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Abstract

Data heterogeneity (Non-IID) on Federated Learning (FL) is currently a widely
publicized problem, which leads to local model drift and performance degrada-
tion. Because of the advantage of knowledge distillation, it has been explored in
some recent work to refine global models. However, these approaches rely on a
proxy dataset or a data generator. First, in many FL scenarios, proxy dataset do
not necessarily exist on the server. Second, the quality of data generated by the
generator is unstable and the generator depends on the computing resources of the
server. In this work, we propose a novel data-Free knowledge distillation approach
via generator-Free Data Generation for Non-IID FL, dubbed as FedF2DG. Specif-
ically, FedF2DG requires only local models to generate pseudo datasets for each
client, and can generate hard samples by adding an additional regularization term
that exploit disagreements between local model and global model. Meanwhile,
FedF?DG enables flexible utilization of computational resources by generating
pseudo dataset locally or on the server. And to address the label distribution
shift in Non-IID FL, we propose a Data Generation Principle that can adap-
tively control the label distribution and number of pseudo dataset based on client
current state, and this allows for the extraction of more client knowledge. Then



knowledge distillation is performed to transfer the knowledge in local models to
the global model. Extensive experiments demonstrate that our proposed method
significantly outperforms the state-of-the-art FL methods and can serve as plu-
gin for existing Federated Learning methds such as FedAvg, FedProx, etc, and
improve their performance.

Keywords: Non-IID Federated Learning, Data Heterogeneity, Data Generation,
Data-Free Knowledge Distillation

1 Introduction

With the explosive growhth of data and the growing emphaises on privacy protection,
the conventional AT methods that require uploading source data to a central server for
training have become untrustworthy. Recently, Federated Learning (FL) [1] has been
proposed to address the privacy security risks in conventional Al. It allows multiple
devices to train a shared global model without uploading the local source data to a
central server, which is an effective way to leverage data from multiple devices and
protect user privacy [2, 3]. FL has been successfully applied in real-world applications,
such as health care [3-5] and recommender system [6, 7], etc.

The main problem that FL currently faces is data heterogeneity, i.e., the client data
in real scenarios is usually non-identically and independently distributed (Non-IID).
Under the Non-IID setting, the vanilla FL algorithm such as FedAvg [1] can encounter
the issue of local models drift and forgetting global knowledge catastrophically, leading
to a decrease in performance [8, 9]. This is because client local training in FL utilizes
only local data, i.e., minimizing the local loss. However, the two goals of minimizing
the local loss and minimizing the global loss are inconsistent in Non-IID FL [9, 10].
Therefore, the approach of element-wise averaging of local models cannot fully capture
the valuable information from clients and may not result in an ideal global model [11].

To address the aforementioned challenge of data heterogeneity, existing works has
approached the problem from two main perspectives: One focuses on constraining the
direction of local model update to align the local and global optimization objectives
[9, 12-15], such as FedProx, SCAFFOLD, etc. In this way, the problem of local model
drift can be solved. However, these methods merely do simple model aggregation to
obtain the global model, which can result in the cancellation of local knowledge during
the aggregation process and prevent the global model from effectively learning the
diverse knowledge from different clients [16, 17]. Another focuses on improving the
effectiveness of model aggregation, where knowledge distillation has been applied as
an effective method [18-22]. Knowledge distillation can improve the global model by
extracting knowledge from local models, thereby alleviating the issue of local models
drift caused by data heterogeneity. However, these methods rely on an unlabeled
dataset as the proxy, which is often impractical in many real-world applications where
public datasets may not be always available on the server. Recently, serval data-free
knowledge distillation methods for federated learning have been proposed, such as
FedGen [23] and FedFTG [24]. They both apply a generator [25] to generate pseudo



Table 1: Advantages of FedF2DG over other methods
Align the local and

Boost model No proxy  Flexible use of

global optimization . dataset computational
o aggregation . .
objectives is required resources
FedAvg

FedProx, SCAFFOLD, etc v
data-dependent knowledge v
distillation methods for FL

data-free knowledge v v
distillation methods for FL

FedF?DG v v v 4

data. Nevertheless, the generator requires iterative training [26] and can only be stored
on the server, these methods face issues of unstable generated data quality and great
dependence on the server’s computational resources. In Table 1, we summarize the
advantages of our approach FedF?DG over existing works. Compared to methods
that constrain the direction of local model update such as FedProx, we add the step
of boosting model aggregation through knowledge distillation. Compared to data-
dependent knowledge distillation methods for FL, we do not need an additional proxy
dataset but rather generate pseudo datasets through generator-free data generation.
Compared to data-free knowledge distillation methods for FL, we do not need to train
the data generator and have the flexibility to utilize the computational resources of the
client and server to generate data. Moreover, compared with the knowledge distillation
methods for FL, our method can be combined with methods for optimizing local model
training, thus adding the step of constraining the update direction of local models.
Observing the challenge of data heterogeneity and the limitations of existing works,
in this work, we propose a novel Federated Learning data-Free knowledge distillation
approach via generator-Free Data Generation for Non-IID scenarios, called FedF2DG.
Specifically, FedF2DG is divided into three Stages. First, in Federated Learning Stage,
FedF2DG trains local models with excellent performance in preparation for data gen-
eration. Second, in Adaptive Data Generation Stage, to address the issue of requiring
data for knowledge distillation, we propose a Data Generation Method that require
only local models to generate pseudo datasets for each client by optimizing noise
into real images using a regularization term, and can generate hard samples to help
the constantly updated global model to learn knowledge not yet learned in clients.
Compared with the methods of generating data via the generator, FedF?DG enables
flexible utilization of computational resources by generating pseudo dataset locally or
on the server. And to address the label distribution shift in Non-IID scenarios, we pro-
pose a Data Generation Principle that can adaptively control the label distribution
and number of pseudo dataset based on client current state, and this ensures that the
global model can focus on learning useful information about each client. Finally, in
Knowledge Distillation Stage, knowledge distillation between local models and global
model is performed to boost global model performance. The framework of FedF2DG



is shown in Figure 1.
The main contributions in this work are as follows:

e We propose FedF2DG, which enhances the global model aggregation step by
enabling data-free knowledge distillation through generator-free data generation.

® We propose a Data Generation Method that leverages only local models by optimiz-
ing noise into real images using a regularization term, and can generate hard samples
by adding an additional regularization term that exploit disagreements between
local model and global model. It enables flexible use of computational resources by
generating pseudo dataset locally or on the server.

® We propose a Data Generation Principle that adaptively controls the label distri-
bution and number of pseudo dataset based on client current state. This approach
allows for the incorporation of a greater amount of client knowledge into the pseudo
dataset.

® We demonstrate that FedF2DG can be combined with methods that optimize local
model training, such as FedAvg, FedProx, SCAFFOLD, MOON and FedNova. And
can further improve their performance.

2 Related Work

2.1 Data-Free Knowledge Distillation in Centralized Scenario

Data-Free Knowledge Distillation methods [27-32] are able to generate pseudo data
from a pretrained teacher model, and leverage them to transfer the knowledge from
teacher model to student model. Lopes et al. [29] propose to extract the metadata
from the teacher’s activation layers and reconstruct the training samples. DAFL [27]
and DFAD [28] both train a generator for image generation, where DAFL treats the
teacher model as a fixed discriminator, and DFAD employ an adversarial training
framework to extract the knowledge from the teacher model. FastDFKD [32] learns
a meta-synthesizer that seeks common features as the initialization for the fast data
synthesis, enabling fast data synthesis. DeepImpression [30] models the output space of
teacher model and update random noise images to obtain training data. DeepInversion
[31] synthesizes real images from random noise by regularizing the distribution of
intermediate feature maps. However, data-free knowledge distillation in centralized
scenario is difficult to apply because of data privacy issues. Therefore, our FedF2DG
migrate the data-free knowledge distillation method from the centralized scenario to
the federated scenario, which can protect user data privacy.

2.2 Federated Learning on Non-IID Data

Federated Learning was first proposed by [1], namely Fed Avg, which perfroms weighted
aggregation of the local models on the server. A wealth of work has been proposed to
address the main challenge in FL: Non-IID. FedProx [9] constrains the local model to
be closer to the global model by adding a regularization term on the local loss function.
SCAFFOLD [12] uses control variables to keep local updates from drifting. MOON
[13] conducts contrastive learning in model-level to correct the drifted local update.
FedNova [14] corrects model aggregation scheme to eliminates objective inconsistency.



In summary, the above methods mainly focus on constraining the direction of local
model update to align the local and global optimization objectives, while ignoring the
loss of useful information during simple aggregation of the global model.

2.3 Knowledge Distillation in Federated Learning

Many researches utilize knowledge distillation to address data heterogeneity in FL.
And most existing work [18-22] is data-dependent. FedMD [19] enbales participants
to independently design their models and to translate knowledge between participants
through knowledge distillation. FedDF [18] proposes an ensemble distillation method
for model fusion, where global model is trained with unlabeled data generated by
local models. FedAUX [20] utilizes an auxiliary dataset for knowledge distillation to
implement initialized server models and weighted integrated user models. MHAT [21]
utilizes knowledge distillation to extract local models information and trains an auxil-
iary model for information aggregation. Fed AD [22] uses a public dataset for inter-node
communication and employs a knowledge distillation algorithm that uses both final
prediction and model attention to extract client knowledge. But all these methods rely
on a public dataset, which in many FL scenarios do not necessarily exist on the server.

Recently serval works [23, 24, 33, 34] has been proposed to implement data-free
knowledge distillation for FL. FedGKD [34] prevents the local model drift by guid-
ing local model training through knowledge distillation between historical global and
local models. However, this work focuses on local model updates rather than enhanced
model aggregation. FedBKD [33] integrates knowledge distillation into the local model
upload and global model download steps of federated learning. FedGen [23] uses a
lightweight generator to generate pseudo features, which are then used to help client
local updates. FedFTG [24] generates pseudo data by learning a generator and then
uses pseudo data to fine-tune the global model. However, FedBKD, FedGen and
FedFTG rely on a generator [25] to generate pseudo data. The utilization of generators
entails the following challenges: 1) Unstable quality of the generated data. Since the
generator needs to be trained iteratively [26], the quality of the generated data may
be poor in the initial training phases. 2) Dependence on the server’s computational
resources. Since the generator can only be stored on the server, the generation of data
takes place exclusively on the server, leading to a huge workload burden on the server.

3 Proposed Method

In this section, we describe the proposed data-free knowledge distillation method for
Non-IID FL: FedF2DG. Considering the limitations of traditional methods using gen-
erators to generate pseudo data, we adopt generator-free data generation method
named Deeplnversion [31], each client can generate pseudo dataset locally or on the
server by adaptively utilizing its local model. Meanwhile, due to the different label
distributions among clients and the different numbers of data among clients, we define
a data generation principle, the label distribution and number of pseudo datasets are
adaptively adjusted according to the data generation principle. The global model works
with clients-generated pseudo datasets and performs knowledge distillation with their
local models to learn the knowledge lost in the simple weighted aggregation process.



Figure 1 shows the framework of our FedF2DG method and the corresponding
algorithm is summarized in Algorithms 1. FedF2DG is executed into three stages:
1) Federated Learning Stage. Before the incorporating round I, Federated Learning
Stage is employed to distribute the global model to clients for local training and to
update the global model through simple model aggregation, while after the incorpo-
rating round I, Federated Learning Stage only distributes global model to clients for
local training and the global model is updated at Knowledge Distillation Stage. 2)
Adaptive Data Generation Stage, which uses local models to generate pseudo datasets
needed for knowledge distillation for the later Knowledge Distillation Stage. 3) Knowl-
edge Distillation Stage, which updates the global model by using pseudo datasets to
perform knowledge distillation between the local models and global model.
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Fig. 1: The framework of our FedF?DG method. It’s consisted of three stages: 1) Fed-
erated Learning Stage, 2) Adaptive Data Generation Stage, 3) Knowledge Distillation
Stage.

knowledge
distillation

Our FedF2DG method runs as follows: before the incorporating round I, FedF2DG
conducts Federated Learning Stage individually, this is because our proposed
generator-free data generation method in Adaptive Data Generation Stage requires
local models have excellent performance to ensure the quality of the generated pseudo
datasets. After the incorporating round I, our second and third stage are added.
These three stages will then run in a cycle. Note that FedF2DG can be combined with
methods that optimize local model training, such as FedAvg, FedProx, SCAFFOLD,
MOON and FedNova.



Algorithm 1 FedF?DG

Input: The communication round 7; The incorporating round I; Client number K;

—
=

11:
12:

13:

14:

15:

16:
17:
18:
19:
20:
21:
22:

© ® XS n W

The fraction of clients selected in each round F'; Local training epoch FE; The
datasets of clients {Dr}y ey xy; The parameter of the global model w.
Random initialize the parameter of the global model w.
fort=1,...,T do
1. Federated Learning Stage
S < (random set of F' x K clients)
for each client k£ € S in parallel do
//each client runs E epochs local update.
w! «+ClientUpdate(w'~!,Dy,)
end for
if t > I then
//incorporating the two stages of Adaptive Data Generation and Knowl-
edge Distillation.
2. Adaptive Data Generation Stage
compute the number and the label distribution of the pseudo datasets
according to Eq. (11) and Eq. (12)

generate the pseudo datasets {ﬁi}k . , according to Eq. (2) or Eq.
Jke{l,.. K

(8)
3. Knowledge Distillation Stage
random shuffle the pseudo datasets {’152} according to Eq. (14)
ke{l,...,K}

//update the global model through knowledge distillation.
update the global model w’ according to Eq. (15)

else
//update the global model through simple local models aggregation.
update the global model w! + 37, _¢ fEw!

end if

end for

3.1 Federated Learning Stage

Under the Non-IID federated learning setting, we consider K clients and one server.
Let C be the set of all clients and |C| = K. The k-th client has the local dataset
Dy = {(m}c,ylk)}j\icl, Ny, represents the number of data owned by the k-th client. N
represents the total number of data owned by all clients. Due to the Non-IID setting,
the dataset Dy owned by each client k € C is heterogeneously distributed. We define
w as the global model parameter of the server. In general, federated learning can be
formulated as the following problem:

K

Ni
min = Y (@) @) = 5 3£ (ohovkic) m
k=1 =1



where L is the loss fuction (e.g., cross-entropy) to measure training error.

At each Federated Learning Stage, FedF2DG randomly selects a set of clients S C C
and broadcasts the global model w to them. Each client k € S initializes the local
model with the global model and trains it by min,, fi (w). The server then collects
the local models {wy}, g and updates the global model by aggregating them with
the average gradient before the incorporating round I, while after the incorporating
round I, the global model is updated at Knowledge Distillation Stage.

Since the significant drift among local models in the Non-IID setting and the
limited capabilities of simple aggregation employed in the Federated Learning Stage,
deep knowledge from clients cannot be effectively learned, resulting in potential loss
of useful knowledge. To address these issues and enable the global model to learn
more useful client knowledge, we propose the following two stages: Adaptive Data
Generation Stage and Knowledge Distillation Stage.

3.2 Adaptive Data Generation Stage

The knowledge distillation method relies on a public dataset, so some previous
data-dependent knowledge distillation methods for FL [18-22] typically assume the
existence of a public dataset on the server to fulfill this requirement. Nevertheless,
many scenarios in FL do not align with this assumption. As a solution, we propose
Adaptive Data Generation Stage, which is utilized to generate pseudo datasets con-
taining client knowledge for the later Knowledge Distillation Stage.

And some data-free knowledge distillation methods for FL [23, 24, 33] relies on
a data generator to generate pseudo dataset, which greatly relies on the server’s
computational resources and fails to utilize the clients’ free computational resources.
Therefore, in Section 3.2.1, we found a generator-free data generation method that
only utilizes the local models of the clients. Since the local model is stored on both
the client and the server, we can allocate the pseudo data generation tasks by observ-
ing the current computational resource usage of the client and server in real time. In
addition, the quality of the generated data is also more stable because we conduct
several rounds of Federated Learning Stage individually to obtain local models with
excellent performance before incorporating Adaptive Data Generation Stage.

In FL, different clients possess varying amounts of information, i.e., different label
distributions and numbers of local datasets. Additionally, the performance of the
client’s local model dynamically changes in each communication round. Hence, We
propose Data Generation Principle in Section 3.2.2 to adaptively generate different
numbers and label distributions of pseudo datasets for different clients respectively
based on their current states in each communication round.

3.2.1 Data Generation Method

Inspired by DeepInversion [31], a method for synthesizing images from image dis-
tribution, we are able to optimize the noise into an image similar to dataset X and
only require a model 6 trained on dataset X. Given a randomly initialized input
(z € REXWXC H W, being the height, width, and number of color channels) and



an arbitrary target label y, the image is synthesized by optimizing:

H{gnﬁ(@ay;e) + Rp1 (Z), (2)

RDI (i') = Rprior (53) + (XfRfeatuTe (j) 5 (3)
where £ () is a classfication loss (e.g., cross-entropy) and Rpg (-) is an image regulariza-
tion term composed of Rprior (+) and R feature (). ¢ is a hyperparameter controlling
the proportion of R feature (+). Rprior () is employed to facilitate the convergence of &
towards a valid image:

Rp'rior (57) = awRrv (-’Z') + aszﬁz ('%) ) (4)

where Rrv () and Ry, (-) respectively penalize the total variance and ¢3 norm of Z,
and are scaled by factors ai, and ay,. Ryeqture (+) is employed to make the feature
distribution of Z at all levels similar to the natural (or original training) image = € X’ :

Rieature (£) = > [l (&) — E (i () |X) [|2+
l

()
> _llof (@) —E (o (2) 1X) ||2,
l

where g (Z) and o7 () are the batch-wise mean and variance estimates of feature maps
corresponding to the I-th convolutional layer of model 6. The E (-) and || - ||2 operators
denote the expected value and ¢» norm calculations, respectively. E (y; (z) |X) and
E (crl2 (x)|X ) can be estimated by approximately as:

E (1 (x) |X) ~ BN;(running_mean), (6)

E (07 (z) |X) ~ BN;(running_variance), (7)
where BN; (-) denotes the running average statistics stored in the I-th BatchNorm(BN)
layer of model € during the process of training the model 8 using dataset X'. Thus we
can obtain E (1 (z) |X) and E (07 (z)|X) from the I-th BN layer of model 6.

At each Adaptive Data Generation Stage, FedF2DG lets each client k € C generate
the pseudo dataset Dy, by Eq. (2) using the local model wy, that has been trained with
the local dataset Dj. Since this data generation method can generate pseudo datasets
with different feature distribution based on different local models, we can regard this
data generation method as adaptive. In addition, this data generation method only
requires local models, thus we can choose whether to generate pseudo datasets on
the clients or on the server, depending on the current availability of computational
resources.

In order to generate images of diversity, [25, 35] have proposed to encourage the
synthesized images to cause local model-global model disagreement. An additional reg-
ularization term Reompete 1S added to Eq. (2) based on the Jenson-Shannon divergence



that penalizes output distribution similarities:

m}n‘c (i'a Y; wk) + RDI (i') + acncompete (57) 5 (8>

Reompete () = 1 — IS (wi (7) ,w (7)), 9)
IS (Wi (), w (7)) = % (KL (wy (2) , M) + KL (w () , M)) ,

where a. is a hyperparameter controlling the proportion of Reompete. KL (+) denotes
the Kullback-Leibler divergence and wy (Z) and w () are the output distributions
produced by the local and global model respectively. M = 3 - (wy (%) +w (Z)) is the
average of the local and global model distributions.

During optimization, this new regularization term can help generate the hard sam-
ples [36-38] in data distribution that the global model cannot correctly classify, while
the local model can. This term enhances image diversity by exploiting disagreements
between local model and global model, enabling the constantly updated global model
to learn local knowledge that has not yet been learned.

3.2.2 Data Generation Principle

To adaptively adjust the label distribution and number of pseudo dataset generated
by each client in each communication round according to the current state of the
client, aiming to better incorporate the knowledge of each client in each communication
round into the generated pseudo datasets, we propose the following Data Generation
Principle.

Adaptively Determining the Number of Generated Dataset. Generally
speaking, the more data a client has, the more knowledge it possesses. Therefore we
should let clients with more data generate more pseudo data and clients with less data
generate less pseudo data. We use the number of data i, as a factor that influences
the number of the pseudo dataset Dy.

Additionally, we can indirectly understand the knowledge that the global model
has learned so far based on its performance on the pseudo datasets generated at
previous Adaptive Data Generation Stage, and then we can use it as another factor
that influences the number of the pseudo dataset Dy, at current stage. Specifically,
after generating the pseudo datasets, we record the global model’s loss on each pseudo
dataset. We argue that a large loss of the global model on the pseudo dataset D~,t€_1
at the previous stage ¢t — 1 indicates that the global model has not learned enough
knowledge regarding client k. As a result, the knowledge of client k is needed for the
global model at the current stage ¢. Therefore, we propose the client quality Q% which
is determined based on the lossz_l, which represents the loss of the global model w1
on the pseudo dataset ﬁ;‘lz

1

QZ _ ealossif , (10)
where « is a hyperparameter for normalization.

According to the above said, at t-th Adaptive Data Generation Stage, the number
of the pseudo dataset D}, generated by each client k is determined adaptively by the

10



following two factors: the number of data Nj and the client quality Q). Given the
total number of data N, to be generated at t-th stage, the number of the pseudo
dataset D}, to be generated by client k is:

VR Ny, Q.
/’]cE - ttotal * ()‘W + (1 - )‘> Zj Q§ )’ (11)

where A is a hyperparameter that controls the weights of Ny and Q. According to
Eq. (11), the number of the pseudo dataset generated by each client can be adaptively
adjusted at each Adaptive Data Generation stage, so that the global model can more
fully learn the knowledge of each client.

Adaptively Sampling Label. Under the Non-IID setting, label distributions are
different among clients, i.e., p* (y) # p’ (y) for different clients i and j. Since the label
distribution is skewed, each local model will perform well on some classes and poorly
on others. Namely, for different local models, the importance of one class is different. It
is obvious that a client’s knowledge should be mainly focused on its majority classes.
Therefore, we cannot generate each pseudo dataset by uniformly sampling class labels.
Because it will generate many minority classes data containing few of knowledge, which
will lead to a decrease in the effectiveness of knowledge distillation. To address this
issue, we customize the label distribution $* (y) for the pseudo dataset Dy, based on
the label distribution p* (y) of the local dataset for each client k, in order to generate
more pseudo data with useful information,

P (y) =" (). (12)

According to Eq. (12), each pseudo dataset has high probability of generating the
majority classes of its corresponding client, thus FedF?DG can guarantee that the
global model can focus on learning useful information about each client in the Non-IID
setting.

3.3 Knowledge Distillation Stage

After Adaptive Data Generation Stage, Knowledge Distillation Stage is entered to
enable the global model to fully learn the knowledge from the pseudo datasets.
At t-th Knowledge Distillation Stage, FedF?DG utilizes the pseudo datasets

{f)i}ke{l . local models {wi}ke{ly_”}K} and the previous global model w!~! to

perform knowledge distillation and obtain a better global model wt. Specifically, for
each pseudo dataset @f, we use the global model w!~! as the student model and the
local model w! as the teacher model, the parameters of the global model w’ can be
learned by
K

min Z Z KL (w! (z) 0" " (2)), (13)
Y =1 et
where KL (-) denotes the Kullback-Leibler divergence, w! (z) and w'~!(x) are the

output distributions produced by the local and global model respectively, typically

11



obtained using a high temperature on the softmax inputs.

Note that at Knowledge Distillation Stage, if the global model sequentially utilizes
the pseudo dataset on each client for knowledge distillation, it may lead to the global
model overfitting to a single client’s local model, resulting in the performance degrada-
tion. Table 6 shows the result of knowledge distillation of the global model sequentially
utilizing the pseudo dataset on each client. To address this issue, FedF?DG pro-
poses to perform random shuffling on all pseudo datasets before conducting knowledge
distillation:

K
ﬁihufﬂe = Random_Shuf fling( U DY), (14)
k=1
. t—1
min .Z KL (wr (z), 0" (2)), (15)
meD:h,u,ffle

the teacher model wr corresponding to each pseudo data = € ﬁghu File 18 the local
model of the client that generated it. FedF?DG employs random shuffling to ensure
that the global model can equally learn knowledge from each local model, instead of
overfitting to a single local model’s knowledge.

4 Experiments

In this section, we compare the performance of our proposed method FedF2DG with
other key related work.

4.1 Experimental Setup

The basic experimental setting is as follows.

Baselines. We compare FedF2DG with several baseline methods FedAvg [1], Fed-
Prox [9], SCAFFOLD [12], FedNova [14] and MOON [13], with two data-dependent
knowledge distillation methods FedMD [19], FedDF [18] and with a data-free knowl-
edge distillation method FedGen [23].

Datasets. We conduct experiments on three benchmark datasets: CIFARI0,
CIFAR100 [39] and SVHN [40], which are three difficult tasks in FL scenario and are
widely adopted in FL research. Reference to existing works [10, 24], we use Dirichlet
distribution Dir(3) to partition the above three datasets, thereby simulating the Non-
IID data distribution among clients. A smaller 5 indicates higher data heterogeneity.
During the implementation, we set 8 = 0.05 and 5 = 0.1 to simulate FL scenario with
large data heterogeneity. Also, we conduct experiments in FL scenario with IID data
distribution. We use ResNet-18 [41] as the basic backbone for the three datasets for
the following reasons: 1) The regularization term R feature in Data Generation Method
requires the model to have Batch Normalization (BN) layers. 2) ResNet-18 is a com-
monly used model for these three datasets.

Hyperparameters. The hyperparameters of the experiment are as follows:

communication round T = 100, incorporating round I = 80, the client number
K = 10,20 corresponding to the active fraction F' = 1,0.5 respectively, local training
epoch F =5, the local training batchsize is 64, the learning rates for classifier is 0.01
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and the weight decay is le-5. Typically, We adopt SCAFFOLD as the FL optimizer
in FedF?DG.

For data generation in FedF?DG, we adopt Adam optimizer with learning rate
0.1. We set ay = 1, ayy = 0.001, and oy, = 0. After incorporating round I = 80 and
before the 90-th round, we set a. = 0.0 to generate data by Eq. (2). After the 90-th
round, we set o, = 10.0 to generate hard samples by Eq. (8). We set & = 1 to com-
pute the client quality, total number of data generated in ¢-th round /\thtotal = 2560,
and A = 2/3 to controls the weights of quantity and quality. For knowledge distilla-
tion in FedF?DG, we adopt SGD optimizer with momentum 0.9, learning rate 0.01,

and weight decay le-4, knowledge distillation temperature 3.

4.2 Performance Comparison

The performance of our method FedF?DG is compared with other methods as follows:

Test Accuracy. Table 2, Table 3 and Table 4 report the test accuracy of all com-
pared algorithms on CIFAR10, CIFAR100 and SVHN datasets, respectively.

On CIFARI10, FedF?DG achieves the best performance in all scenarios. In data
heterogeneity scenarios (8 = 0.1 and 3=0.05) with 10 clients, FedF?DG exceeds the
suboptimal method by 1.73% and 6.47% respectively. And with 20 clients, which bet-
ter simulates the data distribution of real scenario, i.e. the data is distributed across
more clients for federated training, FedF?DG is more effective, outperforming the sub-
optimal method by 2.47% and 10.41% respectively.

On CIFAR100, FedF2DG achieves the best performance in all scenarios. In data
heterogeneity scenarios with 10 clients, FedF2DG exceeds the second one by 2.36%
and 4.87% respectively. And with 20 clients, outperforming the second one by 4.39%
and 6.16% respectively.

On SVHN, where all methods achieved high test accuracy, FedF?DG still achieves
the best performance in all scenarios. In data heterogeneity scenarios with 10 clients,
FedF?DG exceeds the second one by 0.91% and 1.01% respectively. And with 20
clients, outperforming the second one by 0.63% and 2.41% respectively.

From the above observation, FedF2DG can achieve SOTA performance even in the
scenario where the data is distributed across multiple clients and is extremely hetero-
geneous. Besides, FedF?DG outperforms the existing knowledge distillation methods
FedMD, FedDF and FedGen in all scenarios, especially extremely heterogeneous sce-
narios where the performance of the other methods drops significantly. Finally, the
excellent performance of FedF?DG validates the effectiveness of enhancing the model
aggregation step by data-free knowledge distillation.

Convergence of FedF?DG. Figure 2 displays the convergence curve of FedF?DG
in three datasets with different data heterogeneity 3, it can be seen that FedF?DG
reaches convergence in all settings. Following the incorporating round I = 80, we
added the second and third stages: Adaptive Data Generation Stage and Knowledge
Distillation Stage. This led to an increase in test accuracy at 80 round, followed by a
gradual convergence.

Classification results for FedF?DG. Figure 3 displays the classification results
of FedF?DG in three datasets with different data distribution settings. As can be seen
from the clear diagonal lines of the confusion matrix, FedF?DG achieves relatively
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Table 2: Test accuracy (%) of different methods on CIFAR10 with 10 and 20 clients.
The content in () indicates the percentage improvement in the accuracy of FedF?DG
compared to the suboptimal method.

10 clients 20 clients
11D Bg=0.1 £ =0.05 11D Bg=0.1 £ =0.05
FedAvg 93.51 86.25 75.82 92.38 80.73 63.71
FedProx 93.74 85.67 77.62 92.41 82.52 71.38
FedNova 93.63 87.52 68.68 92.34 81.12 63.95
MOON 92.65 85.58 77.19 91.56 80.25 63.69
SCAFFOLD 93.86 87.01 78.05 93.13 85.23 72.97
FedMD 84.02 81.63 80.51 81.24 73.06 72.80
FedDF 92.03 71.02 65.64 88.63 67.69 36.90
FedGen 88.35 81.51 78.90 87.78 72.80 71.65

FedF2DG  93.90(+0.04%) 89.04(+1.73%) 85.72(+6.47%)  93.21(+0.08%) 87.34(+2.47%) 80.57(+10.41%)

Table 3: Test accuracy (%) of different methods on CIFAR100 with 10 and 20 clients.
The content in () indicates the percentage improvement in the accuracy of FedF2DG
compared to the suboptimal method.

10 clients 20 clients
11D B=0.1 8 =0.05 1D B8=0.1 B =0.05
FedAvg 71.34 67.02 63.70 69.11 62.21 59.60
FedProx 71.67 66.74 63.49 69.26 62.50 59.87
FedNova 71.01 67.19 64.30 68.80 62.25 59.15
MOON 69.04 66.75 63.18 65.86 62.12 59.48
SCAFFOLD 73.81 68.83 64.35 72.86 65.31 61.76
FedMD 45.86 19.84 17.49 20.18 12.17 13.97
FedDF 65.69 51.25 40.96 57.03 37.98 29.16
FedGen 33.08 28.16 26.27 30.05 24.40 19.09

FedF2DG  73.84(+0.04%) 70.46(+2.36%) 67.49(+4.87%)  73.07(+0.28%) 68.18(+4.39%) 65.57(+6.16%)

Table 4: Test accuracy (%) of different methods on SVHN with 10 and 20 clients.
The content in () indicates the percentage improvement in the accuracy of FedF?DG
compared to the suboptimal method.

10 clients 20 clients
11D B=0.1 B =0.05 11D B=0.1 8 =0.05
FedAvg 95.01 86.45 83.37 94.82 91.02 83.79
FedProx 95.01 87.03 84.84 94.80 91.61 88.22
FedNova 95.00 89.95 85.33 95.03 91.95 88.02
MOON 94.04 87.51 81.32 93.83 90.86 81.42
SCAFFOLD 95.64 85.54 82.35 95.42 91.93 84.17
FedMD 92.02 89.37 88.07 90.59 89.40 89.00
FedDF 95.22 76.57 34.85 94.64 88.72 65.62
FedGen 90.37 87.75 87.32 89.66 88.46 87.91

FedF?DG  95.65(+0.01%) 90.77(+0.91%) 88.96(+1.01%)  95.50(+0.08%) 92.53(+0.63%) 91.15 (+2.41%)

good classification results for each class in all scenarios.

Data heterogeneity. Figure 4 displays the test accuracy of different FL meth-
ods on different 3 values. FedF2DG achieves SOTA performance in all settings, which
proofs that FedF2DG can help the global model to improve performance in all data
heterogeneity scenarios. In addition, FedF?DG demonstrates significantly higher accu-
racy compared to other methods in the case of extreme data heterogeneity (5 = 0.05).
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Fig. 2: convergence curve of FedF2DG in three datasets with different data hetero-
geneity 3, in 10 clients scenario.
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Fig. 3: Confusion matrix of FedF2DG in three datasets with different data distribu-
tions, in 20 clients scenario.
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And as the degree of data heterogeneity decreases (5 increases), the test accuracy of
each method rises. However, FedF?DG still significantly outperforms other methods
and outperforms SCAFFOLD.

0.9
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0.6 - <%+ FedNova
4 MOON
/ —- SCAFFOLD
0.5 /-/ —&- FediD
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. ' —e— FedF2DG
&/,0 0 @;0 A &;0 2 &7,0 5 \%

Fig. 4: Test accuracy w.r.t. data heterogeneity (. Experiments were conducted on
CIFARI10 in 20 clients scenario.

The effect of FedF?DG combined with existing FL optimizers. Table 5
shows the effect of FedF2DG combined with FedAvg, FedProx, FedNova, MOON and
SCAFFOLD. In Table 5, FedProx+FedF?DG and SCAFFOLD+FedF?DG respec-
tively show the best test accuracy among all optimizers with § = 0.05 and g = 0.1.
Comparing Table 5 with Table 2, we observe that the performance of any FL optimizer
can be greatly boosted by combining it with FedF?DG. This validates the effectiveness
and combinability of FedF?DG. Furthermore, simply using FedAvg as local optimizer
in combination with FedF?DG (FedAvg+FedF?DG) already outperforms the other
methods in Table 2.

4.3 Ablation Study

Necessity of each component in FedF?DG. Table 6 shows the performance of
FedF2DG with the loss of some modules. The specific implementation of each module
is as follows:

® -Reompete: after the incorporating round I, i.e. after incorporating the two stages of
Adaptive Data Generation and Knowledge Distillation, only Eq.(2) is used to gen-
erate data, while the regularization term Rcompete (Eq.(8)) is not used to generate
hard samples.
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Table 5: The effect of FedF?DG combined with different FL optimizers. Test accuracy
(%) on CIFARIO, 8 = 0.1 and 0.05 in 20 clients scenario. The content in ( ) indicates
the percentage improvement in accuracy when combined with FedF2DG compared to
the original FL optimizer.

Accuracy (%)
B=01 8=0.05
FedAvg{FedF2DC 86.34 (16.94%)  78.22 (+22.77%)
FedProx+FedF2DG 86.63 (14.98%) 80.57 (+12.87%)
FedNova+FedF2DG 86.25 (+6.32%)  78.27 (+22.39%)
MOON-FedF2DG 86.01 (+7.17%)  78.12 (+22.65%)

SCAFFOLD+FedF2DG  87.34 (+2.47%) 79.69 (+9.20%)

Table 6: Impact of the each component in FedF?2DG. The experiments are conducted
on CIFAR10, 8 = 0.05 in 20 clients scenario. The content in () indicates the percentage
decrease in accuracy compared to baseline method.

Method Accuracy (%)

baseline FedF?DG 80.57
" Reompete 79.19 (-1.71%)
- ADNGD 79.06 (-1.87%)
module - ASL 76.86 (-4.60%)
- DGP 76.01 (-5.65%)
- Random shuffling  73.28 (-9.04%)

e _ADNGD: each client generates a fixed number of 128 data per round (total of 2560
data generated per round for all clients.) without using Adaptive Determining the
Number of Generated Dataset in the data generation principle.

e -ASL: each client obtains the label distribution of pseudo dataset through random
uniform sampling without using Adaptively Sampling Label in the data generation
principle.

¢ -DGP: including -ADNGD and -ASL.

e _Random shuffling: the global model sequentially utilizes the pseudo dataset on each
client for knowledge distillation, rather than all pseudo datasets being performed
random shuffling and then perform knowledge distillation.

We can observe that removing any module will result in a decrease in the performance
of FedF?DG. Besides, the joint absence of modules can lead to further performance
degradation. The most significant performance degradation is seen in -ASL and -
Random shuffling. This indicates that sampling the label distribution of pseudo dataset
based on the label distribution of the client’s local data can better extract knowledge
from the client, and that global model overfitting can be prevented by random shuf-
fling. Table 6 proves that each module we designed is necessary and reasonable for
FedF?DG.
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Sensitivity of FedF2DG to hyperparameter \. To measure the influence of
hyperparameter X selection, we select A from [0, 0.3, 0.6, 1]. Figure 5(a) shows the test
accuracy in term of the box plot, where FedF2DG achieves the highest test accuracy
in A = 0.6. Meanwhile A = 0.3 and A = 1 achieve similar test accuracy as A = 0.6.
This indicates that FedF?DG is not sensitive to the selection of hyperparameter \ in
a certain range. However, when A = 0, the test accuracy decreases more, indicating
that we cannot use client quality alone as a metric to determine the number of gener-
ated data. Nevertheless, the worst test accuracy in Figure 5(a) is still better than the
previous best work in Table 2.

Influence of hyperparameter Niotar in FedF2DG. To measure the influence of
the hyperparameter J\Ttotal selection, we select J\Twml from [640, 1280, 2560, 5120]. In
Figure 5(b), we can see that when j(fwml is small, the test accuracy rises rapidly. And
when J\~/}Oml is more than 2560, the test accuracy rises slowly and nearly smoothly.
This shows that sufficient client knowledge can be extracted in the pseudo datasets
when the total number Motal of data generated per round is equal to 2560.
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Fig. 5: Influence of different hyperparameters in FedF?DG. Experiments were
conducted on CIFARI10, 5 = 0.05 in 20 clients scenario.

Influence of incorporating round I in FedF?DG. Figure 6 shows the final
performance of FedF2DG under different incorporating round I. When we added our
Adaptive Data Generation Stage and Knowledge Distillation Stage earlier (I = 0), it
is hard to fully utilize these two stages because of the poor performance of the local
model, which generates low quality pseudo data. Therefore, we should add these two
stages when the performance of the local model is stable (I = 80).

5 Discussion

Privacy issue. It is well known that user privacy is a paramount issue for FL. Since
FedF2DG may generate client pseudo datasets on the server, it violates the privacy reg-
ulations in FL. However, if we generate pseudo datasets locally on each client, we will
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Fig. 6: Test accuracy of FedF?DG under different incorporating round I. Experiments
were conducted on CIFAR10, 8 = 0.05 in 20 clients scenario.

not compromise user privacy, although this requires sufficient computational resources
on the client. In our experiments, for convenience, we upload all pseudo datasets to
the server to perform random shuffling. Nevertheless, we can protect privacy by mak-
ing the server communicate with each client randomly in turn to conduct knowledge
distillation, although this requires additional communication costs.

Pseudo dataset quality. Generally speaking, the quality of the pseudo dataset
generated by our data generation method is stable but depends on the local model
quality. In empirical experiments, we found that the local model quality depends on
the label distribution and quantity of client local data, i.e., the quality of client local
data. Therefore future work can investigate how to evaluate the clien data quality and
use it to guide our Adaptive Data Generation Stage.

Computational resources. Computational resources are a major limitation of
this work. Since FedF2DG carries out additional data generation stage and knowledge
distillation stage, this will make the whole training time longer than other methods
and requires the server to have sufficient computational resources. However, the servers
in the current FL application scenario [4, 42-44] are usually large organizations that
own sufficient computational resources, so FedF?2DG is applicable.

6 Conclusion

In this paper, we propose a novel data-Free knowledge distillation approach FedF2DG
via generator-Free Data Generation to boost the performance of federated learning
by transfering the knowledge in local models to the global model. We propose a Data
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Generation Method that leverages only local models by optimizing noise into real
images using a regularization term, and can generate hard samples by adding an addi-
tional regularization term that exploit disagreements between local model and global
model. Meanwhile, FedF2DG enables flexible utilization of computational resources
by generating pseudo dataset locally or on the server. To address the label distri-
bution shift in data heterogeneity scenario, we propose a Data Generation Principle
that adaptively controls the label distribution and number of pseudo dataset accord-
ing to client’s information, which allows for the incorporation of a greater amount of
client knowledge into the pseudo dataset. Extensive empirical experiments on three
benchmarks validate the effectiveness of the proposed FedF?DG.
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