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Abstract

Electro Optical Probing (EOP) technique is an efficient backside contacless technique to measure waveforms in modern
VLSI circuits. The signal related intensity variation of the reflected beam is very weak therefore, to acquire a signal with
enough Signal to Noise Ratio, averaging techniques are usually performed. Resulting acquisition time for one waveform
are too long to implement point to point probing to image mode. To overcome this limitation, we have developped a
new filtering by wavelets approach to keep a good SNR while significantly reducing this acquisition time. It opens the
doors to new multipoint probing applications. In this paper, we describe the technique, its efficiency in terms of SNR,
execution time and limits.
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1. Introduction

In addition to light emission techniques, methods based
on laser exploit optical stimulation or optical properties
of reflected beam [1]. Electro Optical Probing is a popu-
lar timing-analysis laser-based technique [2], using Franz-
Keldysh effects and free carrier absorption. Heinrich was
the precursor of EOP approach [3] by proposing a non-
invasive method which uses an infrared laser measuring
the modulation of the free carrier density induced by the
variation of electric potentials inside bipolar transistors.
At the end of the nineties, a commercial application of the
LVP technique was developped by Schlumberger Technolo-
gies Inc [4]. The source used was a pulsed laser, wavelength
of 1.06 microns, 35 ps pulse duration.

Since its introduction, Electro Optical Probing has be-
come an essential tool to the failure analysis (FA) and
design debug communities [2]. In backside EOP analysis,
pulsed or continuous laser beam is focused on a node of
the chip which has been thinned. Thereafter, the reflected
beam properties are analyzed.

The reflected signal mostly contains usual optical re-
flection from metal lines and a very weak signal related to
free carrier absorption and bandgap modulation difficult to
extract from noise. Techniques such as averaging [5] and
frequency-domain measurements [6] have been implemen-
ted in probing and image modes. Averaging process is quite
efficient in probing mode but it results at least in seconds
duration to probe each node. This single waveform acqui-
sition duration prevents EOP to probe each point of the
device to build a waveform database of the full device. It
will last from days to weeks to do it. Using frequency ana-
lysis in image mode is pretty fast but timing information
is lost as a scan gives only amplitude information on one
frequency inside the device. Therefore, in order to build a
waveform database of the full device or just to reduce ac-
quisition time to acquire thousands of nodes in a batch pro-
cess (automatically moves to the next node, focus, slightly
defocus up and down and each time scans a small area
to finally extract the best waveform), it is mandatory to
reduce processing time for each waveform while keeping a
reasonable SNR. This paper introduces a new processing
scheme based on wavelet transform to achieve this goal. We
firstly remind some EOP background. The second section
is dedicated to the description of EOP acquisition setup.
The third section introduces the complete processing se-
quence. The fourth section exhibits the SNR improvement
by wavelets transform. A fith section concerns examples of
results. And before a conclusion a sixth section tells about
the level of decomposition and the choice of the wavelet
used for the filtering.

2. Electro Optical probing

EOP technique is still based on analysis of the reflec-
ted beam properties [7]. Intensity varies with temperature

change [8], charge density [4] or electric field [9]. The ana-
lyze of the properties of the reflected laser beam can be
traced back to its origin, in order to obtain information
on the physical parameter studied. Two wavelengths have
been used for EOP, also known as LVP (Laser Voltage
Probing, [10] [11]) : 1064 and 1340 nm. 1064 gives a better
spatial resolution (shorter wavelength) and the laser beam
absorption is sensitive to carrier density (free carrier ab-
sorption) and to small bandgap (Franz Keldish) variations.
Nevertheless, absorption is important (less reflected beam
intensity) and it induces slight Optical Beam Induced Cur-
rent (OBIC) that could bias a little bit the measurements.
1340 nm is less absorbed, is not sensitive to Franz Keldish
effect. Considering the free carrier absorption mechanism,
EOP is based on the very weak useful part of the reflected
signal. It means that noise coming from various sources
(thermal, shotky, electronic . . . ) is often order of magni-
tude higher than this useful part of the signal. During the
acquisition, a signal with a weak amplitude drowned in
noise is measured. If the waveform is directly acquired
without processing, the SNR is extremely low. The ab-
sorption coefficient varies according to equation (1) [12].
According to M. Rebai [12], the relative changes are of-
ten less than 10−3 less than those induced by temperature
changes.

αfc = A
λ2q3

4π2c30ε0n0
[
Ne

m2
eµe

+
Nh

m2
hµh

], (1)

with αfc = absorption coefficient variation, A = refine-
ment coefficient, λ = wavelength, q = elementary charge,
c0 = celerity of light in vacuum, ε0 = permittivity in va-
cuum, n0 = refractive index in silicon, [me,mh] = concen-
tration of electrons and holes, [µe, µh] = mobility of elec-
trons and holes, [Ne, Nh]= number of electrons and holes.

3. Acquisition setup

To solve this problem and improve the SNR, our exis-
ting aquisition setup integrates signals by averaging. Ex-
perimentations were done on Tri-Phemos, device designed
by HAMAMATSU Photonics.

The signal of the reflected beam is acquired by a pho-
todiode and amplified. The output signal of the amplifier
is sent to an oscilloscope which proceeds in 512 averages
to improve the SNR in a first time. In a second time, this
averaged signal is sent to a computer (with LABVIEW in-
terface) which integrates by averaging severals acquisitions
(one acquisition corresponds to 512 oscilloscope averages).
Figure 1a shows that the signal is submerged in noise if
only one acquisition is taken into account. Our setup needs
several averages, by consequences a lot of time is necessary
to significantly improve SNR. To illustrate these explana-
tions, an example of probing on a micocontroler STM32
was chosen. After some averages (10 averages in our case),
we obtain the waveform in Figure 1b. We can notice that
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Figure 1: Probing on Digital/Analog converter STM32 : (a) One
acquisition of EOP signal / Computing Time : ≈ 0.7 s / SNR =
-19.96 dB. (b) Signal rebuild with 10 averages / Computing Time :
≈ 7 s / SNR = 3.09 dB. (c) Signal rebuild with 418 averages /
Computing Time : ≈ 292 s / SNR = 37.39 dB. (d) Signal rebuild
with wavelets transform and 1 average / Computing Time : ≈ 0.8 s
/ SNR = 1.9 dB. (e) Signal rebuild with wavelets transform and 10
averages / Computing Time : ≈ 8 s / SNR = 22.9 dB.

the SNR is very low. The number of averages has been in-
creased to decrease the SNR. Figure 1c is the result after
418 averages.

Considering our hardware, an acquition is achieved in
0.7s. It is very long in some cases as shown with the pre-
vious example. An approach with simple filters (Median,
FIR, IIR) has been tested to improve the SNR and reduce
acquisition time. If this kind of process is applied with a
large scale, the signal will be indeed smoothed but short
duration signals can be lost because of mandatory sample
size (up to tens of samples) to get a reasonable noise re-

duction. That is why a process based on filtering by wa-
velets was implemented to improve both aquisition times
and SNR. Example of result is represented in Figure 1.
We precise that the aim of this process is to decrease the
number of averages in order to reduce aquisition time while
having a good SNR. For this example we have taken the
same signal as previously but only 10 averages are used.
Visually, we can notice the improvement of the SNR. In
addition the acquition time is reduced due to the decrea-
sing of averages. For the same acquisition time (7 s here),
the SNR is significantly improved. The computing time
for wavelet transform can be evaluated in few ms. The
filtering process by wavelets transform is explained below.

4. SNR improvement by wavelets transform

4.1. Multiresolution analysis : discrete wavelet transform

Since few years, several approaches have emerged in si-
gnal processing in order to remove the noise in signals. In
[13], it is said that these new methods with wavelets give
better results than Wiener filtering. Wavelets transform
can be adapted to the discrete set. The size of the infor-
mation could be reduced by choosing a level of detail. In
our case, we use one aspect of wavelets : the multiresolu-
tion decomposition, which is very used in image processing
because of its performance [14]. It is recalled that in failure
analysis, wavelets have ever been applied to perform the
approach by Time-Resolved Imaging in light emission [15].
This reference used the Continous Wavelet Transform to
determine a frequency while we use the discrete wavelet
transform (DWT) to filter the signal. [16] and [17] explain
the theory of the DWT. Given a signal s of length N,
the DWT consists of log2 N stages at most. The first step
produces, starting from s, two sets of coefficients : approxi-
mation coefficients CAi, and details coefficients CDi, with
i = [1,....,n]. These vectors are obtained by convoluting s
with an expression equivalent to a low-pass filter (ld) for
approximation, and with another equivalent to an high-
pass filter (hd) for details, followed by under-sampling [16].
(ld) and (hd) correspond exactly with impulse response of
low and high-pass filter respectively. These coefficients are
described such as

CDi[n] =

∞∑
k=−∞

hd[k]s[2n− k], (2)

CAi[n] =

∞∑
k=−∞

ld[k]s[2n− k], (3)

where n and k denote discrete time coefficient, and i ∈ Z.
In this way, the signal s can be written as

s[n] =

∞∑
k=−∞

(CDi[k]hr[2k − n] + CAi[k]lr[2k − n]), (4)

where lr and hr are reconstitution filters. Next step splits
the approximation coefficient CA1 in two parts using the
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Figure 2: Multiresolution decomposition tree for level L = 3.

same scheme, replacing s by CA1, and producing CA2 and
CD2, and so on. The wavelet decomposition at level L has
the following struture : [CAi, CDi, ..., CD1]. Figure 2,
represents this struture with terminal nodes.

Now the important step, is to understand how to de-
noise the signal S . For that purpose, an approach by coef-
ficients thresholding was chosen [18] and described in the
next section.

4.2. Coefficients thresholding

According to the literature, it exists different kinds of
thresholding for the wavelets coefficients [13] :
• Soft thresholding : The absolute value of all the

wavelets coefficients is compared to a threshold T.
If this value is greater than T the threshold is sub-
tracted from any coefficient that is greater than the
threshold. Others are set to zero.

• Hard thresholding : Hard thresholding sets any
coefficient less than or equal to the threshold T to
zero. Others are preserved.

• Universal thresholding : the value called univer-
sal, is defined by :

Tthresh = σ
√

2log(N) (5)

where N is the length of the signal and σ the noise’s stan-
dard deviation. Here, Tthresh is used with hard threshol-
ding. In several applications, noise is most of the time
white and gaussian. This kind of white guaussian noise
(WGN) is a random signal with constant power spectral
density. WGN whose representation is given by (6), is inde-
pendant and identically distributed (i.i.d) and drawn from
a zero-mean normal distribution with variance σ2.

WGN ∼ N(0, σ2) (6)

According to (6), only σ2 is unknown. That is why
wavelets are useful in our study. Here, only the standart
deviation could be estimated. In rarely cases the noise is
assumed but in others, it can be estimated by using the
Median Absolute Deviation (MAD). This method has been
introduced by Donoho and Johnstone in 1994 [19]. MAD is
the median absolute deviation of the empirical wavelet co-
efficients corresponding to the highest level j1. The reason
for using these highest level coefficients for the variance
estimation, is that they are mostly costitued of noise [20].
By consequences the estimated variance is given by

Signal Acquisition

Signal Recovery

Mother wavelet 
choice

Decomposition 
level

DWT

Averaging

Figure 3: Flowchart of the filtering by wavelets.

σ2 =

(
MAD

0.6745

)2

(7)

where 0.6745 is the 0.75- quantile of the standard nor-
mal distribution and

MAD((wj)) = Median((|wj |)j) (8)

with wj , the wavelets coefficients. Thus, σ2 is now known
and the threshold given in (5) can be computed. For a
better understanding, a flowchart of our new process is
illustrated in Figure 3.

5. Application, results and discussion

5.1. Results on STM32 microcontroller

The process is applied on digital signal acquired on a
90 nm microcontroller STM32, more precisly on the digi-
tal analog converter. The topographic image is reported in
Figure 4. On this picture, we can notice a yellow cross
which represents the pointer where the probing is applied.
Figure 5 illustrates the acquired waveform and its wave-
lets coefficients decomposition. For this example we have
decomposed with four levels with an Haar mother wave-
let. On this picture we start by decomposing the original
signal with wavelets. The next step consists to apply a
threshold for the coefficients. And finally we go back to
the time domain. As you can see at the right in Figure
5, we can considerably denoise the signal.

5.2. Signal to Noise Ratio

Previously, it has been seen that it was possible to de-
noise the signal. It could be interesting to compare this
new method with available filtering method in the LVP
field. Our filtering by wavelets is compared to filtering by

4



 

Figure 4: Pattern of microcontroller Digital/Analog converter
(DAC) STM 32 and probing area symbolized by the yellow cross.

Figure 5: Wavelets decomposition with four levels. Top left : Noi-
sed signal/ Bottom left : Wavelets coefficients/Top right : Denoised
signal/Bottom right : Thresholded coefficients.

averaging and median filter. Figure 6 represents the evo-
lution of the SNR in function of the number of averages for
each case. Here SNR is given by the following equation :

SNR(dB) = 10 log10

Var(Signal)

Var(Noise)
(9)

where Var(Signal) and Var(Noise) correspond to the
signal and noise variance respectively.

For each values of average, the SNR with filtering by
wavelets is always higher than the SNR computed with
average and median filter. It proves the efficiency of the
filtering to reconstitute the signal with a good SNR. Now
we will focus on the other key aspect of this study, more
precisly the execution time and the reconstitution error
(mean square error).

5.3. Acquisition time

After the examination of the SNR, we give some results
concerning the acquition time which is not a negligable
parameter. In fact, by decreasing the number of averages,
the acquisition time decreases. Different acquisitions have
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Figure 6: SNR evolution with wavelets, average and median filtering.
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Figure 7: Mean Square Error evolution with new filtering process,
averaging and median filtering.

been realized on some analogue or digital signals. For a
same SNR, we have reported the execution time for all
the signals. Results are refered in Table 1. In all cases,
the execution time with only average and median filter is
always higher than the computing time with wavelets. We
notice a gain between 10 and 30 dB, depending on cases.

5.4. Reconstitution error : Mean Square Error

In this king of study, it is interresting to compare quan-
titatively each method. That is reason the Mean Square
Error (MSE) is used here. If x̂ is a vector of n predictions,
and x is the vector of the true values, then the MSE of the
predictor is given by :

MSE =
1

n

n∑
i=1

(x̂− x)2 (10)

Thus, the MSE evolution is computed for each kind of
filter, average, median and wavelets and is represented in
Figure 7. We can notice immediately that the MSE is mi-
nimized in the case of wavelets filtering for each number of
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Table 1: Results of execution time on seven signals (analogue/digital) with wavelets and averaging, with median filter and with averaging
only.

SNR = 30 db Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7
Number of acquisitions with wavelets 5 15 10 20 14 25 6
Time with wavelets and averaging (s) 3.5 10.5 7 14 9.8 17.5 4.2
Number of acquisitions with averaging 20 70 50 100 40 120 25

Time with averaging (s) 14 49 35 70 28 84 17.5
Number of acquisitions with median filter 10 35 34 60 22 80 17

Time with median filter (s) 8 25 19 42 15 56 12

Table 2: Mean Square Error (MSE) in function of the mother wavelet choice.

Wavelet MSE
Sig 1 Sig 2 Sig 3 Sig 4 Sig 5 Sig 6 Sig 7 Sig 8 Sig 9 Sig 10

1 Sym 2 0.0163 0.0166 0.0143 0.0157 0.0153 0.0148 0.0157 0.0164 0.0131 0.0139
2 Sym 4 0.0144 0.0149 0.0132 0.0144 0.0149 0.0142 0.0152 0.0161 0.0129 0.0133
3 Sym 8 0.0155 0.0152 0.0143 0.0167 0.0157 0.0138 0.0148 0.0168 0.0123 0.0128
4 Sym 16 0.0142 0.0145 0.0131 0.0154 0.0144 0.0153 0.0149 0.0157 0.0117 0.0129
5 Sym 32 0.0152 0.0153 0.0147 0.0153 0.0162 0.0149 0.0162 0.0159 0.0135 0.0134
6 Db 2 0.0151 0.0147 0.0152 0.0164 0.0156 0.0154 0.0153 0.0165 0.0141 0.0145
7 Db 4 0.0162 0.0155 0.0158 0.0163 0.0155 0.0168 0.0172 0.0176 0.0152 0.0148
8 Db 8 0.0161 0.0164 0.0167 0.0171 0.0166 0.0176 0.0175 0.0181 0.0164 0.0156
9 Db 16 0.0182 0.0178 0.0169 0.0159 0.0184 0.0194 0.0154 0.0189 0.0172 0.0157
10 Db 32 0.0193 0.0187 0.0184 0.0198 0.0193 0.0197 0.0156 0.0194 0.0184 0.0161
11 Coif 1 0.0161 0.0165 0.0162 0.0169 0.0158 0.0168 0.0171 0.0178 0.0154 0.0166
12 Coif 2 0.0144 0.0152 0.0154 0.0157 0.0152 0.0155 0.0169 0.0159 0.0147 0.0163
13 Coif 3 0.0155 0.0153 0.0162 0.0162 0.0164 0.0167 0.0173 0.0175 0.0149 0.0159
14 Coif 4 0.0145 0.0141 0.0144 0.0165 0.0150 0.0153 0.0156 0.0163 0.0137 0.0154
15 Coif 5 0.0152 0.0159 0.0157 0.0164 0.0163 0.0166 0.0169 0.0168 0.0142 0.0156
16 Haar 0.0198 0.0196 0.0214 0.0189 0.0221 0.0217 0.0198 0.0243 0.0197 0.0211
17 Meyer 0.0151 0.0153 0.0164 0.0158 0.0168 0.0174 0.0175 0.0172 0.0156 0.0158

average. The quantitative analysis with SNR and execu-
tion time is reinforced by the MSE to prove the efficency
of our process.

5.5. Other Example

To illustrate graphically our results, Figure 8 repre-
sents a comparison between the different kinds of filters
used in LVP. This example has been realized on digital
signal acquired on a 90 nm microcontroller STM32. In a
first time, one acquisition is realized, see Figure 8(a),
and then wavelets filtering is applied on 5 averaging, see
Figure 8(b). Five averaging are reprensented in Figure
8(c) and finally median filter is applied on 5 averaging Fi-
gure 8(d) in order have a comparison. Each signal has
been averaged five times in order to reduce the computing
time. For a same number of averages, the signal in Figure
8(b) has clearly the best SNR.

6. Discussion

6.1. Decomposition Level

In this paper, prior parameters must be chosen, more
precisly the decomposition level (DL) and the mother wa-

velet (MW ). In fact the aim is to automate the filtering
process. Concerning the decomposition level, it is possible
to compute it automaticaly.

In the wavelets theory the DL max is given by the
following equation :

DLmax = log2N (11)

with N the signal length. Thus, if the signal length is
known, DLmax can be computed easily.

6.2. Mother wavelet

Selection of mother wavelet (MW ) could be based on
qualitative or quantitative approaches. The chosen data-
base are ten signals (analogue and digital). In this study,
different MW with different vanishing moments were used :
Symmlet(Sym), Daubechises(Db), Haar, Meyer and Coi-
flet (Coif). Instead of using qualitive approach such as si-
milarity between signal and MW, this discussion will be
based on the MSE value in function of the MW, i.e. the
MSE is computed for each mother wavelet and for each va-
nishing moment. In fact for transcient signals, using Haar
wavelet could be pointed because its shape is similar to
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Figure 8: (a) Signal with one acquisition. (b) Signal with wavelets
filtering (c) Signal with averaging filter (d) Signal with median filte-
ring (size 50)

numeric signal. But it does not prove that it is the good
choice, that is the reason a quantitative approach has been
chosen. Results are liste in Table 2. In 80% of cases the
Sym16 mother wavelet gives the best results. These re-
sults give credit to the idea of choosing a mother wavelet
to minimize the MSE.

Conclusion and perspectives

Rebuild a weak signal is a real challenge especialy when
it is drowned in noise. In this paper, a new method based
on compression has been reported. This process could be
useful for the FA community because its allows the expert
to significaly save time during the acquisition. Therefore it
is partially automated, in fact the mother wavelet choice is
a key step of the process and the most difficult. If the MW
is chosen at the begining, the process is completly automa-
ted. In the event of the expert is not satisfied with result,
he can manually adjust all the parameters to optimize the
final SNR.

In terms of perspectives, this process opens the door to
new multipoint probing applications and allows FA com-
munity to use signal processing techniques instead of ex-
pensive hardware.
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