. 
Resting-state functional connectivity indexes reading competence in children and adults. The 
Journal of neuroscience : the official journal of the Society for Neuroscience. 2011; 31:8617–
8624. [PubMed: 21653865] 

Kupinski MA, Clarkson E, Hoppin JW, Chen L, Barrett HH. Experimental determination of object 
statistics from noisy images. Journal of the Optical Society of America. A, Optics, image science, 
and vision. 2003; 20:421–429.

Lee MH, Hacker CD, Snyder AZ, Corbetta M, Zhang D, Leuthardt EC, Shimony JS. Clustering of 
resting state networks. PLoS One. 2012; 7:e40370. [PubMed: 22792291] 

Lyons MJ, Budynek J, Akamatsu S. Automatic classification of single facial images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 1999; 21:1357–1362.

Marrelec G, Bellec P, Krainik A, Duffau H, Pelegrini-Issac M, Lehericy S, Benali H, Doyon J. 
Regions, systems, and the brain: hierarchical measures of functional integration in fMRI. Medical 
image analysis. 2008; 12:484–496. [PubMed: 18396441] 

Hacker et al. Page 25

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marrelec G, Fransson P. Assessing the influence of different ROI selection strategies on functional 
connectivity analyses of fMRI data acquired during steady-state conditions. PLoS One. 2011; 
6:e14788. [PubMed: 21533283] 

Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP. Inter-individual 
differences in resting-state functional connectivity predict task-induced BOLD activity. 
NeuroImage. 2010; 50:1690–1701. [PubMed: 20079856] 

Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain 
networks. Frontiers in neuroscience. 2010; 4:200. [PubMed: 21151783] 

Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H. Individual 
variability in functional connectivity architecture of the human brain. Neuron. 2013; 77:586–595. 
[PubMed: 23395382] 

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal 
regression on resting state correlations: are anti-correlated networks introduced? NeuroImage. 
2009; 44:893–905. [PubMed: 18976716] 

Otten ML, Mikell CB, Youngerman BE, Liston C, Sisti MB, Bruce JN, Small SA, McKhann GM 2nd. 
Motor deficits correlate with resting state motor network connectivity in patients with brain 
tumours. Brain : a journal of neurology. 2012; 135:1017–1026. [PubMed: 22408270] 

Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of 
the cortical anatomy of single-word processing. Nature. 1988; 331:585–589. [PubMed: 3277066] 

Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB. Functional network disruption in the 
degenerative dementias. Lancet neurology. 2011; 10:829–843. [PubMed: 21778116] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59:2142–
2154. [PubMed: 22019881] 

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin 
FM, Schlaggar BL, Petersen SE. Functional network organization of the human brain. Neuron. 
2011; 72:665–678. [PubMed: 22099467] 

Pravata E, Sestieri C, Mantini D, Briganti C, Colicchio G, Marra C, Colosimo C, Tartaro A, Romani 
GL, Caulo M. Functional connectivity MR imaging of the language network in patients with drug-
resistant epilepsy. AJNR. American journal of neuroradiology. 2011; 32:532–540. [PubMed: 
21163879] 

Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW. The multilayer perceptron as an 
approximation to a Bayes optimal discriminant function. IEEE transactions on neural networks / a 
publication of the IEEE Neural Networks Council. 1990; 1:296–298. [PubMed: 18282850] 

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 
1986; 323:553–536.

Sabuncu MR, Singer BD, Conroy B, Bryan RE, Ramadge PJ, Haxby JV. Function-based intersubject 
alignment of human cortical anatomy. Cerebral cortex. 2010; 20:130–140. [PubMed: 19420007] 

Shulman GL, Pope DL, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M. Right hemisphere 
dominance during spatial selective attention and target detection occurs outside the dorsal 
frontoparietal network. The Journal of neuroscience : the official journal of the Society for 
Neuroscience. 2010; 30:3640–3651. [PubMed: 20219998] 

Simon, HA. Near-decomposability and complexity: How a mind resides in a brain. In: Morowitz, H.; 
Singer, J., editors. The Mind, the Brain, and Complex Adaptive Systems, Reading. MA: 1995. p. 
25-43.

Smith, SM.; Fox, PT.; Miller, KL.; Glahn, DC.; Fox, PM.; Mackay, CE.; Filippini, N.; Watkins, KE.; 
Toro, R.; Laird, AR.; Beckmann, CF. Correspondence of the brain's functional architecture during 
activation and rest. Proceedings of the National Academy of Sciences of the United States of 
America; 2009. p. 13040-13045.

Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ. Longitudinal Analysis of 
Neural Network Development in Preterm Infants. Cerebral cortex. 2010; 20:2852–2862. [PubMed: 
20237243] 

Snyder AZ, Raichle ME. A brief history of the resting state: the Washington University perspective. 
NeuroImage. 2012; 62:902–910. [PubMed: 22266172] 

Hacker et al. Page 26

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spreng RN. The fallacy of a “task-negative” network. Frontiers in psychology. 2012; 3:145. [PubMed: 
22593750] 

Tie Y, Rigolo L, Norton IH, Huang RY, Wu W, Orringer D, Mukundan S Jr. Golby AJ. Defining 
language networks from resting-state fMRI for surgical planning-a feasibility study. Human brain 
mapping. 2013

Tomasi D, Volkow ND. Language network: segregation, laterality and connectivity. Molecular 
psychiatry. 2012; 17:759. [PubMed: 22824848] 

Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional 
connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of 
neurophysiology. 2010; 103:297–321. [PubMed: 19889849] 

Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. Parcellations and hemispheric 
asymmetries of human cerebral cortex analyzed on surface-based atlases. Cerebral cortex. 2012; 
22:2241–2262. [PubMed: 22047963] 

Wig GS, Laumann TO, Cohen AL, Power JD, Nelson SM, Glasser MF, Miezin FM, Snyder AZ, 
Schlaggar BL, Petersen SE. Parcellating an Individual Subject's Cortical and Subcortical Brain 
Structures Using Snowball Sampling of Resting-State Correlations. Cerebral cortex. 2013

Wurnig MC, Rath J, Klinger N, Hollinger I, Geissler A, Fischmeister FP, Aichhorn M, Foki T, 
Kronbichler M, Nickel J, Siedentopf C, Staffen W, Verius M, Golaszewski S, Koppelstatter F, 
Knosp E, Auff E, Felber S, Seitz RJ, Beisteiner R. Variability of Clinical Functional MR Imaging 
Results: A Multicenter Study. Radiology. 2013

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, 
Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral 
cortex estimated by intrinsic functional connectivity. Journal of neurophysiology. 2011; 106:1125–
1165. [PubMed: 21653723] 

Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chicoine MR, Smyth MD, Snyder AZ, 
Raichle ME, Shimony JS. Preoperative sensorimotor mapping in brain tumor patients using 
spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: 
initial experience. Neurosurgery. 2009; 65:226–236. [PubMed: 19934999] 

Zhang D, Raichle ME. Disease and the brain's dark energy. Nature reviews. Neurology. 2010; 6:15–
28. [PubMed: 20057496] 

Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME. Intrinsic functional relations 
between human cerebral cortex and thalamus. Journal of neurophysiology. 2008; 100:1740–1748. 
[PubMed: 18701759] 

Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity 
networks: test-retest evaluation using ICA and dual regression approach. NeuroImage. 2010; 
49:2163–2177. [PubMed: 19896537] 

Hacker et al. Page 27

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• A multilayer perceptron can accurately classify correlation maps into canonical 

RSNs.

• Operating voxel-wise, the classifier produces full-brain topographies of RSNs.

• RSN topographies at the group level are highly concordant with prior studies.

• Classifier performance can be used to objectively optimize BOLD methodology.

• Whole-brain classification is rapid and automated, thus suitable for clinical use.
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Figure 1. 
Seed ROIs for generation of correlation map data. Seed ROIs resulting from a meta-analysis 

of task foci (see section 2.3) were defined in volume space. To visualize the surface 

variability of volume-defined regions, 5 mm radius spherical ROIs centered on 

stereotactically defined coordinates were projected onto surface reconstructions for each 

individual. Transparent regions indicate at least 20% surface overlap of ROIs across 

subjects. Opaque regions indicate at least 50% overlap. Figure S1 shows both hemispheres 

in slice format.

Hacker et al. Page 29

Neuroimage. Author manuscript; available in PMC 2014 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Single-subject, voxel-wise estimation of RSNs using the trained MLP. A. Each locus 

produces one correlation map that ultimately results in N=7 MLP estimates of network 

membership at that locus. B. Each correlation map is masked to include only grey matter 

voxels and projected into principal component space. C and D. The masked image is passed 

through the neural network. See Appendix A and Figure A1 for details of MLP connections 

and training process. E. Output values converted to percentiles (uniform distribution over 0 

to 1 interval) for surface displays. The 8th (nuisance component) MLP output is not 

illustrated.
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Figure 3. 
Projection of RSNs into PCA space. A. Temporal correlation matrix: For each subject, the 

processed BOLD time-courses were averaged over each seed region. The resulting matrices 

were averaged across subjects. B. Spatial correlation matrix: For each subject, correlation 

maps were produced for every seed region. Matrices of spatial correlation between each 

seed's map were computed, and then averaged across subjects. C. Principal component 

analysis: PCA was performed on correlation maps, yielding the eigenvectors of the map-to-

map spatial covariance matrix. Correlation maps for each seed in each subject were 

projected onto the PCA components, thus generating a locus in PCA space for each of the 

3,675 training images. Color indicates the task analysis from which the region was derived.
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Figure 4. 
MLP Training trajectories as reflected in the Optimization dataset. A. Total RMS error as a 

function of iteration number. Error decreased monotonically for all networks until reaching a 

global minimum. The black line represents the total RMS error across all networks. The 

optimal early stopping point was defined as the global minimum of the total RMS error. B. 

Change in RMS error for each RSN (sign inverted derivatives with respect to iteration). The 

plotted values have been normalized by change in mean RMS error (black curve in A). Note 

sequential appearance of -ΔRMS error peaks and expanded iteration scale. C: ROC curves 

plotted in parallel with panel A. AUC values in the Training set asymptotically approached 

unity (not shown), whereas the Optimization data exhibited local maxima (inset). The black 

line represents the mean AUC across the 7 RSNs. Iterations index is shown on a logarithmic 

scale in all plots to emphasize early performance.
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Figure 5. 
RSN topographies in individual participants from Validation dataset 1. Voxel-wise MLP 

results are shown for 3 participants. These are the best, median, and worse performers as 

determined by RMS error. Voxelwise MLP output values have been converted to a 

percentile scale within each RSN and sampled onto each individual's cortical surface.
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Figure 6. 
MLP SMN results obtained in Validation dataset 2 individuals. A: Five individuals were 

selected to represent the correspondence between SMN variability and anatomical 

variability in the central sulcus (see text for details). MLP SMN scores are displayed 

overlayed on individual MP-RAGE slices. The bright contour corresponds to the 90th 

percentile of voxel values. Note: high SMN scores track the shape of the central sulcus (red 

arrows). B: Correlation between the Talairach Y-coordinate of the centroid of MLP SMN 

(un-normalized) output values and the Y-coordinate centroid of the central sulcus fundus 

traced over the path indicated in the right inset figure. The SMN centroid was evaluated over 

the X–Y range indicated by the left inset figure.
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Figure 7. 
Surface-averaged MLP results. Top: Surface-based average over 100 participants from 

Validation dataset 2. Middle: Standard deviation of RSN values across subjects. Bottom: 

Winner-take-all maps depict surfaces with patches colored according to the network with the 

largest value.
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Figure 8. 
Volume-averaged MLP results 692 participants from Validation dataset 2, displayed in 

slices. WTA indicates the winner-take-all result (thresholded at 0.7 for the winning value). 

All seven networks were represented in the cerebellum despite absence of cerebellar seeds in 

the training data. Note left lateralized cerebral foci and right lateralized cerebellar foci for 

the language network (white arrows, LAN column); similarly, note right cerebral and left 

cerebellar foci for the ventral attention network (white arrows, VAN column).
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Figure 9. 
Comparison of MLP to alternative methodologies. A. Selected group-average RSN 

topography estimates computed with dual regression (DR), linear discriminant analysis 

(LDA), and a multi-layer perceptron (MLP). B. RSN estimates evaluated over a priori seed 

ROIs. Topography estimates for each network (A) were averaged over voxels within each 

seed. The resulting scores were averaged over subjects and plotted for pairs of RSNs (e.g., 

SMN vs. VIS scores). Markers are colored based on the prior assignment of each seed. Line 

segments extend from the voxel-wise median score (50th percentile) to the center of mass of 

the ROI scores for the two RSNs defining the exhibited plane. Note that only the MLP 

successfully separates LAN seeds from DMN along the LAN axis. C. Inter-class correlation 

of RSN scores computed as the Pearson correlation coefficient between pairs of RSNs. Note 

that RSN scores are least correlated for the MLP, indicating more complete 

orthogonalization.
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Figure 10. 
Examples of objective evaluation of methodology. A. Effect of total quantity of fMRI data 

on MLP performance. The plotted points (small triangles) represent total RMS error 

obtained with the fully trained MLP under three random sub-samplings of the Validation 1 

dataset. RMS error (E) was fit to a 3-parameter rational function (red line). Asymptotic 

RMS error (~15.6%) was estimated from the function model. Note monotonically 

decreasing error with increasing data quantity. The large symbols report values for particular 

datasets: diamond: Training; circle: Optimization; triangle: Validation 1; square: Validation 

2. The inset surface displays show the effect of available data quantity on WTA results. Note 

less RSN fragmentation with more data. B. Effect of Optimization ROI size on MLP 

performance. Each seed radius was evaluated with 5 replicates. Red line: locally linear 

scatterplot smoothing (LOESS, smoothing parameter of 0.5). Note clear minimum at 

approximately 10 mm radius.
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Table 1

Characteristics of the Training, Test and Validation datasets.

Dataset Training Optimization Validation 1 Validation 2
§

Number of Subjects 21 (7M + 14 F) 17 (8M + 9F) 10 (4M + 6F) 692 (305M + 387F)

Age in years 27.6 (23–35) 23.1 (18–27) 23.3 ± 3 (SD) 21.4 ± 2.4 (SD)

Scanner Allegra Allegra Allegra Tim Trio

Acquisition voxel size (4 mm)3 (4 mm)3 (4 mm)3 (3 mm)3

Flip angle 90° 90° 90° 85°

Repetition Time (sec) 2.16 2.16 3.03* 3.00

Number of frames 128 × 6 runs 194 × 4 runs 110 × 9 runs 124 × 2 runs

Citation (Lee et al., 2012) (Fox and Raichle, 2007) (Fox et al., 2005) (Yeo et al., 2011)

*
Validation data set 1 included a one second pause between frames to accommodate simultaneous electroencephalography (EEG) recording.

§
Validation data set 2 was acquired at Harvard-MGH by the Brain Genomics Superstruct Project.
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Table 2

Studies of functional co-activation used to generate seed ROIs.

RSN Expanded acronym Citation Task paradigm Task contrast Final seed ROIs

DAN Dorsal Attention Network (Shulman et al., 
2009; Tosoni et 
al., 2012)

Rapid Serial Visual 
Presentation (RSVP)

Cue Type × Time

28

(Shulman et al., 
2009; Tosoni et 
al., 2012)

Rapid Serial Visual 
Presentation (RSVP)

Cue Location × Cue 
Type × Time

(Astafiev et al., 
2004; Corbetta et 
al., 2000; 
Kincade et al., 
2005)

Posner Cueing Task Time

VAN Ventral Attention Network (Astafiev et al., 
2004; Corbetta et 
al., 2000; 
Kincade et al., 
2005)

Posner Cueing Task Invalid vs. Valid

15

(Dosenbach et 
al., 2007)

10 different cognitive 
control tasks*

Graph theoretic analysis

SMN Sensori-Motor Network (Corbetta et al., 
2000; Kincade et 
al., 2005)

Posner Cueing Task Motor response

39

(Petacchi et al., 
2005)

Various auditory stimuli Stimulation vs. Control

VIS Visual network (Sylvester et al., 
2008; Sylvester 
et al., 2007, 
2009)

Visual Localizer Discrete visual stimuli

30

FPC Fronto-Parietal Control network (Dosenbach et 
al., 2007)

10 different cognitive 
control tasks*

Graph theoretic analysis
12

LAN Language network (Sestieri et al., 
2011; Sestieri et 
al., 2010)

Perceptual vs. Episodic 
Memory Search Paradigm

Sentence reading
13

DMN Default Mode Network (Sestieri et al., 
2011; Sestieri et 
al., 2010)

Perceptual vs. Episodic 
Memory Search Paradigm

Memory retrieval
32

*
Regions reported by Dosenbach and colleagues (2007) were themselves the result of a meta-analysis.
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Table 3

RSN classification (AUC) and estimation (RMS) performance.

Training (N=21) Optimization (N=17) Validation 1 (N=10) Validation 2 (N=692)

Network Accuracy (AUC) Error (RMS) Accuracy (AUC) Error (RMS) Accuracy (AUC) Error (RMS) Accuracy (AUC) Error (RMS)

DAN 0.992 15.7% 0.973 20.8% 0.973 21.1% 0.966 23.1%

VAN 0.991 14.9% 0.971 19.6% 0.979 17.7% 0.962 21.0%

SMN 0.998 15.3% 0.988 20.0% 0.994 17.5% 0.983 23.4%

VIS 0.998 11.1% 0.993 14.9% 0.998 12.5% 0.993 16.5%

FPC 0.988 12.7% 0.972 17.1% 0.989 14.8% 0.971 17.7%

LAN 0.993 13.5% 0.985 16.0% 0.991 14.5% 0.979 17.7%

DMN 0.997 13.9% 0.993 19.7% 0.991 17.5% 0.986 20.3%

Mean 0.994 13.6% 0.982 17.8% 0.988 16.2% 0.977 19.5%

These values reflect MLP training with 10.5 mm radius seeds (see Figure 10) and optimization with simulated annealing.
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Table 4

RSN classification performance for alternative methodologies

LP DR LDA MLP

Network AUC AUC AUC RMSE AUC RMSE

DAN 0.900 0.938 0.953 24.5% 0.973 20.2%

VAN 0.853 0.918 0.958 19.9% 0.971 17.9%

SMN 0.949 0.957 0.989 18.5% 0.988 16.4%

VIS 0.913 0.962 0.991 17.1% 0.993 13.4%

FPC 0.945 0.964 0.945 19.4% 0.972 17.5%

LAN 0.961 0.956 0.970 18.1% 0.985 14.9%

DMN 0.982 0.980 0.987 19.2% 0.993 14.4%

Mean 0.929 0.954 0.970 19.5% 0.982 17.1%

LP: Linear Projection; DR: dual regression; LDA: linear discriminant analysis; MLP: multi-layer perceptron. Data from the Optimization group 
(one correlation map per ROI per subject) were transformed by each method (Appendix B) to produce 7 RSN estimates per map. ROC analysis was 
performed to compute classification performance for each method. The differences between the RSN estimates and their ideal labels (d0 ∈ 0,1) 

were used to compute RMS error for LDA and MLP methods.
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