
Development of a Human Brain Diffusion Tensor Template

Huiling Peng1, Anton Orlichenko2, Robert J. Dawe1, Gady Agam3, Shengwei Zhang1, and
Konstantinos Arfanakis1

1 Department of Biomedical Engineering, Illinois Institute of Technology

2 Department of Electrical and Computer Engineering, Illinois Institute of Technology

3 Department of Computer Science, Illinois Institute of Technology

Abstract
The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons
of neuronal structural integrity and brain connectivity across populations, as well as for the
development of a white matter atlas. Previous efforts to produce a DTI brain template have been
compromised by factors related to image quality, the effectiveness of the image registration approach,
the appropriateness of subject inclusion criteria, the completeness and accuracy of the information
summarized in the final template. The purpose of this work was to develop a DTI human brain
template using techniques that address the shortcomings of previous efforts. Therefore, data
containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-
group with relatively similar diffusion characteristics (20–40 years of age), using an appropriate DTI
acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional
anisotropy images was employed. DTI brain templates containing median and mean tensors were
produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is
characterized by higher image sharpness, provides the ability to distinguish smaller white matter
fiber structures, contains fewer image artifacts, than previously developed templates, and to our
knowledge, is one of only two templates produced based on a relatively large number of subjects.
Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group
level than mean tensors. Finally, white matter fiber tractography was applied on the template and
several fiber-bundles were traced.
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Introduction
The development of a brain template for diffusion tensor imaging (DTI) (Basser and Pierpaoli,
1996) is crucial for comparisons of neuronal structural integrity (Le Bihan et al., 2001) and
brain connectivity (Basser et al., 2000) across populations, as well as for the development of
a white matter atlas (Mori et al., 2008). The potential of DTI for detecting differences in brain
tissue micro-architecture between healthy subjects and patients has been recognized in several
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studies on various brain-related diseases, such as schizophrenia (Lim et al., 1999), bipolar
disorder (Bruno et al., 2008), alcoholism (Pfefferbaum and Sullivan, 2005), stroke (van
Gelderen et al., 1994), multiple sclerosis (Bammer et al., 2000), Alzheimer’s (Arfanakis et al.,
2007), dyslexia (Klingberg et al., 2000), amyotrophic lateral sclerosis (Ellis et al., 1999),
epilepsy (Arfanakis et al., 2002b), traumatic brain injury (Arfanakis et al., 2002a), and others.
These studies have adopted one of two approaches for investigating intergroup differences:
regions of interest (ROI) and voxel-based analyses. The first approach involves manual or
semi-automated selection of ROIs, followed by comparison of the results from the selected
ROIs between groups (Ellis et al., 1999; Arfanakis et al., 2002b). The main disadvantage of
ROI analysis in DTI is that quantities such as the primary diffusion direction cannot be
compared, since brain positioning varies between subjects. The second approach involves
spatial normalization of the data in each group to a template and subsequent comparison
between groups, either within selected ROIs, or on a voxel-by-voxel basis (Bruno et al.,
2008; Klingberg et al., 2000). Tensor reorientation techniques that take into account the
transformation applied during spatial normalization of DTI datasets have been developed
(Alexander et al., 2001; Xu et al., 2003), and as a result, comparisons between quantities
dependent on the tensor’s orientation are feasible (Jones et al., 2002; Schwartzman et al.,
2005). However, spatial normalization of the DTI data is typically achieved by first normalizing
coregistered T1 or T2-weighted images from each subject to a template, such as the Montreal
Neurological Institute (MNI) template, and then applying the same transformations to the
corresponding DTI data; or by selecting one subject’s DTI data as the reference, and registering
the DTI data from all other subjects to the reference. When no tensor information is used for
the normalization, it is not ensured that diffusion characteristics match between subjects. In
addition, transformations that are estimated based on undistorted images (e.g. T1-weighted)
are not appropriate for use with distorted conventional spin-echo echo-planar DTI (SE-EPI-
DTI) maps, even when using parallel imaging, since the two datasets do not match spatially.
Also, the artifacts present in SE-EPI-DTI data vary between subjects, as well as for the same
subject in different head positions (Gui et al., 2008). These artifacts have a negative effect on
the normalization process in brain regions such as the brainstem, the temporal and frontal lobes
(Peng et al., 2008). Finally, when using a single subject’s DTI data as reference, one needs to
take into account the fact that a single subject’s brain may not be representative of other subjects
of the same cohort, and that a single subject’s data contain more noise than a template produced
by averaging multiple datasets. Noise reduces the accuracy of the normalization and the validity
of group averaging, and limits the clinical potential of DTI. Therefore, careful development of
a representative DTI human brain template is crucial for accurate comparisons of neuronal
structural integrity and brain connectivity across populations.

Development of a DTI template that is representative of the healthy human brain is also
important for the generation of a detailed white matter atlas. The existing brain atlases are
either based on a small number of brains analyzed postmortem, and are not in digital format,
or contain only limited information on white matter (Toga et al., 2006). Since the introduction
of DTI, several white matter structures have been mapped in individual subjects (Wakana et
al., 2004). DTI data from a large number of healthy human subjects can be combined and used
to segment various white matter structures, in order to produce a digital atlas of human brain
white matter (Mori et al., 2008).

A number of studies have produced average human brain DTI data using different approaches.
Jones et al. used affine transformations to register fractional anisotropy (FA) maps from ten
human subjects to the FA map of another subject, and then applied the transformation
parameters to reorient the diffusion tensors (Jones et al., 2002). All FA maps were produced
with EPI-based DTI. Muller et al. used affine spatial normalization to coregister the image
volumes with no diffusion weighting (b=0sec/mm2) from thirteen subjects, in MNI space
(Muller et al., 2007). The transformation parameters were then applied on the diffusion tensors,
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and the tensors were reoriented. All datasets were acquired with EPI-based DTI. Goodlett et
al. normalized five EPI-based DTI datasets in two steps (Goodlett et al., 2006). In the first step,
the b=0sec/mm2 images were registered to a T2-weighted image-template using affine
alignment, and the transformation parameters were applied to the diffusion tensors. In the
second step, deformable registration improved correspondence between the 5 DTI datasets and
the template. Six diffusion directions were used for data acquisition. Zhang et al. normalized
nine EPI-based DTI datasets in two steps (Zhang et al., 2006). In the first step, the diffusion
anisotropy maps from eight subjects were matched to the maps of the ninth subject (assumed
to be the template) using affine transformation. In the second step, the aligned images were
registered to the template using deformable registration. Mori et al. normalized 81 EPI-based
DTI datasets acquired on two 1.5Tesla (T) MRI scanners with parallel imaging and acceleration
of 2, from a group of subjects with ages ranging from 18 to 59 years (Mori et al., 2008). The
mean diffusion weighted (DW) images were first coregistered using affine alignment, and the
transformation parameters were then applied to the diffusion tensors. Park et al. used Line-
scan DTI, which provides distortion free DTI data, and non-linear registration to normalize
DTI data from 16 subjects (Park et al., 2003). Due to the low signal to noise ratio (SNR) per
unit time achieved with Line-scan DTI, the slice thickness was increased to 4mm, and only 6
diffusion directions were used. The main characteristics of these and other efforts to develop
a human brain DTI template are summarized in Table 1. However, in each study mentioned
above, a combination of several sources of error prohibited the development of an accurate
DTI template: a) EPI-related image artifacts, b) suboptimal diffusion encoding schemes or
imaging protocol, c) the use of affine instead of nonlinear registration, d) the use of a single
scalar quantity for normalization, which often did not include any DTI information, e) limited
number of subjects, f) averaging data across age-groups with different diffusion properties
(Table 1).

The purpose of this work was to develop a DTI human brain template using an approach that
addresses the shortcomings of previous studies. Therefore, Turboprop-DTI data, which contain
minimal distortions and other artifacts (e.g. artifacts caused by magnetic susceptibility
variations and eddy-currents) (Pipe and Zwart, 2006; Arfanakis et al., 2005; Gui et al., 2008),
were first obtained on a large number of healthy human subjects selected from an age-group
with relatively similar diffusion characteristics. Non-linear image registration techniques were
employed, and information from multiple quantities derived from the diffusion tensor was
taken into account during registration. The use of different combinations of quantities in the
registration process was quantitatively evaluated. Furthermore, the accuracy of the final
registration was estimated based on the ability to match selected brain landmarks between
subjects. Tensor reorientation was performed in order to produce a template that contains
complete tensors. The use of median vs. mean tensors to summarize the group’s diffusion
properties was evaluated. The DTI brain template was produced in the spatial coordinates of
the ICBM-152 brain template (International Consortium for Brain Mapping) that is often used
in the neuroimaging community, and was made publicly available. The resulting template was
compared to those produced in previous studies, and primarily to that of Mori et al., 2008,
which is currently the only other publicly available DTI template also based on a large number
of subjects. Finally, white matter fiber tractography was applied on the resulting template and
several fiber-bundles were traced.

Methods
MRI Data Acquisition

Sixty-seven healthy human subjects participated in this study (40 female, 27.2±5.4 years of
age, 20–39 years of age) (27 male, 31.7±5.6 years of age, 22–40 years of age). Although the
female subjects were on average younger than the male subjects (p=0.0016, based on a two-
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tailed t-test), for the selected age-range, the diffusion characteristics of the brain are shown to
be very similar between subjects (Sullivan and Pfefferbaum, 2006; Hasan et al., 2008). All
participants provided written informed consent according to procedures approved by the
institutional committee for the protection of human subjects. Scans were performed on a 3T
General Electric MRI scanner (GE, Waukesha, WI). Bulk motion was minimized by restricting
the subjects’ head with cushions. Each subject was scanned with Turboprop-DTI using:
TR=5800msec, TE=94ms, 8 spin-echoes per TR (echo-train length ETL=8), 5 k-space lines
per spin-echo (turbofactor=5), 128 samples per line, 16 blades per image, field-of-view 24cm
× 24cm, 45 contiguous oblique axial slices, 3mm slice thickness, and 256 × 256 final image
matrix. DW images with b=900sec/mm2 were acquired in each slice for a set of 12 diffusion
directions uniformly distributed in three-dimensional (3D) space (minimum energy scheme)
(Hasan et al., 2001). Two b=0sec/mm2 images were also acquired for each slice. The duration
of the Turboprop-DTI scan was 21 minutes and 57 seconds.

High-resolution T1-weighted data were also obtained for each subject, using the 3D
magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence with the
following parameters: TE=3.2ms, TR=8ms, preparation time=725ms, flip angle 6°, field of
view 24cm × 24cm, 124 slices, 1.5mm slice thickness, 192×256 k-space matrix reconstructed
to 256×256. The scan time for this sequence was 9 minutes and 58 seconds.

Data Analysis
DTI Data Pre-Processing—In each subject, the DW image-volumes for the different
diffusion gradient directions were averaged, and a mean DW volume was produced. The mean
DW volume was then registered to the b=0sec/mm2 image-volume using 3D rigid-body mutual
information registration (FSL, Oxford, UK) (Jenkinson and Smith, 2001). Each of the DW
image-volumes was then registered to the new mean DW volume, using 3D rigid-body mutual
information registration, to eliminate any mismatch due to motion between the acquisition of
the DW data and the b=0sec/mm2 images. Head-motion was in general minimal in the datasets
included in this work. Following motion correction, the DW volumes were averaged again to
obtain the final mean DW volume for each subject.

The coregistered b=0sec/mm2 and DW volumes were used to calculate the diffusion tensor in
each voxel (FSL, Oxford, UK). Fractional anisotropy (FA) and trace volumes were also
produced for each subject. The brain was extracted in all volumes using BET (FSL, Oxford,
UK) (Smith, 2002). However, this process did not remove many noisy signals around the brain
that result in abnormally high FA values. Therefore, an additional mask was produced by
filtering out: a) voxels with FA>0.75 values located next to voxels with FA=0 (set to 0 by
BET), and b) clusters with fewer than 50 voxels that were not connected to the brain. The final
mask was applied on the mean DW, FA and trace volumes.

The b=0sec/mm2 volume of each subject was smoothed with a Gaussian kernel with full width
at half maximum (FWHM) of 8mm, and was registered to the ICBM-152 template using rigid-
body registration (FSL, Oxford, UK). Subsequently, all b=0sec/mm2 volumes were normalized
to the ICBM-152 template using non-linear registration (SPM5, Wellcome Department of
Imaging and Neuroscience, London, UK), and the total deformation was estimated for each
subject. The subject with the lowest total deformation was identified. The original b=0sec/
mm2 volume from that subject was smoothed with a Gaussian kernel with FWHM=8mm, and
was normalized to the ICBM-152 template using non-linear registration (SPM5). The same
spatial transformation was applied to the mean DW, FA, and trace volumes from the same
subject. Trilinear interpolation was used in the normalizations. The final dimensions of the
b=0sec/mm2, mean DW, FA, and trace volumes were 181 × 217 × 181 voxels, and the final
voxel-size was 1mm × 1mm × 1mm. The normalized volumes from this subject functioned as
a temporary template.
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Evaluation of Non-Linear DTI Normalization Based on Multiple Quantities—The
mean DW volumes from 11 randomly selected subjects and the temporary template were
smoothed with Gaussian kernels with different FWHMs (between 2mm and 9mm) (Fig. 1).
For each smoothing size, the mean DW volumes from the 11 subjects were normalized to the
mean DW volume of the temporary template, using non-linear registration based on 3D discrete
cosine transform (DCT) basis functions (7×9×7=441 coefficients) (Rosario et al., 2008) and
32 iterations (SPM5). The resulting spatial transformations were applied on the b=0sec/mm2

and DW volumes from the 11 subjects (Fig. 1). Trilinear interpolation was used in the
normalization process. The final dimensions of the normalized b=0sec/mm2 and DW volumes
were 181 × 217 × 181 voxels, and the final voxel-size was 1mm × 1mm × 1mm. Diffusion
tensors were calculated in each voxel of the normalized data, and FA and trace maps were
produced for the 11 subjects (FSL). The diffusion tensors were then reoriented according to
the non-linear spatial transformation applied during normalization, using the preservation of
principal directions (PPD) method (Alexander et al., 2001). The FA volumes from the 11
subjects were averaged, and white matter masks were obtained by thresholding the mean FA
volume at 0.4<FA<0.5, 0.5<FA<0.6, 0.6<FA<0.7, 0.7<FA<0.8, 0.8<FA<0.9, and 0.9<FA<1
(Fig. 1). The average coherence of primary eigenvectors was then estimated for white matter
voxels from each range of FA values (Jones et al., 2002). The whole procedure was repeated
for different smoothing sizes, and plots of the average coherence of primary eigenvectors in
white matter as a function of the smoothing size were produced, for each range of FA values
(Fig. 1).

The procedure described in the last paragraph was repeated with normalization based on both
mean DW and FA information. The only deviation from that procedure was that, in each
subject, the displacement fields from the normalization of mean DW and FA maps to the
temporary template were averaged, and the resulting spatial transformation was applied on the
b=0sec/mm2 and DW volumes of that subject. The same process was repeated with
normalization based on mean DW, FA and trace information. Plots of the average coherence
of primary eigenvectors in white matter as a function of the smoothing size were compared,
for each range of FA values mentioned above, and for normalization based on: a) mean DW
information, b) mean DW and FA information, and c) mean DW, FA and trace information.
Maps of the difference in coherence between the different normalization approaches were also
produced. The normalization procedure that provided high average coherence of primary
eigenvectors in white matter was used in the rest of this work for the development of the final
DTI brain template.

The accuracy in matching different brain structures between subjects was assessed for the
selected normalization approach. For that purpose, eight landmarks were first selected in the
b=0sec/mm2 images and FA maps of the 11 subjects, obtained after normalization with the
selected approach (Table 2). The same landmarks were also selected on the average b=0sec/
mm2 images for the group of 11 subjects. The mean and standard deviation of the distance
between the location of the landmarks in the average and individual b=0sec/mm2 images were
estimated.

Development of the DTI Brain Template—The b=0sec/mm2 and DW volumes from the
67 participants were normalized to the temporary template using the strategy selected in the
last step. The final dimensions of the normalized b=0sec/mm2 and DW volumes were 181 ×
217 × 181 voxels, and the final voxel-size was 1mm × 1mm × 1mm. Mean b=0sec/mm2 and
mean DW maps over all subjects were produced. The locations of various brain structures in
the mean b=0sec/mm2 maps and ICBM-152 T2-weighted images were compared
quantitatively for the two templates. The landmarks used in this comparison were those listed
in Table 2, as well as the following: {(−8, 71, 5), (−8, −106, 1), (−8, −36, −44), (14, −37, 70),
(−70, −26, −12), (71, −26, −12)} (MNI coordinates in mm), corresponding to structures at, or
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near, the most anterior, posterior, inferior, superior, left, and right parts of the brain,
respectively. Diffusion tensors were also calculated in each normalized dataset. The diffusion
tensors were then reoriented using PPD. The mean tensor in each voxel of the final DTI template
was obtained by averaging the tensors from the 67 subjects on an element-by-element basis.
The resulting template was named “IITmean DTI template”. Furthermore, the median tensor in
each voxel of the final DTI template was selected to be the tensor with the minimum average
distance from the tensors of all other subjects (Jones et al., 2002). The template containing the
median tensor in each voxel was named the “IITmedian DTI template”. Maps of FA and trace
were also produced from the mean and median tensors. The IITmean and IITmedian templates,
as well as the corresponding FA and trace maps, and the b=0sec/mm2 and mean DW volumes
are available at www.iit.edu/~mri.

The IITmean and IITmedian DTI templates were compared on a voxel-by-voxel basis by
subtracting corresponding maps of FA, trace, linearity, planar, and spherical indices (Basser
and Pierpaoli, 1996; Alexander et al., 2000). Additionally, in order to explain the differences
between the two templates simulations were conducted. First, a cylindrical diffusion tensor
with eigenvalues λ1=1.7×10−3 mm2/sec, λ2=0.2×10−3 mm2/sec, and λ3=0.2×10−3 mm2/sec, was
simulated so that its primary, secondary, and tertiary eigenvectors were parallel to the x, y, and
z-axes, respectively. One thousand tensors were then simulated by first rotating the original
tensor around the y-axis, and subsequently around the x-axis. The angle of rotation around the
y-axis was selected from a Gaussian distribution with a mean of zero and a FWHM of 10°, and
the angle of rotation around the x-axis was selected randomly. Thus, the 1000 simulated tensors
were positioned so that their primary eigenvectors were Gaussian distributed around the x-axis.
The mean and median of the 1000 tensors were estimated, and their shape was compared using
quantities such as the linearity, planar and spherical indices, and the FA (Alexander et al.,
2000). The simulation was repeated for angles of rotation around the y-axis selected from
Gaussian distributions with FWHM between 10° and 180°, in increments of 10°. Plots of
quantities describing the shape of the mean and median tensors were produced. The same
process was repeated for simulated generally anisotropic tensors with eigenvalues
λ1=1.25×10−3 mm2/sec, λ2=0.7×10−3 mm2/sec, and λ3=0.15×10−3 mm2/sec. In a separate
simulation, cylindrical diffusion tensors with the eigenvalues mentioned earlier, were mixed
with spherical tensors with λ1=λ2=λ3=0.7×10−3 mm2/sec. The percentage of spherical tensors
included in the mixture was varied between 0% and 100%, and the primary, secondary, and
tertiary eigenvectors of all tensors were parallel to the x, y, and z-axes, respectively. The mean
and median tensors were estimated and plots of quantities describing the shape of the mean
and median tensors were produced.

The IITmean and IITmedian DTI templates were compared to previously published templates.
First, diffusion anisotropy color maps were compared based on level of artifacts, smoothness,
and ability to identify certain small brain structures. Second, the Sobel operator was applied
on FA maps of a) the IITmean DTI template and b) the only other publicly available DTI
template also based on a large number of subjects (Mori et al., 2008). An estimate of the image
gradient was obtained in each voxel and was used to evaluate the sharpness of the FA maps
corresponding to the two templates. Regions of interest (ROI) were drawn on the FA maps
following application of the Sobel operator, on the detected edges of homologous white matter
structures, covering voxels where the gradient was highest (Table 3). The number of voxels
included in each ROI is listed in Table 3. The image gradient in the selected ROIs was compared
between templates. A two-tailed Student’s t-test was used to assess the significance of any
differences. Only differences with p<0.01, corrected for multiple comparisons with the
Bonferroni approach, were considered significant. Differences in image sharpness of the FA
maps of the IITmean template and that developed by Mori et al. were also assessed by comparing
the normalized power spectra between templates.
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ROIs were also drawn in the central portion of homologous white matter structures of the
IITmean DTI template and that of Mori et al. (Table 4). All ROIs were drawn based on axial
mean b=0sec/mm2 images and FA maps, in a single, randomly selected hemisphere (except
for the splenium and genu of the corpus callosum). FA values in the selected ROIs were
compared between templates. A two-tailed Student’s t-test was used to assess the significance
of any differences. Only differences with p<0.01, corrected for multiple comparisons with the
Bonferroni approach, were considered significant.

Finally, several commonly traced white matter fiber-tracts were mapped based on the data of
the IITmean template, in order to assess the accuracy of fiber-orientation information in the IIT
template. These tracts were the: corpus callosum (cc), inferior fronto-occipital fasciculus (ifo),
forceps minor (fm), superior longitudinal fasciculus (slf), cerebrospinal tract (cst), uncinate
fasciculus (unc), cingulum (cg), fornix (fx), and inferior longitudinal fasciculus (ilf) (all
abbreviations of names of anatomical structures mentioned in this paper are included in Table
5). ROIs were selected, which functioned as seeds for tractography based on the stream-lines
approach with 2nd order Runge-Kutta integration (www.slicer.org). The resulting estimates of
white matter pathways were qualitatively compared to a white matter atlas. A quantitative
assessment was not feasible since the ground truth regarding white matter pathways is not
known for each subject, or for the group.

Results
Evaluation of DTI Normalization Based on Multiple Quantities

Graphs of the average coherence of primary eigenvectors in white matter as a function of the
smoothing size are shown in Figure 2, for different normalization approaches and different FA
values. In voxels with 0.4<FA<1, the average coherence was higher when normalization was
based on more information than just the mean DW (Fig. 2). More specifically, in voxels with
0.4<FA<0.7, the highest average coherence was achieved when using mean DW and FA
information in the normalization process. In voxels with 0.7<FA<1, average coherence was
the highest when using mean DW, FA and trace information (Fig. 2). Also, the maximum
average coherence in voxels with 0.4<FA<1 was achieved for smoothing with a Gaussian
kernel with FWHM between 4mm – 5mm, approximately (Fig. 2). Examples of maps of the
difference in coherence between different normalization approaches are shown in Figure 3.
The number of voxels and standard deviation of the coherence (StdDevCoherence) for each range
of FA values were lower for higher FA values (Table 6). For most white matter voxels, average
coherence was the highest when combining mean DW and FA information for the purposes of
normalization, and when smoothing with FWHM between 4–5mm. Thus, the normalization
approach that was chosen for the development of the DTI brain template was based on mean
DW and FA information, and smoothing with a Gaussian kernel with FWHM=4mm.

The accuracy in matching different brain structures between subjects for the selected
normalization approach is described in Table 2. The mean distance between landmarks in the
group and individual b=0sec/mm2 images was approximately equal to 1.1mm (Table 2). For
60% of all landmarks selected in all subjects, the distance was 1mm or less, for 86% of all
landmarks 2mm or less, and for 100% of the landmarks the distance was 3 mm or less.

Development of the DTI Brain Template
Examples of the mean b=0sec/mm2 and mean DW maps over all participants are shown in
Figure 4. Most of the brain features visible in the images from individual subjects were
preserved after averaging the normalized maps from the 67 subjects. Also, comparison of the
mean b=0sec/mm2 maps to the published ICBM-152 T2-weighted template showed good
correspondence of the size and location of brain structures between the two datasets (Fig. 4).
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More specifically the difference in the location of all landmarks between the two templates
was less than 1mm.

Examples of diffusion anisotropy color maps, FA and trace maps corresponding to the
IITmean and IITmedian templates are displayed in Figure 5. Most of the features present in
diffusion anisotropy color maps, FA and trace maps from individual subjects were preserved
in the IITmean and IITmedian templates. Images derived from the IITmedian template appeared
more noisy than the corresponding images from the IITmean template, especially in regions
near the surface of the brain (Fig. 5).

Subtracting diffusion anisotropy maps corresponding to the IITmean and IITmedian templates
demonstrated that, in white matter tissue, diffusion anisotropy of mean tensors was lower on
average than that of median tensors (Fig. 6A,B). Furthermore, near the interface of brain tissue
and CSF-filled spaces, the eigenvalues and trace were increased, and the FA was in many cases
decreased for mean compared to median tensors (Fig. 6). In the simulations that were conducted
to explain the main effects causing the differences between the mean and median templates,
when averaging cylindrical tensors that were not aligned with each other, the linearity and FA
of the mean tensor decreased, and the spherical index increased with increasing angles between
the simulated tensors (Fig. 7A). In contrast, the values of all quantities derived from the median
tensor remained constant and equal to those of each individual simulated tensor (Fig. 7A).
Similar results were obtained for generally anisotropic tensors. In the simulations where
cylindrical tensors were mixed with spherical tensors, the linearity and FA of the mean tensor
decreased, and the spherical index increased with increasing percentage of spherical tensors
included in the mixture (Fig. 7B). In contrast, the values of all quantities derived from the
median tensor remained constant and equal to those of the cylindrical tensors as long as the
percentage of spherical tensors included in the mixture was lower than 50%. When the
percentage of spherical tensors was higher than 50% the values of all quantities derived from
the median tensor were equal to those of the spherical tensors (Fig. 7B).

The diffusion anisotropy color maps derived form the IITmean DTI template appeared sharper
than the anisotropy color maps of previously published DTI templates (Jones et al., 2002; Mori
et al., 2008; Xu et al., 2003; Chiang et al., 2008). The values of the FA image gradient at the
edges of selected white matter structures were significantly higher in the IITmean template
compared to that of Mori et al., 2008 (Table 3). Furthermore, the energy at high spatial
frequencies was higher in the normalized power spectrum of FA maps from the IITmean
template than the template of Mori et al., 2008 (Fig. 8). Consequently, the anterior and posterior
commissures (ac, pc) near the medial sagittal plane (Fig. 9D,G), the optic chiasm (oc) (Fig.
9G), and the decussation of the superior cerebellar peduncles (dscp) (Fig. 9C) were visible in
the IITmean template, and not in the template of Mori et al, 2008. Furthermore, the medial
lemniscus (ml) (Fig. 9A), inferior cerebellar peduncles (icp) (Fig. 9B), inferior fronto-occipital
fasciculus (ifo) (Fig. 9C), substantia nigra (sn) (Fig. 9C), cingulum (cg) (Fig. 9D,F), column
of the fornix (fxc) (Fig. 9D), precommissural part of the fornix (fxp) (Fig. 9D), fornix (fx) (Fig.
9E,G), corpus callosum (cc) (Fig. 9F,G), appeared sharper in the IITmean template compared
to the template by Mori et al., 2008 (Table 3).

Several white matter structures appeared markedly darker in the FA and anisotropy color maps
of the template by Mori et al., 2008, compared to the IITmean template (cerebropontine/
cerebrospinal tract, cpt/cst, Fig. 9A) (ml, Fig. 9A,) (fxc, fxp, Fig. 9D) (cc, Fig. 9G). Quantitative
comparison of FA values in selected white matter ROIs of the IITmean template and the template
developed by Mori et al., showed significantly lower FA values in all selected ROIs in the
latter (p<6×10−5) (Table 4). Furthermore, the FA values in the ROIs of the IITmean template
were comparable to those published elsewhere for individual subjects in similar age groups
(Pierpaoli et al., 1996; Bisdas et al., 2008).
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The IIT templates were free of eddy-current artifacts, while a red-colored band caused by eddy-
currents (edc) was visible in the template by Mori et al. (Fig. 9D,E). No other image artifacts
were visible in the IIT templates, while susceptibility-induced artifacts were seen in several
previously published templates (Chiang et al., 2008; Zhang et al., 2006; Ardekani and Sinha,
2006). Finally, the optic nerves (on) were clearly visible only in the IITmean template (Fig. 9B)
(Jones et al., 2002; Mori et al., 2008). A detailed comparison of the median tensors to those of
other templates was not feasible, since only one other such template has been published, and
only few images were presented (Jones et al., 2002).

Finally, several commonly traced white matter fiber-tracts were mapped based on the data of
the IITmean template (Fig. 10). Comparison to a white matter atlas showed good correspondence
of the resulting estimates of these tracts to known white matter anatomy of the human brain
(Mori et al., 2005;Wakana et al., 2004).

Discussion
A DTI human brain template that is free of artifacts and preserves the information on the
microstructural properties of white matter throughout the brain, is crucial for accurate voxel-
based comparisons of the micro-architecture of white matter across populations, as well as for
the development of a white matter atlas. In this work, several shortcomings of previously
published efforts to develop a DTI brain template were addressed. The resulting set of DTI
templates a) is characterized by higher image sharpness, b) provides the ability to distinguish
smaller white matter fiber structures, c) contains fewer image artifacts, than previously
developed templates, and to our knowledge, is one of only two templates produced based on
a relatively large number of subjects. Additionally, the IIT DTI templates contain information
on the microstructure of brain tissue that is comparable to what has been published for
individual healthy subjects from similar age groups. Finally, the IITmean and IITmedian
templates match spatially the commonly used ICBM-152 anatomical brain template, thereby
simplifying the combination of DTI, anatomical and functional brain investigations.

Effects of DTI data acquisition methods on the final human brain DTI template
One of the factors contributing to the quality of the IITmean and IITmedian DTI templates was
that the DTI data used in the development of these templates contained minimal image artifacts.
Since Turboprop-DTI is a gradient and spin-echo (GRASE) DTI sequence, it provides images
with significantly fewer susceptibility and eddy-current-related artifacts than conventional
EPI-based DTI (Pipe et al., 2002), even when the latter is combined with parallel imaging
(Gui et al., 2008). As a result, the final IIT templates were free of eddy-current artifacts. This
was not true for the only other template based on a relatively large number of subjects and
constructed using SE-EPI-DTI data (Mori et al. 2008) (Fig. 9D,E) (Table 1). Furthermore, the
IIT templates were not affected by susceptibility artifacts in the brainstem, temporal and frontal
lobes, in contrast to previously published, EPI-based DTI templates (Chiang et al., 2008; Zhang
et al., 2006; Ardekani and Sinha, 2006). A manifestation of this was the fact that white matter
fiber-bundles such as the cpt, cst, oc, on, ifo, ilf, were visible and sharper in the IIT templates
compared to DTI templates based on SE-EPI-DTI (Fig. 9) (Table 3) (Jones et al., 2002; Mori
et al., 2008).

In addition to using DTI data with minimal artifacts, the acquisition scheme used in this work
was more appropriate for the development of an accurate DTI template than schemes used in
previous efforts. In the only other study that also used a technique that provides distortion-free
DTI data (Line-Scan DTI) to scan 16 subjects, and averaged the data, a slice thickness of 4mm
and only 6 diffusion directions were used due to the low SNR per unit time for that sequence
(Park et al., 2003) (Table 1). In SE-EPI-DTI studies, 1.5T scanners, relatively large voxels
(15.6mm3) (Mori et al., 2008; Jones et al., 2002), gaps between the slices (Chiang et al.,
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2008; Zhang et al., 2006; Park et al., 2003), and 6 diffusion directions (Goodlett et al., 2006;
Park et al., 2003; Xu et al., 2003; Ardekani and Sinha, 2006) were used (Table 1). In contrast,
in the work presented here, a 3T scanner, relatively small voxels (10.5mm3), a slice thickness
of 3mm with no gaps between slices, and a minimum energy scheme with 12 diffusion
directions were used, providing sufficient SNR (SNR=24±10 for white matter in b=0sec/
mm2 images), sufficiently high spatial resolution, and high-quality DTI information, which
are necessary for the development of an accurate DTI template (Hasan et al., 2001; Papadakis
et al., 1999; Jones, 2004). Compared to Line-Scan DTI, this acquisition scheme was possible
with Turboprop-DTI, since the latter is characterized by higher SNR per unit time than the
former. However, a higher number of diffusion directions and smaller voxels than those used
in this work would not be appropriate for Turboprop-DTI at this time, since in order to achieve
sufficient SNR for each image volume, the acquisition time would have to be increased
significantly.

Effects of participants’ age on the final human brain DTI template
In addition to the improved DTI data acquisition procedures used in this work, a careful
recruitment of human subjects was also conducted. More specifically, the fact that the diffusion
properties of brain tissue change with age was taken into consideration. For that reason, healthy
subjects between the ages of 20 and 40 years were recruited, since the diffusion properties of
the brain are relatively unchanged in that age group (Sullivan and Pfefferbaum, 2006; Hasan
et al., 2008). Furthermore, the minimum, maximum and mean age for the groups of men and
women that participated in this study were similar. In contrast, previous studies averaged DTI
data from subjects with very different ages (e.g. 18–59 years of age) (Mori et al., 2008), for
which the differences in macro and micro-structural properties of the brain are expected to be
significant. This is possibly one reason for the significantly lower FA values detected in white
matter in the template developed by Mori et al., compared to the IITmean template. Although,
as a direct consequence of our recruitment strategy the IITmean and IITmedian DTI templates
contain information that is representative of the characteristics of healthy human brain in the
20–40 years age-range only, we believe that such a template is more meaningful and potentially
more useful than a template that is produced by averaging fundamentally different
microstructural characteristics. A possible solution would be to repeat the process presented
here for different age-groups, in order to produce age-specific DTI brain templates.

Effects of spatial normalization methods on the final human brain DTI template
Another significant factor contributing to the quality of the IIT DTI templates was the selection
of spatial normalization strategy. Non-linear registration was used in this work. The benefits
of non-linear approaches towards accurate normalization of DTI data are widely known (Rohde
et al., 2004; Goodlett et al., 2006; Zhang et al., 2006; Zhang et al., 2007; Park et al., 2003;
Alexander and Gee, 2000; Ardekani and Sinha, 2006; van Hecke et al., 2008). However, in
few previously published efforts to develop a DTI template affine registration was used instead,
which is driven by macroscopic features and may provide less accurate inter-subject matching
(Jones et al., 2002; Mori et al., 2008; Muller et al., 2007). The main advantage of affine
registration is reduced sensitivity to image noise compared to non-linear approaches. In the
present work, the effects of image noise on non-linear normalization were minimized: a) by
using DTI data with sufficient SNR, b) by combining mean DW and FA information during
normalization, and c) by appropriately smoothing the mean DW and FA images for the
purposes of transformation estimation. Furthermore, mean DW images are characterized by
significantly low noise content, since they are produced by averaging multiple DW images
from different diffusion gradient directions.

As a result of the non-linear registration approach used in this work, the mismatch of selected
landmarks was only 1.1mm on average. Additionally, although different landmarks were used
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in the present study and that of Mori et al., 2008, the 60%, 86% and 100% points in the
cumulative distribution of mismatch of landmarks were shifted to lower mismatches in the
former compared to the latter, suggesting lower registration errors in the present study.
Comparison of the normalization accuracy by means of the coherence of primary eigenvectors
was not feasible, since the only other publicly available template to date (Mori et al., 2008)
includes only the final mean tensors, and not the tensors from individual datasets.

The normalization approach used here also contributed to the increased sharpness of diffusion
anisotropy maps derived from the IIT DTI templates compared to DTI templates produced
with affine registration of a single scalar quantity (Mori et al., 2008; Jones et al., 2002) (Table
3) (Fig. 8,9). The selected normalization approach also allowed relatively small white matter
structures, such as the anterior commissure, to be clearly visible in the final IIT DTI templates
(Fig. 9). In addition, the FA values in white matter were higher in the IITmean template
compared to the template developed by Mori et al., partly due to increased normalization
accuracy that limited averaging of properties from microstructurally different tissues.
Furthermore, tractography based on the IITmean DTI template resulted in maps of tracts that
showed good correspondence to known white matter anatomy (Fig. 10). Although tractography
results cannot be validated in living subjects, the general features of the major pathways
presented here were similar to those of tracts produced in individual subjects, suggesting that
the normalization approach used here maintained similar tensor-orientation information in the
IITmean DTI template as that of single subjects. However, for several structures near the surface
of the brain, normalization was not as successful, similar to previously published studies. This
was demonstrated as reduced FA in the IITmean template, and enhanced noise in the FA of the
IITmedian template, due to assignment of very different tensors to the same final location.
Further research is required to develop advanced techniques that will allow accurate
normalization of DTI data even in regions near the surface of the brain.

The non-linear normalization performed in this study was based on algorithms provided by
SPM5, which are widely used and extensively tested, and on the information contained in mean
DW and FA maps from the different subjects. It was demonstrated that normalization based
on combination of mean DW and FA information was superior to normalization based only on
mean DW data, and of similar or higher quality compared to normalization based on mean
DW, FA and trace information. It is true that many more combinations of different scalar
quantities derived from the diffusion tensor could be tested, and even the diffusion tensor itself
could be included in the normalization process to potentially improve inter-subject registration
of DTI data. However, the main macro and microstructural features of the brain are contained
in mean DW and FA images. Mean DW maps are characterized by high SNR and capture well
the anatomy of the brain, while FA maps contain crucial white matter information. Thus, with
the use of robust and easy to use non-linear registration tools it was possible to achieve
normalization of the quality presented in this work. Nevertheless, a number of inter-subject
registration approaches that are more accurate than the normalization tools of SPM5 used here,
have been developed (Klein et al., In press). Also, several advanced non-linear registration
algorithms that normalize DTI data based on more information derived from the diffusion
tensor than what was used here, or the diffusion tensor itself, have been published (Cao et al.,
2005; Rohde et al., 2004; Park et al., 2003; Alexander and Gee, 2000; Ruiz-Alzola et al.,
2002; Verma and Davatzikos, 2004; Ziyan et al., 2007; Yeo et al., 2008). Further research is
necessary to compare the accuracy of these algorithms. The raw data acquired in this work
could serve as a basis for such comparisons, and the templates presented here could serve as
a benchmark for future investigations.

The IITmean and IITmedian templates were shown to be in good agreement with the commonly
used ICBM-152 template in terms of size and position of different brain structures (Fig. 4).
This can be attributed to the use of non-linear registration tools and DTI raw data with minimal
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image artifacts. The fact that the IIT DTI templates match the ICBM-152 templates well, may
allow simple integration of functional, macro and microstructural investigations.

Mean vs. median tensors
In the simulations, it was demonstrated that when the primary eigenvectors of multiple
anisotropic tensors with the same shape are misaligned, the FA and linearity index of the mean
tensor are reduced, and the spherical index of the mean tensor is increased, compared to the
individual tensors (Fig. 7A). Also, the deviation in the shape of the mean tensor from that of
the individual tensors increases for increased angular mismatch. In contrast, the median tensor
maintains the shape of the individual tensors (and therefore the FA, linearity index values etc.)
(Fig. 7A). This effect was observed in the experimental data, where the FA was shown to be
higher in more white matter voxels of the IITmedian than the IITmean template, suggesting a
mismatch in the primary eigenvectors of white matter tensors (Fig. 6A,B).

In the simulations, it was also demonstrated that when highly anisotropic and isotropic tensors
are assigned to the same location due to imperfections in registration, the FA and linearity
index of the mean tensor are reduced, and the spherical index of the mean tensor is increased,
compared to the anisotropic tensors (Fig. 7B). For a mixture of isotropic and anisotropic
tensors, as the percentage of isotropic tensors increases, the deviation in the shape of the mean
tensor from that of the anisotropic tensors continuously increases, and the shape of the mean
tensor approaches gradually that of the isotropic tensors. In contrast, the median tensor
maintains the shape of the anisotropic tensors as long as at least 50% of the tensors are
anisotropic, and assumes the shape of the isotropic tensors when less than 50% of the tensors
are anisotropic (Fig. 7B). This effect was observed in the experimental data, where the FA in
some edges of the ventricles appeared higher in the IITmedian than the IITmean template,
suggesting the presence of imperfections in registration (Fig. 6A). Furthermore, since the
eigenvalues of tensors in cerebrospinal fluid (CSF) are higher than the eigenvalues in grey or
white matter, imperfections in inter-subject registration of CSF-filled spaces increase the
eigenvalues of the mean tensor in neighboring tissues. In contrast, for the eigenvalues of the
median tensor to be affected, more than 50% of the mixed tensors should correspond to CSF.
This effect was observed in the experimental data, where the trace values along the edges of
CSF-filled spaces were higher in the IITmean than the IITmedian template (Fig. 6C,D).

Based on the results shown in Figures 6 and 7, and the discussion above, one may conclude
that the median tensor better represents the characteristics of tensors grouped during
registration than the mean tensor. However, near the surface of the brain, the accuracy in
registration of different structures is lower than in the rest of the brain. In some near-surface
regions, the IITmedian template appears to be noisy, especially in diffusion anisotropy maps
and less in trace maps. In the same regions where the IITmedian template appears noisy, the
IITmean template is characterized by low anisotropy due to averaging of tensors with different
shape and orientation. The decision of using the IITmedian instead of the IITmean template, or
the opposite, ultimately depends on the task that one wishes to accomplish. For example, when
a template that accurately represents the shape of the grouped tensors is of highest importance,
then the IITmedian template would be most appropriate. The apparent SNR in different regions
of the brain in the IITmedian template may be used as a measure of confidence for the information
presented by both templates in these regions. For spatial normalization purposes, the IITmean
template may be most appropriate since the noise in the IITmedian template may lead to
registration errors, especially when combined with non-linear normalization techniques. These
differences in the two templates will be reduced as the accuracy in the spatial normalization
used for the construction of the templates is improved. Further research is required to evaluate
the utility of the IIT DTI templates for different applications.
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Conclusion
In this work, a set of human brain DTI templates (IITmean and IITmedian) was developed for
subjects between 20 and 40 years of age. The IIT templates match spatially the ICBM-152
template, and a) are characterized by higher image sharpness, b) provide the ability to
distinguish smaller white matter fiber structures, c) contain fewer image artifacts, than several
previously published DTI templates, including the only other template based on a large number
of subjects. Furthermore, the IIT DTI templates contain information on the microstructure of
brain tissue that is comparable to what has been published for individual healthy subjects from
similar age groups. The factors that contributed to the quality of the IIT templates were: a) the
use of DTI data acquisition techniques and imaging protocol that provide image quality
appropriate for the development of a brain template, b) the recruitment of subjects from a
limited age-group with similar diffusion characteristics, c) the use of non-linear spatial
normalization techniques, and d) the combination of information from different quantities
derived from the DTI data during normalization. Also, the IIT templates were developed based
on DTI data from 67 subjects. Differences between the IITmean and IITmedian DTI templates
were investigated in simulations and actual data. The decision to use one template over the
other depends on the task that one wishes to accomplish. Possible uses of the IIT templates
include among others: spatial normalization of DTI data to a common space for voxel-based
comparisons of the microstructural properties of brain tissue between cohorts of human
subjects, development of a white matter atlas, and automated segmentation of white matter
structures on a subject-by-subject basis through normalization to the IIT templates. Further
improvement in the normalization techniques used for the development of the IIT templates
will increase the accuracy of both templates and reduce the differences between them. The
IITmean and IITmedian templates, the corresponding FA and trace maps, and the b=0sec/mm2

and mean DW volumes are available at www.iit.edu/~mri.
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Figure 1.
Flowchart diagram of the process followed in order to evaluate normalization based on mean
DW information, for different levels of smoothing. A similar process was followed to evaluate
normalization based on mean DW and FA information, as well as, mean DW, FA and trace
information.
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Figure 2.
Graphs of the average coherence of primary eigenvectors in white matter as a function of the
smoothing size, for different normalization approaches and different FA values. Squares
correspond to normalization using only mean DW information, triangles to mean DW and FA
information, and X’s to mean DW, FA and trace information. Error bars representing the
standard deviation of coherence for each range of FA values were not included, since they
would overlap with each other and complicate the graph. Instead, the standard deviations for
normalization using mean DW and FA information and smoothing with FWHM=4mm were
included in Table 6. The standard deviations for other normalization approaches were almost
equal to those shown in Table 6.
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Figure 3.
Maps of the difference in coherence of primary eigenvectors (A–D) when using: i) mean DW
and FA information for the purposes of normalization and smoothing with FWHM=4mm,
compared to using ii) mean DW information and smoothing with FWHM=5mm. In images A–
D, white represents higher coherence when using approach (i), black represents higher
coherence when using approach (ii), and the grey color of the background represents no
difference in coherence between the two normalization approaches. Images E–H show
corresponding FA maps derived from the final IITmean DTI template, and were included here
to better visualize the location of the differences shown in images A–D.
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Figure 4.
Axial images from the ICBM-152 T2-weighted brain template (top row), and the corresponding
mean b=0sec/mm2 (second row) and mean DW (third row) maps over all 67 participants. The
bottom row contains overlays of the diffusion anisotropy color maps derived from the
IITmean template on ICBM-152 T2-weighted images.
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Figure 5.
Axial diffusion anisotropy color maps, FA and trace maps derived from the IITmean (A, C, E)
and IITmedian (B, D, F) templates.
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Figure 6.
A) Maps of the voxels in which the FA of the median tensor is higher than that of the mean
tensor. B) Maps of the voxels in which the FA of the mean tensor is higher than that of the
median tensor. The different grey scale levels represent the absolute value of the FA difference
between mean and median tensors. C) Map of the voxels in which the trace of the median tensor
is higher than that of the mean tensor. D) Map of the voxels in which the trace of the mean
tensor is higher than that of the median tensor. The different grey scale levels represent the
absolute value of the difference in trace between the mean and median tensors.
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Figure 7.
A) Simulation of averaging misaligned cylindrical tensors: Plots of the linearity, spherical
index and FA of mean (grey line) and median (black line) tensors as a function of half of the
FWHM of the Gaussian distribution used to select the rotation of simulated cylindrical tensors
around the y-axis. Increased FWHM corresponds to tensors that are not well aligned with each
other. B) Simulation of averaging cylindrical and spherical tensors: Plots of the linearity,
spherical index and FA of mean (grey line) and median (black line) tensors as a function of
the percentage of spherical tensors included in the mixture.
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Figure 8.
Normalized power spectra of FA maps from the IITmean template (black curve) and that of
Mori et al., 2008 (grey curve). Each curve was obtained by averaging all the profiles of the
power spectra along axes centered at a spatial frequency of 0mm−1 and rotated by 1° intervals.
The power spectra shown here correspond to the FA maps shown in Figure 9D.
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Figure 9.
Diffusion anisotropy color maps obtained from a previously published DTI template (left image
in each image pair) (Mori et al., 2008) and the IITmean DTI template (right image in each image
pair). Abbreviations are defined in Table 4.
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Figure 10.
3D renderings of the cc (A), ifo (B), fm (C), slf (D), cst (E), unc (F), cg (G), fx (H), ilf (I),
produced from the IITmean DTI template.
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Table 2
MNI coordinates of the landmarks selected for assessing the accuracy of the normalization approach, and the mean
and standard deviation of the distance between the landmarks in the group-average and individual b=0sec/mm2 images.

(x,y,z) MNI coordinates Mean Distance (mm) Standard Deviation of Distance (mm)

(1, 31, −3) 1.3 0.7

(1, −45, 7) 1.3 0.9

(−18, 41, −5) 1.3 0.8

(18, 42, −5) 1.1 0.8

(39, −2, −26) 1.4 0.5

(−39, −6, −26) 0.9 0.7

(−6, −8, 40) 1.1 0.7

(1, 1, −5) 0.8 1.0
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Table 3
Mean and standard deviation of the image gradient at the edges of white matter structures of the IITmean template and
the template published by Mori et al., 2008. The number of voxels used to measure the average image gradient for each
white matter structure is also listed.

Structure IITmean Mori et al. 2008 # of voxels p-value

Genu 1.4±0.2 0.91±0.07 31 <2×10−13

Cingulum 0.84±0.12 0.44±0.08 17 <2×10−8

Anterior limb of internal capsule 0.57±0.04 0.44±0.06 15 <3×10−5

Superior longitudinal fasciculus 1.20±0.17 0.72±0.03 20 <2×10−9

Inferior longitudinal fasciculus 0.9±0.1 0.71±0.04 28 <4×10−11

Corticopontine tract 1.1±0.1 0.51±0.09 39 <2×10−25
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Table 4
Mean and standard deviation of FA in white matter ROIs of the IITmean template and the template published by Mori
et al., 2008.

Structure IITmean FA Mori et al. 2008, FA # of voxels p-value

Splenium 0.841±0.015 0.729±0.018 24 <2×10−16

Genu 0.862±0.011 0.690±0.017 16 <2×10−13

Cingulum 0.60±0.03 0.40±0.03 64 <5×10−45

Posterior limb of internal capsule 0.72±0.03 0.63±0.03 40 <4×10−15

External capsule 0.47±0.03 0.32±0.01 30 <2×10−20

Forceps minor 0.52±0.02 0.42±0.02 23 <2×10−12

Corticopontine tract 0.45±0.05 0.29±0.02 10 <6×10−5

Optic Radiations 0.53±0.04 0.48±0.02 30 <2×10−5
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Table 5
Abbreviations of names of anatomical structures

ac Anterior commissure ilf Inferior longitudinal fasciculus

alic Anterior limb of internal capsule mcp Middle cerebellar peduncle

atr Anterior thalamic radiations ml Medial lemniscus

cc Corpus callosum oc Optic chiasm

cg Cingulum on Optic nerve

cpt/cst Corticopontine/corticospinal tract opt Optic tract

dn Dentate nucleus pc Posterior commissure

dscp Decussation of superior cerebellar peduncles pct Pontine crossing tract

ec External capsule plic Posterior limb of the internal capsule

fm Forceps minor ptr Posterior thalamic radiations

fx Fornix scp Superior cerebellar peduncle

fxc Column of the fornix slf Superior longitudinal fasciculus

fxp Precommissural part of the fornix sn Substantia nigra

gcc Genu of the corpus callosum st Stria terminalis

icp Inferior cerebellar peduncle str Superior thalamic radiations

ifo Inferior fronto-occipital fasciculus unc Uncinate fasciculus
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Table 6
Number of voxels and standard deviation of the coherence (StdDevCoherence) for each range of FA values, when
normalization is based on mean DW and FA information and the FWHM of the smoothing kernel is 4mm. Similar
numbers of voxels and StdDevCoherence were obtained for the other normalization approaches.

# of voxels StdDevCoherence

0.4<FA<0.5 134,093 0.13

0.5<FA<0.6 71,448 0.09

0.6<FA<0.7 29,468 0.06

0.7<FA<0.8 14,826 0.04

0.8<FA<0.9 5,976 0.02

0.9<FA<1 868 0.02
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