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Abstract 

Modelling artificial neural networks (NN) for accurate time series prediction poses multiple challenges, in 

particular specifying the network architecture in accordance with the underlying structure of the time series. The 

data generating processes may exhibit a variety of stochastic or deterministic time series patterns of single or 

multiple seasonality, trends and cycles, overlaid with pulses, level shifts and structural breaks, all depending on 

the discrete time frequency in which it is observed. For heterogeneous datasets of time series, such as the 2008 

ESTSP competition, a universal methodology is required for automatic network specification across varying 

data patterns and time frequencies. We propose a fully data driven forecasting methodology that combines filter 

and wrapper approaches for feature evaluation, construction and transformation. The methodology identifies 

time series patterns, creates and transforms explanatory variables and specifies multilayer perceptrons for 

heterogeneous sets of time series without expert intervention. Examples of the valid and reliable performance in 

comparison to established benchmark methods are shown for a set of synthetic time series and for the 

ESTSP‟08 competition dataset, where the proposed methodology obtained second place.  

Keywords:  Time series prediction; Forecasting; artificial neural networks; Automatic model specification; 

Feature selection, Input variable selection 

1 Introduction 

 Artificial Neural Networks (NN) have found increasing consideration in forecasting research and practice, 

leading to over 5,000 academic publications indexed by ISI [1]. However, despite their proven theoretical 

capabilities of non-parametric, data driven universal approximation of any linear or nonlinear function [2], NN 

have not been able to confirm their potential against established statistical methods, such as ARIMA or 

Exponential Smoothing [3] in objective, empirical competitions on large sets of time series. The resulting gap 

between the theoretical capabilities, empirical accuracy and robustness in automatic applications of NNs has led 

to increased research activities to explore the empirical accuracy of NNs under different data conditions in a 

number of forecasting competitions (see e.g. the NN3, NN5, and the annual ESTSP competitions). Evidence 

from the algorithms employed in prior competitions has shown a myriad of unique approaches to specify NNs 

for time series prediction. A possible explanation is given by the many degrees of freedom offered by NN 

architectures, which must be chosen in the modelling process in interaction with the underlying data: from the 

selection of the information processing within each node (i.e. specifying input and activation functions), the 

selection of input, hidden and output nodes, structure and recurrencies of the connection-weights to combine 

nodes in adequate network topologies, to learning algorithms and parameters and choices made in preceding 

stages of data sampling and pre-processing. Consequently, the valid and reliable specification of NNs for a 

given time series is often considered as much an art as science, limiting the automation of NN modelling and 

their large scale implementation.  

 

 Previous research indicates that the automatic identification of the most relevant input variables to 

approximate an unknown data generating process, i.e. feature selection on time series data, poses one of the key 

challenges in automatic model specification of NNs [1, 4]. The importance of input variable and lag selection is 

evident, as the input vector needs to capture all characteristics of complex time series, including the components 

of deterministic or stochastic trends, cycles and seasonality, interacting in a linear or nonlinear model with 

pulses, level shifts, structural breaks and different distributions of noise. Furthermore, the amount and 

complexity of time series patterns varies with the time series domain and sampling frequency of the data, from 

low frequency data recoded in quarterly or monthly intervals to high frequency time series of weekly, daily or 

intraday data. As empirical datasets often contain multiple time series with distinct properties and components, 

they require individual identification, specification and prediction. Despite recent interest in modelling MLPs 

for time series with seasonal and trend components [5], these normally assume a given and known seasonal 

form for a set of synthetic time series. In contrast, of the 3003 time series of the M3-competition [3] each 

monthly time series contained different forms of monthly, quarterly or no seasonality, different forms of trend 

and frequent outliers, level shifts etc. that require individual identification and hence an automated 
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methodology. A number of methodologies have been proposed for feature evaluation of NNs, including filter-

based approaches employing statistical tests such as stepwise regression, autocorrelation or spectral analysis, in 

addition to wrappers employing a stepwise search of feasible model candidates using the increasingly available 

computational power. However, no single methodology has been proven to perform well consistently across 

varying data conditions [6], given their individual shortcomings. Linear statistical tests must fail in identifying 

nonlinear interdependencies, fundamentally biasing the results of nonlinear NNs, often provide ambiguous 

results for multiple seasonality and are prone to overspecification on large datasets and high frequency data. 

Similarly, wrapper based approaches often prove inefficient, as they reach the limits of available computational 

power with the growing number of possible feature combinations. In the absence of valid and reliable 

evaluations, there currently exists no consensus on what methodology should be applied under which data 

conditions [7], in particular for changing time series frequency and multiple overlying seasonality [8].  

 

 While some time series components have been successfully addressed by feature evaluation 

methodologies, identifying only the most relevant lagged realisations of the dependent variable, others may 

require feature construction of explanatory dummy-variables with adequate time-delays, depending on the 

stochastic or deterministic behaviour of each component. For multivariate modelling the specification of correct 

contemporaneous or lagged realisation of the dependent variable, and / or multiple explanatory variables 

provides an even bigger challenge [9]. These challenges determine the desirable properties of a necessary 

methodology to specify the input vector of NNs: fully automatic (a) feature identification of unknown time 

series components of level, trend and seasonality of arbitrary length, magnitude or type, (b) feature construction 

to capture deterministic and / or stochastic time series patterns through explanatory variables, (c) feature 

transformation for adequate preprocessing of chosen input variables, and (d) network architecture selection. The 

resulting methodology should be able to approximate any unknown data generating process for each time series 

without the need of domain knowledge or expert intervention. To address this challenge, we propose a fully 

automatic methodology to specify multilayer perceptrons (MLP), founded on best practices of filters and 

wrappers from statistics and computational intelligence. The methodology is centred around an iterative neural 

filter, which combines a simple graphical tool of analysing the Euclidian distance in seasonal year-on-year-plots 

frequently employed by forecasting practitioners with an iterative specification of a MLP as a nonparametric 

filter for automatic feature evaluation and time series identification. In addition, we propose a series of 

subsequent wrappers for feature construction of explanatory dummy time series, feature transformation in the 

form of time series differencing, and to determine the MLP architecture.  

 

 The paper is organized as follows. First, we briefly introduce NNs in the context of time series forecasting 

to derive the particular importance of input vector specification and discuss challenges in conventional 

methodologies for feature selection on low and high frequency data. Sections 3 and 4 introduce the proposed 

methodology: section 3 specifies the iterative neural filter for feature evaluation, which is embedded in a series 

of wrappers for feature construction and transformation specified in section 4. Section 5 provides details on the 

submission to the ESTSP‟08 competition in specifying the experimental design, models used and preliminary 

results obtained. Finally, we provide conclusions and future work in section 6. 

2 Modelling neural networks for forecasting 

2.1 Time series prediction with multilayer perceptrons 

 Forecasting with NNs requires the specification of a heteroassociative NN architecture in order to 

approximate the underlying data generating process. The NN architecture determines the relationship ŷ = f(X, Y) 

between a vector of past time series information, using independent X and/or dependent Y variables, and future 

predicted values of a dependent variable ŷ. Due to the many degrees of freedom in specifying NNs in time series 

forecasting, we present a brief introduction; a general discussion is given in [10, 11].  

 

 In model specification, the variables (measured at discrete time intervals) included in the input vector 

determine the model form in accordance with statistical forecasting models. Including only n lagged realisations 

of the dependent variable yt-n in the input vector, ŷt+1 = f yt, yt-1, … , yt-n+1 constructs a feedforward NN for time 

series forecasting. For models using only m explanatory variables xm of metric or nominal scale, the NN is 

constructed for causal forecasting, estimating a functional relationship of the form ŷ = f (x1, x2, ... , xm). By 

combining contemporaneous and lagged realisations of the independent variables xm,t-n and lagged dependent 

variables yt-n more general models of dynamic regression, autoregressive (AR) transfer functions and 

intervention models are constructed. To extend beyond the autoregressive models of feedforward architectures, 

recurrent architectures allow the inclusion of moving average components (MA) of past model errors in analogy 

to the ARIMA-Methodology [12], enabling a large class of nonlinear dynamic regression models to be 
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constructed using NNs [13]. Forecasting time series with NN conventionally employs a feed-forward topology 

of the established Multilayer Perceptron (MLP) in analogy to an non-linear autoregressive model of order p, 

NAR(p) [1, 14], to which we will also limit our analysis. In time series prediction with MLPs, for a point in time 

t a h-step ahead forecast ŷt+h is computed using n = p lagged observations yt, yt-1,…, yt-n+1 from n preceding 

points in time t, t-1, t-2, … , t-n+1, with n = I denoting the number of input units of the MLP. The functional 

form of a single layered MLP with a single output node for is  
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with Y = [yt, yt-1, ... , yt-i+1] the vector of the lagged observations of the time series providing the network inputs. 

The network parameters are denoted as weights w = (β, γ), β = [β1, β2, … , βH] and γ = [γ11,  γ12, … , γ21, … , γhI] 

for the output and the hidden layer respectively, with β0 and γ0i denoting the biases of each node. I and H specify 

the number of input and hidden units in the network and g(∙) is a non-linear transfer function [15], 

conventionally using the sigmoid logistic or hyperbolic tangent functions [1]. Consequently, each hidden node h 

computes a NAR(p) model on the p = I input nodes, which are combined to ŷ by a weighted sum of a single 

output node (although multiple outputs are feasible). A MLP architecture is displayed in figure 1.  
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Fig. 1: Autoregressive MLP for time series forecasting. 

 The task of the NN is to model the underlying generator of the data during training (parameterisation), so 

that a valid forecast is made when the trained NN is subsequently presented with a new, previously unseen input 

vector (generalisation) [16]. For parameterisation, data is presented to the MLP as a randomised set of input 

vectors of fixed length I formed as a sliding, overlapping window over the time series observations. The weights 

are adjusted by minimising the differences between network output and actuals measured by an objective 

function (predominantly the sum of squared errors) across all input vectors, whereby the learning algorithm only 

serves to minimise the objective function given the input and output patterns for a given network architecture. 

Consequently, the specification of the network architecture in general, as determined through the network 

topology (i.e. the size and structure of the input layer I, the size H of one or more hidden layers, the number of 

output nodes oj), the signal processing within nodes (i.e. the choice of activation functions β, γ), and the 

information processing between nodes (i.e. the connectivity of the weights w with or without feedback and the 

activation strategy), and the input vector in particular, determines the fundamental capability of the MLP to 

capture, approximate and extrapolate the time series components from the data generating processes.  
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 To specify these meta-parameters for forecasting, the majority of publications to date employ a variety of 

trial-and-error approaches and simple heuristic rules. However, only limited empirical evidence exists that the 

proposed heuristics resolve the problem of architecture specification [17-19], but result in inconsistent best 

practices that harm the reliability of their forecasts on different data [1, 6], rendering most heuristics of limited 

value. To better guide the specification of NN for forecasting, a number of methodologies have been proposed 

in the form of either filters or wrappers [20]. In contrast to heuristic rules, methodologies provide a coherent and 

consistent procedural structure to modelling NNs depending on the underlying data conditions, and allow 

replication. Methodologies have been developed both for modeling generic data [18, 21-25] or for specific data 

properties including financial data [26, 27], telecommunication data [18] etc. (for an introductory discussion see 

[1]). However, to date no methodology has been universally accepted to guide the architecture specification of 

MLPs for time series prediction. As prior research has identified the specification of the input vector as being 

crucial to achieving valid and reliable results, methodologies for feature selection are discussed in more detail.  

2.2 Challenges in feature selection for time series data  

Feature selection aims at identifying the most relevant input variables within a dataset [28]. It improves the 

performance of the predictors by eliminating irrelevant inputs (and hence noise), achieves data reduction for 

accelerated training and increased computational efficiency [29], and often facilitates a better understanding of 

the underlying process that generated the data. In order to present features in the most suitable (often 

parsimonious) format, feature selection is comprised of feature evaluation, feature construction and feature 

transformation. For time series data, feature evaluation aims at detecting those input variables and dynamic lags 

that capture the regular time series components of level, trend and /or (single or multiple overlying) seasonality, 

while remaining adaptive to change of stochastic components and robust against outliers and noise. Feature 

construction considers the creation of new features from the input variables, e.g. through principal component or 

factor analysis, or in the form of exogenous dummy-variables to explicitly model time series components. 

Feature transformation in time series aims at adequate pre-processing of features in order to facilitate better 

modelling, e.g. by differencing to remove trends or seasonality. As time series of similar frequency and domain 

may exhibit different patterns, the development of an automatic, data driven methodology for feature evaluation, 

construction and transformation is desirable that does not require input from human experts.  

 

 In feature evaluation a variety of methodologies exist, which may be categorised as either wrappers or 

filters [20]. Filters make use of designated methods for feature evaluation, analysing the properties of the data in 

order to limit the search space of possible meta-parameters, e.g. in the form of autocorrelation analysis, spectral 

analysis or stepwise regression originating from linear statistics. While filters are thus independent of a 

particular predictive algorithm, wrappers use the underlying algorithm to compute forecasts for feature subsets, 

often employing a grid-search or an exhaustive evaluation of meta-parameters, and assess the resulting 

forecasting accuracy to identify suitable meta-parameters. As existing methodologies exhibit unique properties 

and different shortcomings, we explore these in order to overcome their limitations. 

 

 Wrappers are often recognized as a superior alternative for feature evaluation in supervised learning 

problems, as they take the properties and biases of the inductive algorithm into consideration when forecasting 

the dataset in question, and have proven more popular in the computational intelligence and machine learning 

domain (see e.g. [30, 31]). However, the application of wrappers is limited by the available computational 

power. While they provide an effective solution for many meta-parameters of MLP architectures, the degrees of 

freedom in feature evaluation from time series data depend on time series length and frequency. As an 

autoregressive seasonality may impact only a single lag (e.g yt-12  and yt-24 but not yt-11), the use of a fixed or 

flexible grid size provides no reliable solution, but requires an exhaustive enumeration. However, the search 

space to identify a single annual seasonality in a monthly time series requires the analysis of one or better three 

(to identify possible MA(q)-processes) full seasons and hence 2
12

-1 or 2
36

-1 input vector candidates of lagged 

variables. For weekly or daily time series of higher frequency the search space is increased to 2
156

-1 or 2
1095

-1 

combinations respectively, with further increases on intra-day data. As this regularly exceeds the available 

computational power, wrappers are not employed for feature evaluation on high-frequency data and provide no 

universal methodology for time series with unknown frequencies and components. (However, wrappers with 

different grid sizes are routinely employed to identify other architectural components with less degrees of 

freedom, e.g. an adequate number of hidden units [1].)  

 

 In comparison, filters that identify only the relevant time series structure have proven more efficient in 

feature evaluation, and are regularly employed in statistics and econometrics. Based upon the popular Box-

Jenkins methodology of linear statistics [32], the time series structure including seasonality is frequently 

identified as a mixture of AR- and MA-components, effectively filtering non-significant features. The 
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specification of a parsimonious input vector requires a stepwise analysis of the patterns in the plotted 

autocorrelation function (ACF) and partial autocorrelation function (PACF) to identify statistically significant 

components of the dependent variable. Although the visual ACF/PACF analysis is itself not automated, it is 

feasible to formalise heuristic rules that allow an automatic algorithmic implementation (see e.g. the benchmark 

software Autobox [33] or ForecastPro [34]). Per se, the assumption of linearity (as of most filters based on 

linear theory) allows no identification of nonlinear interdependencies [35], which introduces a fundamental 

mismatch that may substantially bias the application of a nonlinear MLP towards linear components. In the 

absence of feasible alternatives, linear filters are none the less employed in identifying significant lags for NN 

forecasting, e.g. following Lachtermacher and Fuller [36], without careful consideration of known limitations. 

Early studies limited their analysis to PACF-analysis in order to identify AR-lags for MLPs [37], omitting the 

identification of linear MA-components. On data with multiple seasonality, the interpretation of ACF and PACF 

often provides ambiguous and misleading information on the individual components (e.g. on weekly data, a 

seasonality s1 = 13 of week in the quarter will interact with the magnitude of an annual weekly seasonality of 

s2 = 52 as it represents a multiple of the quarterly cycle, causing it to inflate or diminish depending on the sign 

of the shorter autocorrelation cycle). Furthermore, ACF and PACF-analysis fails to identify parsimonious lag 

structures for large datasets such as high frequency time series, as demonstrated in fig. 2.  

 
Fig. 2: Effect of sample size on confidence intervals (a) and  

PACF plots of a short and a long sample of an artificial time series (b). 

 

 As the confidence intervals are related to the sample size [38], an increase in time series length results in 

tighter confidence bounds (see figure 2.a). With a growing sample size the individual autocorrelations of a 

constant magnitude become statistically significant, eventually causing the confidence intervals to become so 

tight that nearly every unrelated lag becomes significant (an effect shared by statistical significance tests 

employed in all variants of stepwise regression [39]), increasing the length of the input vector dramatically (see 

figure 2.b). As a result, the methodologies based upon statistical test would construct non-parsimonious models 

that depend not on the structure of the data generating process, but merely the sample size. Consequently, 

ACF/PACF analysis yields no solution for non-linear components or high-frequency data.  

 

 Another popular linear filter suggested in literature for feature evaluation of MLPs uses statistical tests in 

the form of stepwise regression (SR) [40-42]. The approach employs conventional regression to identify the 

significant AR-lags of the dependent variable and uses them as inputs for the MLP, with straightforward 

extensions of this approach to multivariate modelling [41], albeit only of stationary time series. However, the 

identified lags are typically serially correlated and lead to problems of multicollinearity, an effect even more 

pronounced on time series with higher frequency where the serial autocorrelation has longer memory. The result 

is that the stepwise identified models are not guaranteed to include the true significant lags, which may 

potentially lead to selection of ill defined inputs. 

 

 An alternative filter approach to feature evaluation, spectral analysis (SA) is concerned with the 

exploration of the cyclical patterns in the data. It decomposes complex time series into a few underlying sine 

and cosine functions of particular wavelengths, thus providing information on the structure of single or multiple 

seasonalities [43]. Time Series frequencies of high power are identified as an indication of a strong periodicity, 

which are then recoded as lags to allow a direct construction of input vectors for MLPs to extrapolate the 

periodicities. SA is mathematically equivalent to autocorrelation analysis [44], yet without information on the 

potential MA-structure. Consequently, SA can be employed in analogy to the Box-Jenkins-methodology to 

identify periodicities and AR-lags from time series, but shares its shortcomings in the assumption of linearity 

and the sensitivity to the sample size of the datasets. In contrast to the statistical tests of Box-Jenkins, SA 

requires the setting of a threshold depending on the dataset properties in order facilitate the identification of the 
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seasonalities. Setting this threshold automatically, so that the algorithm is capable of dealing with datasets of 

arbitrary periodicity that contain both low and high frequency time series patterns, presents a further challenge. 

 

 Beyond feature evaluation, an aspect equally neglected by existing filter and wrapper approaches to date is 

the possibility of feature construction. Methodologies rarely distinguish between stochastic and deterministic 

seasonality in model specification, which may require different treatment. To capture deterministic trend or 

seasonal components it is advisable to create additional features in the form of integer or dummy variables [45], 

rather than merely select lagged inputs. The conventional approach to model deterministic seasonal patterns is to 

use S-1 binary dummy variables for each time period t, where S is the seasonal length. However, for high 

frequency data this creates very long input vectors through the use of S-1 additional time series. Alternatively, 

one may consider a set of sine and cosine dummy variables, which have been shown to capture deterministic 

seasonal elements of the time series well [46]. However, the ex ante identification of stochastic or deterministic 

seasonality is not supported by ACF/PACF, SR nor SA, requiring subsequent manual modelling choices and 

limiting the automatic use of these filters for feature creation.  

 Furthermore, no consensus exists on approaches for automatic feature transformation. While most 

statistical filters require stationary time series to identify seasonal features, i.e. removal of trend and level shifts, 

dissimilar prerequisites exist for NN which are in theory capable of approximating any time series structure [5, 

47]. Linear statistical tests exist in order to identify non-stationary time series, such as the augmented Dickey-

Fuller (ADF)-Test, similarly limited by their assumption of linearity. Furthermore, no consent exists whether a 

time series with identified (stochastic) seasonality should be deseasonalised first to enhance the accuracy of NN 

predictions [4, 5, 48] or seasonality be incorporated as AR- and MA-components in the NN structure [49-52]. 

This problem becomes especially pronounced for datasets with time series of unknown frequencies and 

potentially overlying seasonality, such as the datasets provided for the ESTSP‟08 competition.  

 

 As a result of the shortcomings of existing filter and wrapper approaches, there currently exists no 

consensus on how to identify linear and nonlinear time series features across different time series frequencies, 

nor their treatment through feature creation nor feature transformation [8, 53]. Consequently we propose a 

methodology for feature selection that reflects prior shortcomings and provides a nonparametric methodology 

for the identification of a single and / or multiple repetitive, stochastic or deterministic seasonal components of 

unknown length, magnitude and type in order to facilitate fully automatic MLP modelling. To combine the 

advantages of filters and wrappers, we will develop a novel filter for feature evaluation, combined with 

successive wrapper approaches for feature construction and transformation. 

3 Automatic feature evaluation for time series data 

3.1 Seasonal identification using an iterative neural filter 

In order to identify time series features and to capture them in the input vector of a NN, we propose a non-

parametric, iterative filter based on the combination of Euclidean distance estimation and MLPs. The 

methodology is motivated from the iterative Box-Jenkins methodology [44], and the use of simple seasonal 

(year-on-year) plots which forecasting practitioners frequently employ to visually identify single and multiple 

seasonality in times series. Although the visual analysis frequently fails to reveal complex seasonal interactions 

of autoregressive and moving average components, multiple overlying and interacting seasonality of different 

cycle lengths and nonlinear patterns, the identification can be aided by a stepwise process of model refinement 

and re-identification from the residuals, allowing the effective use of simple visualisations. 

 

 Finding the seasonal structure of a time series is equivalent to identifying the correct length s of the input 

vector of a MLP that allows it to capture the seasonal information as lagged variables. Any given time series Y 

of length N can be split in n = N/s vectors of varying seasonal length s, where s = [1, 2, ..., N/2]. For different 

values of s, the time series may be split N vectors. For s = 1 the maximum number of N vectors is created, each 

containing a single observation yt; for s = N/2 only two vectors are constructed, each containing N/2 

observations, [yt, yt-1, … , yt-N/2+1] and [yt-N/2, yt-N/2-1, …, yt-N+1]. For each value of s ≠ S the vectors will exhibit 

some non-correlated pattern as a fraction or multitude of the seasonality S. When s matches the actual 

underlying seasonal length S, all vectors will exhibit a similar seasonal patterns with deviations only due to 

noise, decomposing the total variance into that caused by seasonality and by noise. Hence the input vector of 

length s that minimises the distance between all N / s vectors identifies a potential seasonality. We measure the 

distance between these vectors using the Euclidean distance. For the two-dimensional case, for two vectors P = 

[p1, p2, … , ps] and Q = [q1, q2, … , qs] the Euclidian distance is defined as 
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Distances are calculated as the sum of all n pair wise distances of equal length s. For n ≥ 2 all combinations are 

considered as pair wise distances; consider three vectors P = [p1, p2, … , ps], Q = [q1, q2, … , qs] and 

R = [r1, r2, … , rs]; for s = 1 the distance of three pairs is measured by (p1, q1), (p1, r1) and (q1, r1). For n vectors 

of length s there are n (n–1)/2 pair wise combinations. In order to compare distances across different s the 

Euclidian distance is subsequently divided by the number of pair wise distances to estimate an average distance 

for a given s independent of the number of vectors n or their length s in the original time series. The input vector 

length s that minimises the distance indicates a potential seasonal length; note that for s = 1 the time series 

would exhibit no regular seasonality. As an example, let us consider a synthetic time series for t = [1, 2, ... ,100] 

constructed as a sine wave with a periodcity of s = 12, with Y(t) = sin((2 π t) / 12) and no noise. Following the 

method described above we split the time series for different s, e.g. 5, 12, 19 and 24 as shown in fig. 3.  

 

Fig. 3: Plots of vector Y for different s=[5, 12, 19, 24] with average Euclidean distance for s. 

 

All seasonalities s ≠ 12 result in a distance dp > 0, interpreting seasonality as noise; for s = 12 a zero distance dp 

is measured, identifying the periodicity of the time series. However, for times series without noise the seasonal 

distance s would exhibit an identical mean distance for all multiples of s, d(P, Q)s = d(P, Q)ns. In order to 

accurately distinguish the shortest underlying seasonality from its multiples, and to achieve a parsimonious input 

vector, we penalise the mean distance of longer vectors s using a penalty factor τ proportional to the log of s:  

)log()1),(log(),( sQpdQPd
ssp
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 The penalty τ controls the sensitivity of the method and is empirically determined to penalise a growing 

seasonal length as less vectors become available to estimate the distances (we employ τ = 0.15 in all 

experiments). The minimum of penalised distances dp(P, Q)s identifies the shortest seasonality of the time series. 

 

 In order to identify and account for multiple overlying seasonalities, that may co-exist independently or 

interact with other seasonal frequencies, the identified seasonality s needs to be iteratively filtered from the time 

series in order to identify less dominant patterns. We propose an iterative neural filter (INF), capable of 

removing any type of non-linear seasonality in the presence of other seasonalities, trends and irregularities in the 

time series. (Note that the term filter is not used the sense of feature selection methodologies, i.e. wrappers vs. 

filters, but in the sense of filtering out noise – or components - from a time series signal.) In order not to bias the 

predictive modelling of the algorithm, the filter should exhibit similar functional capabilities to the algorithm of 

the NN employed for forecasting. We will use a MLP to estimate the INF, utilising the capability of universal 

approximation [2, 54] but employing a distinct topology dissimilar to those used for forecasting. The inputs of 

the MLP do not consist of lagged realisations of the dependent variable yt, but of contemporaneous explanatory 

variables that encode deterministic time series patterns. Two inputs xs,1 and xs,2 encode seasonality using an 

explanatory variable that is created uses Sin(t) and Cos(t) for an explicit representation of the point in time 

within an identified seasonality of length s, (see e.g. [45, 46]) with  
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 In contrast to the s-1 binary dummies conventionally used in regression to encode deterministic 

seasonality, the explanatory variables xs,1 and xs,2 code a deterministic seasonality as sine-cosine-pairs for each s, 

as this substantially decreases the size of the input vector for long and multiple seasonalities. In addition two 

explanatory variables z1 and z2 are created that provide an explicit representation of the point in time t within the 

time series (which is lost in creating disjoint input vectors for feedforward NNs) by encoding the linear distance 

from the beginning and end of the time series N, with t = 1...N, and 
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These variables facilitate a representation of structural changes of the level of the time series, i.e. different forms 

of trend or level shifts, which may interact with the periodic seasonal signals. Both variable pairs xs,i and zj aid 

the MLP in identifying (interacting) trend and seasonality simultaneously, in contrast to prior transformation and 

subsequent modeling, effectively enabling the MLP to capture and model non-stationary time series.  

 

 The MLP architecture itself is kept consistent (also in all subsequent experiments) for reasons of simplicity 

and to facilitate replication. Preliminary experiments across trials of single and multiple seasonality, different 

magnitudes and different noise levels indicated the need for a comparatively large number of hidden nodes to 

capture complex periodic signals, regardless of the number of input nodes. We chose a constant topology of 16 

hidden nodes arranged in a single hidden layer with hyperbolic tangent activation functions, and a single linear 

output node yt for output. As the objective of this MLP is not to forecast nor generalize on unseen data, but only 

to approximate in order to filter out structure, no test set is used during training, withholding merely S 

observations for validation purposes and using all remaining N-S observations of the time series for training. All 

contemporaneous inputs are linearly scaled between [-1, 1]. The weights of the MLP are randomly initialized 

once for each iteration of estimating the INF. The network is subsequently trained using a standard 

backpropagation algorithm: input patterns of the deterministic variables xs,1, xs,2, z1, and z2 for a point in time t 

are shown to the network, which learns the mapping of these inputs to the target output of the actual time series 

observation yt by minimizing a squared error loss function. The result is a hetero-associative nonlinear filter that 

approximates only the deterministic time series patterns of level, trend and seasonality of pre-specified length 

which are provided as inputs, but no other patterns. Note that different architectures and training algorithm were 

tried but yielded similar results; however, data and domain-specific architectures may yield even more robust 

results and more parsimonious models. Also, the MLP maybe initialised several times to provide more robust 

filter results given the stochastic nature of MLP training. 

 

 The network output ot, which expresses the regular structure of the time series as captured by the MLP, is 

subsequently subtracted from the original time series yt, effectively creating a filtered time series from which the 

dominant pattern of the periodic signal has been removed. Following this, the process is a repeated in order to 

stepwise identify and eliminate further remaining periodicities. In successive iterations, seasonal components of 

different length s to the one identified before are added as additional pairs of sine-cosine inputs xs,1 and xs,2 to 

allow a simultaneous filtering of multiple seasonalities. The process is repeated until the most prominent period 

identified is s = 1, which implies that no further seasonality is present in the time series, as illustrates in fig.4.  

 

Calculate 

Penalised 

Euclidean 

Distance Dps

Minimum Dps = 1

Fit NN to model 

the identified 

seasonality

S = min(Dps)

No

Subtract the 

output of the NN 

from time series  

ENDYesSTART
Time 

Series

Seasonality 

S identified

 
Fig. 4: Flow chart of the iterative filter  

 

 The seasonal identification follows the established tradition of iterative modelling in the ARIMA context, 

and is equivalent to a stepwise decomposition of variance into structural components of seasonality starting with 

the most dominant pattern. The iterative nature of the proposed algorithm offers the advantage that should a 

seasonality s not be fully filtered by the MLP, it may be identified again in the following iteration until it is fully 

removed. Using pair-wise comparisons enables the identification not only of deterministic seasonality, but also 

stochastic seasonality and seasonality with structural breaks, as the pair wise comparisons also identify 

similarity within disjoint parts of the time series where a homogeneous similarity across the whole series cannot 

be found. The INF also offers an advantage regarding its interpretability, as the filter is based upon the simple 

distances of vectors within a seasonal diagram, a heuristic established with practitioners that may be visualised 

to allow an analysis of the identified seasonal structure. In addition, the periodicity of the identified seasonalities 

allows inference of the frequency in which the time series had been measured. Consequently, the identified 

seasonalities allow a general, non-parametric insight into the structure of the seasonal components of the time 

series, which may also be used for other algorithms of computational intelligence and linear statistics.  

3.2 Experimental illustration of the iterative neural filter  

 Conventionally, the INF algorithm processes the information fully automatically without graphical output 

nor user intervention, which may impair the understanding of its process. To illustrate its iterative functionality, 

we visualise the intermediate output after each step of the INF for two synthetic time series, plotted in fig. 5. 
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Fig. 5. The synthetic time series A and B (only first 500 observations). 

 

 The time series are constructed using a constant level and no trend, with different components of single 

and multiple overlying seasonality (see Appendix A for the equation and parameters). Time series A contains 

200 observations with a single seasonality S1=12 (representative of monthly data), time series B contains 1500 

observations with double seasonality S1=7 and S2=365 (representative of daily data). We provide the 

intermediate graphical output after each step of the INF in (a) estimating the Euclidian Distance for each 

s = (1, 2, … , N/S) to identify the minimum penalised distance dps (indicated in the graph by a cross) which is 

used to specify the seasonality s for the input variables xs,1, xs,2, z1 and z2 of the MLP, (b) the output of the MLP 

using only the identified input variables for s to match the output of the actual time series, and (c) the 

corresponding residuals of the MLP output. The plots for time series A are shown in Fig. 6; the plots with 

additional iterations for double seasonality of series B are shown in Fig.7.  
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Fig. 6. Iterative outputs of (a) seasonal distances, (b) MLP filter and (c) MLP residuals for time series A 

 The analysis of seasonal distances on the original time series A (fig. 6.1.a) identifies a minimum mean 

Euclidian distance for s = 12. Consequently the MLP is fitted with four inputs to include two deterministic 

seasonal variables xs,i that encode a sine and cosine of length S = 12 and the two time indicators zj, each in a 

single input node; after parameterisation, the network output depicted in (fig. 6.1.b) shows clear seasonality of 

the same amplitude and frequency as the original time series in Fig. 5.a, resulting in stationary and uncorrelated 

residuals after deducting the network output from the time series observations (fig. 6.1.c). The residuals contain 

no additional seasonal information, which is verified by running the seasonal identification of the INF again to 

determine the minimum Euclidian distance for s = 1 in the 2
nd

 iteration (fig. 6.2.a). The methodology therefore 

identifies only the correct seasonality from the time series, stopping after a single iteration.  
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 (a) Plot of Seasonal Distances (b) Output of the INF-Filter  (c) Residuals of INF output  
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Fig. 7. Iterative outputs of (a) seasonal distances, (b) MLP filter and (c) MLP residuals for time series B 

 

 For time series B the plot of the penalised seasonal distances (fig. 7.1.a) identifies a first minimum of 

dps = 364, which is subsequently used to fit a first set of sine and cosine variables xs,i with S = 364 plus two time 

indicators zj, to the MLP. The network output of the seasonal pattern is shown in fig. 7.1.b and the residuals 

after subtracting the MLP output from the original series in fig. 7.1.c. (Note that only the first 50 observations 

are plotted to limit visual clutter and allow identification of the remaining systematic pattern in the residuals.) A 

repetitive, seasonal pattern of shorter time series frequency is apparent in the residuals (fig. 7.2.a), initiating a 

second iteration of the process on the residuals. The penalised Euclidean distance identifies a second seasonal 

frequency of 7; thus the NN inputs are updated to include a second pair of sine-cosines with periodicity S = 7. 

Following network retraining on the original time series we compute network output, residuals and identify an 

optimal distance of dps = 1, which signifies the absence of further seasonality in the time series, aborting the 

iterative search algorithm. The MLP successfully captures both overlying seasonalities of s1 = 364 and s2 = 7 

using 6 deterministic inputs, identifying the dominant seasonality (that explains most of the variation in the 

Euclidian distance) first, followed by the less dominant one. The so identified time series components of 

seasonality of time series A and B, explicitly captured by the explanatory time series x12,1, x12,2, z1, z2 and x7,1, 

x7,2, x364,1, x364,2, z1, z2 respectively, are later fed to the MLP for the actual prediction.  

3.3 Accuracy and robustness of the iterative neural filter  

To demonstrate the accuracy of the proposed filter under different data conditions, and to compare its accuracy 

with that of established benchmark filter techniques for feature selection, we conduct a simulation experiment 

on an extended set of synthetic time series. The time series are designed as a balanced sample with different data 

conditions: all series have an identical constant level, using different components of single and multiple 

overlying seasonality, seasonality of different magnitude and different noise levels, thereby extending the data 

used in the illustration above. Two of the synthetic time series A.1 (denoted as A in section 3.2) and A.2 are 

constructed to mimic the properties of monthly data, both using 200 observations with a single seasonality 

S1=12 with different noise levels. In addition, two synthetic time series B.1 (denoted as B in section 3.2) and B.2 

are constructed representative of daily data, both using 1500 observations with double seasonality S1=7 and 

S2=365, but with different noise levels. Furthermore, one synthetic time series C.1 is created with 200 
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observations without seasonality in order to evaluate the algorithms‟ sensitivity to the absence of patterns. All 

equations and parameters used to construct the time series are provided in Appendix A for replication. 

 

 To evaluate the efficiency and robustness of the proposed INF algorithm for automatic feature evaluation 

we compare its precision in identifying only the correct seasonality with that of three established statistical 

filtering methods (discussed in section 2.3): spectral analysis (SA) using periodograms derived from fast Fourier 

transforms, the analysis of autocorrelation functions (ACF) and of partial autocorrelation functions (PACF). 

Table 1 summarises the seasonalities identified by the proposed INF, SA, ACF and PACF analysis. Due to 

space constraints, for SA only the largest periodicities identified from the periodograms, and for ACF/PACF 

only the strongest correlations are presented in the table; in addition the table lists the total number of significant 

variables identified by the algorithm to show the resulting length of the input vector.  

 

Table 1. Identified seasonalities from synthetic time series by algorithm (in order of significance) 

  
INF SA  ACF  PACF 

Series. True si # vars final lags # vars top 5 lags # vars top 5 lags # vars top 5 lags 

A.1 12 4 12  8 11.8, 4.4, 2.4, 4.1, 4  18 1, 7, 24, 6, 12   6 1, 7, 4, 5, 23  

A.2 12 4 12  9 11.8, 22.2, 200.0, 14.3,10.5  20 6, 18, 12, 1, 13  6 1, 6, 13, 5, 3  

B.1 7, 365 6 364, 7  38 375.0, 7.0, 214.3, 2.4,  673 7, 14, 21, 8, 1  36 1, 8, 5, 2, 30 

B.2 7, 365 6 364, 7  41 7.0, 375.0, 7.1, 250.0, 2.3  661 14, 7, 21, 28, 35  37 1, 4, 5, 8, 6 

C.1 - 0     -  6 2.0, 2.6, 11.8, 3.8, 2.7  2 8, 17   0     - 

 

 The results of SA, ACF and PACF in table 1 confirm the theoretical shortcomings of these algorithms 

discussed in section 2.3. Due to sample size restrictions, the SA does not approximate the correct frequencies, in 

many cases omitting the periodicity and introducing several artefacts. While the true seasonality of s = 12 for 

A.1 and A.2 is identified, all periodograms identify additional, spurious seasonalities, and even identify 

periodicities in C.1 that are purely due to randomness (created using a particular distribution). On series with 

double seasonality, SA identifies the high frequency of 7 correctly, but also a false low frequency seasonality of 

375 plus additional, non-existent ones. Outputs such as these require the interpretation of a human expert, 

limiting the ability to automate the process of feature selection. These shortcomings will result in misspecified, 

non-parsimonious MLP input vectors, introducing randomness from non-existing periodicities to the model that 

may impair learning. Similarly, ACF and PACF equally fail to identify the true underlying seasonality even on 

low frequency series where values of s/2 and around s are identified, a common problem for sinusoidal seasonal 

patterns. For longer time series of high frequency data, almost all lags become statistically significant (at a 5% 

significance level) as a result of the tight confidence bounds (caused by the large sample sizes). This creates 

long, non-parsimonious input vectors of over 600 input nodes, and voids any interpretation of the results.  



 In contrast to the benchmark methods, the INF identifies all seasonal patterns accurately from the time 

series, without expert guidance nor user intervention, and models them parsimoniously using only s + 2 input 

nodes. Therefore the INF is capable of an automatic identification of only the correct frequencies of the 

seasonalities present in the time series, without any „false positives‟ of identifying irrelevant periodicities (see 

table 1). For series A.1 and A.2 the single seasonality of s = 12 is accurately identified in a single iteration of the 

process, while for time series B.1 and B.2 with multiple seasonality the dominant seasonality explaining the 

most variation in the Euclidian distance is identified first, followed by the less dominant one.  Note that for time 

series B.1 and B.2 a seasonality of 364 was identified, instead of the „true‟ seasonality of 365. This is due to the 

effect of aliasing – the interaction of low and the high frequency periodicities in the time series (i.e. caused by 

52 multiples of a seasonality of 7, the higher frequency). While it is feasible to correct for this effect, prior 

experimentation verified that applying the misidentified frequency of 364 provides a better fit and lower out-of-

sample forecast errors than the true seasonality of 365, regardless of the forecasting algorithm (a comprehensive 

analysis of aliasing is beyond the scope of this paper). For time series C.1 without seasonality no periodicity is 

identified. We therefore conclude that the algorithm overcomes the limitations of common statistical approaches 

for feature evaluation by parsimoniously capturing only relevant seasonality through deterministic explanatory 

variables. The time series features of trend and seasonality identified by the INF that are capable of extracting 

all seasonal information from the time series are explicitly captured by the explanatory time series xs,I and zj 

respectively. The same input vector is subsequently used in training of the MLPs for prediction, providing a 

coherent methodology of capturing and extrapolating arbitrary periodicities in a fully automatic way.  
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4 Automatic feature construction and transformation for time series data 

Although the INF accurately evaluates and identifies all relevant features form the time series, it cannot 

overcome the challenge of distinguishing between stochastic or deterministic seasonality, which is required for 

an adequate feature construction of dummy variables. Similarly, the INF provides no insight into the most 

suitable preprocessing of the time series through feature transformation, such as single differencing for non-

stationary time series or seasonal differencing for seasonal ones. In order to enable the MLP to also capture non-

seasonal AR- and MA-processes, and stochastic or mixed form seasonality, we need to consider additional input 

vector candidates to account for additional autoregressive lags in feature evaluation, feature construction of 

explanatory variables for deterministic patterns and feature transformation through seasonal and trend 

differencing for stochastic patterns. Only a limited amount of options exist for feature construction and 

transformation. Therefore we propose a simple wrapper around the proposed INF to create additional input 

vector candidates, combining the effectiveness of wrappers in low dimensional problems of feature construction 

and transformation with the efficiency of a filter for high-dimensional problem of feature evaluation. 

 

 Each time series is first explored using the proposed INF algorithm (see section 3) to identify any cyclical 

and seasonal data frequencies. The identified time series components provide the first set of input vector 

candidates by including the specified sine and consine-explanatory variables xs,I and zj for each of the identified 

seasonalities s1, s2, … , sn into the input vector, encoding deterministic seasonality and trend [55]. In order to 

capture any stochastic seasonality, the input vector can be further extended to integrate time lagged realisations 

of the dependent variable in the form of nonlinear AR(P)s-terms, as suggested in previous studies [56]. Beyond 

the time series components of trend and season, the time series may also exhibit additional auto- and/or 

crosscorrelated structures of non-seasonal length, n ≠ si, which must equally be captured in the input vector. We 

therefore employ the conventional linear parametric approach of stepwise regression (at a 5% significance level) 

to include the most significant seasonal and / or non-seasonal lags, creating additional input vector candidate 

models. The stepwise regression is primed with the inputs identified by the INF to account for deterministic 

seasonality and instationarity. 

 

 No consensus exists on whether a time series with identified trend should be detrended, and whether a 

seasonal time series should be deseasonalised first to facilitate NN learning [4, 5, 48]. Moreover, valid 

identification of significant autoregressive lags through a stepwise regression requires stationarity of the data, 

which is explicitly violated in trended or seasonal time series patterns. Yet, a prior removal of trend and / or 

seasonality may impact on the lags identified as significant, effectively altering the input vector. In the absence 

of best practices, we consider the original, detrended and (for each of the n identified seasonalities sn) 

deseasonalised time series as candidates for a further wrapper of feature transformation. To detect integrated 

time series we employ the well established Augmented Dickey-Fuller (ADF) test for non-stationarity (i.e. trend 

or structural breaks through level shifts). For non-stationary time series we create candidates of (a) the original 

time series I(0) and (b) the detrended time series using (first or second order) differencing I(d). For seasonal 

time series we consider candidates of (a) the original time series I(0) and (c) deseasonalised time series using 

seasonal differences I(d)si , and for trend-seasonal time series all combinations (a), (b), (c) plus (d) candidates of 

detrended and deseasonalised time series I(0) I(d)si. Note that the first or seasonal differenced time series are 

used only for the stationary identification of the input vector through stepwise regression - the NNs are trained 

only on the original, undifferenced time series containing all patterns. 

 

 The input vector candidates identified through feature selection serve as a starting point for additional 

model specification of the remaining MLP network architecture. Following the identification of all possible 

feature candidates, a set of MLP architectures is conventionally specified via wrappers to evaluate hidden nodes, 

layers, and activations functions for each input vector, and trained to predict the unseen data. From all combined 

candidate models the best ones are selected to form an ensemble for the final prediction, as will be described in 

the consecutive sections. 

5 Empirical Evaluation on the ESTSP’08 competition 

5.1 Exploratory data analysis and feature selection 

 To verify the performance of the proposed iterative neural filter we submitted predictions to the 

forecasting competition of the 2008 European Symposium on Time Series Prediction (ESTSP‟08). The 

ESTSP‟08 competition provided three time series of different length and structure (displayed in fig. 8), without 

any domain information on the origin, structure, components nor frequency of the time series. The objective was 
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to predict all three time series as accurately as possible for multiple steps ahead into the future, measured on true 

ex ante forecasts from withheld data using the average MSE.  

 

 The first time series of the competition, plotted in figure 8.a, is comprised of 354 observations, and was 

provided with two additional explanatory time series of equal length as potential inputs; as no future inputs for 

the explanatory series were provided these would require separate predictions to serve as contemporaneous 

predictors. No domain knowledge on the time series itself was provided. The objective is to forecast the next 18 

values. Applying the INF using the penalised Euclidean distance, a single seasonality of 12-observations was 

identified, indicating a monthly time series of 29.5 years of data with a month in the year seasonality. The ADF-

test indicates the absence of trend, suggesting two options to model the input vector regarding pre-processing of 

the time series: identifying significant lags using stepwise regression on the original time series (1.a) and 

identifying lags after taking a 12
th

 order seasonal difference to remove possible stochastic seasonality (1.b).  

 

 The second time series of the competition (fig. 8.b) contains 1,300 observations without explanatory time 

series. The objective is to forecast the next 100 values. The ADF-test identifies an instationary time series 

caused by a structural break in the form of a single level shift, visible in figure 8.b (for an automatic 

identification of level shifts see [57]). As a consequence no first order differencing of the data to compensate for 

trend-instationarity is required; we introduce a binary dummy variable to code the identified level shift. Using 

the INF we identify seasonalities of 7 and 364 observations, indicating a time series of daily observations with 

day in the week and day in the year-seasonality. The significant lags are identified on the original time series 

(2.a), applying a 7
th

 order differencing (2.b), a 364
th

 order differencing (2.c) and both differences (2.d) in order 

to identify possible additional significant lags as input vectors candidates.  

 

 The third time series of the competition (fig. 8.c) contains 31,614 observations; the objective is to predict 

the 200 next values. The ADF-tests identifies no unit root, i.e. no indication of a trend. The INF identifies three 

overlaying seasonalities of 24, 168 and 8,760 observations, indicating an hourly time series with hour of the day, 

day of the week, and day in the year seasonality. This provides several alternatives to input vectors specification 

by applying different levels of seasonal differencing, including the original series (3.a), the 24
th

 (3.b), the 168
th 

(3.c), and the 8,760
th

 differenced series (3.d), plus four combinations of the seasonal differences.  

5.2 Architecture specification and training 

The input vector candidates of feature selection are embedded in a further wrapper to specify different candidate 

MLP architectures for each of the identified feature candidates, resulting in a combined filter-wrapper approach. 

Due to the possible interaction of the time series structure, the input vector and its encoding with the number of 

hidden nodes, we evaluate different MLP architectures for every input vector candidate. Following the input 

vector specification, we construct a set of MLPs using a stepwise wrapper that evaluates a range of hidden nodes 

nHI=[2, 4, 6, 8, 10, 12, 14] for a single hidden layer, and the Hyperbolic Tangent (TanH) and the Logistic (Log) 

activation functions fact=[TanH, Log] for each input vector candidate for consideration in model selection. All 

other parameters remain unaltered, applying a single output node with the identity function for an iterative 

multiple step-ahead trace forecast, and a conventional feedforward topology of a MLP.  

 

 Each MLP is trained using back-propagation with momentum for 1,000 epochs or until an early stopping 

criterion is satisfied. (Alternative learning algorithms including Levenberg-Marquard were also evaluated, 

without any significant differences in accuracy.) For the early stopping criterion the MSE is evaluated every 

epoch, and training is halted if the MSE does not improve by 1% in one hundred epochs. The initial learning rate 

is set to η=0.5, applying a cooling factor Δη=0.01 to reduce the learning rate in each epoch; the momentum term 

is kept constant at υ=0.4. All data is pre-processed using linear scaling into the interval of [-0.6, 0.6] to allow for 

headroom on non-stationary time series, and presented to the MLP using random sampling without replacement. 

In order to avoid local minima during the training and to provide an adequate error distribution using sufficient 

results, each MLP candidate is initialised 40 times with random starting weights in the interval of [-0.6, 0.6]. To 

facilitate training and a simulated out-of-sample evaluation prior to the submission to the competition, and 

without knowledge of the true test-data, each of the time series was split in three sequential data subsets for 

single fold cross-validation, using 60% for training, 20% for validation and 20% for testing respectively.  

5.3 Model selection 

 Given the large number of alternative input vector candidates and architecture candidates created for each 

time series, the selection of a single MLP which promises accurate and robust out-of-sample performance on 

unseen data is highly challenging. The limited evidence of NN in time series prediction, and, in particular, their 

low consistency and robustness of performance across homogeneous datasets [6] can in part be contributed to 



14 

 

suboptimal model selection using a single-fold cross validation, as has been discussed in detail in forecasting 

literature [58, 59]. Best-practice approaches, such as k-fold or leave-one-out-(LOO)-subsampling regularly 

employed in machine learning, face particular challenges in forecasting due to the serial dependency of 

observations in a time series. To obtain more accurate results given the single fold evaluation, within each data 

subset of length n we employ a rolling forecast origin evaluation, e.g. estimating the average performance 

metrics of each model candidate across m trace forecasts, instead of a single fixed origin as is common practice. 

This scheme overcomes the shortcomings of fixed origin evaluation, like its dependence of the randomness 

contained in the particular forecasting origin and the limited sample size of errors [60]. In rolling origin 

evaluation, the number of time origins depends on the maximum length of the input vector l, and the data subset 

length n, with m=n – l. For a forecast horizon h we produce h (h+1)/2 different forecasts, instead of only h under 

the fixed origin evaluation. Therefore, we obtain more forecast errors that allow a more accurate estimation of 

the forecasting error distributions and hence model selection. 

 

 To further limit the impact of overfitting to a data subset or origin in model selection, we consider an 

ensemble of diverse candidates to generate average predictions. In addition to substantial evidence that 

ensembles of simple methods perform well in classification tasks, similar findings have been confirmed for time 

series prediction, e.g. at the M3 competition, where a simple average of all competing methods performed better 

than each of the competing methods itself [3]. Consequently we rank all parameterised MLP candidates for each 

time series, select the 10 models of the highest rank and average their forecasts Ŷt+ for each future horizon h. The 

ESTSP‟08 competition assesses the accuracy of the models using a normalised MSE for each time series 

averaged over all three series. In order to align the performance metric used in model development with the 

metric used for the final evaluation of the competition, we parameterise and select models using the MSE 

despite its well explored and documented shortcomings in empirical evaluations (e.g. the sensitivity to outliers 

etc.; see [61, 62] for a discussion).  

 

 The combined filter-wrapper approach of feature selection and architecture specification resulted in a large 

number of MLP candidate models, of which different candidates may be combined in the ensemble for the final 

prediction. Due to the large number of candidates a comprehensive overview of the individual candidate models 

and architectures actually employed in the ensembles is infeasible given the space constraints of this paper. 

However, we will briefly discuss some general findings in order to indicate potential learnings from our 

methodology: 80% of the top 10 candidate models (which were used to create the composite ensemble 

forecasts) for each of the time series use the sine/cosine-variables identified by the INF to code seasonality of 

different lengths, implying that this methodology aids the model in capturing the complex overlying seasonal 

forms. For those candidates for which an input vector was identified using both the original and the differenced 

time series, both alternatives were always selected to be within the top 10 across all time series, implying that 

these approaches are complementary. An unexpected finding was that the univariate models for time series 1, 

excluding the two provided time series of explanatory variables, outperformed all multivariate models that used 

this information. This reduced the complexity of creating the final forecasts, as no predictions for the 

explanatory time series were required and no accumulation of the errors could arise from their inaccurate 

forecasts to impact the final forecasts. Consequently, all variables contained in the input vector were univariate 

lags or related to explanatory encodings of the time series‟ components. 

 

Regarding network topology, no coherent structure of the number of hidden nodes could be identified for a 

particular time series. For time series 1 and 2 most candidates ranked highly applied a TanH-activation function, 

while candidates for time series 3 used the Log-activation function. With the increase in time series frequency 

on the ESTSP‟08 data, and the resulting increase of observations per annual season, both the data volume and 

the length of the input vector to capture a full season increase proportionally. Consequently, high frequency time 

series resulted in lnger input vectors. Across all input vectors of candidate models for monthly data, the 

methodology employs an average of 7 input nodes with the longest time lag identified as t-36. For daily and 

hourly time series, the methodology utilises an average of 30 and 354 input nodes, and a maximum lag in the 

input vector of t-392 and t-9072 respectively. Reflecting upon the large number of input and hidden nodes, a 

candidate model developed for the hourly time series would use 2,478 parameters on average, in comparison to 

only 49 for the monthly time series. The implications of this for MLP training are substantial, considering the 

intricacy and time to solve such a complex optimisation problem in the light of a limited amount of training 

vectors. Furthermore, our experiments identified a positive correlation between the frequency of the time series 

and the size of the search space required to find suitable input lags (represented by the maximum time-lag in the 

input vector). Not only does the input vector for time series of higher frequency increase in size, the maximum 

time lag to be considered also moves further into the past. Most methodologies which identify the input vector 

based upon wrappers, grid search, exhaustive random search, genetic algorithms and other meta-heuristics using 

on computational force are bound to encounter constraints in providing valid and reliable results in a reasonable 
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time frame. In contrast, the filter approach based upon the INF and iterative stepwise regression to identify the 

appropriate lags increased computational times only proportional to the increase in the search space, providing 

solid identification of the relevant time lags for forecasting in an acceptable time. Still computational time 

varied substantially, ranging from virtually instantaneous for the time series 1 and 2 to several days for time 

series 3 using a pair of dual core processors at 2.4 GHz with 10GB of RAM.  

5.4 Preliminary results of the ESTSP’08 submission 

 Prior to submission, the MLP ensemble forecast for each time series was compared with a series of 

statistical benchmark forecasting methods, in order to assess the potential gain in accuracy in comparison to the 

increased complexity of MLPs. We compared three different benchmark models for each time series: a random 

walk, yt+h = yt, which assumes that the future forecasts yt+h for all horizons h are equal to the present value of the 

time series yt. In addition, we evaluated single and seasonal exponential smoothing models (EXSM), with the 

seasonal length set to match the longest seasonal cycle of each time series (as identified in section 3.1) as this 

would include multiples of all shorter periodicities. Information on statistical benchmarks and their 

parameterization can be found in [38, 63]. Table 2 contains the MSE errors of the NN ensembles and the 

statistical benchmarks for time series 1, 2 and 3 respectively. The method with the lowest MSE per data subset is 

indicated in bold italics. 

 

Table 2. MSE of ESTSP‟08 Time Series 1, 2 and 3 

Time Series 1       Time Series 2 Time Series 3 

Model Train Valid Test Train Valid Test Train Valid Test 

Random Walk 13.59 6.63 9.99 6.11
E+16

 5.78
E+16

 5.38
E+16

 1997.54 1399.56 1530.28 

Single EXSM 7.31 4.05 4.78 5.89
E+16

 5.59
E+16

 5.04
E+16

 1770.96 1230.68 1310.10 

Seasonal EXSM 5.95 3.81 5.38 1.11
E+17

 3.40
E+16

 4.31
E+16

 1409.56 1120.93 1161.48 

MLP Ensemble 4.33 3.32 4.76 2.50
E+16

 1.63
E+16

 1.01
E+16

 353.65 430.33 971.07 

 

 The MLP ensemble, employing the INF for feature evaluation and wrappers for feature construction, 

feature transformation and architecture selection, outperforms the statistical benchmarks on all three time series, 

and across all data subsets of training, validation and test. The dominance of the MLP ensembles identifies 

significant gains in accuracy using our proposed methodology, and its robustness across data subsets. The same 

composite ensemble forecasts were subsequently submitted to the ESTSP competition (see figure 8).  

 

 
Fig. 8: The time series and forecasts of the ESTSP’08 forecasting competition. 
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 Note that the true ESTSP‟08 competition test set was withheld and has not been released to date, so that 

we cannot provide error measures or actuals for the true ex ante forecasts. However, in the overall ranking of the 

ESTPS‟08 competition our approach ranked 2
nd

. 

6 Conclusions 

 This paper proposes an initial methodology for automatic modelling of MLPs for time series with arbitrary 

time frequencies, seasonalities and trends, evaluated on synthetic time series and the true ex ante predictions of 

the ESTSP‟08 competition. An iterative neural filter is proposed for feature evaluation to automatically identify 

the frequency of the time series, embedded in wrappers for feature construction, feature transformation and 

architecture selection. The principle of the methodology is to utilise the efficiency of filters for known and well 

specified properties, and to employ wrappers for additional modelling choices with limited search spaces, 

effectively combining the best practices of statistics with those of computational intelligence. As a result we 

construct a large set of competing candidate models of MLPs with different input vectors utilising varying 

temporal information on trends, stochastic and deterministic seasonality through autoregressive and / or dummy 

variables respectively. In addition, wrappers are employed to create candidate models for a number of hidden 

layers, hidden nodes and activation functions. In order to omit the need for manual intervention we employ a 

composite ensemble forecast of the 10 best models selected on their in sample performance for each time series. 

The proposed methodology, which is based on established tools and methods, avoids arbitrary modelling 

decisions and manages to overcome the challenges of modelling heterogeneous sets of time series with varying 

time frequency and time series patterns, a task where most methodologies developed to date fall short.  

 

 Using this automatic forecasting methodology for MLPs we took part in the 2008 ESTSP forecasting 

competition. We outperformed a set of benchmark methods and achieved a good ranking for each time series in 

comparison to state-of-the art algorithms from statistics and computational intelligence. Overall, our proposed 

methodology ranked 2
nd

, demonstrating that a fully automatic, purely data driven methodology that requires no 

expert human intervention to specify NNs is feasible and can perform well.  

 

 The novel feature evaluation algorithm of the iterative neural filter (INF), used to automatically identify 

the number and the period of the seasonalities that are present in a time series, is the nucleus to our 

methodology. In this study we discussed the underlying functionality and demonstrated its performance using a 

set of synthetic time series and the ESTSP‟08 dataset. However it is necessary to run representative Monte Carlo 

simulations to access its robustness, sensitivity and power on different data conditions of time series length and 

patterns. The adequacy of aliasing should be carefully monitored for the proposed INF and explored for other 

forecasting algorithms, in particular for the case of non-sinusodial, discontinuous seasonality. Furthermore, it 

may prove worthwhile to explore the potential of anti-aliasing techniques in order to further increase accuracy in 

forecasting applications. The proposed methodology aimed to overcome some of the challenges encountered 

automatic NN modelling, in particular towards high frequency data. Given the current computational resources, 

high frequency data remains extremely demanding and limits the amount of ad-hoc experimentation, in 

particular for wrappers and model ensembles. In comparison to monthly and daily data, an hourly time series 

contains 24 and 720 times more observations respectively within an identical time period. The resulting increase 

in sample size creates various unique challenges that are beyond the scope of this paper: increasing input vector 

length to capture full seasons, handling the increasing degrees of freedom in training, and the resulting 

computational time – both in model identification and parameterisation. However, it is on these high-frequency 

datasets that NN and other nonlinear algorithms of computational intelligence have demonstrated preeminent 

performance in recent empirical forecasting competitions such as the ESTP‟08, and it is here that they may 

prove their worth against the established statistical benchmarks.  

Appendix A 

The synthetic time series to evaluate competing feature selection algorithms are constructed using  

t

k
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it e
S

t
lY 





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



 

1

2
sin


  ,      (9) 

where l denotes the level of the time series, and k the number of sines with periodicity of Si to model seasonality 

of amplitude αi, which is randomly chosen from a random uniform distribution U(1,20) for each of the k sines. 

Each time series is overlaid with random noise et with Gaussian distribution N(0, σ), using a standard deviation 

σ randomly picked from a uniform distribution U(Σ(αi)/2k, Σ(αi)/k) in order to provide a high noise to signal 

ratio and to make the identification of seasonality sufficiently challenging. The parameters used for the 
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construction of the STS and the identified periodicities of the seasonalities are summarised in table 1 (Note that 

Time Series A.1 is equivalent to series A and B.1 to series B in section 3.2.)  

 

Table 1. Properties and parameters used to construct the synthetic time series  

Series  Periodicity Sample l α1 α2 S1 S2 σ 

A.1 12 200 500 8.40 - 12 - 5.62 

A.2  12 200 500 13.53 - 12 - 15.81 

B.1 365, 7 1500 500 7.53 14.44 7 365 5.78 

B.2 365, 7 1500 500 20.23 13.09 7 365 10.85 

C.1 1 200 500 - - - - 1.00 
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