
Classifying network abnormalities into faults and attacks in IoT-based
cyber physical systems using machine learning
Georgios Tertytchnya,b,∗, Nicolas Nicolaoua,b,c and Maria K. Michaela,b
aElectrical and Computer Engineering Department, University Of Cyprus
bKIOS Research and Innovation Centre Of Excellence, University Of Cyprus
cAlgolysis Ltd

ART ICLE INFO
Keywords:
Machine Learning (ML)
Cyber Physical Systems (CPS)
Internet Of Things (IoT)
Cyber Security
Fault Diagnosis
Energy Aware Smart Home (EASH)

ABSTRACT
Cyber Physical Systems (CPS) integrate physical processes with electronic computing devices and digital
communication channels. Their proper operation might be affected by two main sources of abnormality,
security attacks and failures. The topics of fault diagnosis and security attack analysis in CPS have been
studied extensively in a stand-alone manner. However, considering the co-existence of both sources of
abnormality, faults and attacks, in a system and being able to differentiate among them, is an important
and timely problem not yet addressed adequately. In this work, we study the internal communication
environment of an Energy Aware Smart Home (EASH) system. More specifically, we formally define
the problem of differentiating between component failures and network attacks in EASH, based on their
effect on the communication behaviour. We formally show the correlation between such abnormality
sources and provide a machine learning based framework for the differentiation problem. Our framework
is evaluated using a simulation as well as a real-time testbed environment, demonstrating a promising
accuracy in classification of over 85%. Based on the obtained experimental results, we also provide a
detailed analysis on the considered classes and features used in the proposed approach, which can further
improve the classification accuracy.

1. Introduction
Cyber Physical Systems (CPS) are combination of compu-

tational, networking and physical processes. CPS can be used
to model a plethora of systems, including intelligent critical in-
frastructures. In fact, the extensive integration of CPS in criti-
cal infrastructures elevated their role in ensuring economic de-
velopment [1, 2] and, hence, their security and resilience has
become of utmost importance in all aspects of modern life.
Two main causes of abnormality that may affect the proper
operation of CPS are security attacks and component failures.
As CPS play a vital role for the day-to-day operations of mod-
ern societies, they have become an appealing target for attacks
by malicious actors [3, 4]. Their widespread use is leading to
a significant increase in their attack surface. At the same time,
just like any other physical control system, different compo-
nents of CPS can suffer failures [5]. Both failures and attacks
may lead to abnormal behaviour of the system, but their im-
plications may differ greatly. Having the means of differenti-
ating allows CPS operators to choose the proper recovery ac-
tions that minimise the negative effects of abnormal behaviour.
Specifying the parameters that may lead to such differentiation
is a complex task which requires the study of specific compo-
nents in a CPS system, before reaching a holistic approach.

The proliferation of Internet of Things (IoT) technologies
and their integration within CPS enables better monitoring,
control and management of these systems. However, such sys-
tems are increasingly susceptible to component faults due to
the nature of the integrated IoT devices, as well as security
attacks as the underlying communication protocols used can
introduce such new vulnerabilities to the system.

In this work, we focus on the communication network of
such an IoT-based CPS, that is an Energy Aware Smart Home
System (EASH). An example of an EASH is shown in Figure

∗Corresponding author
gterty01@ucy.ac.cy (G. Tertytchny); nicolas@algolysis.com (N.

Nicolaou); mmichael@ucy.ac.cy (M.K. Michael)

Appliances

EMS

Pool	PumpSMART	METER

Lightbulb
A/C

Figure 1: Energy Aware Smart Home System (EASH)

1. In such systems, sensor/computing nodesmeasure and com-
municate the (instant) energy consumption of home electronic
devices and appliances. These measurements are transmit-
ted to a central node (coordinator), via common wireless and
wired protocols, which stores and analyses the overall energy
consumption in the house. From the central coordinator the
energy consumption can then be reported to the energy utility
by using the Advanced Metering Infrastructure (AMI), which
enables a two-way communication between consumers (Smart
Homes) and utilities (Smart Grids). This allows consumers to
be aware of their home energy footprint (energy aware), and
make decisions on how to minimise their energy consumption.

The normal behaviour of CPS can be altered by a failure
that affects some of its components (nodes).Fault diagnosis in
CPS has emerged as a challenging task due to the heterogeneity
and large scale of the system, and because a faulty behaviour
is a complicated and dynamic problem. Traditional solutions
for fault diagnosis in CPS are based on operator’s experience
[6], while more recent approaches [7] utilise sensor and alarm

Page 1 of 23

data, characterising the new era of IoT. Such IoT solutions
for fault diagnosis combine both machine learning approaches
and human expertise. For instance, fault diagnosis in power
and smart grid systems utilise artificial neural network which
are adaptive systems inspired by biological systems. Common
techniques under the artificial neural networks are Radial Basis
Function (RBF) [8] and Support Vector Machines (SVM) [9].
Other approaches use reasoning [10] in order to eliminate hid-
den failures that can arise when a healthy system is triggered
by a monitoring system for a failure situation.

Apart from fault diagnosis, security concerns for CPS have
been studied in the area of systems fault detection, isolation,
and recovery [11] where security attacks are modelled as ex-
treme fault cases. CPS security has gained considerable atten-
tion in the recent years. Authors in [12] discuss the importance
of CPS security using a simple case scenario where an attacker
can compromise data transmitted between vehicles (e.g., by
sending tampered distance information) leading to several ac-
cidents with catastrophic consequences. Hence, unique char-
acteristics and vulnerabilities in CPS require new, more appro-
priate, detection and identification techniques. As mentioned
in [13], traditional IT security methods are not applicable for
CPS security. Vulnerabilities encountered in the communica-
tion protocols used for the transmission of measurements and
control packets increase the possibility of attacks that can af-
fect the physical plants [4]. Existing techniques for CPS se-
curity are typically categorised based on the security triad of
confidentiality, integrity, and availability. A security goal is
also related with the appropriated mitigation mechanisms that
aim to protect a CPS system described by a specific system
model from an adversary, with its respective model [14].

Research in cyber security and fault diagnosis, affecting
systems such as EASH [15], is mainly focused on detection
mechanisms [16, 17]. Such mechanisms are able to identify
when a system’s behaviour deviates from normal, but are un-
able to identify the source of abnormality. The normal be-
haviour of the system can be described either using a state es-
timator anomaly detection [18, 16], or historical data used in
intrusion detection mechanisms [17, 19]. But, while existing
studies deal with the detection and identification of attacks in
such systems [20], work taking into account both attacks and
faults is limited.

The differentiation problem between faults and attacks has
been studied in different environments and systems, such as
water infrastructures and smart grids. The work in [5] takes
into consideration both fault diagnosis and network anomaly
detection in the context of water infrastructure systems, by
combining historical process data with adaptive control tech-
niques. Authors in [21], present an approach that uses state
fault diagnosis matrices for cyber attack detection and fault di-
agnosis in power systems. Also, a detection scheme that takes
into consideration both attacks and faults is proposed in [22].
Here, the proposed framework utilises Kalman filters in order
to estimate the variables of a wide range of state processes in a
determined model. Using these variables and system readings
they try to detect attacks and faults affecting the smart grid.

In this work we investigate how to differentiate compo-
nent faults (which affect the normal behaviour of the network)
from network attacks by examining channel characteristics in
an EASH system, using supervised machine learning. The
main contributions of this work are:

• We provide a theoretical analysis where we propose the
differentiation operator for the problem of differentiat-
ing faults and attacks in an EASH system. We then show
the correlation between these two classes of abnormali-
ties, based on their effect on the communication channel.

• We give a general Machine Learning (ML) based frame-
work that utilises data collected from the communica-
tion channels of EASH scenarios.

• We evaluate the proposed framework for a number of
different classification algorithms using both a simula-
tion framework as well as a real-time testbed.

• We provide a detailed feature and class based analysis
for the cases we consider in the evaluation of the pro-
posedML framework, for both evaluation environments.

Overall, in this work we show that the use of supervised
machine learning algorithms is a promising technique for the
differentiation problem of faults and attacks, as for the cases
examined we achieved to differentiate with an accuracy over
85%. Furthermore, our feature analysis shows that an appro-
priate selection of the features can lead to improved results.

The rest of the paper is organised as follows. Section 2
provides a precise problem formulation for differentiating be-
tween faults and attacks, the abnormality sources we examine
in this work. In Section 3 we establish a theoretical relation
between the fault and attack classes, based on the preceding
problem formulation. The proposed methodology for the Ma-
chine Learning (ML) based framework for the differentiation
problem is presented in Section 4. Sections 5 and 6 describe
the simulation and real-time testbed evaluation platforms de-
veloped and corresponding results, respectively. An analysis
on the classification results obtained in both evaluation envi-
ronments on a per class and per feature basis is provided in
Section 7. Finally, Section 8 concludes this work and discusses
future work.

2. Problem Formulation
Our goal is to design a methodology for differentiating of

faults and attacks in an EASH system. We model the system
as a graph G = (V ,E) composed of a set V of m periph-
eral monitoring computing devices (nodes) {q1,… , qm}, anda central hub (coordinator node) qc . Two nodes qi, qj ∈ V
communicate by exchanging messages via synchronous, reli-
able, communication channels if (qi, qj) ∈ E. We use ei,j as ashorthand to denote the channel between qi and qj , given that
(qi, qj) ∈ E. Each qi ∈ V ⧵ {qc} communicates directly to
the coordinator node qc . Thus, a star topology exists where
(qi, qc) ∈ E, ∀qi ∈ {q1,… , qm}. For each qi ∈ {q1,… , qm},we define a single binary connectivity variable v to indicate
the direct connection of qi to the coordinator:

qi.v =

{

1 if (qi, qc) ∈ E
0 otherwise

Thus node qi state is given by:
�i = {(qi.bj) ∶ bj ∈ Bi}

⋃

{(qi.v)}

Similarly, the state of each channel ei,j denoted by �ei,j , is de-fined over a set of state variables, Ci,j . Using the snapshot of2

the state of the channel, or a sequence of state snapshots, we
derive a set of measurements, that describe the channel condi-
tions and performance metrics (e.g., delay). Thus channel ei,jstate is given by:

�ei,j = {(ei,j .yk) ∶ yk ∈ Ci,j}

The state of the system � is a vector that contains the state of
every node qi ∈ V and every channel ei,j for (qi, qj) ∈ E.
Thus system state � is given by:

� = {�ei,j ∶ (qi, qj) ∈ E}
⋃

{�it ∶ qi ∈ V }

Each node qi ∈ V implements a set of actions. When an action
� occurs at a node qi it causes the state of qi, and thus the stateof the system, to change. An execution � of the system is an
alternative sequence of states and actions, where actions send
and receive events that may change the state of the channel or
the state of a node in the system. A triple ⟨�, �, �′⟩ is called
an execution step, if the occurrence of � when the system is on
state �, yields the state �′ in an execution �. We assume that
the system executes in discrete time units making one execu-
tion step in each time unit. Thus, �0 is the initial state of thesystem at time t = 0, and �t denotes the state of the system at
time t in an execution �. We assume that each execution starts
with the initial state and ends with a state. If �t is the endingstate of an execution � then we say that t is the length of � and
is denoted by T (�) = t. We say that an execution �′ extends
an execution � if the first state of �′ is the last state of �. Let
(qi.bj)t denote the value of the local variable bj of node qi at atime unit t. Similarly, we denote by (qi.v)t the binary connec-
tivity variable of node qi and (ei,j .yk)t the value of the channelcharacteristic yk at time t. Given this notation we can define
the states of each node, channel and system state over t:

�it = {(qi.bj)t ∶ bj ∈ Bi}
⋃

{(qi.v)t} (1)
�
ei,j
t = {(ei,j .yk)t ∶ yk ∈ Ci,j} (2)
�t = {�

ei,j
t ∶ (qi, qj) ∈ E}

⋃

{�it ∶ qi ∈ V } (3)
For each state variable qi.bj ∈ Bi, we denote by L(qi.bj)t and
U (qi.bj)t, the expected low and upper bounds respectively, of
the value of qi.bj , at a time unit t with respect to the previ-
ous state of the system �t−1. Using, these bounds we can nowdefine normality and abnormality as follows:
Definition 1. A state �it of node qi in an execution � at time t
is normal iff:

∀j[(qi.bj ∈ Bi,(qi.bj)t ∈ [L(qi.bj)t, U (qi.bj)t]]

∧(qi.v)t = 1

In other words a state of a node is normal if all the state
variables are within the expected bounds, and the node is con-
nected and communicating with the central node (i.e. (qi.v)t =
1). On the contrary in an abnormal state such conditions may
not hold as explained in Definition 2.
Definition 2. A state �it of node qi in an execution � is abnor-
mal at time t if at least one of the following holds:
• abnormal node behaviour iff ∃j qi.bj ∈ Bi such that:

(qi.bj)t < L(qi.bj)t ∨ (qi.bj)t > U (qi.bj)t

• abnormal node connectivity iff:

(qi.v)t = 0

By Definition 2, an abnormal state may include variables
with unexpected values, and/or the direct connection of the
nodewith the coordinator may be interrupted (i.e., (qi.v)t = 0).
We assume that connectivity interruption may be caused by an
external event (e.g, man-in-the-middle attack, or interruption
attack) without necessarily the sending node be aware of this.
We assume that an interrupted edge is removed from the setE.
Following Definitions 1 and 2 we say that the system state �tis normal if ∀qi ∈ V , �it is normal. Similarly we characterised
a system state �t as abnormal if ∃qi such that �it is either an
abnormal node behaviour or abnormal node connectivity. We
define an execution � as Normal-execution if ∀�t ∈ � �t is nor-mal, for 0 ≤ t ≤ T (�). Similarly we say that an execution �
is -execution, for ∈ [Fault, Attack], if ∃�t ∈ � such that
�t is an abnormal state, resulting from a fault or attack respec-
tively, for 0 ≤ t ≤ T (�). We call an action � as abnormal, if
it is applied on a normal state and yields an abnormal state.
That is, � is abnormal if the step ⟨�t−1, �, �t⟩ appears in a -
execution, for ∈ [Fault, Attack], while �t−1 is normal and
�t is abnormal.
Definition 3. Class state snapshot, denoted as w t , is the sys-
tem state �t, of class , in an execution �, time t ≤ T (�), and
 ∈ [Normal, Attack, Fault].

So given an algorithm A, we can define the differentiation
operator, and thus the differentiation problem, as follows.
Problem 2.1 (Class Differentiation). Specify a differentiation
operator ⨁A using a (machine learning) algorithm A such
that, given two class state snapshot vectors w t , w

 ∗

t∗ from ex-
ecutions � and �∗ (not necessarily different):

w t
⨁

A
w

∗

t∗ =

{

T If ≠ ∗

F otherwise

3. On the Complexity of Fault and Attack Class
Differentiation
This section examines how difficult it is to differentiate

between fault and attack classes. In particular, we focus on
a subset of fault-executions where faults may affect the state
of the communication channels (i.e., by introducing abnormal
messages). In the rest of the section, we show that this set of
fault-executions is a proper subset of attack-executions where
attacks gain access to the communication channels and alter
the state of the channel. Our result, suggests that no algorithm
running at the receiving end of a channel may differentiate at-
tacks that fall in the fault spectrum, but differentiation is pos-
sible beyond boundary. We believe that results presented here
may be extended in system parameters other than channel ab-
normality but this is not within the scope of this work. We
assume that channels operate in a uniform way thus for the
rest of the section we only focus on a single channel ei,j .LetMSGei,j refer to the buffer used for the communication
between (qi, qj). |MSGei,j | refers to the size of the buffer and
represents the total number of bits appended in the channel.
|MSG

ei,j
t | refers to the size of message buffer at a time unit t.3

We assume that each message m sent from a node qi, includesa set of state variables of qi we denote by m.Bi,m ⊆ Bi. A
message may contain extra payload we denote by m.data.
Definition 4. We define a message m sent by a node qi as a
normal message if ∀b ∈ m.Bi,m, L(qi.bj) < b < U (qi.bj); oth-erwise m is abnormal.

By Definition 4, a message is abnormal if it contains a
value for a local variable of the sender, that is outside the ex-
pected boundaries. Given that definition we can now define
integrity violating actions.
Definition 5. An action �v is called an integrity violating ac-
tion in an execution �, if the following hold (i) step⟨�t, �v, �t+1

⟩

appears in �, (ii) �it is normal and �it+1 is abnormal of state
variable qi.b ∈ Bi, and (iii) the step ⟨

�t′ , send(m)i,∗, �t′+1
⟩

appears in �, s.t. t′ > t, this is the first step that contains a send
action by qi after state �t+1 in � and m is abnormal on variable
qi.b ∈ m.Bi,m.

In particular, integrity violation actions are external ac-
tions that may lead to the generation of messages containing
state variables with values outside the expected boundaries.

During the communication between two nodes qi, qj , letmsdenote the message transmitted from the sender qi, and mr thecorrespondingmessage received at the receiver qj . To transmit
a message from qi to qj , the sending node qi, pushes ms inthe buffer MSGei,j and the receiving node qj pops mr fromthe buffer. Each channel ei,j exposes three different actions:
send(m)i,j , receive(m)i,j or interrupt()i,j .

• send(m)i,j changes the state �ei,jt of the channel ei,j , by
adding the message m in the bufferMSG

ei,j
t+1. Formally,

in an execution step ⟨

�t, send(m)i,j , �t+1
⟩, the channel

state �ei,jt+1 differs from �
ei,j
t by setting:

MSG
ei,j
t+1 =MSG

ei,j
t ∪ {m}

• receive(m)i,j changes the state �ei,jt of the channel ei,j ,
by removing the message m from the buffer MSG

ei,j
t+1.

Formally, in an execution step ⟨�t, receive(m)i,j , �t+1
⟩,

the channel state �ei,jt+1 differs from �
ei,j
t by setting:

MSG
ei,j
t+1 =MSG

ei,j
t ⧵ {m}

• interrupt()i,j is an action performed by the environment
(i.e. by an external physical event or an adversary), al-
lowing an external entity to obtain or alter the contents
of any single message m ∈ MSGei,j . Therefore, in an
execution step ⟨�t, interrupt()i,j , �t+1

⟩, either:
– Inspect: MSG

ei,j
t+1 =MSG

ei,j
t , or

– Remove: ∃m ∈MSG
ei,j
t , s.t. m ∉MSG

ei,j
t+1, or

– Modify: MSG
ei,j
t ⧵{m} =MSG

ei,j
t+1 ⧵{m

′}∧m ≠
m′

In other words, send actions append messages in the chan-
nel’s buffer, and receive actions pop messages from the same
buffer. Furthermore, interrupt actions are external events that

allow a third party to gain access over the communication chan-
nel. Think of a man-in-the-middle attack, where the attacker
may gain access to the channel and alter the communication.
Having access on the channel the third party may modify, re-
move or just read any single message in the channel’s buffer.
A sequence of interrupt actions may change multiple messages
in the buffer.

Given the channel actions, we can now define fault and
attack spaces in terms of the existence of abnormal messages
in a channel buffer.
Definition 6. A fault space  denote the set of all actions,
denoted by f , that are integrity violation actions on a node qiand lead to generation of abnormal messages.
Definition 7. An attack space  denote the set of all actions,
denoted by a, that are interrupt()i.j actions, and can change
normal messages to abnormal.

Given the definition of Faults  (Definition 6) and Attack
 space (Definition 7) the following lemma shows that any
fault can be emulated by an attack. In a nutshell, Lemma 1
shows that a receiver cannot distinguish two executions, such
that, one contains a receive action that delivers an abnormal
message generated by a fault f ∈ , and one that contains a
receive action that delivers an abnormal message generated by
an attack a ∈  that simulates f .
Lemma 1. For any pair of nodes qi, qj , if �

′ is an execution
with a fault action fi ∈  on qi which is followed by a pair
of send(m)i,j and receive(m)i,j actions, and �

′′ an execution
with an attack action ai,j ∈  that may generate message m,
then the node qj is not able to differentiate between �

′ and �′′ .

Proof. Execution Construction: Let � be a normal execution
such that T (�) = t, ending in state �t. We now construct the
two executions �′ and �′′ as follows. Let without loss of gen-
erality 1, execution �′ be a sequence:

�t, fi, �t+1, send(m
′
)i,j , �t+2, receive(m

′
)i,j , �t+3

Similarly, let �′′ be a sequence:
�t, send(m)i,j , �

′

t+1, ai,j , �
′

t+2, receive(m
′′
)i,j , �

′

t+3

Attack ai,j is a modify action and we assume that attacker
has the knowledge for the fault simulation.
By contradiction. We assume that the receiver qj is able to
differentiate executions �′ from �′′ . Due to the fact that re-
ceiver qj has knowledge of ending states of both executions
�t+3, �′

t+3), differentiation is possible at qj iff �jt+3 ≠ �jt+3
′ .

Notice that as the actions f and send(m)i,j are actions that
modify the state of qi and of the channel ei,j respectively, thestate of qj remains the same in both states �t and �t+1 in both
executions �′ and �′′ . The similar observation holds for states
�t+1 and �t+2. In particular the actions send(m′)i,j and a re-
spectively do not change the state of qj , and hence �jt+1 = �jt+2
in both executions �′ and �′′ . As we assumed that action amay

1Note that any additional intermediary actions in the two executions can
result in the same state transitions for qj and thus qj will reach the same state
before receiving the message from qi in both executions �′ and �′′.4

emulate the fault f , then it may replace m with the message
m′ in the channel’s buffer. Therefore m′′ = m′ and the same
receive(m′)i,j occur in both �′ and �′′ . This action affects the
state of the channel ei,j , as it removes message m′ from the
channel’s state, and the state of qj as it processes message m′ .
Since however �jt+2 = �jt+2

′ and the same action receive(m′)i,joccurs in both executions, then qj must transit in the same state
�jt+3 = �jt+3

′ . This however contradicts our initial assumption
and completes our proof.
Theorem 1. If every fault f ∈  can be emulated by a respec-
tive attack a ∈  having the knowledge of fault simulation on
the receiver, then there exists no operator

⨁

A that may differ-
entiate the two, at the receiver.

Proof. The Theorem follows from Lemma 1. In particular,
if an attack may emulate the message sent during a fault, then
the receiver cannot differentiate the execution that contains the
fault from the execution that contains the attack. Therefore any
operator that uses the state of qj (or just messages received)
will provide the same result in both executions and hence will
not be able to differentiate the fault from the attack.

The next lemmas (Lemma 2, Lemma 3) show that execu-
tions that contain the occurrence of an attack a that performs
an inspect on the messages of the buffer, they differ from exe-
cutions that contain any fault f ∈ .
Lemma 2. If an execution �′ contains an integrity violating
action fi ∈  on a node qi, then every node qj that receives
the message send by the first send(m)i,j action followed f can
differentiate �′ from any normal execution �.

Proof. The Lemma follows from Definition of an integrity vi-
olating action. In particular, followed action f , qi sends an
abnormal message m′ via action send(m′)i,j to qj . The chan-
nel ei,j will eventually deliver m′ to qj when action of the
receive(m′)i,j appears in the execution �′ . However any nor-
mal execution � that is similar to �′ , but does not contain f ,
will contain a receive(m)i,j action in � s.t. m ≠ m′ .

To derive contradiction lets assume that qj cannot differ-
entiate between � and �′ . As in Lemma 1, we can show that
the state of qj is the same in both �′ and � before the receive
action occurs. So we need to examine the state of qj after theoccurrence of the receive(∗)i,j action. There are two cases to
consider: (a) the state of qj changes when receiving a mes-
sage, or (b) the state of qj remains the same. If (b) is true
then qj will not change its state no matter how may and what
messages it received from qi. Thus, in this case is identical
to the case where no communication link exists between the
two nodes and hence in either case qj could not be used to de-
tect any fault on qi. If now (a) is true, as m ≠ m′ then qj will
reach a state �j ′ in �′ and �j in � such that �j ′ ≠ �j . Thus, qj
will be able to differentiate �′ from � contradicting our initial
assumption.

In a similar manner we can show that a node will not be
able to differentiate a normal execution from an execution that
contains an inspect attack.

Lemma 3. If an execution �′ contains an inspect attack ai,j
∈  on a channel ei,j , then no node qj may differentiate �′

from any normal execution �.

Proof. In order to proof this lemma consider that the two exe-
cutions � and �′ are identical up to the occurrence of the inspect
attack action ai,j in �′ . Let �t be the state immediately before
ai,j in �′ and before the receive(m)i,j action in �. Since actiondoes not change the state of the channel (as it does not modify
the messages in the buffer), then the state of the channel will be
�
ei,j
t+1 = �

ei,j
t . Hence if the channel included m in receive(m)i,j

then it will include m in the receive(m)i,j in �′ as well. There-fore, qj will receive the same message in both executions. As
qj was in the same state in both executions before the occur-
rence of receive(m)i,j action then receiving the same message
will lead qj in the same state in the two executions. Thus, qj
will not be able to differentiate � from �′ .
Theorem 2. There exist attack a ∈  that may lead the system
to a state � such that � does not appear in any execution that
contains an integrity violating fault f ∈ .

Proof. The proof of the Theorem follows from Lemmas 2 and
3. Notice that there exist an attack category, i.e. inspect at-
tacks, that does not cause any state distinction at the receiving
node (Lemma 3), while any integrity violating faults lead to
distinguishable executions, (Lemma 2).

4. Proposed ML-based Framework
This section presents the overall proposed Machine Learn-

ing (ML) based framework for differentiation between faults
and attacks. According to the results presented in Section 3, it
is difficult to differentiate attacks that resemble the behaviour
of node faults at the receiving ends, as their effect on the com-
munication channel is the same. Have we monitor the channel
state however, we could potentially capture the state transition
actions invoked by the attackers in order to generate a number
of attacks. Thus, to overcome the limitation of differentiating
attacks from faults on the receiving end, we choose to directly
monitor the channel measurements. We then fit those mea-
surements (in the form of feature datasets) in machine learn-
ing models with the aim to differentiate the two abnormality
classes using the channel characteristics (and hence channel
state).

The overall methodology, as illustrated in Figure 2, com-
prises of three phases. In the first phase, the system is mod-
elled for the normal, faulty and attack classes. Consequently,
in the second phase, a set of execution scenarios is performed
in order to generate datasets which describe the system’s be-
haviour under normal, faulty and attack classes. The datasets
generated are used during the third phase, for the evaluation of
different supervised machine learning algorithms for classifi-
cation purposes in terms of the differentiation task.

The proposed framework is generic and accommodates the
study of different classes of faults and attacks in various ex-
perimental setups, as well as the evaluation of the generated
datasets over different supervisedmachine learning algorithms.
Moreover, by focusing only in the characteristics of the com-
munication channel, this framework is independent of device
characteristics used in any IoT enabled CPS system.

5

This section focuses in this generic framework and presents
inmore detail the abnormality classeswe consider in this work,
the various ML classification algorithms studied, and the eval-
uation metrics used for the evaluation of the considered algo-
rithms.
4.1. Execution Classes

Faults in systems like EASH, often appear in the sensing
nodes having an impact on the communication channels. On
the other hand, attacks are often seen to interfere with the com-
munication channels, while also affecting the state variables
(e.g., routing tables) of processing nodes. Therefore, the fault
and attack types we choose: (i) resemble common abnormal-
ities, and (ii) have a similar effect on the performance of the
network in order to challenge the differentiation task. To do so,
we directly monitor network and the state of the channel in the
receiving end, to derive the features to be used. We consider
the following execution classes:
• NormalClass: IncludesNormal-executions, where the node

exhibit normal behaviour by capturing measurements and
transmitting packets to the central node with no attacks or
faults.

• Fault Class: IncludesFault-executionswhere a system state
�t is a faulty state if ∃qi ∈ V with �it being an abnormal
node behaviour state, but not an abnormal node connectiv-
ity state (see Definition 2).
In other words, a node may experience a fault that affects
its local state variables (e.g., measurements, routing tables),
but its connectivity to the central node is not interrupted.
Such failures may also cause routing failures (due to routing
table corruption) or packet drops (due to improper genera-
tion of the local packets). The normal operation of sensor
nodes is affected by two types of faults that could lead to
the degradation of their performance [23]. These are: func-
tionality faults and data faults. For data faults the sensing
readings of a node are altered abnormally, but it still com-
municate and behave according to its specification. On the
other hand, during functionality faults, a node may diverge
from its algorithm specification. This typically results in
crash of individual nodes, packet loss, routing failure and
network participation. The set of faulty classes (forming
set F) is given by the following three classes, that are rep-
resentative classes of functionality faults; F1: Low Energy
Failure, F2: Routing Failure and F3: Packet Dropped Fail-
ure. Note that all three classes refer to faults at the nodes
and not at the communication channels. Hence, the connec-
tivity between the nodes is not affected, and thus there is
no abnormal node connectivity as defined in Definition 2.
Below we provide a short explanation of each fault class.
Low Energy Failure (F1): This fault class contains execu-
tions where failures may reduce the power supply on a send-
ing node. A sender experiencing this failure does not oper-
ate normally, as the amount of energy required for the packet
generation and transmission is below a certain threshold.
This may result to either corrupted messages sent in the
channel, or the injection of faulty values in the state vari-
ables. In any case, a local state variable out of bounds, will
result to an abnormal node behaviour state at the sending
end.

Routing Failure (F2): This fault class contains executions
where failures may lead to the corruption of routing tables
at the senders. Such corruption of the routing table leads
to an abnormal node behaviour state: packets are generated
correctly at the sender but transmitted inconsistently. Such
failure may result in excessive delays in the communication,
between the sender and the receiver.
Packet Dropped Failure (F3): This fault class contains exe-
cutions with failures causing packet corruption due to noise
in the signal transmitter of the sender. In particular, a send-
ing node affected by an external noise may not generate and
transmit packets normally. A noise may cause the Signal To
Noise Ratio (SNR), i.e. the ratio of the transmitting quality
over the external noise, diverge from its expected bounds
at the sender, leading to an abnormal node behaviour state.
Thus, packets transmitted might not be readable by the re-
ceiver and result into some of them to be dropped.

• Attack Class: Includes Attack-executionswhere the system
state �t is an attack state if ∃qi ∈ V and �it being both an
abnormal node behaviour and abnormal node connectivity
state. (see Definition 2).
Man In The Middle attack (MITM) posses such character-
istics, as the attacker tries to modify local variables of the
communicating parties in order to gain access on the direct
connectivity between them. Common attacks performed by
MITMaremessagemodification, replay and sink hole. Thus,
the set of attack classes (forming set A) is given by the fol-
lowing three classes: A1: Replay Attack, A2: Sink Hole
Attack and A3: Message Modification Attack. Those attack
classes affect the direct connectivity between the sender and
the receiver resulting to an abnormal node connectivity state
at the sender. Moreover, the local variable that denotes the
destination of packets at both ends is modified resulted to
an abnormal node behaviour state. According to the attack
class, the attacker can either decide to simply retransmit,
modify or drop packets captured. The AIC triad (Availabil-
ity, Integrity and Confidentiality) of security is affected by
the attack classes considered. Availability, ensures that in-
formation is available when needed, integrity maintains and
ensures accuracy and completeness of data, and confiden-
tiality protects the information from unauthorised access.
MITM, considered in all the three classes below, affects the
confidentiality, while each of the attack class can also affect
integrity, availability or both. Below we discuss each attack
class, separately:
Replay Attack (A1): contains executions with attacks where
the attacker, that records the packets between the sender and
the receiver (victims of the attack), retransmit them in a ran-
dom order. By replaying the packets after a specific amount
of time (delay), the receiver will either receive the packets in
sequential order but with a delay, or receive the packets out
of order and thus will drop them. This attack class also af-
fects the availability of the information, but not the integrity
as it leaves the content of the packets unmodified.
Sink Hole Attack (A2): describes the attack class in which
the attacker records the packets between the sender and the
receiver (victims of the attack), but does not retransmit them.
Thus, the attacker appears in the network as a sink-hole point,
where packets are lost. This attack class affects mainly the

6

Execution

Normal ClassPhase A
MODELLING

Execution

Faulty Classes

Execution

Attack Classes

Normal Instances

Phase B
DATASET

GENERATION

Faulty Instances Attack Instances

DATASET

Classification Using Supervised Machine Learning
Algorithms

Phase C
EVALUATION

Figure 2: Flowchart of the proposed ML-based Framework

Normal	Class	(N)

Faulty	Classes	(F)
F1:	Low	Energy

F2:	Routing	Failure
F3:	Packet	Dropped

Attack	Classes	(A)
A1:	Replay	Attack
A2:	SinkHole	Attack

A3:	Message	Modification

Figure 3: Execution Classes Considered

availability of the information, similar as if the packets are
being dropped.
Message Modification Attack (A3): is the attack class in
which the attacker modifies the packets recorded. The at-
tacker may introduce fraudulent or inconsistent data result-
ing in a payload change. Modified packets are then trans-
mitted to their destination. Such attacks target the integrity
of the packets at the receiver, as their content differs from
the content generated at the sender.

Figure 3 summarises all execution classes considered in this
work.
4.2. ML Classification Algorithms

We perform an exploration on different ML algorithms for
classification, focusing on the ones considered more appropri-
ate for the underlying problem. Before we discuss the selected
algorithms, we provide a review on the most commonly used
supervised machine learning algorithms. The classification al-
gorithms categories discussed below are derived from the sep-
aration made in [24].

4.2.1. Brief Overview of ML Classification Approaches
Decision trees[25], belong to the logic based category clas-

sification algorithms that use inductive logic for building pre-
dicted models. In practice, tree based classification models are
trees that are built during training by sorting feature values.
Nodes of this tree are the features, used for classification and
instances are classified based on sorting from the root node to
leafs based on the attribute values of the nodes.

The next category of classifiers is Artificial Neural Net-
works (ANN). ANN are described in term of three fundamen-

tal aspects, their input, activation functions of different layers,
the overall architecture and the weights that relate each layer of
the network. In the training phase the weights of the network
are computed and adjusted based on the representation of the
input data. These instances are repeatedly exposed to the net
and in that way the network learns from the instances. Mul-
tilayered Perceptron (MLP) is a commonly used classification
technique of ANN. Perceptrons are nodes that computes the
sum of weighted inputs and output gets its value based on a
threshold. If this sum is above the threshold then the output
value is one, otherwise it is zero. A more recent classification
algorithm technique is Support VectorMachines (SVM). SVM
[26] similarly to ANN aim to build a hyper plane that separates
two data classes by maximising the margin and thereby creat-
ing the largest possible distance between the separating hyper
plane and the instances. This technique aims to minimise the
overall generalisation error. Another category involves sta-
tistical learning algorithms. Their main characteristic is that
they have an explicit underlying probability model that gives a
probability for each instance to which class it belongs. In such
a way, the ultimate target of those algorithms is the compu-
tation of the probabilities for each instance with respect of its
class. Common ways used for estimating the probabilities dis-
tribution using the instances and the predicted class are maxi-
mum entropy and discriminant analysis.

Themost representative technique in statistical learning al-
gorithms is Bayesian Networks (BN) [27] which are graphical
models for probability relationships among a set of features.
This graphical model is a directed acyclic graph where nodes
are the features and the edges represent a relation between fea-
tures. Thus, the learning task in BN is based on the determi-
nation of the structure of the network as well as the and the of
the parameters for each class. These parameters are encoded
into tables for each feature. Instance-based learning is another
subcategory of statistical learning algorithms. The key charac-
teristic of this category is the lazy-learning procedure as they
delay the induction until classification is performed. The most
common algorithms in this category are nearest neighbour al-
gorithm that can predict the class of a given instance based on
nearest classified instance that was previously classified. The
advantage of these algorithms is reduced training time. On the
other hand, they require more time to classify instances during
the classification phase.

4.2.2. Selected Classification Algorithms
Algorithm selection for evaluation was performed based

on our observations of the described characteristics of the col-
lected datasets. These characteristics show that the datasets
used are: (i) static and (ii) contain nominal attributes. Par-
ticularly, static datasets cannot be used in online learning al-
gorithms. Moreover, the same algorithms where used in both
testbed and simulation experiments for comparison reasons,
despite the fact that the dataset generated in real-time testbed is
larger than the one derived via simulation. Given our datasets
characteristics, we use and evaluate the following supervised
classification algorithms:

• J48: is a tree classification algorithm that uses as part of
training of the model a pruned or unpruned C4.5 deci-
sion tree for classification [28]. J48 provides a fast de-
cision tree that deals with missing values and perform
well over nominal datasets.7

• Naive Bayes (NB): is a Bayesian network with a single
parent (unobserved node) connteced to children nodes
being the observed nodes [29]. The strong assumption
made for this type of networks is that children nodes
are independent of the parent and the estimation is done
with respect to the probabilistic model for features of
an unknown class. NB requires less data and therefore
fits well with our datasets. Moreover, as we have static
datasets, this classifier seems to be a more reasonable
choice for our evaluation procedure.

• Multilayered Perceptron (MLP): is an ANN classifier
that is trained using Back Propagation (BP) algorithm
that aims to find the parameters (in weights) for a set
of inputs. A multilayer neural network consists of large
number of units (neurons), joined together in connec-
tions which forward information from input layers to the
output layers [30]. The classification class is encoded at
the output layers, which are consisted of neurons, repre-
senting the predicted class of an instance.

• Multinomial Logistic Regression (MLG): is an ANN su-
pervised classifier that builds a model during training
which classify instances using multinomial logistic re-
gression of a ridge estimator [31]. Specifically, MLG is
trained by solving the problem of maximising the like-
lihood estimator (MLE) for the ridge estimator. Finding
this value, allows the classifier to associate features de-
scribing instances with their respectively target class.

The execution classes are used to generate values for de-
scriptive measurements of the network’s behaviour. For the
evaluation we used WEKA (Waikato Environment for Knowl-
edge Analysis) [32] tool. This is a widely used tool that enjoys
widespread acceptance in both academia and industry.
4.3. Selected Algorithms Execution Parameters

For themachine learning classification algorithms selected,
after extensive experimentation we choose a set of execution
parameters values based on their performance. Specifically,
for each selected parameter value, we focus on the ones pro-
viding the best results in terms of accuracy, for the particular
problem considered.

For the sake of reproducability of our experiments we re-
port all considered execution parameters in Appendix A. In
this appendix section we provide a brief description of the ex-
ecution parameters for the selected classification algorithms,
along with the values selected for the experimental setup.
4.4. Evaluation Metrics

A classifier’s evaluation, is typically performed on predic-
tion accuracy. The prediction accuracy is calculated after the
splitting of a dataset into training and testing sets. The train-
ing set is used to build a classifier model which learns from
the dataset instances. The testing set is used for estimating
the performance of the classifier. The predicted accuracy is
calculated as the percentage of the correct prediction divided
by the total number of predictions. This metric can also be
used for comparison between different classifiers with respect
to specific cases. Consequently, it is easy to compute an aver-
age value to describe the overall prediction performance of a
classifier. In our approach, each generated dataset (simulation-
based and testbed-based) is splitted into 75% for the training

Table 1: Classification Matrix Example
Predicted Class

Actual Class Yes No
Yes a b
No c d

set and 25% for the testing set, as this is derived after a sensi-
tivity analysis on training set percentage split on accuracy of
classification. The following evaluation metrics are used:

• Observed accuracy (po): counts the number of correct
predictions over the total set of predictions performed
by the classifier. This is a percentage metric (%). By
splitting our dataset into train and test set, the use of ac-
curacy metric is necessary.

• Kappa Statistic Value (�): a metric that takes into con-
sideration unbalancing in datasets, and is a normalized
value between 0 and 1. In our case, unbalancing is ob-
served due to larger number of normal instances in the
datasets, as normal behaviour is the one captured more
often. This value is computed as shown below, where
pe is the expected accuracy: � = po−pe

1−pe

• Precision (pr): Precision is defined as the number of
true positives divided by the number of true positives
plus the number of false positives. False positives are
cases the model incorrectly labels as positive that are
actually negative. Precision expresses the proportion
of the data points our model says was relevant actually
were relevant.

• Recall (re): Recall is defined as the number of true pos-
itives divided by the number of true positives plus the
number of false negatives. False negatives are cases
the model incorrectly labels as negative that are actually
positive. Recall expresses the ability to find all relevant
instances in a dataset.

To explain how Observed Accuracy (po), Expected Accuracy
(pe), Precision (pr) and Recall (re) are computed we use a sim-
ple example with two classes, as given in Table 1. Values a,d
represent the correct positive and negative predictions (True
Positive, True Negative), respectively and values c, b represent
the incorrect positive and negative predictions (False Positive,
False Negative), respectively. The computation of Observed
Accuracy (po), Expected Accuracy (pe), Precision (pr) and Re-call (re) is given by the following equations:

Precision ∶ pr = a
a + c

Recall ∶ re = a
a + b

Observed_Accuracy ∶ po = a + d
a + b + c + d

Expected_Accuracy ∶ pe = pyes + pno

pyes =
a + b

a + b + c + d
⋅

a + c
a + b + c + d

pno =
c + d

a + b + c + d
⋅

b + d
a + b + c + d

8

Table 2: Sensitivity Analysis Matrix on Training Set Percent-
age Split on Accuracy of the Classification (Simulation)

CLASSIFICATION ALGORITHM (A)Training
Set (%) J48 NB MLP MLG AVERAGE
65 87.78 87.57 88.02 85.30 87.17
70 88.55 85.83 88.03 85.50 86.98
75 89.62 88.20 88.69 86.38 88.22
80 88.10 87.25 88.72 86.50 87.64

Table 3: Observed Accuracy (po) & kappa value (k) Evalua-
tion Matrix (Simulation Cases)

CLASSIFICATION ALGORITHM (A)
J48

(po, k)
NB

(po, k)
MLP
(po, k)

MLG
(po, k)Case #1 (82.76, 0.72) (89.66, 0.83) (80.00, 0.72) (75.86, 0.61)

Case #2 (100.0, 1.00) (94.40, 0.89) (94.40, 0.89) (94.40, 0.89)
Case #3 (86.11, 0.82) (80.55, 0.75) (91.67, 0.89) (88.89, 0.86)

C
A
S
E Average (89.62, 0.85) (88.20, 0.82) (88.69, 0.83) (86.38, 0.79)

Table 4: Precision (pr) & Recall (re) Evaluation Matrix (Sim-
ulation Cases)

CLASSIFICATION ALGORITHM (A)
J48

(pr, re)
NB

(pr, re)
MLP
(pr, re)

MLG
(pr, re)

Case #1 (0.837, 0.828) (0.960, 0.897) (0.793, 0.793) (0.761, 0.759)
Case #2 (1.000, 1.000) (0.972, 0.944) (0.972, 0.944) (0.972, 0.944)
Case #3 (0.880, 0.861) (0.819, 0.806) (0.935, 0.917) (0.903, 0.889)

C
A
S
E Average (0.906, 0.896) (0.917, 0.882) (0.900, 0.885) (0.879, 0.864)

Table 5: Differentiation Results for J48 & Case #1 (Simulation
Case)

⨁

J48 wNt wF1t wF2t wF3t
wNt - T T T
wF1t T - T F
wF2t T T - T
wF3t T F T -

5. Simulation Implementation & Results
The EASH system model was simulated using the OPNET

Simulator. For communication purposes, the ZigBee protocol
was used. In order to form our star-topology, we use ZigBee
End Devices (ZED) for the peripheral nodes and a ZigBee Co-
ordinator (ZC) for the coordinating node. Our star-topology
consists of peripheral sensing nodes, each one responsible for
the monitoring of a specific appliance in the system. The co-
ordinator is responsible for the initialisation of the network
and for the reception of the measurements by the peripheral
nodes. After the initialisation is performed in all the simu-
lates scenarios nodes are configured to transmit their measure-
ments every minute. The different scenarios we simulate are
associated with the attack and fault executions of the classes
as those are described in Section 4.1. In particular, F1 was
simulated by lowering a single node’s energy below a trans-
mission threshold; F2 was simulated by changing the desti-
nation of each packet; F3 was simulated by adding noise to
the packet rendering the data load invalid and causing the re-
ceiver to drop the packets. Attack classes were simulated by
entering a middle node interrupting communication between
a single peripheral node and the central coordinator. In A1 the
attacker is re-transmitting (without modifying) the packets re-

ceived from the transmitting node. In A2, the packets to be
transmitted are dropped, and in A3 the payload of the packet is
increased before re-transmitting to the central coordinator. A
detailed analysis of the experimental setup for our simulation
toolchain given in Appendix B.

From the various simulated scenarios we extracted a total
of twenty five network characteristics (s.t., throughput, packet
delays, etc.) to generate instances each associated with some
execution class (i.e., normal, fault, or attack). The set of these
instances yield our complete dataset. A total of 144 instances
were generated after the execution of the simulated scenarios.

In order to choose the percentage split between training
and testing dataset we performed a sensitivity analysis on train-
ing set size and accuracy. We examined percentages of 65%,
70%, 75% and 80% for training datasets, as we aim to keep a
split that will not lead to overfitting of our models. Results
are presented in Table 2. We observe that the training set per-
centage that derives the highest average accuracy (88.22%) is
75%. Based on this observation the evaluation is performed
using this percentage as part of training data, leading the rest
of 25% used as testing data. The experimental cases for evalu-
ation considered in simulation experimental environment are:
Case # 1: Normal Vs Every Fault (N vs F1 F2 F3), Case # 2:
Normal Vs Every Attack (N vs A1 A2 A3), Case # 3: Nor-
mal Vs Every Attack Vs Every Fault (N vs F1 F2 F3 A1 A2
A3). Classification results are presented in Table 3. For each
ML algorithm considered, we list the observed accuracy and
kappa value as a pair (po, k).Additionally, precision and recall metrics for same algo-
rithms and evaluation cases are presented in Table 4 as pairs
(pr, re), as well as their average performance value, in the last
row. We can observe that results are promising as in all four al-
gorithms the average accuracy is above 86%. On average accu-
racy, algorithm J48 slightly outperforms the other algorithms
while Precision and Recall average values for it are 0.906 and
0.896, respectively. NB, is the algorithm with a highest aver-
age precision value of 0.917, but still this is due to a higher
value in Case #1, in the rest of the metrics J48 outperforms the
other algorithms.

We evaluated the class differentiation operator for each al-
gorithm, as defined in Definition 2.1. Table 5 presents such
results for the J48 algorithm and Case #1. A T appears in a
cell if the algorithm can differentiate the two classes corre-
sponding on the row and column of the cell, and F if the al-
gorithm failed to differentiate the two classes. Differentiation
does not apply for states of the same class (in the diagonal, de-
noted by -). For the J48 classifier and Case #1, all instances
were classified correctly except for the Low Energy Fault (F1)
instances which were misclassified as Packet Dropped Failure
(F3) instances and vice-versa. In a similar manner, we have
constructed tables for each of the algorithms and cases con-
sidered.

6. Testbed Implementation & Results
In addition to the simulation framework, we have also de-

veloped a real-time testbed, consisting of real sensing units. In
particular, we used three Raspberry Pi 3 Model B+ connected
via Bluetooth to the three Sensor Tag CC2650 for sensing hu-
midity, temperature values (peripheral nodes), a Macbook Pro
for collecting the transmitted values and running a Wireshark

9

Table 6: Sensitivity Analysis Matrix on Training Set Percent-
age Split on Accuracy of the Classification (Testbed)

CLASSIFICATION ALGORITHM (A)Training
Set (%) J48 NB MLP MLG AVERAGE
65 89.25 89.12 92.14 87.69 89.55
70 89.10 89.20 92.23 86.82 89.34
75 89.64 89.58 92.76 87.33 89.83
80 88.14 89.02 92.32 86.61 89.02

Table 7: Observed Accuracy (po) & kappa value (k) Evalua-
tion Matrix (Testbed Cases)

CLASSIFICATION ALGORITHM (A)
J48

(po, k)
NB

(po, k)
MLP
(po, k)

MLG
(po, k)Case #1 (96.36, 0.94) (92.73, 0.87) (98.18, 0.97) (96.37, 0.93)

Case #2 (95.83, 0.93) (97.92, 0.96) (97.91, 0.96) (91.66, 0.84)
Case #3 (76.71, 0.68) (78.08, 0.70) (82.19, 0.75) (73.97, 0.64)

C
A
S
E Average (89.64, 0.85) (89.58, 0.84) (92.76, 0.89) (87.33, 0.80)

Table 8: Precision (pr) & Recall (re) Evaluation Matrix
(Testbed Cases)

CLASSIFICATION ALGORITHM (A)
J48

(pr, re)
NB

(pr, re)
MLP
(pr, re)

MLG
(pr, re)

Case #1 (0.963, 0.964) (0.929, 0.928) (0.979, 0.978) (0.963, 0.964)
Case #2 (0.974, 0.959) (0.976, 0.975) (0.973, 0.975) (0.933, 0.918)
Case #3 (0.785, 0.769) (0.804, 0.782) (0.911, 0.823) (0.715, 0.735)

C
A
S
E Average (0.907, 0.897) (0.903, 0.895) (0.954, 0.925) (0.870, 0.872)

Table 9: Differentiation Results for J48 & Case #1 (TestBed
Case)

⨁

J48 wNt wF1t wF3t
wNt - T T
wF1t T - F
wF3t T F -

sniffing tool (central node), and an Ubuntu PC to issue the man
in the middle attacks (attacker). We formed a star-based topol-
ogy, as it was introduced in section 2.

For the real time testbed, the abnormality classes imple-
mented for faults and attacks are: Low Energy Failure (F1)
and Packet Dropped Failure (F3) for the set of faulty classes
(F) and Sink Hole Attack (A2), Message Modification (A3)
for the set of attack classes (A). The normal class and scenario
were implemented by having the peripheral nodes (formed by
RPis) to receive humidity and temperature from the sensors
and then generate TCP packets for that measurements in order
to be transmitted to the central node.

The dataset is generated after an inspect is performed on
the extracted TCP packets captured by the Wireshark network
protocol analyser. These are the packets exchanged between
the peripheral nodes and the coordinator node. For the in-
stances generation we only keep, as comma separated values
(csv), parameters of TCP communication which had values
with a large range of variation. Each analysed packet with its
related descriptive characteristics values was associated with
one of the execution classes we considered in this work. Low
Energy Failure (F1) was emulated by interrupting a single pe-
ripheral node’s communication by cutting off its power. Packet
Dropped Failure (F3) was emulated by setting a threshold on

the packet generation procedure indicating the quality of pack-
ets being generated. If the value of a generated packet was
above the threshold, then the packet was transmitted; other-
wise the packet was dropped. To implement the attack classes,
we initiated a Man In the Middle Attack (MITM), where the
attacker interrupts the communication between a peripheral
and the central node by receiving the packets of their com-
munication. This attack was implemented using the Address
Resolution Protocol (ARP) spoofing (poisoning) method that
allows the attacker to alter the ARP tables on the communicat-
ing nodes by sending (spoofed) ARP messages. The purpose
of this attack is to associate the attacker MAC address with the
IP address of another host.

In our implementation the attacker associated its MAC ad-
dress with the default gateway. This attack allows the attacker
to intercept the data frames on the network, to modify the traf-
fic, or stop all traffic entirely. By intercepting the channel be-
tween a peripheral and the central node we emulate the be-
haviour of A2, by stopping all the traffic in the network, and of
A3, bymodifying themeasurements in the packets transmitted.
Using Wireshark, we collected a total of twenty four charac-
teristics (e.g, time sent, origin, destination, protocol etc.) for
each message sent, forming comma separated instances for our
dataset. Each instance is associated with the execution class
emulated at the time the packet was captured. The total amount
of instances we collected for the real time dataset was 589.

Similarly, as in the case of simulation environment dataset,
we performed a sensitivity analysis of the training set size on
the accuracy of the classification. The same percentages for
training data of 65%, 70%, 75% and 80% were considered. Re-
sults are presented in Table 6. We observe that in this evalua-
tion the average accuracy is approximately the same among the
various percentages considered. Even though, 75% for training
data shows the highest average accuracy (89.83%). As a result,
we use 75% of the dataset as training data and the rest 25% of
the dataset as testing data, similarly as in the simulation eval-
uation. Experiments were performed for the following cases:
Case # 1: Normal Vs Every Fault (N vs F1 F3), Case # 2:
Normal Vs Every Attack (N vs A2 A3), Case # 3: Normal Vs
Every Attack Vs Every Fault (N vs F1 F3 A2 A3). Similarly
to the simulation environment, we generate the evaluation ma-
trix using the same supervised ML classification algorithms
the cases mentioned above, and the same evaluation metrics.

Table 7 lists the observed accuracy and kappa value as a
pair (po, k) and Table 8 lists the precision and recall value as
pairs (pr, re). On the average, all algorithms have an accuracy
of above 87%. Moreover, the MLP classifier outperforms ev-
ery other algorithm, on average. In terms of accuracy, kappa
value, precision and recall the average performance values for
MLP are 92.76%, 0.89, 0.954 and 0.925, respectively. MLP
takes advantage of the larger dataset which can be generated
in the testbed environment to train a better model. This also
occurs for some of the other classifiers in some of the cases,
when comparing the simulation results with the testbed results.

We also evaluate the class differentiation operator for each
algorithm and a representative table is presented in Table 9.
Based on this table we observe that F1 and F3 instances are
still misclassicified (as it was the case in the simulation envi-
ronment).

10

7. Classification Results Analysis
This section provides experimental analysis of classifica-

tion results obtained form the previous sections. This analysis
is splitted into two parts. The first part is used for the similar-
ity analysis of abnormality classes (faults, attacks) and the sec-
ond part we conducted a feature based analysis. The analysis is
performed on both experimental datasets (simulated-based and
testbed-based). Experimental classes considered for this anal-
ysis are those in common in both datasets. These are: Normal
(N), Low Energy Failure (F1), Packet Dropped Failure (F3),
Replay Attack (A2) and the third attack of Message Modifica-
tion Attack (A3).

Specifically, in the first part of this analysis (Section 7.1),
we aim to discover the abnormality classes classified in a sim-
ilar way, for a model trained to differentiate between the nor-
mal and a single abnormal class. Abnormality classes that are
classified in similar way indicate pairs that require additional
information (in terms of their described features), in order to
be correctly classified. The second part of the section (Section
7.2) aims to give an inside on the classification performed by
a specific algorithm (MLP), by ranking the datasets features
according to their significant in the classification. To do so,
we perform a features ranking evaluation using two common
features ranking schemes of Gain Ratio and Information Gain.
7.1. Similarity Analysis Of Abnormality Classes

In this first part of our analysis we study how pairs of ab-
normality classes (faults and attacks) can be classified in a sim-
ilar way by an algorithm due to common features they share.
Our experimentation methodology has as follows. We prepare
a training set consisted of normal and a faulty classFi instancesonly. As previously noted, the faulty classes we consider for
this analysis are F1 & F3. Using this training set we then train
a model usingMLP. Evaluation, is performed by using only at-
tack instances from A2 & A3. The model has to classify those
attack instances in one of the available trained classes Normal
or Abnormal denoted by the trained faulty class.

Trained data instances are distributed in classification ar-
eas as specified by the trained model. Experimental results are
presented in Figure 4, where the classification areas are spec-
ified by normal, faulty and attack instances. The blue (placed
in the bottom left area of figure) and red (placed in the top
right area of figure) (marked with symbol ’x’) form the classi-
fication areas of the normal and faulty classes (resp.) in each
scenario. The instances denoted by the "square" symbol show
how the attack class instances are classified. If in a particular
scenario the attack instances are classified as normal or as a
fault instances in both experimental settings (simulation and
testbed – see Figure 4(a)) then either: (a) the attack instances
are classified under the normal class and hence can be differ-
entiated from fault instances in both settings; or, (b) the attack
instances are classified under the fault class and thus the at-
tack class cannot be differentiated from the fault class. Finally,
when the attack instances are classified differently in the two
settings for a particular scenario (i.e. as normal class in the
simulation setting and as attack class in the testbed setting –
see Figure 4(d)), then we conduct further tests to determine
the features that may allow the class differentiation.
NF1 models (Figures 4a,4b): We observe that both attack
class instances (A2&A3) for both datasets are classified in the

classification area of fault F1. As a result, we conclude that the
feature set we considered was not sufficient to differentiate the
two attack classes from F1.
NF3 models (Figures 4c,4d): In this case we can observe
that attack class instances (A2 & A3) are classified in differ-
ent classification areas over simulation and testbed settings. In
particular, instances of classes A2 and A3 are classified un-
der the F3 fault class in the simulation and testbed settings re-
spectively. By closer examination, it appears that A2 instances
could not be differentiated due to lack of TCP features such
as sequence number (SEQ). On the other hand, A3 instances
could not be differentiated due to lack of features describing
global conditions in the network such us Throughput and De-
lay. So we re-evaluated the two scenarios by re-training that
models with less or more features.
NF3A2 Re evaluation: Figure 5 presents results on re evalu-
ation of NF3 model for classifying A2 instances from the sim-
ulation dataset by: (i) adding SEQ feature, (ii) removing global
features and (iii) keeping only the ten most significant features.
In all three experiments, results are improved as A2 instances
are differentiated from F3 and classified in normal classifica-
tion area.
NF3A3 Re evaluation: Figure 6 shows results on re-training
of NF3 model for classifying A3 instances from the testbed
dataset by adding: (i) Delay feature, (ii) Throughput Feature
and (iii) Delay and Throughput Feature. In all three experi-
ments, results are not improved as A2 instances are not differ-
entiated by F3 and classified to that classification area. Thus,
extra features might need to be considered in order to reach a
differentiation between those classes (F3 & A3). Similar ex-
periments can be done over the same experimental settings by
using either a different classification algorithm or by adding or
removing datasets features.
7.2. Feature Based Analysis

In this section, we perform an evaluation on the signif-
icance of features in respect to the classification performed
over the evaluation cases of our datasets in both settings, using
the MLP classification algorithm. Before we step into the ob-
tained results, we provide a description of the feature ranking
schemes used for evaluation, and how this was conducted. the
feature ranking schemes used are Gain Ratio and Information
Gain. Both of them, rank the significance of a feature by com-
puting how much it reduce the entropy of the predicted class.
The range of entropy value is based on the number of classes
under which the evaluation is performed. By having, the rank-
ing value from both schemes we compute an average for each
feature and we sort this average value in order to derived the
five most significant features of the evaluation cases for both
datasets.

Experimental cases used for evaluation are: Case # 1: Nor-
mal Vs Every Fault (N vs F1 F3), Case # 2: Normal Vs Every
Attack (N vs A2 A3), Case # 3: Normal Vs Every Attack Vs
Every Fault (N vs F1 F3 A2 A3). Figure ?? shows this rank-
ing charts performed over the experimental cases and datasets,
while top five features extracted per case and dataset are re-
ported in Table 10. Based on each feature characteristic and
following the ranking charts presented in Figure ?? the follow-
ing remarks can be conducted, on the way the differentiation

11

N
F1
A2

SIMULATION
N
F1
A2

TESTBED

(a)

N
F1
A3

N
F1
A3

(b)

N
F3
A2

N
F3
A2

(c)

N
F3
A3

N
F3
A3

(d)
Figure 4: Simulation (Left Column) & Testbed (Right Column) Classification Areas for classifying attack instances on models
trained with Normal and a Fault class. (a) Classifying A2 instances on N & F1 model (b) Classifying A3 instances on N & F1
model (c) Classifying A2 instances on N & F3 model (d) Classifying A3 instances on N & F3 model

12

N
F3
A2

N
F3
A2

N
F3
A2

(i)

(ii)

(iii)

Figure 5: Classification Results on reevaluation of NF3 model
(Simulation Dataset) Figure 4c, with (i) SEQ feature addition
(ii) Global Features Removal (iii) TOP 10 Features

task is performed for the evaluation cases of both datasets:
• Case #1 (Figure 7a): For simulation dataset instances,

differentiation between normal and faulty classes is per-
formed by focusing on features such as traffic generated,
sent and dropped data, while also on channel character-
istics like overall delay in the network. For the Testbed
dataset differentiation is performed based on time-based
features such as the relative time of each frame and the
round trip time, similar to the delay feature of simulation
dataset.

• Case #2 (Figure 7b): For simulation dataset instances,
differentiation between normal and attack classes is per-
formed on features related to the traffic generated, sent

N
F3
A2

(i)

N
F3
A2

(ii)

N
F3
A2

(iii)

Figure 6: Classification Results on reevaluation of NF3 model
(Testbed Dataset) Figure 4d, (i) Delay (ii) Throughput (iii) De-
lay & Throughput

and received by the nodes of the network. For the testbed
dataset instances, differentiation task is derived by ex-
amining time related features such as round trip time and
relative time, as well as the number of frames, similar to
the throughput feature of simulation dataset.

• Case #3 (Figure 7c): For simulation dataset instances,
the differentiation performed over normal, attack and the
fault classes is mainly performed by focusing on node
features such as the traffic generated, packets received
and dropped. For the Testbed dataset, differentiation can
is performed by examining time related features such as
round trip time, relative time, and frame number, similar
to traffic generated feature of the simulation dataset.13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC_DATA_SENT_MAC

AC_TRAFFIC_DROPPED_EN_ROUTE_APPL

AC_TRAFFIC_SENT_APPL

ESI_DATA_RECEIVED_MAC

ESI_THROUGHPUT_MAC

ESI_TRAFFIC_RECEIVED_APPL

GLOBAL_DATA_RECEIVED_MAC

GLOBAL_DATA_SENT_MAC

GLOBAL_DELAY_MAC

GLOBAL_E2EDELAY_APPL

GLOBAL_MEDIAACCESSDELAY_MAC

GLOBAL_THROUGHPUT_MAC

GLOBAL_TRAFFIC_RECEIVED_APPL

GLOBAL_TRAFFIC_SENT_APPL

ENTROPY REDUCTION

FE
AT

U
R

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TCP.PORT

TCP.SEQ

TCP.NXTSEQ

TCP.ACK

TCP.WINDOW_SIZE_VALUE

TCP.WINDOW_SIZE

TCP.OPTIONS.TIMESTAMP.TSVAL

TCP.OPTIONS.TIMESTAMP.TSECR

TCP.TIME_RELATIVE

TCP.ANALYSIS.INITIAL_RTT

TCP.WINDOW_SIZE_SCALEFACTOR

FRAME.TIME_RELATIVE

FRAME.NUMBER

TCP.SRCPORT

TCP.DSTPORT

ENTROPY REDUCTION

FE
AT

U
R

E

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC_DATA_RECEIVED_MAC

AC_MEDIAACCESSDELAY_MAC

AC_THROUGHPUT_MAC

AC_TRAFFIC_SENT_APPL

ESI_DATA_RECEIVED_MAC

ESI_DATA_SENT_MAC

ESI_THROUGHPUT_MAC

ESI_TRAFFIC_RECEIVED_APPL

GLOBAL_DATA_RECEIVED_MAC

GLOBAL_DATA_SENT_MAC

GLOBAL_DELAY_MAC

GLOBAL_E2EDELAY_APPL

GLOBAL_MEDIAACCESSDELAY_MAC

GLOBAL_THROUGHPUT_MAC

GLOBAL_TRAFFIC_RECEIVED_APPL

GLOBAL_TRAFFIC_SENT_APPL

ENTROPY REDUCTION

FE
AT

U
R

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FRAME.TIME_DELTA

TCP.PORT

TCP.SEQ

TCP.NXTSEQ

TCP.ACK

TCP.WINDOW_SIZE_VALUE

TCP.WINDOW_SIZE

TCP.OPTIONS.TIMESTAMP.TSVAL

TCP.OPTIONS.TIMESTAMP.TSECR

TCP.TIME_RELATIVE

TCP.ANALYSIS.INITIAL_RTT

TCP.WINDOW_SIZE_SCALEFACTOR

FRAME.TIME_RELATIVE

FRAME.NUMBER

TCP.SRCPORT

TCP.DSTPORT

ENTROPY REDUCTION

FE
AT
U
R
E

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

AC_DATA_RECEIVED_MAC

AC_DATA_SENT_MAC

AC_MEDIAACCESSDELAY_MAC

AC_THROUGHPUT_MAC

AC_TRAFFIC_DROPPED_EN_ROUTE_APPL

AC_TRAFFIC_SENT_APPL

ESI_DATA_RECEIVED_MAC

ESI_DATA_SENT_MAC

ESI_THROUGHPUT_MAC

ESI_TRAFFIC_RECEIVED_APPL

GLOBAL_DATA_RECEIVED_MAC

GLOBAL_DATA_SENT_MAC

GLOBAL_DELAY_MAC

GLOBAL_E2EDELAY_APPL

GLOBAL_MEDIAACCESSDELAY_MAC

GLOBAL_THROUGHPUT_MAC

GLOBAL_TRAFFIC_RECEIVED_APPL

GLOBAL_TRAFFIC_SENT_APPL

ENTROPY REDUCTION

FE
AT

U
R

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

FRAME.TIME_DELTA

TCP.PORT

TCP.SEQ

TCP.NXTSEQ

TCP.ACK

TCP.WINDOW_SIZE_VALUE

TCP.WINDOW_SIZE

TCP.OPTIONS.TIMESTAMP.TSVAL

TCP.OPTIONS.TIMESTAMP.TSECR

FRAME.TIME_DELTA_DISPLAYED

TCP.TIME_RELATIVE

TCP.TIME_DELTA

TCP.ANALYSIS.INITIAL_RTT

TCP.WINDOW_SIZE_SCALEFACTOR

FRAME.TIME_RELATIVE

FRAME.NUMBER

TCP.SRCPORT

TCP.DSTPORT

ENTROPY REDUCTION

FE
AT

U
R

E

(c) Features Ranking using Gain Ratio (Red/Bar Below) & Information Gain (Green/Bar Above) Over Cases For Simulation Dataset (SD Left
Column) & Testbed Dataset (TD Right Column). (a) Case #1 (Normal Vs Faults), (b) Case #2 (Normal Vs Attacks), (c) Case #3 (Normal Vs
Faults Vs Attacks)

14

Table 10: TOP 5 Features Per Dataset Case
Simulation Dataset (SD) Testbed Dataset (TD)

Feature Average
Value Feature Average

Value
Case #1

AC DATA SENT MAC 1 TCP ANALYSIS INITIAL RTT 0.8645
AC TRAFFIC DROPPED 0.90565 FRAME TIME RELATIVE 0.7855
AC TRAFFIC SENT APPL 0.90565 TCP TIME RELATIVE 0.7475
GLOBAL DELAY MAC 0.74495 TSVAL 0.644

GLOBAL E2EDELAY APPL 0.71985 TSECR 0.643
Case #2

AC TRAFFIC SENT APPL 0.9055 TIME RELATIVE 0.86245
AC THROUGHPUT MAC 0.772 TCP ANALYSIS INITIAL RTT 0.75755
ESI DATA SENT MAC 0.772 TCP TIME RELATIVE 0.62555

ESI TRAFFIC RECEIVED APPL 0.772 FRAME NUMBER 0.59465
AC DATA RECEIVED MAC 0.77 TSVAL 0.52905

Case #3
AC DATA SENT MAC 0.9926 TCP ANALYSIS INITIAL RTT 1.0442

ESI THROUGHPUT MAC 0.97135 FRAME TIME RELATIVE 0.9989
AC TRAFFIC SENT APPL 0.97015 TSVAL 0.8555

GLOBAL THROUGHPUT MAC 0.9382 TSECR 0.8461
AC TRAFFIC DROPPED 0.8748 FRAME NUMBER 0.8257

We noticed that some traffic features (e.g. THROUGH-
PUT, FRAME NUMBER) and delay features (e.g. DELAY,
RTT) are significant and contribute to the differentiation task
in the same cases and for both datasets (Simulation&Testbed).
There are also features, such as Traffic Dropped in simulation
dataset and Relative Time in testbed dataset, that are signifi-
cant for the differentiation task for the one dataset but not the
other. This was expected as the conditions of the experiments
differ from simulation to testbed.

There are also features, such as Traffic Dropped in sim-
ulation dataset and Relative Time in testbed dataset, that are
significant for the differentiation task for the one dataset but
not the other. This was expected as the conditions of the ex-
periments differ from simulation to testbed. Finally based on
the top five features per case and dataset, given in Table 10, we
perform a dimensional reduction on the number of the features
of both datasets in order to reevaluate the classification per-
formance of the algorithms (J48, MLG, NB, MLP), in terms
of their observed accuracy. Observed accuracy was signifi-
cantly improved in all the four algorithms. For the most impor-
tant case, (Case #3), the accuracy was improved for simulation
dataset into 98.00% for all classification algorithms while for
the same case and testbed dataset the accuracywas improved to
87.0748% for J48 andMLP and to 86.395% for NB andMLG.

8. Conclusion
This paper presents results on the differentiation task be-

tween abnormalities affecting an EASH system. The abnor-
malities examined in this work can be generated by either fault
components or network attacks. The relation between these
abnormality classes and their effects on the communication
channel of the system was studied and a differentiation op-
erator has been defined. We used ML-based approaches to
achieve differentiation through classification. Our obtained re-
sults show that the use of supervised machine learning algo-
rithms is a promising approach as it successfully achieves to
differentiate between faulty and attack classes with high accu-
racy rate. Misclassifications for cases with similar impact on
the network where further analysed, in both experimental set-
tings (simulation and real-time testbed), for the two abnormal
classes as well as the considered features. Our analysis sug-
gests that classification results can be further improved from
the addition/removal of features from the descriptive datasets.

Acknowledgements
This work has been supported by the European Union’s

Horizon 2020 research and innovation programme under grant
agreement No 739551 (KIOS CoE) and from of the Republic
of Cyprus through the Directorate General for European Pro-
grammes, Coordination and Development.

References
[1] L. Shi, Q. Dai, and Y. Ni, “Cyber–physical interactions in power sys-

tems: A review of models, methods, and applications,” Electric Power
Systems Research, vol. 163, pp. 396–412, 2018.

[2] G. Wen, W. Yu, X. Yu, and J. Lü, “Complex cyber-physical networks:
From cybersecurity to security control,” Journal of Systems Science and
Complexity, vol. 30, no. 1, pp. 46–67, 2017.

[3] J. R. Lindsay, “Stuxnet and the limits of cyber warfare,” Security Studies,
vol. 22, no. 3, pp. 365–404, 2013.

[4] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[5] E. E. Miciolino, R. Setola, G. Bernieri, S. Panzieri, F. Pascucci, and
M. M. Polycarpou, “Fault diagnosis and network anomaly detection in
water infrastructures,” IEEE Design & Test, vol. 34, no. 4, pp. 44–51,
2017.

[6] G. Cardoso, J. G. Rolim, and H. H. Zurn, “Identifying the primary fault
section after contingencies in bulk power systems,” IEEE Transactions
on Power Delivery, vol. 23, no. 3, pp. 1335–1342, 2008.

[7] D. Kim, S. C. Han, Y. Lin, B. H. Kang, and S. Lee, “Rdr-based knowl-
edge based system to the failure detection in industrial cyber physical
systems,” Knowledge-Based Systems, vol. 150, pp. 1–13, 2018.

[8] R. Mahanty and P. D. Gupta, “Application of rbf neural network to
fault classification and location in transmission lines,” IEE Proceedings-
Generation, Transmission and Distribution, vol. 151, no. 2, pp. 201–
212, 2004.

[9] D. Thukaram, H. Khincha, andH. Vijaynarasimha, “Artificial neural net-
work and support vector machine approach for locating faults in radial
distribution systems,” IEEE Transactions on Power Delivery, vol. 20,
no. 2, pp. 710–721, 2005.

[10] A. D. Chhokra, N. Mahadevan, A. Dubey, S. Hasan, D. Balasubra-
manian, and G. Karsai, “Hierarchical reasoning about faults in cyber-
physical energy systems using temporal causal diagrams,” System, vol. 1,
no. S1, p. P1, 2017.

[11] H. Kang, J. Cheng, I. Kim, and G. Vachtsevanos, “An application of
fuzzy logic and dempster-shafer theory to failure detection and identifi-
cation,” in [1991] Proceedings of the 30th IEEEConference on Decision
and Control. IEEE, 1991, pp. 1555–1560.

[12] C. Konstantinou, M. Maniatakos, F. Saqib, S. Hu, J. Plusquellic, and
Y. Jin, “Cyber-physical systems: A security perspective,” in Test Sym-
posium (ETS), 2015 20th IEEE European. IEEE, 2015, pp. 1–8.

[13] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry et al.,
“Challenges for securing cyber physical systems,” inWorkshop on future
directions in cyber-physical systems security, vol. 5, 2009.

[14] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in 2008 The 28th International Confer-
ence on Distributed Computing Systems Workshops. IEEE, 2008, pp.
495–500.

[15] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid and
smart home security: Issues, challenges and countermeasures,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1933–1954,
2014.

[16] D. I. Urbina, J. Giraldo, A. A. Cardenas, J. Valente, M. Faisal, N. O.
Tippenhauer, J. Ruths, R. Candell, and H. Sandberg, Survey and new
directions for physics-based attack detection in control systems. US
Department of Commerce, NIST, 2016.

[17] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, p. 55, 2014.

[18] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cy-
ber physical systems using recurrent neural networks,” in 2017 IEEE
18th International Symposium on High Assurance Systems Engineering
(HASE). IEEE, 2017, pp. 140–145.

[19] B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
15

survey of intrusion detection in internet of things,” Journal of Network
and Computer Applications, vol. 84, pp. 25–37, 2017.

[20] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identifica-
tion in cyber-physical systems,” IEEE Transactions on Automatic Con-
trol, vol. 58, no. 11, pp. 2715–2729, 2013.

[21] Y. Fujita, T. Namerikawa, and K. Uchida, “Cyber attack detection and
faults diagnosis in power networks by using state fault diagnosis matrix,”
in 2013 European Control Conference (ECC). IEEE, 2013, pp. 398–
403.

[22] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and at-
tacks including false data injection attack in smart grid using kalman
filter,” IEEE transactions on control of network systems, vol. 1, no. 4,
pp. 370–379, 2014.

[23] S. Guo, Z. Zhong, and T. He, “Find: faulty node detection for wireless
sensor networks,” in Proceedings of the 7th ACM conference on embed-
ded networked sensor systems, 2009, pp. 253–266.

[24] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” Emerging artificial
intelligence applications in computer engineering, vol. 160, pp. 3–24,
2007.

[25] S. K. Murthy, “Automatic construction of decision trees from data:
A multi-disciplinary survey,” Data mining and knowledge discovery,
vol. 2, no. 4, pp. 345–389, 1998.

[26] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167,
1998.

[27] F. Jensen, “An introduction to bayesian networks springer,” New York,
1996.

[28] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, “Decision tree
analysis on j48 algorithm for data mining,” Proceedings of International
Journal of Advanced Research in Computer Science and Software Engi-
neering, vol. 3, no. 6, 2013.

[29] A. Singh, N. Thakur, and A. Sharma, “A review of supervised machine
learning algorithms,” in 2016 3rd International Conference on Comput-
ing for Sustainable Global Development (INDIACom). IEEE, 2016,
pp. 1310–1315.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning inter-
nal representations by error propagation,” California Univ San Diego
La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[31] D. Böhning, “Multinomial logistic regression algorithm,” Annals of the
institute of Statistical Mathematics, vol. 44, no. 1, pp. 197–200, 1992.

[32] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

Georgios Tertytchny is a PhD student at the De-
partment of Electrical and Computer Engineering
at the University of Cyprus. He is also a re-
search assistant at the KIOS Research and Innova-
tion Center of Excellence, also at the University of
Cyprus. Georgios has a B.Sc and M.Sc in Com-
puter Science form the Computer Science depart-
ment of University of Cyprus. His research inter-
ests include but not limited to Cyber Physical Sys-
tems Security, Machine Learning, Data Mining,
Model-based Systems Verification (Formal Meth-
ods) and Network Security.

Nicolas Nicolaou is a Senior Research Sci-
entist and a co-founder of Algolysis Ltd (
www.algolysis.com), an R&D startup which op-
erates in Cyprus. His main research interests fo-
cus on the analysis, design and implementation of
practical, robust and secure distributed and par-
allel algorithms, design and implementation of
algorithms for consistent distributed storage sys-
tems, blockchains and distributed ledgers, ad-hoc
mobile and sensor networks, and security evalua-
tion and exploitation of critical computing equip-
ment (including voting technologies). His re-
search was published in top conferences and jour-
nals in the fields of distributed computing, net-

works and security. For his work he received fund-
ing from the Cyprus Research Promotion Foun-
dation (2010-2011 and 2019-2021) and secured
an Intra-European Marie-Curie Fellowship (2014-
2016). Previously he hold positions as a Se-
nior Researcher in the KIOS Research and Inno-
vation Center of Excellence at the University of
Cyprus (2017-2019), as a short-term scholar the
CSAIL lab at the Massachusetts Institute of Tech-
nology (summer 2017), as a Marie Curie Fellow
at IMDEA Networks Research Institute in Madrid
(2014-2016) and as a Visiting Lecturer in various
Universities in Cyprus and abroad.

Maria K. Michael is an Associate Professor at
the Department of Electrical and Computer Engi-
neering at the University of Cyprus. She is also
a founding member and the Director of Educa-
tion and Training at the KIOS Research and In-
novation Center of Excellence, also at the Uni-
versity of Cyprus. Maria has a Ph.D. degree
from the ECE Dept of Southern Illinois Univer-
sity, Carbondale-USA. Her research expertise falls
in the areas of test and reliability of digital circuits
and chip-level architectures, with emphasis on em-
bedded and general-purpose multicore systems re-
liability and on-line testing, dynamic/intelligent
parallel CAD algorithms for automatic testing and
fault simulation, intelligent methods for design,
test and fault tolerance, delay test and emerging
fault models. Recent research interests expand
to design and optimisation of embedded systems
and other chip-level architectures, dynamic self-
detecting and self-healing architectures, and de-
pendability and security in the hardware backbone
of cyber-physical systems. She has published nu-
merous papers in high-caliber refereed journals and
international conferences and she serves on steer-
ing, organising and program committees of several
IEEE and ACM conferences in the areas of test and
reliability. She is a co-recipient of a Best Paper
Award of MSE 2009. She is a member of the IEEE
and the ACM.

16

Table 11: J48 Parameters & Selected Values
Parameter Use Value

1 batchSize The preferred number of instances to process
if batch prediction is being performed 100

2 binarySplits Whether to use binary splits on nominal attributes
when building the tree false

3 collapseTree Whether parts are removed that do not reduce
training error true

4 confidenceFactor The confidence factor used for pruning
(smaller values incur more pruning) 0.15

5 debug If set to true, classifier may output additional
info to the console false

6 doNotCheckCapabilities If set, classifier capabilities are not checked before
classifier is built (use with caution to reduce runtime) false

7 doNotMakeSplitPointActualValue If true, the split point is not relocated to an actual data value false
8 minNumObj The minimum number of instances per leaf 2
9 numDecimalPlaces The number of decimal places to be used for the output

of number in the model 2
10 numFolds Determines the amount of data used

for reduced-error prunning 3
11 reducedErrorPruning Whether reduced - error pruning is used instead of C false
12 saveInstanceData Whether to save the training data for visualization false
13 seed The seed used for randomizing the data when

reduced-error pruning is used 0
14 subtreeRaising Whether to consider the subtree raising operation when pruning true
15 unpruned Whether prunning is performed true
16 useLaplace Whether counts at leaves are smoothed based on Laplace false
17 useMDLcorrection Whether MDL correction is used when finding splits

on numeric attributes false

A. Selected Algorithms Execution Parameters -
Values

A.1. J48
Execution parameters for J48 are presented in Table 11.

Below we explain the values selected for each parameter:
1. batchSize: As we are not using batch prediction, this

value will be set to the default value of one hundred
(100).

2. binarySplits: The process of binary splitting, grows the
tree by considering one nominal value versus all other
nominal values instead of considering a split on each
nominal value individually. This results in a tree where
there are only two branches from any node. This method
is helpful in cases of large datasets and thus doesn’t ef-
fect the performance of the algorithm in the case of our
dataset and thus the value is set to false, meaning that
we do not use it.

3. collapseTree: As the removal of parts that do not reduce
the training error helps the performance of algorithm to
build a smaller model with the same accuracy we set this
value to be true.

4. confidenceFactor: This determines how aggressive the
pruning process will be. The higher this value, the more
confident you are that the data you are learning from is a
good representation of all possible events, and therefore
the less pruning that will occur. Smaller values induce

more pruning. This significantly affects classifier per-
formance. As the percentage split, for the training and
testing instances is performed randomly the confidence
in the learning instances is not high enough and thus we
are using a small value of (0.15).

5. debug: This does not affect classifier performance thus
we use the default value of false.

6. doNotCheckCapabilities: As the execution of our al-
gorithms doesn’t take much time due to dataset size, we
use the false value where the capabilities are checked in
advance.

7. doNotMakeSplitPointActualValue: We need the relo-
cation to be done on the actual value of data and thus the
value of this attribute is set to false.

8. minNumObj: This helps to control over fitting in our
problem and the number defined by the tool to be used
is two (2).

9. numDecimalPlaces: Changing this will not affect clas-
sifier performance, thus we are using the default value
of two (2).

10. numFolds: This value determines howmuch of the data
will be used for pruned. Default value of three (3) means
that the one third of the data are used for pruned and the
other two for growing the tree. A smaller value than
three will increase the over fitting in the problem and
thus the default value is selected to be used.17

Table 12: NaiveBayes (NB) Parameters & Selected Values
Parameter Use Value

1 batchSize The preferred number of instances to process
if batch prediction is being performed 100

2 debug If set to true, classifier may output additional info to the console false
3 displayModelInOldFormat Use old format for model output false
4 doNotCheckCapabilities If set, classifier capabilities are not checked

before classifier is built (use with caution to reduce run time) false
5 numDecimalPlaces The number of decimal places to be used for the output

of number in the model 2
6 useKernelEstimator Use a kernel estimator for numeric attributes rather

than a normal distribution true
7 useSupervisedDiscretization Use supervised discretization to convert numeric

attributes to nominal ones true

11. reducedErrorPruning: Reduced error pruning is an
alternative algorithm for pruning that focuses on mini-
mizing the statistical error of the tree, instead of the mis-
classification rate. The performance of the classification
is not altered and thus we are not using it by setting its
value to false.

12. saveInstanceData: Changing this will not affect classi-
fier performance, thus we use the default value of false.

13. seed: This value is related with the reducedErrorPrun-
ning value and if the value of reducedErrorPrunning is
set to be false, this value needs to be zero (0).

14. subtreeRaising: This is a specific method of pruning
whereby a whole set of branches further down the tree
are moved up to replace branches that were grown above
it. It should remain true.

15. unpruned: We have a small dataset and as we need to
avoid, over fitting for our model pruning seems to be
useful as it educe the risk of over fitting to the training
data. That’s why we set the value to be true.

16. useLaplace: Laplacian smoothing, add a certain num-
ber to all instances in order to eliminate circumstances
that are statistically undesirable, such as encountering
the number zero. This value is used in the case of pre-
dicting probabilities and thus in our case should be false.

17. useMDLcorrection: This does not affect classifier per-
formance and thus we use the default value of false.

A.2. NaiveBayes (NB)
Execution parameters for NB are presented in Table 12.

Below we explain the values selected for each parameter:
1. batchSize: As we are not using batch prediction, this

value will be set to the default value of one hundred
(100).

2. debug: This does not affect classifier performance and
thus we use the default value of false.

3. displayModelInOldFormat: This does not affect clas-
sifier performance and thus we use the default value of
false.

4. doNotCheckCapabilities: This does not affect classi-
fier performance and thus we use the default value of
false.

5. numDecimalPlaces: Changing this will not affect clas-
sifier performance, thus we are using the default value
of two (2).

6. useKernelEstimator: In NaiveBayes classification al-
gorithm, when the predictors are non binary there is a
need to describe the prior probability other than simply
counting. This can be done by two (2) different methods.
The first one is by model prior probabilities according a
normal distribution or using kernel estimators. In cases
where we cannot make assumptions about the normal-
ity of this probability the kernel function is used. As we
cannot make assumptions about the prior probability the
next best thing that can be applied in our case is kernel
estimators and thus the value of this attribute is set to
true.

7. useSupervisedDiscretization: Discretisation can be re-
ally helpful in the case of continuous nominal variables.
As our attributes are only nominal we use discretisation
and the value is set to true.

A.2.1. Multilayered Perceptron (MLP)
Execution parameters for MLP are presented in Table 13.

Below we explain the values selected for each parameter:
1. GUI: This does not affect classifier performance and

thus we use the default value of false.
2. autoBuild: This does not affect classifier performance

and thus we use the default value of false.
3. batchSize: As we are not using batch prediction, this

value will be set to the default value of one hundred
(100).

4. debug: This does not affect classifier performance and
thus we use the default value of false.

5. decay: Learning rate decay, improves classifier perfor-
mance in the case of a small datasets for training, as if
the learning rate is kept constant and with a high value,
the classifier will just learn the instances and not how to
generalise. Thus we set the value to true.18

Table 13: Multilayered Perceptron (MLP) Parameters & Selected Values
Parameter Use Value
1 GUI Brings up a GUI interface false
2 autoBuild Adds and connects up hidden layers in the network false
3 batchSize The preferred number of instances to process

if batch prediction is being performed 100
4 debug If set to true, classifier may output additional

info to the console false
5 decay This will cause the learning rate to decrease true
6 doNotCheckCapabilities If set, classifier capabilities are not checked before

classifier is built (use with caution to reduce runtime) false
7 hiddenLayers This defines the hiddenLayers of the network 2
8 learningRate The amount the weights are updated 0.1
9 momentum Momentum applied to the weights during updating 0.05
10 nominalToBinaryFilter This will preprocess the instances with the filter true
11 normalizeAttributes This will normalize attributes true
12 normalizeNumericClass This will normalize the predicted class if it is numeric true
13 numDecimalPlaces The number of decimal places to be used for the output

of number in the model 2
14 reset This will allow the network to reset with a lower

learning rate true
15 seed The seed used to initialise the random number generator 0
16 trainingTime The number of epochs to train through 50
17 validationSetSize The percentage size of the validation set 0
18 validationThreshold Used to terminate validation testing 0

6. doNotCheckCapabilities: This does not affect classi-
fier performance and thus we use the default value of
false.

7. hiddenLayers: The number of hidden layers in the net-
work, is related with the number of the predictive classes
and whether those can be linearly separable. Also, more
hidden layers made the classifier model more compli-
cated. The appropriate value is computed by experimen-
tal evaluation adding hidden layers to the model until we
find that an extra layer add complexity and doesn’t offer
to accuracy improvement. This was done by setting the
value to be two (2).

8. learningRate: The learning rate is how quickly a net-
work abandons old beliefs for new ones. This value
must be small enough so the model to be trained with-
out memorising only the instances (happens with a small
dataset and high learning rate). For that reason, we set
the learning rate to be (0.1).

9. momentum: Momentumuse is similar with that of learning-
Rate. A smaller value than learning rate is required in
that case and thus we use (0.05).

10. nominalToBinaryFilter: Binary filtering improves the
performance of the classifier when the training is done
using the sigmoid function. As this is used by default
from the classifier in WEKA we are using the default
value of true.

11. normalizeAttributes: Exactly like nominalToBinary-
Filter normalisation of attributes, improves the perfor-
mance of the classifier and thus the recommended value
of true is used.

12. normalizeNumericClass: Exactly like nominalToBi-
naryFilter normalisation of attributes, improves the per-
formance of the classifier and thus the recommended
value of true is used.

13. numDecimalPlaces: Changing this will not affect clas-
sifier performance, thus we are using the default value
of two (2)

14. reset: Resetting learning rate to a lower value, helps to
avoid over fitting in the case of not much training in-
stances. By that, we set this value to be true.

15. seed: Changing this will not affect classifier performance,
thus we are using the default value of zero (0).

16. trainingTime: A large number of epochs can lead the
classifier to over fitting when the training instances are
not much enough. For that reason we are only using fifty
(50) epochs.

17. validationSetSize: The validation set size is set to zero
(0), as we only experiment using the testing set in the
evaluation.

18. validationThreshold: Similar as validationSetSize, this
value is set to zero (0).

A.3. Multinomial Logistic Regression (MLG)
Execution parameters for MLG are presented in Table 14.

Below we explain the values selected for each parameter:
1. batchSize: As we are not using batch prediction, this

value will be set to the default value of one hundred
(100).

19

Table 14: Multinomial Logistic Regression (Logistic) Parameters & Selected Values
Parameter Use Value

1 batchSize The preferred number of instances to process
if batch prediction is being performed 100

2 debug If set to true, classifier may output additional info to the console false
3 doNotCheckCapabilities If set, classifier capabilities are not checked

before classifier is built (use with caution to reduce run time) false
4 maxIts Maximum number of iterations to be performed -1
5 numDecimalPlaces The number of decimal places to be used for the output

of number in the model 2
6 ridge Set the ridge value in the log-likelihood 1.0E-8
7 ruseConjugateGradientDescent Use conjugate gradient descent rather than BFGS updates

faster for problems with many parameters false

2. debug: This does not affect classifier performance and
thus we use the default value of false.

3. doNotCheckCapabilities: This does not affect classi-
fier performance and thus we use the default value of
false.

4. maxIts: Maximum iteration refers to how much cross-
validation iteration are performed until the maximum
likelihood estimator ridge is reached. As we need to
fully optimised the values we have, we set that value
being to minus one (-1), where in the tool that means
that it will continue till feature class weights are fully
optimised.

5. numDecimalPlaces: This does not affect classifier per-
formance and thus we use the value of two (2).

6. ridge: The higher the value the closer to zero are the pe-
nalised maximum likelihood estimates. For that reason
we use a small value of 1.0E-8 (default one) as we don’t
need to penalise the maximum likelihood estimates.

7. useConjugateGradientDescent: Our dataset does not
have many parameters and thus the use of conjugate gra-
dient descent will not improve the performance of the
classifier. For that reason we are using the default BFGS
updates and the value is then set to false.

B. Simulation Setup
Our simulated setup was constructed in OPNET simula-

tor. Zigbee protocol is used for the communication between
peripheral nodes and the central coordinator. The simulated
network architecture adapted is the one described in Section
2.
B.1. Simulated Classes

There are simulated scenarios for each class we study, as
those are described in subsection 4.1. Peripheral devices are
configured to report measurements to the central coordinator
every sixty seconds (one minute). This central coordinator is
denoted by Energy Services Interface (ESI), which integrates
a Smart Meter with intelligent control units.

Figure 8: Simulation Architecture

B.2. Normal Class
In normal behaviour nodes capture energy consumption of

their monitoring element and transmit packets to the central
node with no attacks or system faults, affecting a node or the
communication between a node and the central node. The nor-
mal class simulated scenario architecture is presented in Figure
8. Sensor node configuration is presented in Figure 9. During
their execution the scenarios are properly configured in a way
that the number of active nodes to be between four to six. Over-
all, the peripheral IoT enabled devices that are used for mea-
surements transmission and monitoring are ESI, PHEV_PEV,
AC, Appliances, Lights and Home Display. The same set of
devices is also used in the case of faulty and attack classes sce-
narios.
B.3. Faulty Classes

In faulty classes scenarios the network architecture is the
same as the one presented in Figure 8. The same set of de-
vices is used, with the only change being the introduction of
the faulty AC node denoted by AC_F. As per the faulty class
that is used to simulate a scenario the parameters of AC_F are
changed in order to simulate the actual faulty class. The pa-
rameters configuration for AC_F, in each faulty class are given
in each subsection.

20

Figure 9: Sensor Node Parameters (Normal Class Scenarios)

Figure 10: ESI Node Parameters (Low Energy Scenario)

B.3.1. Low Energy Failure (F1)
In this faulty class, the faulty sensor’s energy (power) falls

below an acceptance threshold. This resulting into packets
transmittion that might lead to drop by the central coordinator.
Due to the small distances, defined in the simulated scenarios
the transmitting power value need to be set to zero (0), as this
will let the sensor to use it’s inherent energy and not any addi-
tional one for packet generation and transmittion. Figures 10
and 11 denotes this execution parameters, for the central coor-
dinator and the faulty AC_F node. For the rest of the sensing

Figure 11: AC Faulty Node Parameters (Low Energy Sce-
nario)

Figure 12: ESI Node Parameters (Routing Failure Scenario)

devices the configuration does not change.
B.3.2. Routing Failure (F2)

We simulate the routing failure class, by interfering the
routing tables of the faulty node. This tables are frequently
updated during a network operation and in our simulation we
simulate the fault by altering the routing table parameters of
AC_F faulty node during the simulation execution. This also
affects in coordination the transmittion of packets to the receiv-
ing end. Both execution parameters for faulty node and the
central coordinator are presented in Figures 12 and 13, respec-
tively. Execution parameters for the rest of the nodes remained
unchanged.
B.3.3. Packet Drooped Failure (F3)

Packet Drooped Failure describes the faulty class, where
generated packets at sender experience additional noise that
lead to not readable packets by receiver. The additional noise
affects the SNR quality at the sender and lead to bit mistakes

21

Figure 13: AC Faulty Node Parameters (Routing Failure Sce-
nario)

Figure 14: ESI Node Parameters (Packet Drooped Failure Sce-
nario)

in the packets. For the simulation the additional noise is mod-
elled in both sender and receiver. For the sender the fault is
modelled by altering the Transmit Power, to low value and
in the receiver via the Packet-Reception-Power Threshold that
defines receiver sensitivity in dBm. The packets that does not
satisfy this lower threshold are not extracted by receiver and
are dropped. Parameters configuration’s for both the faulty
node and the central coordinator are presented in Figures 14
and 15, respectively.
B.4. Attack Classes

The simulated architecture displayed in Figure 8 in changed
in the attack classes, simulation scenarios as we had the intro-
duction of an additional device, this of the attacker. The at-
tacker in this simulations will be a successful MITM device,
that stands in the middle of the communication between pe-
ripheral node (AC) and central coordinator (ESI). Based on

Figure 15: AC Faulty Node Parameters (Packet Drooped Fail-
ure Scenario)

Figure 16: AC Node Parameters (Replay Attack Scenario)

the simulated attack class this attacker is differently config-
ured and has a different name. In all the attack scenarios that
are simulated, the successful MITM interruption of the com-
munication between the sender (AC) and the receiver (ESI),
lead to change on the simulated traffic configurations of AC.
The actual configuration parameters for both AC and attacker
node are described in the description of each attack class in
this subsection.
B.4.1. Replay Attack (A1)

Replay attack class is simulated by setting the attacker to
resents legitimate packets multiple times in order to disrupt
communication by introducing further delay and out of order
packets transmissions. Simulated scenario behaviour has as
follow: AC node attacker’s victim behaves normally for the
first two minutes of the simulation. At the third (3) minute of
the simulation the attack takes place and since that until the

22

Figure 17: AC Replay Node Parameters (Replay Attack Sce-
nario)

Figure 18: AC Node Parameters (Sink Hole Attack Scenario)

end of the simulation the packets that originally sent to the
central coordinator are now forwarded to the attacker. The at-
tacker, then records those packets and retransmit them to the
central node in a random manner. The inter arrival time (x)
between messages transmittion to the ESI from attacker is uni-
formly selected with a value between thirty (30) to forty (40)
seconds. The parameters that are changed in order to simulate
this attack are related to the traffic configuration of the nodes,
basically in terms of destination. The execution parameters
used in the simulator for the target node AC and attacker node
are presented in Figures 16 and 17, respectively.

Figure 19: AC Hole Node Parameters (Sink Hole Attack Sce-
nario)

Figure 20: AC Node Parameters (Message Modification At-
tack Scenario)

B.4.2. Sink Hole Attack (A2)
We simulate Sink Hole attack class, by allowing attacker

to record all packets transmitted between the actual targets and
dropped them, without reporting them back to their destina-
tion. In simulation execution the attack is performed in the
third (3) minute of the simulation and then all packets captured
by attacker are never transmitted. This simulates the aggres-
sive sink hole attack. The parameters that are changes in order
to simulate this attack, are related to the traffic configuration
of the nodes, basically in terms of destination. The execution
parameters used in the simulator for the target node of AC and
attacker node are presented in Figures 18 and 19, respectively.

B.4.3. Message Modification Attack (A3)
Message Modification Attack class is simulated by setting

the victim node packets to be recorded and retransmitted by
attacker with a modification altering their original message.
Packet’s payload changes with the introduction of fraudulent
data. We simulate this attack by introducing it to the network

23

Figure 21: AC MsgMod Node Parameters (Message Modifi-
cation Attack Scenario)

at the third (3) minute of the simulation and the extra payload
is added to the extracted packets, from the attacker. The trans-
mittion of those packets by the adversary node (MsgMod_AC)
to the central ESI node is performed after every x seconds,
with the actual packet inter-arrival time (x) being selected uni-
formly with an integer value in the range of [30,40]. The pa-
rameters changed in order to simulate this attack, are related
to the traffic configuration of the nodes in terms of packet size
(payload) and destination. The execution parameters used in
the simulator for AC and attacker node are presented in Figures
20 and 21, respectively.

24

	Introduction
	Problem Formulation
	On the Complexity of Fault and Attack Class Differentiation
	Proposed ML-based Framework
	Execution Classes
	ML Classification Algorithms
	Brief Overview of ML Classification Approaches
	Selected Classification Algorithms

	Selected Algorithms Execution Parameters
	Evaluation Metrics

	Simulation Implementation & Results
	Testbed Implementation & Results
	Classification Results Analysis
	Similarity Analysis Of Abnormality Classes
	Feature Based Analysis

	Conclusion
	Selected Algorithms Execution Parameters - Values
	J48
	NaiveBayes (NB)
	Multilayered Perceptron (MLP)

	Multinomial Logistic Regression (MLG)

	Simulation Setup
	Simulated Classes
	Normal Class
	Faulty Classes
	Low Energy Failure (F1)
	Routing Failure (F2)
	Packet Drooped Failure (F3)

	Attack Classes
	Replay Attack (A1)
	Sink Hole Attack (A2)
	Message Modification Attack (A3)

