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Abstract
The mammalian hippocampus is involved in spatial representation and memory storage and retrieval,
and much research is ongoing to elucidate the cellular and system-level mechanisms underlying these
cognitive functions. Modeling may be useful to link network-level activity patterns to the relevant
features of hippocampal anatomy and electrophysiology. Investigating the effects of circuit
connectivity requires simulations of a number of neurons close to real scale. Toward this end, we
construct a model of the hippocampus with 16 distinct neuronal classes (including both local and
projection cells) and 200,000 individual neurons. The number of neurons in each class and their
interconnectivity are drawn from rat anatomy. Here we analyze the emergent network activity and
how it is affected by reducing either the size or the connectivity diversity of the model. When the
model is run with a simple variation of the McCulloch-Pitts formalism, self-sustaining non-repetitive
activity patterns consistently emerge. Specific firing threshold values are narrowly constrained for
each cell class upon multiple runs with different stochastic wiring and initial conditions, yet these
values do not directly affect network stability. Analysis of the model at different network sizes
demonstrates that a scale reduction of one order of magnitude drastically alters network dynamics,
including the variability of the output range, the distribution of firing frequencies, and the duration
of self-sustained activity. Moreover, comparing the model to a control condition with an equivalent
number of (excitatory/inhibitory balanced) synapses, but removing all class-specific information (i.e.
collapsing the network to homogeneous random connectivity) has surprisingly similar effects to
downsizing the total number of neurons. The reduced-scale model is also compared directly with
integrate-and-fire simulations, which capture considerably more physiological detail at the single-
cell level, but still fail to reproduce the full behavioral complexity of the large-scale model. Thus
network size, cell class diversity, and connectivity details may all be critical to generate self-sustained
non-repetitive activity patterns.

Introduction
The hippocampus is one of the most intensively investigated brain regions, both because of its
crucial involvement in memory representation, and its exquisite anatomical organization.
Neocortical information enters and exits the hippocampus primarily through the entorhinal
cortex. The hippocampal loop is often described as “trisynaptic”, as activity flows from the
dentate gyrus (DG), through areas CA3, and to CA1. However, the structural complexity of
this circuit defies oversimplification and has yet to be fully elucidated (Andersen, Morris,
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Amaral, Bliss, & O'Keefe, 2007). Each of these regions features a large majority of principal
cells (DG granule cells and CA3/CA1 pyramidal cells) characterized by excitatory projections,
and a great variety of mostly local and inhibitory interneurons. The morphological,
physiological, and functional specifications of these neuronal components constitute a major
goal of recent and ongoing research.

The hippocampus is involved in spatial learning, and essential information for spatial
navigation is present within the hippocampal circuit, such as in place cells (O'Keefe &
Dostrovsky, 1971), head-direction cells (Ranck, 1985; Taube, Muller, & Ranck, 1990), and
grid cells (Hafting, Fyhn, Molden, Moser, & Moser, 2005). The correlation of place cell firing
to the body spatial position is a particularly resilient phenomenon to lesions (Miller & Best,
1980; Mizumori, McNaughton, Barnes, & Fox, 1989; McNaughton, Barnes, Meltzer, &
Sutherland 1989; Brun et al., 2002), to environment modifications (O'Keefe & Conway,
1978), and to genetic manipulations (Rotenberg, Mayford, Hawkins, Kandel, & Muller,
1996; Wilson & Tonegawa, 1997). Head-direction cell firing is correlated to the direction of
the head, and grid cell firing correlates to a spatial lattice regularly distributed in space.
Understanding how the neurons in various classes and sub-regions can integrate across
different spatial frames is not only essential to establish how spatial navigation functions, but
also to determine how mammalian learning is achieved within the hippocampus (Redish,
1999).

If memories are constituted by temporal spiking patterns in cell assemblies, then characterizing
the cellular bases of this activity is a critical step to elucidate the mechanism underlying
mnemonic function. Computational modeling provides a means both to formalize and quantify
current theories and state of knowledge, and to foster hypothesis generation and testing. The
realism of a network model is reflected in the number, type, and specifications of its neuronal
units. Simulating the quantitative details of membrane biophysics enables a fine-grained
analysis of neuronal dynamics. At such a level, however, approaching the number of neurons
of the whole hippocampus is computationally prohibitive. The correspondingly necessary
downscaling implies a drastic loss of anatomical information. A complementary approach is
to sacrifice most of the cellular-level biophysical detail to capture more realistic anatomical
connectivity in larger-scale simulations (Ascoli & Atkeson, 2005). Identifying essential
architectural characteristics of neuronal connectivity appears fundamental to correlate network
structure and function. A real scale modeling effort could also help interpret information-
theoretic approaches to the hippocampal circuit (Treves, Skaggs, & Barnes, 1996; Settanni &
Treves, 2000), which usually adopt analytical models in the limit of infinitely large networks.
Here we study the influence of cellular connectivity on network activity in isolation from other
details such as fully accurate biophysical properties.

Earlier attempts to model the hippocampus with neural networks incorporating a high degree
of anatomical realism include work related to the dentate gyrus (Patton & McNaughton,
1995), Ammon's Horn (Bernard & Wheal, 1994), and area CA1 (Senft & Ascoli, 1999). Only
few studies, however, explicitly simulated network dynamics (Bernard, Cannon, Ben, &
Wheal, 1997, Dyhrfjeld-Johnsen et al., 2007). Several studies addressed specific hippocampal
phenomena and/or microcircuits with both computational and experimental approaches. These
include the splitter cell phenomenon in CA1 cells (Katz, Kath, Spruston, & Hasselmo, 2007),
gamma-frequency oscillations within the CA3 region (Mann, Suckling, Hajos, Greenfield, &
Paulsen, 2005; Hocking & Levy, 2006), and modulation of place cell firing by the perforant
pathway projection to CA1 (Brun et al., 2008). Others have studied the influence of dendritic
structure on firing patterns in neocortical structures (Mainen & Sejnowski, 1996) and
hippocampal regions (Krichmar, Nasuto, Scorcioni, Washington, & Ascoli, 2002), or the
crucial role of NMDA receptors in the CA3 region for spatial learning (Nakazawa et al.,
2003). However, none of these previous models were realistically large scale, nor did they
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include accurate connectivity information from the full hippocampal circuit. Interestingly, past
modeling efforts that generated self-sustaining network activity always involved the use of
synaptic plasticity (e.g. Barak & Tsodyks, 2007; Izhikevich, 2008). For example, spike-timing-
dependent plasticity (STDP) allows networks to operate at the border between randomness and
synchrony: if network activity is random then STDP helps synchronize it, while if the network
is synchronous, STDP tends to decouple it (Lubenov & Siapas, 2008).

Here we expand on some of these previous efforts and present a large-scale circuit model with
16 distinct cell classes and 200,000 individual neurons. To construct this model, we have begun
to leverage the availability of rich data cataloging neuronal classes and associated connectivity
for the rat hippocampus. These include connectivity patterns for numerous classes of
interneurons (Freund & Buzsaki, 1996) and post-synaptic potential parameters for all principal
cells (e.g., Urban, Henze, & Barrionuevo, 2001). To enable practical simulations near real-
scale, we adopt simple McCullloch-Pitts-like (MP) neuronal computational units (McCulloch
& Pitts, 1943). In essence, if the running sum of inputs received by a unit passes a given
threshold at any time, that unit will fire and reset its inputs at the following time step. We show
that the network achieves global, distributed, and non-repetitive self-sustaining activity in the
absence of plasticity.

We also report the results of several variations of the model. First, we investigate the influence
of the specific cell-class connectivity on network behavior by collapsing all excitatory and
inhibitory neurons into two homogeneous classes, while maintaining the same number of cells
and of excitatory-excitatory, excitatory-inhibitory, inhibitory-excitatory, and inhibitory-
inhibitory synapses. Next, to study the effect of network size, we keep the network architecture
(cell classes and connectivity) constant while varying the number of neurons. Although none
of these models are anatomically accurate, each provides a unique perspective on network
behavior and characterization.

Finally, network downscaling provides an opportunity to compare this model to simulations
based on leaky Integrate-and-Fire (IF) neurons (Abbott, 1999). This approach captures
considerably more biophysical parameters, such as membrane capacitance and time constant,
resulting in more realistic synaptic currents and post-synaptic potentials with finite rise time.
While this level of description is much more realistic than the MP formalism, our results suggest
that the additional information is complementary to that provided by the connectivity details,
and cannot directly compensate for network size.

Methods
The trisynaptic circuit of the rat hippocampus contains roughly two million neurons (Nakagami
Saito, & Matsuki, 1997; Todtenkopf, 2000). The granule cells of the dentate gyrus (gcDG) are
the first stage. Their inputs are primarily from entorhinal afferents (ecEC) via the perforant
pathway. In the second stage, CA3 pyramidal cells (pcCA3) are fed by gcDG axons. CA3
pyramidal cells then drive CA1 pyramidal cells (pcCA1), which constitute the third and final
stage of the trisynaptic circuit. CA1 pyramidal cells then project back to the ecEC (both directly
and through the subiculum), completing the circuit. This general overview can be extended by
the addition of interneurons into a schematic of the rat hippocampus consisting of 16 cellular
classes (Figure 1).

Within the dentate gyrus there are five class types in the model besides granule cell: mossy
cells (mcDG), GABAergic polymorphic cells (gpcDG), basket cells (bcDG), molecular layer
perforant path cells (moppDG), and chandelier cells (ccDG). Area CA3 contains three class
types in addition to pyramidal cells, namely radiatum interneuron (riCA3), oriens interneuron
(oiCA3), and chandelier cell (ccCA3). Finally, area CA1 includes pyramidal cells and four
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other class types, i.e. basket cells (bcCA1), lacunosum-moleculare interneurons (lmCA1),
oriens-alveus interneurons (oaCA1), and chandelier cells (ccCA1). In this model, the entorhinal
cortical columns (ecEC) are represented as a single class rather than as individual cell types.

This connectivity model sums up to 1.8M neurons and 1010 synapses before scaling (Table 1).
All of the model variations studied here are derived from this anatomically accurate
representation of network level connectivity, maintaining the same proportional numbers of
both neurons and connections.

McCulloch-Pitts (MP) Models
The McCulloch-Pitts simulator is written in C++ running on an Intel Core 2 Quad 2.4GHz with
4GB RAM under Windows XP Pro. The simulator reads connectivity information from a text
file in which each line specifies a connection between two classes, in the format of: <class1>
<class2> <tot#1> <post#2> <type>. The first two fields label the pre- and post-synaptic classes,
respectively. The third and fourth fields specify the total number of presynaptic neurons and
the number of postsynaptic neurons contacted by each presynaptic neuron, thus determining
the stoichiometry of the connections. The last field flags the synapse as either excitatory (+1)
or inhibitory (−1).

The scale of the simulation is a free parameter determining the total number of neurons. The
number of cells in each class and all connections are scaled proportionally. The largest network
we simulate is composed of 200K neurons (16MP200), containing 300M synapses. Two
reduced models are also tested with 100,000 (16MP100) and 17,000 neurons (16MP17),
respectively. In each case, a “synaptically balanced” control of just two classes (excitatory and
inhibitory) is also created to collapse all cell-class specific connectivity information (2MP200,
2MP100, and 2MP17, respectively).

The synaptic connections are formed following these steps: (1) Compute the ratio X of the
desired network size divided by the total number of neurons; (2) Within one connection (the
first or next line in the connectivity file), for every neuron in class1 randomly select X*post#2
neurons in class2, and store the connectivity information in a linked array where each element
represents a contact from the given presynaptic cell (from class1) to the selected postsynaptic
(class2) target; (3) Repeat step 2 for all connections (up to until the last line in the connectivity
file).

Time is discretized in the MP simulations. Within each unitary time step, it is assumed that
every axonal spike propagates to its targets without failure, and all synaptic signals travel along
their dendrites and get integrated at the soma. In particular, all presynaptic inputs are summed
(+/−1 for excitatory and inhibitory signals respectively) into a counter for each neuron. If the
sum is higher than the class-specific threshold, the neuron will fire at the subsequent time step
(t+1), and its synaptic counter is reset to zero at times t+1 and t+2 (corresponding to a relative
refractory period of 2 steps).

All neurons within a given class have one and the same firing threshold, which assumes a
constant value at steady-state. This steady-state threshold is determined for each class as the
value attained at the end of an initial (transient) phase. During the transient phase, the threshold
is computed at each time step as a fraction of the highest synaptic count value among the
neurons of the same class. In this study, the fraction is set at 0.90 and 0.99 for excitatory and
inhibitory neurons, respectively, and the transient phase lasts 200 time steps. To start the
network, 70% of the neurons are randomly activated just at the first step of the transient phase.
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Integrate-and-Fire (IF) Model
The NEST2 simulator (Diesmann & Gewaltig, 2002) is used for the integrate-and-fire neuronal
network simulations utilizing the built-in IF neuron model. Integration is implemented with
linear sub-threshold dynamics as described by the exact integration scheme (Rotter &
Diesmann, 1999). The computational requirements of the greater represented complexity
constrain network size to 17,880 neurons over all 16 classes (16IF17 model), scaled according
to the same connectivity matrix described for the MP models (totaling 2,438,520 synapses).
The IF simulations are run on an Intel Core 2 Duo 2GHz machine with 1.5GB RAM, under
Fedora Core 5 Linux. The 3,231 lines of NEST2 syntax have a build time of approximately 3
minutes. Memory consumed to load the model is 100MB (breaking down to ∼1KB per neuron
and ∼30 bytes per synapse). A 20K time step (each representing 0.1 ms) simulation generally
has a run time of approximately 30 minutes and consumes about 1.1GB of RAM.

The IF parameter values are selected for all 16 classes as follows: resting membrane potential,
0 mV; threshold, random for each class between 0 and 10.88 mV (greater global threshold
values cause a degradation of self-sustained network activity); reset potential, 0 mV; membrane
capacity, 250 pF; membrane time constant, 10 ms; postsynaptic current time constant (both
excitatory and inhibitory), 0.33 ms; refractory period, 0.5 ms. A Poisson stimulus is applied to
all ecEC type neurons for the first 1000 time steps (100ms). All cell membrane potentials are
monitored with the provided virtual voltage probes and logged to a file for each time step during
simulation.

Results
All networks display sustained activity beyond the initial stimulation step. The large scale MP
model with 16 cell classes and 200,000 neurons (16MP200) generates non-repetitive patterns
that keep evolving past the transient phase. Shown in Figure 2A is the complete total activity
trace of one such simulation which lasts 1164 steps. The underlying data from 900 to 1000
steps is further analyzed in the following panels of Figure 2. Figure 2B shows the time series
of total activity for all principal cells as percent of neurons firing within their respective class.
Figure 2C expands on the CA3 region by presenting activity traces for each of its neuronal
classes. Figure 2D represents a scatter plot over all neuronal classes. For each class, 50 neurons
are randomly selected and their spikes plotted over time. It is possible to notice how activity
is transmitted across classes and regions. In addition the model is able to generate evolving
patterns that over time are non-repetitive. Figure 2E shows a zoomed in view of the pcCA3
class and highlights the changing characteristic of the firing activity.

Differences between MP networks are shown in Figure 3. Figure 3A shows total activity for
four different models, expressed as a percentage of active neurons at each time step. It is
noticeable how both 16MP200 and the half-sized version, 16MP100, present qualitatively
similar dynamical characteristics: presence of peaks with period of low activity. In contrast,
networks either without cell-class specified connectivity details (2MP100), or with greatly
reduced total neuron numbers (16MP17) present a narrowly constrained activity range and
peaks are missing.

An alternative illustration of this information is provided in Figure 3B, where each trace of the
same simulation is normalized in the 0−1 range relative to its minimum and maximum values
reached over the total lifespan of self-sustained activity in that network (only 100 time steps
are presented). Despite the “zoom in” effect produced for the narrowly constrained waveforms
of 2MP100 and 16MP17, traces in these reduced network configurations are still strikingly
missing extended low activity periods between peaks. It is important to notice that besides the
numbers of neurons and/or of cell classes (and, proportionally, of synaptic connections), all
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other parameters associated with the models (i.e. initialization mechanism, stimulation method,
etc.) remain constant.

To analyze network differences further among the model variants, we compute the frequency
distribution and power spectra of the total activity by Fast Fourier Transform (Seewave R-
package: Sueur, Aubin, & Simonis-Sueur, 2007). A representative example for each of the
networks is reported in Figure 4. In these illustrations, the more pronounced the striping of the
frequency spectrum, the more repetitive is the corresponding activity. In particular, Figure 4A
presents the 16MP200 network, which generates the least repetitive activity of all models. As
the network size is reduced, the repetitive behavior increases (e.g. model 16MP100 in Figure
4B). Removal of class-specific connectivity in the 2MP200 and 2MP100 models (panels 4C
and 4D, respectively) yields striping effects with harmonics behavior, highlighting even more
pronounced repetitive patterns. The 16MP17 model (Figure 4E) has a sparse frequency
spectrum and low power density, indicating a narrowly constrained output activity. Some, but
by no means all of the behavioral complexity is recovered in this network configuration by
switching from MP units to the biophysically more detailed integrate-and-fire formalism. The
16IF17 model (Figure 4F) in fact also presents multiple striping and harmonics that indicate
strong presence of repetitive patterns.

The lifespan of each network's self-sustained activity changes between different simulations.
To analyze this characteristic, every model is run 200 times with varying random seeds, each
producing a network with a unique microscopic pattern of connections and different selection
of neurons externally activated at the first time step. Figure 5A shows the network lifespan
distribution, which is separated into two qualitatively similar groups. In both the 16MP200 and
the 16MP100 models, the vast majority of simulation runs result in a bell-shaped distribution
of the network lifespan. In particular, the large scale 16MP200 model displays self-sustained
activity lasting 2785 time steps on average (standard error: 502.4, low quartile: 605,median:
958, high quartile: 1891). In clear contrast, the 16MP17 and 2MP100 models are characterized
by a sharply bimodal distribution of life spans, where activity either damps out almost
immediately after the end of the transient phase, or self-sustains for as long as the simulations
are run (>50,000 steps).

Each MP unit has a threshold that is constant within the same class, but the values are set at
the end of the transient phase, and thus generally vary in different simulation runs. It can be
expected that a lower threshold for excitatory neurons extends the network lifespan. To test
this hypothesis, we plot threshold values for each of the 16 classes over the network lifespan
achieved in each run of the large-scale model 16MP200 (Figure 5B). No significant correlation
(in fact, no trend whatsoever) is found between the duration of self-sustained activity and any
of the plotlines. Figure 5C shows how narrowly constrained the threshold values are (note
standard deviation bars within circles). Cell classes are sorted from left to right by the
coefficient of variation of their threshold, plotted on the secondary ordinate axis (square boxes).
Most classes settle in a very limited range of values (all but two displaying a coefficient of
variation of less than 5%), while others are more pronounced in their threshold variability (in
particular the only class of excitatory interneurons, mcDG). This suggests that connectivity
information influences both average value and coefficient of variation of each class threshold.
Moreover, to test whether using one and the same steady-state threshold value for all units in
a class is a limiting factor for network dynamics, two additional sets of 200 simulations each
were performed with variable thresholds. These networks were based on the same structure as
16MP17, except that the threshold of each individual unit was modified with uniform noise.
The noise in the two new sets of simulations was set at ±5% and ±10%, respectively, of the
class threshold value. Neither condition displayed any substantial difference compared to
16MP17 in the quantity and quality of self-sustaining and non-repetitive patterns (data not
shown).
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The observed network behavior in the full model appears unlikely to be fully understood in
terms of relatively simple dynamics. For example, an activity wave moving from one neuronal
class to another could trigger repetitive population spikes, but would be inconsistent with
irregular patterns. Moreover, this mechanism could not explain the relationships among
neuronal classes (e.g. Figure 2B). Thus it may be instructive to examine the temporal relations
among the relative activity of the neuronal classes, each with respect to the total activity of the
overall network. Figure 6A shows these data for the principal neurons, again displaying non-
trivial dynamics. Each line represents the relative activity of a neuronal class normalized to
the total network activity for the same simulation illustrated in Figure 2B. For instance, at
t=950, 13.14% of pcCA1 units are firing, while at the same time 4.53% of all units in the
network are active, yielding a normalized pcCA1 activity of 2.90 (13.14/4.53). All cells classes
within the CA3 region are similarly analyzed in Figure 6B, but no obvious pattern seems to
emerge.

In order to elucidate the mechanisms underlying the more periodic elements of network
behavior, we attempted to separate the non-repetitive pattern features by averaging the
population spikes of each class. Figure 6C shows the population spike of gcDG within ±15
steps computed over 45,000 activity peaks from all two hundred 16MP200 simulations, as well
as the corresponding time-locked population activity of the other principal cell classes. The
mean gcDG population spike has a peak of ∼55% and a periodicity of ∼11 steps. On average,
gcDG spikes are preceded by spikes in both the ecEC class at t=−1 and the pcCA1 class at t=
−2. At each step of this sequence, the population spikes of subsequent classes progressively
increase their peaks (pcCA1 < ecEC < gcDG). Figure 6D shows the average population spikes
of pcCA1. In this case there is no clear indication of previous population spikes other than a
minimal alignment of pcCA3 spikes at t=−1. In contrast, pcCA1 activity is followed by
increasing peaks in ecEC at t=+1 and in gcDG at t=+2, consistent with panel 6C. These findings
suggest a role of CA3 pyramidal cells as a source of non-repetitive behavior. To further
investigate this possibility, we analyzed the relationship between the normalized activity of
pcCA1 and pcCA3. Displaying both traces from Figure 6A in the same scatterplot (Figure 6E)
reveals two distinct and contrasting trends. In most cases (highlighted by empty circles), pcCA1
activity is proportional to pcCA3, but the opposite relationship (identified with filled symbols)
is also prominent. These different trends tend to correspond with opposite phases of the overall
network activity oscillations (Figure 6F), namely network spikes and lower activity.

Table 2 summarizes all MP model information. The total number of simulated neuronal units,
the number of units in the smallest cell class (chandelier cells for 16MP models and inhibitory
neurons for 2MP models), and the total number of synapses all characterize structural network
properties. In contrast, the average activity over the network lifespan, the minimum and
maximum activity, and the “confidence interval” of the activity range representing 95% of time
steps, all characterize global behavioral dynamics. It is possible to notice that a reduction in
the number of neurons leads to a lowered confidence range as well as a reduced average activity.
Similar results are obtained by reducing the number of classes.

Discussion
This work embodies the first approximation of a realistically large-scale neural network model
of the rat hippocampus based on cellular-level connectivity information. One of the main
objectives and results of this study is the demonstration that a purely anatomical model
endowed with a minimalist binary integration mechanism in its neuronal units is capable of
producing plausible, non-repetitive patterns that are self-sustaining. This result, however, only
holds as long as both the network size (in terms of total number of neurons) and complexity
(in terms of cell-class specific connectivity details) approximate the real values.
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There are several limitations to the modeling techniques described here at this early stage of
development. (A) The models are still not to real scale, even the largest one (16MP200) only
representing 1/9th of the number of neurons reported in the rat hippocampus. The smallest cell
class in the 16MP200 model contains 112 neurons, which may still be relatively low for the
emergence and maintenance of complex dynamics. (B) Some interneuron classes are not
represented or are not segregated into the appropriate subclasses. For example, recent modeling
work on the dentate gyrus (Dyhrfjeld-Johnsen et al., 2007) overviews and references the
following cell classes in addition to granule, basket, mossy, chandelier, and MOPP cells: HIPP
and HICAP hilar interneurons (possibly corresponding to our combined gpcDG cells), and
interneuron selective cells. As more research is carried out, it is conceivable, in fact likely, that
even more new classes of interneurons will be discovered and reported. (C) The connectivity
matrix is derived from an early draft (Ascoli & Atkeson, 2005), and has yet to be updated.
Several connections might be missing (most notably the temporo-ammonic pathway from EC
to CA1) and new estimates for the numbers of cells and synaptic contacts should be gathered
from the literature and archived in digitally accessible databases. This is a key requirement for
future neuroinformatics research in computational neuroanatomy of the hippocampus and other
brain regions. (D) In the model, delay and transmission times are uniform across cell types,
while in actual hippocampal neurons significant differences are likely to exist between different
classes. (E) The model is designed to identify the specific influence of connectivity and realistic
scale on network activity. Toward this goal, all other details are kept to a minimum. However,
simulating neurons as simple MP units is far from representative of plausible
electrophysiological dynamics. Greater biological insights could be gained by using more
accurate neuronal models when sufficient computational power becomes available. (F)
Synaptic strengths do not vary among individual contacts, neurons, cell classes, and especially
not even between excitatory and inhibitory neurons. (G) Last but not least, local geometry is
not accounted for in establishing interconnections between neurons, when it is instead known
that hippocampal interneurons project locally.

Despite these limitations, the networks produce self-sustaining activity that grows in
complexity with an increase in the numbers of neurons and cell classes. Of the different
networks we compared, the larger network model with detailed connectivity (16MP200) tended
to exhibit more non-repetitive behaviors with greater dynamic range. If enough neurons and
classes are present, the distribution of frequency components is also enriched. Conversely,
models that are limited in the size or diversity of cell classes yield a sparser frequency
distribution and reduced power spectra density. These differences are not affected by the
variability or complexity of the individual computational units. For example, the use of variable
thresholds (up to ±10% uniform noise) did not substantially alter behavior of the 16MP17
network. Likewise, the NEST2 model had an additional element of variability, in that the
synaptic strength was normally distributed within each class. Nevertheless, similarly to the
16MP17 model, the NEST2 simulations failed to exhibit the same level of non-repetitive self-
sustaining behavior observed in the larger networks.

Analysis of network activity shows the robust presence of global rhythms as well as specific
patterns within individual classes. Overall, activity is clearly differentiated among cell classes.
Self-sustained activity is consistent over multiple runs initiated with different random seeds.
Although thresholds are narrowly constrained (and cell-class specific), their values do not
influence network lifespan. Correlations exist both among assemblies of neurons in the same
class as well as across multiple cell classes.

It seems evident from Figures 2A,B, and 6A,B that network activity follows non trivial
dynamics. Averaging the population spikes of a given class of principal neurons (e.g., gcDG
or pcCA1, shown in Figures 6C and 6D, respectively) reveals clear sequences of activation
that “travel” from pcCA1, through ecEC, and to gcDG. At each move, the percentage of active
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neurons in the class increases from ∼12% in pcCA1, to ∼28% in ecEC, and finally ∼55% in
gcDG, suggesting an avalanche effect within the sub-circuit pcCA1 → ecEC → gcDG. The
end point of this cascade, the dentate gyrus granule cells, also constitutes the cellular class
responsible for network spike activity, as indicated by the coincidence of gcDG and overall
network spikes (Figure 2A,D). This is due the large number of units composing the gcDG class,
both in the model and in the rat hippocampus, where more than half of all neurons are granule
cells.

In contrast, CA3 pyramidal cells appear to exercise a more subtle effect on these dynamics
(Figure 6C,D). A direct influence of pcCA3 would imply network oscillations with a period
of 4 time steps, following the loop pcCA3 → pcCA1 → ecEC → gcDG and back to pcCA3.
Instead, we observe a weak periodicity of 11, characterized by reduced average peaks at ±11
steps (Figure 6C,D). Thus the pcCA3 influence on the activity of pcCA1 is more complex, and
takes on average 7 time steps to generate a pcCA1 spike. Figure 6E suggests a potential
explanation by highlighting two distinct relationships between the activity patterns of pcCA3
and pcCA1. In correspondence to gcDG population spikes (empty circles), pcCA1 and pcCA3
follow similar (either high or low) activity. In contrast, during quiet periods for the gcDG class
(filled circles), pcCA3 and pcCA1 are in opposite phases or alternating behavior. This
interaction eventually generates a population spike in pcCA1, which triggers the avalanche
effect ending with a gcDG (and overall network) spike.

The 200MP16 network model displays dynamic behaviors that qualitatively match
experimental multiunit recordings and local field potentials. The two most striking features are
the presence of non-repetitive patterns and the alternation of quiet periods with epochs of high
activity. Non-repetitive and rhythmic patterns were reported in all primary hippocampal
regions in early single unit recordings from unrestrained rats (Ranck, 1973). The relationship
between the periodicity of the population activity and the interspike intervals of individual
neurons in our simulations also strikingly reflects the observations of numerous more recent
investigations (Geisler, Robbe, Zugaro, Sirota, & Buzsaki, 2007; Csicsvari, Jamieson, Wise,
& Buzsaki, 2003; Isomura et al., 2006; Rice et al., 1996). Similarly, several studies based on
tetrode recordings reported periods of high activity followed by quiescence in sequences that
are rhythmic and non-repetitive. For example, both multiunit raster plots and field potentials
continuously recorded for 5 seconds from the hippocampus during slow-wave sleep (Ji &
Wilson, 2007) closely resemble the spiking and population activities generated in our model
(cf. their Fig. 2a with our Figure 2A). Similar experimental pairings of hippocampal local field
potentials and neuronal activity showed high activity peaks overlapping with slow-wave ripple
(Siapas & Wilson, 1998), again extremely similar to the dynamics observed in our simulations.

In contrast, numerous experimental studies demonstrated higher firing rates in interneurons
than in principal cells (e.g. Whittington, Traub, Kopell, Ementrout, & Buhl, 2000; Klausberger
et al., 2003). This feature is not appropriately captured in our model, where interneurons fire
sparsely and at low frequencies. It is tempting to speculate that a more complete and accurate
review of hippocampal connectivity will ultimately result in even more realistic complex
activity, thus providing additional insights. However, much more neuroinformatics work is
still required with respect to both anatomical and physiological details. Future refinement plans
include addition of positioning information within the connectivity constraints and plausible
variation of temporal delays as well as synaptic weights among neuronal units.
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Figure 1.
Connectivity circuit of the hippocampal network. Font size and arrow size are approximately
proportional to the number of neurons in each class and to the number of postsynaptic
connection made by each presynaptic cell, respectively. Gray boxes indicate the major
subdivisions: DG, CA3, and CA1.
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Figure 2.
Activity in a representative simulation of the 16MP200 model. (A) Overall activity trace
(expressed as percentage of spiking neurons over all cell classes) for the complete simulation
lasting 1164 steps. At t=0 the network is initiated by randomly activating 70% of all neurons.
Thresholds become constant at t=200 (vertical black bar). The horizontal black bar from 900
to 1000 steps marks the temporal period illustrated in all subsequent panels (B-E). (B) Activity
traces for the overall network (Tot) and for each of the principal neurons, expressed as
percentage of spiking neuron within each class. (C) Activity traces for every neuronal class
within the CA3 region. (D) Raster plot of 50 random neurons per class. (E) Zoom-in on the
pcCA3 units.
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Figure 3.
Comparison among network configurations. (A): Total activity demonstrating a wider dynamic
range for 16MP100 and 16MP200 (black lines) compared to both 2MP100 and 16MP17 (grey
lines). (B) Normalized activity within the minimum and maximum values of each simulation
from the end of the transient phase through the network lifespan. Only 16MP100 and 16MP200
present peaks followed by periods with lower activity.
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Figure 4.
Frequency distribution over time and associated power spectra density of the overall activity
(computed after subtracting the average activity for each model) in representative simulations
of each network configuration. For these plots one time step is equivalent to 2.5ms. (A)
16MP200, (B) 16MP100, (C) 2MP200, (D) 2MP100, (E) 16MP17, (F) 16IF17. Amplitude
gray scale on left panel applies to all frequency distributions.
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Figure 5.
(A) Distribution of network lifespan (the duration of self-sustained activity) over 200
simulations per model. 16MP200 and 16MP100 present different patterns from 16MP17 and
2MP100. (B) Threshold plot over network lifespan for 200 simulations of 16MP200. There
are no trends, suggesting that the algorithmic determination of threshold values does not
influence network stability. (C) Average threshold values (circles and dotted line, left axis) for
each cell class, ordered by coefficient of variation (squares and full line, right axis). Error bars
within circle represent standard deviation: thresholds are narrowly constrained across different
simulations.

Scorcioni et al. Page 17

Neural Netw. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Network dynamics. A) Relative activity of all principal neurons normalized to the relative
activity of the overall network. For example, if at a given time step 10% of all neurons, 5% of
gcDG, and 20% of pcCA3 cells are active, the normalized values are 0.5 and 2 for gcDG and
pcCA3, respectively. In this plot, the overall network activity has the constant value of 1 (solid
horizontal line). (B) Normalized relative activity for all CA3 neurons. (C) Average gcDG
population spike and activity of all other principal neurons within ±15 steps. (D) Same as C
for average pcCA1 population spike. (E) Scatter plot of pcCA1 vs pcCA3 activities, both
relative to total network activity. Empty and filled circles identify the time steps in which
pcCA1 and pcCA3 activities are positively and negatively related, respectively. (F) Temporal
distribution of symbols highlighted in (E) over total network activity as percent of neurons
firing.
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