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1. Introduction
Machine learning classification applied to fMRI data have shown strong potential to
diagnose cognitive disorders and identify behavioral states (Fan et al. (2006) Zhang and
Samaras (2005) Ford et al. (2003)), but drawing inference to the general population from
small-sample studies can be difficult. The assumptions of reproducibility of reactions over
different fMRI runs may not be realistic (Lange et al. (1999) McKeown et al. (2003)), and
factors such as small sample sizes, feature selection methods, and sampling variation may
cause the cross-validation results one sees in publication to be a biased estimate of the
testing accuracy one realizes in practice. Even when some care is taken to exclude obvious
artifacts the resulting classifiers may be difficult to interpret, as they typically are formed
without prior functional hypotheses. To illustrate these methodological susceptibilities we
present and then deconstruct a classifier to test the true power of machine learning. In
Anderson et al. (2010) the spectral classification method was presented which allows
classification among fMRI scans that have not been aligned spatially using the temporal
correlations among the independent components. From this, there arises the question of
which components temporal activity differs enough between groups to power the classifier.
To identify the discriminative component relationships we present a method called
Common Component Classification that facilitates post-hoc identification of the
components powering the classifier. Multi-session temporal concatenation (MSTC), a
procedure based on independent components analysis, extracts common spatial maps across
subjects as well as component- specific time series for each subject (Smith et al. (2004)).
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Classification is performed by characterizing correlations between pairs of components,
revealing which components behaved differently between patients and controls.

Our classifier is tested on data from irritable bowel syndrome (IBS) patients and healthy
controls (HC) undergoing a gastrointestinal stress task. IBS is a common functional pain
disorder associated with chronic abdominal pain, discomfort, and associated altered bowel
habits (Drossman (2006), Mayer et al. (2006)). When applying our machine-learning
classifier to fMRI scans acquired during controlled rectal distension in IBS patients and
HCs, these methods identified which participants were IBS or HCs and exposed entire
networks differing between groups corresponding to identifiable neurological phenomena.

We next deconstruct this classifier by training and testing it within and across two runs to
assess its sensitivity to permutation of the stimulus set as well as the reproducibility of
stimulus effects across runs. We show how models can be made biased by mistakes made in
the feature selection, parameter choice and cross-validation stages and measure the
magnitude of this error. We further assess the strength of group-ICA methods by extracting
components within and across runs, and evaluate the effectiveness of ICA-based methods to
identify and remove artifacts. The classifier is also evaluated on data that has been cleaned
of physiological noise to evaluate how much of the classification ability is attributable to
scan artifacts such as motion versus true neurological signal. We examine the impact of
motion artifacts on the classifier and the ability to remove it without also removing signal.
Finally, we examine the statistical assumptions underlying machine learning classifiers,
discussing the reproducibility of stimulus effects across runs, how bias can skew the
predictive accuracy of the model and how the small sample sizes typical in fMRI affect our
Type 1 and Type 2 errors and limit the ability to draw inference from findings of such
machine learning studies. From our exercise of creating and deconstructing a classifier we
seek collectively to identify what is being learned from machine learning.

2. Materials and Methods: Common Component Classification
2.1. Data Characteristics

Functional MRI data sensitive to blood oxygen content were recorded from 13 female IBS
subjects and 11 HC, each scanned multiple times in a single day, in a block designed
protocol that included anticipated and delivered mild and moderate rectal distention.

2.1.1. Experimental design—Full details of the experimental design are presented in
Berman et al. (2008). In brief, four to six 10 min stimulus sets or fMRI runs containing 16
inflation trials each were administered to HC and IBS. The first trial in each stimulus was a
45 mmHg pressure followed by five additional 45 mmHg inflations, five 25 mmHg
inflations, and five trials at a baseline pressure of 5 mmHg (sham inflation) in
pseudorandom order. Each trial or block comprised 18 s before balloon inflation, followed
by 15 s of inflation at the designated pressure and 3 s for deflation and rating (36 s). A visual
cue preceded the inflations by two to five seconds and was removed at the end of the
inflation period. This signaled the end of a trial, at which point subjects rated the intensity of
the stimulus on a simple three-point scale. There was a brief rest (< 1 min) between fMRI
runs. Data for all patients were not available for each fMRI run; we utilized the scans from
the runs most patients completed, runs 1 and 4. These runs are referred to Run 1 and Run 2
respectively within this manuscript.

2.1.2. fMRI acquisition—Brain images were acquired on a 1.5T MRI scanner (Siemens
Sonata; Siemens, Erlangen, Germany). First, a sagittal scout was used to position the head.
Then, functional T2*-weighted gradient-recalled echo-planar images with blood oxygen
level-dependent (BOLD) contrast (repetition time, 2970 ms; echo time, 42 ms; flip angle,
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80; slice thickness, 4 mm with a 1 mm interslice interval; matrix, 64 × 64; in-plane
resolution, 3.12 mm2) were acquired during each 10 min stimulus set and constituted an
fMRI run. After discarding the first two volumes of each 10 min run, 25 axial slices were
recorded for each of 200 functional whole-brain volumes and saved to disk for off-line
analysis.

2.1.3. fMRI Data Preprocessing—The data were motion corrected using MCFLIRT,
spatially smoothed using an 8 mm Gaussian kernel, high-pass filtered and spatially aligned
using the registration tool FLIRT(Smith et al. (2004)).

2.2. Methods
In this section we present our classifier, common component classification, which will
identify the group membership of a subject based on their specific temporal response pattern
on group-wide independent components. Because the stimulus set is reordered across runs
and artifacts are highly subject-specific, any features used for classification need to
generalize across both subjects and runs. We wish to identify interactions between
components that may differ enough between groups to power a classifier. To identify these
relationships we use summary statistics based on the within subject cross-correlation of the
components temporal activity. The procedure is outlined as follows:

Common Component Classification Procedure
• Component Extraction: For all scans extract common spatial maps and individual

timecourses reflecting the subject-specific response patterns using Multi-Session
Temporal Concatenation (MSTC)

• Feature Creation and Selection: Create a feature matrix for every subject describing
the temporal relationship among the components within a subject. Perform feature
selection by identifying component pairs within a subject that exhibit a different
relationship between groups.

• Subject Classification: Train a random forests classifier using selected features and
evaluate accuracy.

This procedure is tested over different sets of data, where every set has a unique
combination of runs in which the components are extracted and the model is trained and
tested.

2.2.1. Component Extraction—To extract common spatial maps we use MSTC in
which the data from different subjects are concatenated into a single data matrix and ICA is
performed on this aggregate matrix (Calhoun et al. (2001b), Mckeown et al. (1998)). We use
components to explain the scan activity rather than the task-relatedness of the component
timecourses under the hypothesis that the components form a sparse basis set that efficiently
capture activity. MSTC is recommended where one is looking for common spatial patterns
but cannot assume that the associated temporal response is consistent between sessions/
subjects (Calhoun et al. (2001a)). In this case the stimulus presentation is pseudo-
randomized between subjects and runs so that subjects with different presentation orders
will show engagement of specific spatial components at different points in time. Because of
this, we hold the spatial maps constant across subjects and extract unique time series from
common spatial maps, where scans from N subjects having spatial dimension S and time
length T are concatenated into a matrix X having rows N × T and columns S. This can be
expressed as a linear combination of τ < T common spatial components and their
corresponding timecourses:
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where  represents the raw scan intensity at timepoint t ≤ T within subject block n and
spatial location s ≤ S,  is the temporal intensity of component μ at time t within subject n,
and Cμs is the spatial intensity for component μ at spatial location s that is common across
subjects. The element  measures the multiplicative weighting of the voxels and can be
converted to subject-specific timeseries by partitioning the timeseries for each of the n
subjects. The number of components is determined using the Laplace approximation to the
model order. MSTC was performed in FSL (Smith et al. (2004)), and the resulting time
series were then analyzed using the statistical software package R (R Development Core
Team (2006)).

2.2.2. Feature Creation and Selection—We wish to classify our patients using the
relationship between subject-specific component time series. The stimulus presentation
differed across runs and the strongest artifact of motion we expect to vary highly across
subjects. To counteract this, we allow the timeseries extracted within each run to be unique
for every subject, and summarize the temporal cohesiveness within each subject using the
correlation. This connectivity has been shown useful in analyzing psychiatric disorders such
as schizophrenia(Jafri et al. (2007), Anderson et al. (2010)), and will be calculated using the
cross-correlation function (CCF), a linear measure of the similarity between two time series
separated by a time lag. The CCF between time series within a subject eliminates the
problem of the stimulus being presented at different times (Jafri et al. (2007)). The lag
allows for differences in reaction time to the stimuli between subjects. The maximal
correlation that two time series may take over a range of lags is an indicator of the amount
of information shared between them.

The CCF is calculated within a subject between all  pairs of components.

where l is the time lag separating the two time series, M ̄α is the mean of the entire time
series, and E is the expected value operator. For conceptual interpretability this is converted
to a distance measure, where a smaller distance between two components indicates that they
are more correlated, with

where two components behaving similarly would yield a smaller d(α, β). For the Session 1

data in Model A there are  possible component comparisons. We reduce this
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dimensionality again by selecting 40 pairs with the largest signal-to-noise (SNR) ratio
between groups to use as features, where the SNR is a measure of how different the
correlations are between groups. For each feature pair (α, β):

where σd is the pooled standard deviation of the set {d(α, β)IBS∪d(α, β)Ctrl} and d̄ is the
average distance for the feature pair (α, β) for either the patients or controls. We perform a
prior feature selection step because our classifier, random forests, faces difficulty when
given many irrelevant features to sort among (Gashler et al. (2008)). The threshold of 40
was chosen by visually inspecting the distribution of the sorted SNRs; the steepest drop off
in the SNR occurred after roughly 40 nominees. Although classification accuracy would
likely increase if this parameter would be optimized within the model, doing so would
introduce bias in our estimate of the testing error. This extraction gives a feature matrix Φ of
dimension N × 40 to be used for classification.

2.2.3. Subject Classification—Using the selected features, we trained and tested a
random forests classifier (Breiman (2001)), selected because of its resiliency to overtraining
in problems with limited numbers of observations. Random forests creates many
classification trees by resampling from both the observations and features at each node and
subsequently making decision rules to minimize the mis-classification rate of the sampled
data within each tree. Decision trees are constructed and combined to create a “forest” that
decides an observation’s class by voting over the decisions made by each tree. This classifier
has the added benefit of producing decision trees that indicate how the classifier actually
operates, instead of a black box tool such as SVM where the actual decision boundaries are
hyperplanes in a high-dimensional space. Because of the hierarchical structure of this model,
a conclusion reached could be “the linkage between ICs A-D is important only after
accounting for linkages A-B and C-D.” The tree is then tested on observations that weren’t
selected in the initial sampling to give the “out-of-bag” error, which is usually an unbiased
estimate of the testing error. We estimate the classification testing accuracy using the out-of-
bag error from the random forests classifier, where the accuracy is an estimate of how well
the classifier would do if categorizing a scan from a previously unseen subject.

Because of the usage of all subjects to select the features used for classification, the out-of-
bag error will become a biased estimate of the testing accuracy when the same run of data
are used to test and train models (Simon et al. (2003) Kriegeskorte et al. (2008). We will
calculate the amount of this bias within our faulty model to show that a biased model can
lead to flawed inference. Because of this bias, we cannot generalize our predictive results
outside of our model. We interpret the predictive accuracy instead as a metric to compare
the models created within this study and will use it to evaluate the effects of stimulus
changes, across-run predictability and artifact removal. Finally, we will measure the mistake
in the out-of-bag error by running leave-one-out cross-validation outside the entire
procedure in Models A* and B*, comparing it to the biased procedure in Models A and B.
These results are shown in Table 1.

The “importance” of the features within the classifier is obtained to measure their
contribution to discrimination. The features with the greatest importance correspond to
component pairs that exhibit enough difference between the groups to classify upon. This is
derived by permuting each feature randomly within the data matrix, and calculating how
much the prediction accuracy of the out-of-bag data changes on the permuted data matrix.
The normalized difference between the accuracy of the permuted and non-permuted data
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matrix indicate how essential that predictor was to classification compared to other features,
where a higher importance indicates a feature more essential for the classifier. If two
features are correlated and the stronger predictor is permuted then the importance would be
larger than if the weak predictor would be permuted, but a strong predictor with no
covariates would have an even greater importance because it had no substitute. These “most
important” components will be shown in Figure 1 and Figure 2.

We applied these methods to six different models from two runs, Run 1 and Run 2 (which
were runs 1 and 4 in the original data). These models were created by altering the run in
which the components were extracted and the models were trained and tested. Stimulus
presentation order differed between subjects and between runs. Model A and Model B were
component extracted, trained and tested all within a single run. Models C-F were component
extracted, trained and tested on different runs to evaluate the stability of component
extracted methods across runs as well as to test across-scan predictive accuracy. For Model
E and Model F, components were extracted across both runs simultaneously to evaluate how
components in one session predicted behavior in another. The average accuracy of these two
models is an indicator of how well a model would perform when predicting the outcome of
another session, when the patient groups are identical to those on which the model was
trained. The results are shown in Table 1.

To investigate classifier dependence on physiological noise we applied the Common
Component Classification method after removing artifacts. This additional cleaning is in
addition to the standard artifact removal steps taken during the preprocessing stages. In
Model G and H blatant noise group-wide components have been identified manually by
inspecting each of the group wide components extracted from Run 2. We specifically
searched for the following patterns in each component:

• A. Residual movement: pattern on the rim of the brain, forming a halo or semi halo

• B. Pattern in ventral areas with known signal dropout, such as orbitofrontal cortex
or temporal pole that does not follow anatomical boundaries

• C. Physiological noise: pattern within cerebrospinal fluid areas, and/or pattern in
areas adjacent to the great cerebral vein.

The components considered associated with artifacts are removed from consideration in the
feature extraction stage and only components likely associated to BOLD response are used
for model training and testing in Model G and Model H. If a component showed evidence of
both noise and task-related signal, it was still removed. Because motion frequently occurred
with the presentation of the stimulus, there were artifacts removed that also appeared to
contain signal. These results are also presented in Table 2.

In Model I we used an automated ICA classifier (Tohka et al. (2008)) to remove ICA
components that reflected residual movement, physiological noise, and signal dropout. The
classifier was trained with a subset of 15 runs, and was used to automatically classify and
remove noise related ICA components on the individual runs. After the data were cleaned
within subject, group-ICA was performed on the cleaned scans as described above in
Methods. These results are also presented in Table 2.

3. Results
Using the procedure outlined above, we test our methods on 6 different models in which the
component extraction run, model training run, and model testing run are altered as described
in Methods. This allows us to test the reproducibility of effects across runs and the
effectiveness of ICA methods for both signal extraction and artifact removal. Results of
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training and testing models within and across runs are seen in Models A-D in Table 1,
showing that classification within a run is easier than classification across a run in which the
stimulus has been reordered. For example, although our predictive accuracy was estimated
at 79.2% and 91.67% for Models A and B, the predictive accuracy decreased once
components were extracted across runs that contained different orders of stimulus
presentation (70.83%.) When group-wide components were extracted for Models E and F,
the predictive accuracy decreased further. The bias in the classifier is exhibited in the
differences between Model A* and A and Model B* and B. These results collectively are
shown in Table 1. The disparity between the biased and unbiased feature selection methods
falsely inflates our testing accuracy by over 20% and makes the model effectively useless
for inference.

The results of testing classification on data manually cleaned of artifacts are shown in Model
G and Model H in Table 2. In Run 1 66% of the components are identified as containing
some noise and subsequently removed, whereas 44% are identified as containing some noise
in Run 2. Noise is defined as any component that has one of the patterns described in the
methods section, regardless of clearly task related signal present in that component. The
decrease in accuracy indicates that some of the classification power is due to systematic
“noise” in the data and there is more noise present in the first session. The group-wide
components most useful to classification for H correspond to the 3rd and 22nd components
in the group-wide ICA. These are shown in Figure 1 and Figure 2.

Classification results using the data that had been artifact removed within subject (Tohka et
al. (2008)) are shown in Model I in Table 2. It was initially observed that due to the nature
of the task (a warning followed by an uncomfortable visceral stimulation), some group-wide
components contained residual motion artifacts. This residual movement had the same
frequency, and co-occurred at the individual level with what was thought to be task-related
BOLD response. After classification, the ICA components that were the best features of
disease contained residual movement even though obvious motion artifacts were removed
during the data cleaning process. Approximately 44% of these group-wide ICs extracted
from the data cleaned previously using the Tohka method showed slight evidence of
artifacts.

4. Discussion
4.1. Artifacts and Classification

Three methods of artifact removal were performed on the Models using combinations of the
FSL preprocessing routines, manual group-ICA removal and the methods of Tohka et al.
(2008) where components associated with artifacts were removed within each subject prior
to the group-ICA methods. The standard FSL routines were applied to Model B, resulting in
classification of over 91%. Group-wide ICs still revealed components associated with
residual movement, physiological noise, and signal dropout, so these were removed in
Model H and the accuracy dropped to 79%. In Model I data were cleaned using the Tohka
approach which led to a predictive accuracy of 75%, but the most predictive relationships
were between components associated with motion, and roughly 44% of the group- wide ICs
still showed evidence of artifacts. This points to the difficulty as a whole to remove motion
from data. Although artifacts were removed within subject, this process was incomplete and
left enough motion, physiological noise and signal dropout to be identified later during the
group component extraction.

Motion is known to be a strong artifact in fMRI, and ICA methods are able to extract motion
components (McKeown et al. (2003)). However, these results show that artifact removal
using ICA-based methods may be too strict in cases where the stimulus presentation is
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uncomfortable, as it induces motion concurrent with genuine neurological activation. The
timeseries corresponding to the task activation may be confounded with the timeseries
corresponding to motion, leading to spatial maps containing both movement and activation.

Even with a component containing purely motion there may exist signal; although these
artifacts are considered “noise”, this “noise” does in fact contain signal for classification
when one group moves more than the other during scans. Such physiological artifacts might
be predictive of the patient’s diagnosis and increase classification accuracy, yet offer little
neurophysiological information to the scientist. Using these components is at the discretion
of the researcher and depends on the objectives of the classifier. If the objective is mainly to
diagnose, then all useful signal should be used to build predictive models. If instead the
objective is to find BOLD response activity specific to the IBS patients, then artifacts such
as movement might offer little in the way of interpretation.

4.2. Reproducibility of Stimulus Effects Across Runs
As expected, classification within a run was easier than classification across runs. Predictive
models across runs (Model E,F) resulted in a lower testing accuracy (Strother et al. (2002),
Poline et al. (2006)). A possible reason for the lower accuracy may be due to order effects
that were present in the task design, where reactions to stimuli changed over repetitions and
reduced the reproducibility of the classifier. Even with the reordered stimulus, the models
still had some ability to predict across runs indicating as a whole stability of ICA methods.

The differences between A* and B* may be due to higher levels of noise present in Run 1 as
well as effects of the run ordering, as there may be similar reactions to the stimulus between
patients and controls during early scans. Curiously, although Models E and A* are trained on
the same runs and are both unbiased, Model E performs better at the more difficult task of
classifying across runs. This could be due either to the component extraction being more
stable across both Runs because of high noise levels in Run 1 or because of the easier
separability of patients in Run 2.

4.3. Sources of Bias in the Predictive Accuracy
The cross-validation accuracy can become biased when using all available data to select
optimal features, and then running cross-validation on models produced using subsets of this
data. This common mistake is present in some of the flawed models presented here where
each subject had  of the influence in choosing which “features” were most useful. Although
the models were created without using all the subjects, the a priori usage of all subjects for
the feature selection introduces bias into the final model (Demirci et al. (2008)). The bias
within the models inflated the estimate of the accuracy by roughly 20%(Models A, A* and
Models B, B*). Any bias in the cross-validation error makes generalization of the results
dubious, as a flawed model can only lead to flawed inference.

We investigate the strength of this bias further by observing how the selected features
change using cross-validation. There were 24 total cross-validation runs (using leave-one-
out) where 40 features were selected at each iteration to be features. We tally the frequency
at which each feature is selected over these 24 runs. Only 77 (14.14%) of the 528 possible
features were ever selected. Of the features selected at all, 50% of those were selected at
least 9 times and 25% chosen all 24 times. This indicates some stability in the feature-
selection process, where a biased and unbiased model would likely share half of the same
selected features.

In addition to models being sensitive to task ordering, feature selection, and artifactual
noise, it is often not appreciated that the predictive accuracy also can be influenced by
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sample sizes and composition (Demirci et al. (2008).) These are instances of bias coming
from the data, and not from errors in the methods themselves. This often occurs because of
the non-randomness in the recruitment of subjects, leading to a patient sample that exhibits
more homogeneity than the patient population. Cross-validation of an “unbiased” model
based on that sample would still produce a biased estimate of the testing error in this
situation because it would assume the incoming data were similar to the data used to create
the model.

The composition of the sample can also bias the predictive accuracy; a disproportionate
fraction of cases from one category makes it very easy to build an “accurate” classifier just
by chance (Demirci et al. (2008), Pereira et al. (2009).) For example, if a set of training
scans contained 90% Syndrome X patients, a classifier could be 90% accurate just by
assigning to every case a “Syndrome X” label. When comparing models then across
different data sets, the overall accuracy is not an appropriate measure of which classifier is
strongest. Rather, the accuracy of that classifier relative to chance for that dataset is a
stronger indicator of the ability.

The predictive accuracy can also become biased when the ratio of patients/controls differs
between the sample and the population. Using our classifier that assigns to every subject the
label of “Syndrome X”, we would correctly identify 90% of the people in our sample. If the
testing population however had 90% healthy normal patients, the actual testing accuracy of
this same classifier would drop to 10%. This inferential error is illustrated in this
manuscript; in practice the classifier created in Model E in Section Results would have an
accuracy rate much closer to 36.36% than to 84.62% on a set of random women, since we
would expect a disproportionate fraction of the population is not to be labeled as IBS. In
circumstances where the proportion of patients in which the model is trained does not match
the proportion of patients one expects to see in practice, the estimated testing accuracy of the
entire model cannot be assumed equivalent to the accuracy one will see in practice, but
instead must be estimated and adjusted for using the error rates within each subject group
(Wood et al. (2007)). In addition, most classification methods can be informed with prior
probabilities to adjust for this bias within the actual model.

In addition to randomness within the data, randomness can also exist within the methods.
This randomness becomes greater when the models are constructed on smaller samples, as is
done here. It can be introduced in the cross-validation estimate because of sampling
variation in splitting the data into training and testing sets. For example, in split-half cross-
validation the data are divided into two parts, and two models are trained on one part of the
data and tested on the other. The testing accuracy is averaged across both models to give the
estimate of the cross-validation error. This averaging minimizes the variation of the estimate
with respect to the initial partioning of the data. However with a total of n observations,

there were  ways to divide the data into two sets to create the cross-validation error.

Exacerbated by small sample sizes, these  partitions may vary in their estimates of the
cross-validation error. This is not an issue with all methods of estimating the cross-
validation error. Leave-one-out cross validation is not subject to this issue of partitioning
because there is only one way to partition the data such that only one observation is
excluded each time. Other less-affected cross-validation approaches include repeated
random sub-sampling validation and random forests, both which create new partitions with
each iteration (Bouckaert and Frank (2004)), but they are hindered in that they may not
sample all observations since they are sampling with replacement. As sample-sizes become
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larger, this variability will decrease because the partitions will also become larger. Thus, this
risk is greatest for small-sample studies.

Some models, such as random forests, use resampling both of the data and the features.
Because of this, even with identically sampled data, different learning rules can be created
for each “tree” leading to slightly different forests. Even though results are averaged over
entire forests of 500 trees, small samples still results in larger variations of results. Running
these models repeatedly will lead to slightly different estimates of the testing error. In
circumstances when the model is run repeatedly, one must be careful not to “cherry pick”
the best run as being representative of the model as a whole, since this is undoubtedly an
unrealistic estimate in practice.

4.4. Errors and Inference
In standard published literature a Type 1 error of α = .05 is usually assigned, and p-values
less than this threshold lead to a rejection of the null hypothesis. This parameter choice
implies that with an average of 20 studies, a false positive will be experienced. Publication
bias is a phenomenon in which a disproportionate number of studies reject the null
hypothesis. For example in one study involving experimental psychology journals, a total of
93.5% of studies rejected their chosen null hypothesis, even when the Type 1 error was set
at α = .05 (Sterling et al. (1995)). Usually only “statistically significant” results are
published, so when a new study rejects the null hypothesis they will have very little
opposition in the literature stating the contrary even though the result is a false positive. This
problem may also exist in the literature of fMRI classification, as every paper published
shows their selected patient group to be classifiable with their choice of methods. One
possible remedy to validate the methods is to test them against multiple sets of data, to guard
against the classifier working merely because of a particular parameter choice or
combination of routines. Another remedy is to work on patient groups known to be
classifiable in the literature.

This paper discriminated between IBS and normal controls, a patient group which has not
been previously used for classification in the literature. However, studies have demonstrated
discrimination between schizophrenia patients and normal controls using the cross-
correlations of ICs (Sakoglu et al. (2009), Anderson et al. (2010)), so it is conceivable that
the methods presented here would prove more effective discriminating on a mental illness
patient group. However, because of the small sample size presented here, it would quite
brash for us to declare that we do have created a model capable of diagnosing IBS. The
predictive accuracy claimed in fMRI studies is likely overly optimistic but will become
more realistic when studies are able to train and test their methods on larger data sets.

In pairwise comparisons of component activity, the small sample sizes frequently used in
fMRI classification can result in an inflated Type 2 (β) error where we fail to recognize
genuine between-group differences(Cohen (1992)). In relation to this study, a Type 2 error
would be committed by assuming that a component relationship between groups is identical,
when it is actually different. At a confidence level of α = .05, 128 subjects total are needed
to test the difference between group means (medium effect size) with a power level of 1 − β
= .8 (Cohen (1992)). This study only has 24 subjects, giving us a much lower power and
higher Type 2 error. For classification analysis, confidence intervals can be a more stable
way to illustrate accuracy rates over the iterations of cross-validation (Brown et al. (1999)).

In the context of fMRI classification studies, with enough data changes and alteration of
methods even random algorithms on identical patient groups can eventually “classify”
between identical groups. In addition, we demonstrated here that artifacts can aid in
classification ability. Even if our models are capable of capturing genuine signal within a
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run, this signal may in fact change across runs and subjects. Because of this, even with solid
methodology, the cross-validation error may still be an overly optimistic and biased estimate
of the in-practice testing error, and it can be difficult to draw predictive inference outside of
the sample used to create and test it. To increase confidence in the power of fMRI
classification, methods should be tested on multiple runs practicing “statistical pluralism”,
interchanging different classification machines (support vector machines, random forests,
etc) and feature extraction methods when possible (Lange et al. (1999)). If the proposed
methods are valid, then reproducibility should be seen.

5. Conclusion
This analysis identified how the coupling of components was a measure capable of
discrimination between patients and controls. We have demonstrated that group-wide
component extraction methods such as MSTC can extract and identify sparsely coded basis
functions (independent components) useful for classification within runs, but that ICA
methods in general can be sensitive to session and task ordering as well as to systematic
“noise” across sessions. When possible, components should be extracted over as large a pool
of subjects as posisble. ICA-based artifact removal may be less useful when using an
uncomfortable stimulus since activation and motion are induced simultaneously, leading to
confounding of the onset of true signal and motion. The elimination of artifacts through
preprocessing can lead to better neurophysiological interpretations of the underlying
disorders, but often result in less accurate classification.

The changes in classifier performance that followed manual artifact removal emphasize
another important issue in machine methods. Namely, that the decision boundaries are not
guaranteed to reflect important functional processes, shown here by the power of artifacts
for classification. We believe that a more principled selection of classifier dimension, such
as the independent spatial components used here, is likely to lead to more physiologically
interpretable results that are better able to inform neurological research goals; the loss of
classification accuracy that results from the removal of physiologically implausible
dimensions is more than made up for by the potential for discovery.

While the present classification methods are somewhat unconventional in that they utilize
independent components as dimensions for classification, we argue that the general findings
of the limitations of machine learning applied to fMRI are broader in scope because of the
nature of fMRI data. Because fMRI data are so costly to obtain, sample sizes are small
causing difficulties in extracting true signal as well as difficulties in establishing error rates
and drawing inference. fMRI data suffer from low SNR, so physiological artifacts can
produce stronger signal than even genuine neurological activity. Preprocessing (motion
correction, slice timing correction) can reduce physiological noise, but these steps alone do
not completely eliminate systematic artifacts from contributing to classification accuracy.
With smaller samples comes the risk of greater statistical errors.

The reported accuracy in fMRI classification studies may not be realized in practice partially
due to improper statistical methodology and inference (Simon et al. (2003)). The bias also
can be introduced by having small samples that do not capture accurately the testing
population or by having skewed proportions of patients in the model construction phase that
won’t be seen in practice, as well as the sensitivity to scan conditions. Models may become
very accurate simply by chance in circumstances where the patient/control ratios are
skewed; therefore models should not be compared across different studies without first
adjusting for different subject ratios within each training dataset. Even then comparison is
hazy because the predictive accuracy within a study can easily be inflated by running the
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models multiple times, as there exists variation in partitioning the data and also in
constructing models.

Methods aside, different patient groups may be inherently easier to classify just on the basis
of the disorder. Prior studies have shown cross-correlations of ICs useful for classification of
Schizophrenia subjects vs. normal controls (Sakoglu et al. (2009), Anderson et al. (2010)).
IBS is currently an ill-defined syndrome with patients presenting a high variety of symptoms
(Tillisch and Chang (2005)). Furthermore, high percentage of IBS patients have comorbidity
with anxiety disorders leading to several authors to propose the disease as a disruption of the
gut-brain axis (Mayer et al. (2006).) Thus, our classification results might be due to the
heterogeneity of the disease and patient population, in addition to being a product of the
high motion levels associated with the task paradigm.

So what, then, do we ultimately learn from machine learning? Although fMRI classification
methods can produce quite impressive results, one must exercise caution before attributing
high accuracy rates to the mathematical machinery behind them. Testing the data across runs
can help assess the true strength of these models, as accurate subject classification based on
chance or systematic physiological noise (i.e. motion) is always possible. With the small
sample sizes typical in many fMRI classification studies, the results obtained must be
scrutinized carefully for statistical inference errors. Even with powerful machine-learning
tools at our disposable, a model is ultimately limited by the data used to create it. Machine
learning gives as much insight into the shortcomings of our methods and data as it does the
potential of them, and without properly critiquing our own work we are ultimately left with
more questions raised than answered.
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Figure 1.
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Figure 2.
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