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Abstract

Recently, vision-language representation learning has made remarkable advance-
ments in building up medical foundation models, holding immense potential for
transforming the landscape of clinical research and medical care. The underly-
ing hypothesis is that the rich knowledge embedded in radiology reports can
effectively assist and guide the learning process, reducing the need for additional
labels. However, these reports tend to be complex and sometimes even consist
of redundant descriptions that make the representation learning too challenging
to capture the key semantic information. This paper develops a novel iterative
vision-language representation learning framework by proposing a key seman-
tic knowledge-emphasized report refinement method. Particularly, raw radiology
reports are refined to highlight the key information according to a constructed
clinical dictionary and two model-optimized knowledge-enhancement metrics.
The iterative framework is designed to progressively learn, starting from gain-
ing a general understanding of the patient’s condition based on raw reports and
gradually refines and extracts critical information essential to the fine-grained
analysis tasks. The effectiveness of the proposed framework is validated on var-
ious downstream medical image analysis tasks, including disease classification,
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region-of-interest segmentation, and phrase grounding. Our framework sur-
passes seven state-of-the-art methods in both fine-tuning and zero-shot settings,
demonstrating its encouraging potential for different clinical applications.

Keywords: Vision-language representation learning, Medical foundation models,
Knowledge-emphasized report refinement, Iterative learning

Fig. 1 Our proposed iterative vision-language representation learning framework. In the first itera-
tion, the raw radiology reports are leveraged to gain a general understanding of the patient’s condition.
In the second stage, the refined reports are employed to further fine-tune the model, guiding the
model towards capturing crucial information.

1 Introduction

In modern clinical practice, medical imaging plays a crucial role in the detection,
monitoring of progression, and evaluation of treatment prognosis for various diseases
[20–22, 27]. However, the exponential growth of imaging data poses a significant
burden to radiologists, impacting the efficiency of clinical workflows. To tackle this
issue, artificial intelligence, particularly deep learning, has emerged as a revolutionary
technique, automating medical image analysis and aiding in clinical decision-making
[23–26]. Nevertheless, manually annotating large datasets necessary to train respec-
tive deep learning models for each task is time-consuming and requires the expertise
of domain specialists [28, 29]. As a result, there is an urgent need to develop effective
medical foundation models that can handle various downstream tasks without relying
on collecting large-scale labeled datasets [33, 34].

One promising and natural solution is to leverage the valuable information embed-
ded within radiology reports [33], which are routinely collected in clinical practice.
These reports contain rich domain knowledge that can effectively assist and guide
image representation learning, thereby reducing the need for costly manual labels.
A straightforward method in this direction involves extracting supervision signals
directly from the reports. Various techniques, such as natural language processing
(NLP) techniques and rule-based labelers, have been proposed for this purpose [1, 3].
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However, these labeling techniques often rely on fixed lexicons and manually engi-
neered rules, making it difficult to adapt them to new scenarios. Another successful
avenue is the application of implicit supervision through vision-language represen-
tation learning, which has demonstrated great success in natural image recognition
tasks [30–32]. Nevertheless, the transfer of this technique to the medical domain faces
many challenges [4]. One of the major obstacles is the presence of complex and some-
times redundant medical entity descriptions within radiology reports, which can pose
significant difficulties for effective representation learning [7, 8].

In this study, our primary objective is to enhance the medical vision-language
foundation model by proposing a key semantic knowledge-emphasized report refine-
ment method. Incorporating the proposed report refinement method, we develop a
novel iterative vision-language representation learning framework. On the one hand,
to refine the reports, we construct a simple yet effective clinical dictionary to link
keywords in raw radiology reports with medical knowledge-supplemented sentences.
Then, two model-optimized knowledge-enhancement metrics are constructed to guide
the report refinement process using the medical knowledge-supplemented sentences
such that the key information relevant to fine-grained downstream analysis tasks is
effectively highlighted. On the other hand, our iterative framework enables the model
to progressively learn the intricate medical information contained in radiology reports
(Fig. 1). In the first iteration, we utilize the raw radiology reports as the initial source
of information to gain a general understanding of the patient’s condition, as provided
by the radiologists. This step serves as a preliminary knowledge extraction process,
obtaining the model to calculate the two model-optimized knowledge-enhancement
metrics. In the second stage, we employ refined reports to further fine-tune the model,
directing its attention towards crucial information. The effectiveness of the proposed
framework is validated by extensive downstream medical image analysis experiments,
including disease classification, region-of-interest segmentation, and phrase grounding.
The results demonstrate that our framework surpasses state-of-the-art vision-language
representation learning methods in both fine-tuning and zero-shot settings.

Our main contributions can be summarized as follows:

• We develop a novel iterative vision-language representation learning framework,
which is designed to firstly gain a general understanding of the patient’s condition
from the raw radiology reports and then extract critical information by refining
reports to capture the essential fine-grained features from the images.

• We propose a key semantic knowledge-emphasized report refinement method.
Under the guidance of a specially constructed clinical dictionary and two model-
optimized knowledge-enhancement metrics, the reports are refined to highlight
crucial information essential to fine-grained downstream image analysis tasks.

• Extensive experimental validations were conducted on multiple external datasets,
covering various medical image analysis tasks. The results demonstrate that our
proposed framework outperforms recent state-of-the-art vision-language representa-
tion methods in both fine-tuning and zero-shot settings, showcasing its effectiveness
and robustness.
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2 Related work

In this section, we provide a concise overview of recent research that focuses on utilizing
information from radiology reports for medical image representation learning. We
categorize these works into two main groups based on the strategies they employ: those
that use explicit supervision signals extracted from radiology reports and those that
incorporate implicit supervision through multi-modal vision-language representation
learning.

2.1 Report-supervised medical image representation learning

Utilizing explicit supervision signals extracted from radiology reports to supervise the
learning of medical imaging models is an intuitive and straightforward approach, par-
ticularly in scenarios where manual labels are not readily available. Wang et al. [1]
demonstrated the feasibility of this approach by constructing a chest X-ray dataset
(ChestX-ray8) at a hospital scale. They employed NLP tools to search for the pres-
ence of 8 common thoracic pathology keywords in corresponding radiology reports
and developed specific rules to remove negation and uncertainty. Then, they built a
weakly supervised classification and localization framework using this dataset, vali-
dating the effectiveness of the automatically generated labels for these two important
medical image analysis tasks. Another notable work in this area is by Irvin et al. [3],
who developed a rule-based labeler to extract structured labels for images from free-
text radiology reports. Their efforts resulted in the construction of the well-known
dataset, CheXpert. Leveraging the extracted labels, they trained convolutional neural
networks using different uncertainty approaches to classify 14 observations, and their
best model achieved higher performance than 3 additional radiologists on detecting 3
out of 5 selected pathologies, cardiomegaly, edema, and pleural effusion, validating the
effectiveness of the generated labels for the detection of common chest radiographic
observations.

Despite the effectiveness of these report-based automatic labeling approaches on
individual datasets and specific tasks, there are two main limitations that hinder their
widespread adoption. One limitation is that the relevant labeling rules are manually
crafted. This manual process can introduce inaccuracies, resulting in the generation
of incorrect labels [4]. Moreover, these labeling rules are often designed to capture
a limited set of clinical observations mentioned in the reports, which can potentially
overlook important information contained within the reports [4]. Another limitation
of the approach is that the labeling rules are domain- and style-specific, and they rely
on fixed lexicons. Consequently, the effectiveness of the developed labeling techniques
may not generalize well to new scenarios or different datasets [5].

2.2 Medical vision-language representation learning

Different from the approach of directly extracting supervision signals from radiology
reports, medical vision-language representation learning leverages implicit supervision
from the reports by simultaneously learning multi-modal representations. There are
two main categories of methods in this area: those employing masked autoencoders
[5, 11] and those employing contrastive learning techniques [4, 6, 9, 13, 14, 39, 41].
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Fig. 2 The two major components of our framework. (a) The vision-language representation
learning model with image-text matching determination capability. (b) The key semantic knowledge-
emphasized report refinement method.

Methods using masked autoencoders aim to learn vision-language representations
by restoring the original images and reports. For example, Chen et al. [11] focuses
on learning joint vision-language representations, which can be applied to various
downstream tasks such as visual question answering, image-text classification, and
image-caption retrieval. Zhou et al. [5] targets the learning of radiolographic rep-
resentations for disease diagnosis. These methods based on masked autoencoders
typically require fine-tuning for evaluation due to the discrepancy between the pre-
text restoration task and the downstream medical image recognition tasks. They may
lack zero-shot capability. Contrastive learning-based methods, on the other hand,
learn vision-language representations by aligning the distributions of multi-modal fea-
tures. These methods can be employed for medical image recognition tasks in both
fine-tuning and zero-shot settings. Among these works, Zhang et al. [4] introduced
the pioneering framework ConVIRT, which learns medical image representations from
paired images and reports by employing a bidirectional contrastive objective. Similarly,
Tiu et al. [13] proposed CheXzero, which achieved expert-level detection of pathologies
without fine-tuning using labeled data. To capture localized features and fine-grained
semantics in medical images, Huang et al. [6] proposed GLoRIA, a multimodal global-
local representation learning framework. Zhou et al. [9] introduced REFERS, which
performs report generation in addition to multi-modal contrastive learning to facili-
tate the learning of well-transferable image representations. To simplify the training
of medical vision-language representation models, Liu et al. [14] proposed M-FLAG,
which trains only the vision model while freezing the language model.

While medical vision-language representation learning has shown promising results,
there are still challenges to overcome. One major obstacle is the presence of complex
and sometimes even redundant medical entity descriptions within radiology reports.
To address this issue, researchers have explored different approaches. For example,
Boecking et al. [10] trained a radiology-specific text encoder, called CXR-BERT, in
their BioViL model to better handle radiology reports. Additionally, Wu et al. [7]
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and Zhang et al. [8] proposed methods to simplify radiology reports by extracting
medical-related information before inputting them into the text encoders. The pri-
mary objective of our study is to refine the radiology reports by emphasizing key
semantic knowledge to enhance vision-language representation learning. Different from
the approaches of Wu et al. [7] and Zhang et al. [8], which employ specific modules
to extract medical entities from the reports, we propose a dictionary and model-
dependent radiology report refinement method. Specifically, we develop an iterative
vision-language representation learning framework. In the first iteration, we train a
high-capacity vision-language representation learning model using the images and raw
radiology reports. Then, we construct a clinical dictionary, which links keywords in raw
radiology reports with medical knowledge-supplemented sentences. With the trained
image and text encoders, we calculate two model-optimized knowledge-enhancement
metrics to guide the report refinement process. In the second iteration, we replace the
raw radiology reports with the refined versions to fine-tune the vision-language repre-
sentation learning model. Importantly, we do not design specific modules to simplify
the reports. Instead, we rely on the dictionary and the model itself to identify and
focus on the important information. By accessing both the raw radiology reports and
the refined versions, our method avoids the loss of critical details while making full
use of the reports, benefiting from the hints provided by the refined knowledge.

3 Method

The primary objective of this study is to refine the radiology reports to enhance
vision-language representation learning via a novel iterative learning framework. Here,
we first describe the iterative vision-language representation learning framework in
Sec.3.1. Our main contribution of knowledge refinement for radiology reports is
presented in Sec.3.2.

3.1 Iterative vision-language representation learning

Our proposed framework involves training a multi-scale contrastive learning model
in two iterations. In the first iteration, the model takes images and raw radiology
reports as inputs, aiming to gain a general understanding of the patient’s condition.
Then, the radiology reports are refined using our designed key semantic knowledge-
emphasized refinement method. It is important to note that this refinement method
utilizes the model trained in the first iteration. In the second iteration, the inputs to
the model are changed to images and refined reports. This iteration focuses on further
refining the model to capture the essential fine-grained features from the images, which
are crucial for downstream analysis tasks. The details of the multi-scale contrastive
learning model (Fig. 2(a)) are described in this section, while the report refinement
method (Fig. 2(b)) will be elaborated in Sec. 3.2.

3.1.1 Multi-scale contrastive learning

In this section, we introduce the multi-scale contrastive learning model, a simple but
effective vision-language model comprising three components: the image encoder Ev
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with the image projection block Pv, the text encoder Et with the text projection block
Pt, and an ITM decoder.

We utilize a Vision Transformer (ViT) as our image encoder [17], which is adept at
learning complex spatial relationships and capturing long-range dependencies within
images. Let r̃v = Ev(Xv) ∈ RKv×Dv denote the extracted image features, where Kv

represents the number of image patches augmented by an additional [class] token [17],
and Dv is the dimension of the image features. The projection block Pv then projects
r̃v into a multi-modal joint space of C dimensions, yielding local image representations
rv = Pv(r̃v) ∈ RKv×C for each input image patch. By applying average pooling to
rv (except for the [class] embedding), we obtain the global image representations
Rv ∈ RC .

For each radiology report, we first divide it into multiple sentences. A wordpiece
tokenizer is then utilized to convert the processed reports into a sequence of tokens
that can be analyzed by the text encoder Et. We adopt BERT [16] as our text encoder
Et. The text encoder generates the corresponding sentence representations as r̃t =
Et(Xt) ∈ RKt×Dt , where Kt indicates the number of divided sentences augmented by
an additional [class] token, and Dt is the dimension of the extracted text features. The
projection block Pt then projects r̃t into the joint space of C dimensions. We achieve
the global text representations Rt ∈ RC by leveraging the [class] token embedding,
while the remaining embeddings form the local text representations rt = Pt(r̃t) ∈
RKt×C .

A symmetric contrastive loss for the global alignment between the image and text
representations is calculated:

Lg = − 1

N

N∑
i=1

(log
exp(< Rvi, Rti > /τ1)∑N
j=1 exp(< Rvi, Rtj > τ1)

+ log
exp(< Rti, Rvi > /τ1)∑N
j=1 exp(< Rti, Rvj > τ1)

)

(1)

< Rvi, Rti > indicates the cosine similarity between the two global features Rvi and
Rti. N is the batch size. τ1 is a temperature parameter.

Inspired by GLoRIA [6], we propose a local contrastive loss to promote fine-grained
alignment between images and reports. Unlike GLoRIA, we choose sentences sampled
from the original reports as the basic contrastive units instead of individual words
to capture complete semantic representations. Specifically, a similarity matrix s =
rt · rTv ∈ RKt×Kv is obtained by computing the dot product of the local text and
image representations, which reflects the similarity between sentence representations
and image patch representations. Here, si,j corresponds to the similarity between
sentence i in the text and patch j in the image. The matrix is then normalized as

ai,j =
exp(si,j/τ2)∑Kv

k=1 exp(si,k/τ2)
, where τ2 is a temperature parameter. Similar to GLoRIA, we

derive the context-enhanced image representations for each given sentence as r̂vi =∑Kv

j=0 ai,jrvj . Finally, we aggregate the similarities between all Kt sentences and their
corresponding enhanced image representations using a matching function M , defined
as M(Xv, Xt) = log(

∑Kt

i=1 exp(< r̂vi, rti > /τ3))
τ3 , where τ3 is also a temperature
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parameter. The symmetric local contrastive loss is then defined as:

Ll = − 1

N

N∑
i=1

(log
exp(M(Xvi, Xti)/τ2)∑N
j=1 exp(M(Xvi, Xtj)/τ2)

+ log
exp(M(Xvi, Xti)/τ2)∑N
j=1 exp(M(Xvj , Xti)/τ2)

)

(2)

3.1.2 Image-text matching determination

Image-Text Matching (ITM) is a binary classification task in which the model utilizes
a language decoder with a linear layer to predict whether the input image-text pairs
are positive (matching) or negative (non-matching). The primary objective of ITM is
to capture fine-grained alignment between visual and textual information [2]. In this
paper, we introduce an improved ITM mainly to determine the correctness of sentences
generated from a dictionary (Sect. 3.2.2). For implementation, we employ a BERT base
language decoder. It should be noted that we deviate from the classical ITM approach
[15] by not incorporating the hard-sample strategy, as it is not suitable in the context
of medical reports where text with similar semantics is frequently present. Instead, we
randomly select one sentence from an unpaired report to serve as the negative sample.

We employ a straightforward binary cross-entropy loss for training the ITM mod-
ule, denoted as Litm. Finally, in combination with the masked language model loss
Lmlm utilized in Et, the loss used for training the multi-scale contrastive learning
model is:

L = Lg + Ll + Litm + Lmlm (3)

3.2 Key semantic knowledge-emphasized report refinement

Following the preparation outlined in Sec 3.1, we have a pre-trained model with image-
text matching determination capability ready to extract preliminary visual-language
features. In this section, we focus on report refinement for fine-tuning the pre-trained
model, as depicted in Fig. 2(b).

3.2.1 Construction of the clinical dictionary

To facilitate report refinement, we start by constructing a clinical dictionary. This
dictionary is utilized to extract keywords from complex sentences and supplement the
sentences with relevant knowledge-emphasized sentences, aiding in semantic under-
standing. The construction of the dictionary begins with the identification of diseases.
In total, we include 17 diseases, out of which 14 diseases are adopted from the NIH
ChestX-ray dataset, while the remaining 3 diseases are determined manually based
on their frequency of occurrence in the MIMIC-CXR V2 dataset. Each disease is then
linked to one or several keywords. For example, the keyword for the disease “atelecta-
sis” is simply “atelectasis”. In cases where diseases can be described differently within
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the MIMIC-CXR V2 dataset, we add additional relevant keywords to ensure com-
prehensive coverage. For instance, the keywords for the disease “pneumothorax” are
“pneumothor, air, chest wall, acute cardiopulmonary”.

Utilizing the identified diseases, we manually add one positive sentence for each
disease in the format “There is { }” where “{ }” represents the disease, and one nega-
tive sentence in the format “No { }”. Additionally, we designed a prompt to generate
descriptive sentences of the diseases using large language models, “Claude-3-Sonnet”
and “GPT-4o”, to explore the potential of these models in our methodology. The
prompt for positive sentences is: “According to the diseases listed by me, please give
five possible imaging diagnosis reports for each disease, which can give specific possible
parts and corresponding image descriptions, and different diseases should be differ-
entiated. Answer in English, be professional, concise, short, and as comprehensive as
possible. Start the description directly, without ‘chest X-ray’ and other statements,
no numbers. lung opacity, atelectasis, cardiomegaly, infiltration, mass, nodule, pneu-
monia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening,
hernia, pleural effusion, rib fractures, embolism.” For negative sentences, we add the
term “negative” in the prompt before “image diagnosis reports”. In the supplementary
file, we provide the details of the constructed clinical dictionaries (Appendix Table S1
and Table S2).

3.2.2 Report refinement

Using the constructed clinical dictionary, we establish keyword associations between
each sentence in the radiology report and the keywords listed in the dictionary. When
a sentence is found to be related to a specific disease type, we supplement the original
sentence with the generated positive and negative sentences related to that disease.
For example, in the sentence “It appears more amorphous and a small focus of infec-
tion is not excluded.”, the keyword “infection” of the disease “pneumonia” is detected.
In this case, we temporarily supplement this sentence with the 6 positive sentences
(“Lobar consolidation in the right lower lobe, consistent with bacterial pneumonia.”
... “There is pneumonia.”) and 6 negative sentences (“No radiographic evidence of
pneumonia or consolidation.” ... “No pneumonia.”) generated for the disease “pneu-
monia”. If the detected keyword is linked to multiple diseases (e.g., “pleural” is linked
to both “pleural thickening” and “pleural effusion”), all the sentences generated for
the different diseases are included for consideration.

Subsequently, we feed the image, along with all the sentences, including the original
sentence and the supplemented ones, into the trained contrastive model and ITM
decoder. The outputs are then utilized to assess whether the supplemented sentences
accurately describe the patient’s condition. We employ two metrics for this assessment
(Fig. 2(b)): 1) a similarity metric determined based on the pre-trained contrastive
model, and 2) a matching metric obtained using the trained ITM decoder with a
binary linear classifier. The evaluation of the supplemented sentences is conducted in
two steps. In the first step, we determine the priority of the different sentence groups.
For example, if a sentence is detected with the keyword “pleural”, it will have five
sentence groups: the original sentence (G1), 6 positive sentences of the disease “pleural
thickening” (G2), 6 negative sentences of the disease “pleural thickening” (G3), 6
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positive sentences of the disease “pleural effusion” (G4), and 6 negative sentences of the
disease “pleural effusion” (G5). For each sentence, we obtain its similarity score. Then,
the average similarity score (ss) for each sentence group is calculated to determine
the priority. Assuming the average similarity scores of the five groups are as follows:
ssG1 = 30%, ssG2 = 32%, ssG3 = 15%, ssG4 = 25%, ssG5 = 10%. Then, the sentences
are sorted according to the following order: G2, G1, G4, G3, G5. Within each group,
the different sentences are sorted according to their respective similarity scores, with
the ones having larger similarity scores placed before the ones with smaller similarity
scores.

After sorting the sentences, we proceed to select the most suitable generated sen-
tence to supplement the original sentence in the report, taking into account both the
similarity metric and the matching metric. Specifically, we examine the manually gen-
erated sentence in each sentence group to determine whether the sentences in the
group (describing the presence or absence of disease) can match the image through
ITM. If ITM indicates a match between the sentence group and the image, we have
the option to choose either the sentence with the highest similarity score or the man-
ually generated sentence from that group to supplement the original sentence in the
radiology group. In the results section, we will demonstrate that the latter approach is
more effective for our implementation. If all the groups listed before the original sen-
tence do not match the image, we retain the original sentence without any generated
sentence supplementation. However, if the original sentence is listed as the first sen-
tence group, we only assess the matching performance of the second sentence group
to determine whether the original sentence will be supplemented with a generated
sentence from that group or not. After reviewing all the sentences in the report, we
take an additional step to supplement the report. We add three manually generated
negative sentences with the highest similarity scores for diseases that are not detected
in the report. These sentences serve to provide additional information by explicitly
stating the absence of these diseases.

Finally, we utilize the refined reports enriched with newly acquired knowledge from
the supplemented sentences for fine-tuning the model, directing the model’s attention
towards crucial information.

4 Experiments and results

4.1 Datasets

For model training, we utilized the X-ray images and corresponding radiology reports
from the MIMIC-CXR V2 dataset [18]. The model evaluation involved four tasks:
fine-tuning disease classification, fine-tuning region-of-interest segmentation, zero-shot
disease classification, and zero-shot phrase grounding. To perform disease classifica-
tion, we incorporated four X-ray datasets, CheXpert [3], NIH ChestX-ray [1], RSNA
Pneumonia [19], and SIIM-ACR Pneumothorax 1. For fine-tuning segmentation, we
adopted the SIIM-ACR Pneumothorax dataset. For zero-shot phrase grounding, we
utilized the MS-CXR dataset [10].

1https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
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Table 1 Fine-tuning disease classification results (AUC: %) on three datasets using varying ratios
of annotations for fine-tuning. The symbol “-” indicates that no results have been reported in the
existing literature for the corresponding experimental setting. The symbol “†” denotes the lack of
zero-shot capabilities, whereas “‡” signifies the use of classification labels during the pre-training
phase. The top-2 results are highlighted in bold.

Methods
RSNA Pneumonia CheXpert NIH ChestX-ray
1% 10% 100% 1% 10% 100% 1% 10% 100%

REFERS† 89.4 91.6 92.7 87.2 88.1 88.2 76.7 80.9 84.7
M3AE† 89.0 90.8 92.3 86.2 87.3 87.9 - - -
MRM† 91.3 92.7 93.3 88.5 88.5 88.7 79.4 84.0 85.9

MGCA‡[14] 89.1 89.9 90.8 88.8 89.1 89.7 61.1 67.8 77.3
ConVIRT [14] 77.4 80.1 81.3 85.9 86.8 87.3 60.0 69.0 76.6

M-FLAG - - - 64.4 71.4 78.1 62.2 71.6 78.7
GLoRIA [14] 86.1 88.0 88.6 86.6 87.8 88.1 60.1 71.2 77.7
BioViL [7] 88.1 88.4 89.1 - - - 69.5 75.3 82.5

MedKLIP [38] 87.3 88.0 89.3 86.2 86.5 87.7 77.2 78.9 83.2
Ours 91.4 92.4 93.4 88.7 89.0 89.0 78.7 83.5 85.7

Table 2 Disease-level classification results (AUC: %) on the NIH ChestX-ray dataset using
different ratios of labeled samples for fine-tuning.
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1%

REFERS 76.7 77.5 85.6 78.6 84.9 85.4 79.5 72.3 77.1 67.5 76.2 66.5 71.6 69.3 81.7
Model Genesis 70.3 72.1 67.1 75.8 76.1 80.6 72.6 64.8 73.5 65.7 65.2 62.2 67.6 64.8 76.2

C2L 71.1 75.1 67.1 77.6 75.1 83.4 71.5 66.8 70.0 63.8 70.1 66.2 68.1 65.7 74.4
Context Restoration 67.8 69.1 64.4 73.2 73.8 78.1 70.0 62.1 70.2 65.2 62.4 59.1 65.0 62.2 73.8

TransVW 71.3 74.5 68.9 76.7 79.8 81.1 67.9 68.7 68.2 66.8 66.5 66.2 68.5 68.8 75.0
ImageNet Pre-training 69.8 73.3 69.6 76.0 81.7 80.5 67.1 64.9 64.8 65.8 67.0 62.3 65.7 65.0 74.0

Ours 78.7 77.8 90.0 79.5 87.1 86.8 86.0 71.7 82.3 67.8 81.3 67.5 69.8 69.5 83.9

10%

REFERS 80.9 80.1 89.8 79.5 87.8 87.5 88.2 77.2 86.1 69.6 82.0 72.8 74.2 72.2 85.6
Model Genesis 76.0 77.2 72.8 77.5 85.7 85.2 81.0 75.3 78.0 68.4 73.1 69.5 72.2 67.7 80.4

C2L 76.6 78.0 75.5 77.5 84.1 85.7 81.2 73.7 79.5 67.4 77.5 71.7 72.0 67.3 81.9
Context Restoration 73.8 75.5 70.6 77.1 84.5 84.2 79.4 73.1 67.5 68.1 70.9 66.9 71.7 65.2 79.1

TransVW 74.4 76.5 70.8 77.6 83.0 84.8 79.7 69.9 74.7 68.5 72.1 68.3 72.4 63.2 79.6
ImageNet Pre-training 74.4 74.2 79.8 75.9 85.7 83.2 80.4 72.1 74.0 64.1 71.7 65.6 69.6 66.2 79.7

Ours 83.5 82.1 91.8 80.9 88.8 88.5 91.2 83.1 94.4 70.4 85.9 74.5 76.4 73.6 87.5

100%

REFERS 84.7 83.0 92.3 82.1 90.2 88.7 91.4 83.9 93.3 74.1 85.5 76.7 78.5 77.0 89.1
Model Genesis 81.0 78.8 84.5 79.2 87.8 86.6 89.7 81.0 85.2 71.1 81.9 73.2 75.8 73.0 85.6

C2L 82.2 81.1 90.2 81.0 88.1 88.0 88.3 80.8 86.8 72.0 82.7 74.1 76.2 75.3 85.9
Context Restoration 78.7 75.8 82.9 76.4 86.6 84.8 88.2 78.6 83.0 70.0 79.6 69.5 73.2 69.4 84.0

TransVW 81.7 79.8 85.0 80.0 88.2 87.1 90.1 81.8 85.9 72.3 82.6 74.4 76.6 74.0 86.1
ImageNet Pre-training 80.0 78.3 89.3 77.6 87.9 85.9 87.4 78.5 88.8 65.9 79.9 70.7 74.5 71.0 84.7

Ours 85.7 83.8 92.6 82.2 90.6 89.3 93.6 85.8 96.0 72.3 87.5 78.4 79.5 78.2 89.6

MIMIC-CXR V2 is a large dataset comprising 377,110 chest X-rays obtained from
227,827 imaging studies [18]. These studies were conducted at the Beth Israel Dea-
coness Medical Center between 2011 and 2016. Each image is accompanied by a
corresponding free-text radiology report. In our study, we utilized all the available
data from this dataset for model training.

CheXpert consists of 224,316 chest X-rays obtained from 65,240 patients. Following
the official practice outlined by Irvin et al. [3], we report the classification results
for five selected pathologies, including atelectasis, cardiomegaly, consolidation, edema,
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and pleural effusion. Since the official test set is not publicly available, we adopted
the approach from a previous study [4] and employed the official validation set as our
test set. Additionally, we randomly sampled 5,000 samples from the official training
set to construct our validation set, similar to Zhou et al. [5]. For the fine-tuning
evaluation, our training, validation, and testing sets contain 218,414, 5,000, and 234
images, respectively. For the zero-shot evaluation, only the 234 testing images were
employed.

NIH ChestX-ray offers 112,120 chest X-rays for the classification of 14 patholo-
gies [1]. Similarly, for fine-tuning evaluation, we divided the dataset into training,
validation, and testing sets, following a split ratio of 7:2:1.

RSNA Pneumonia provides data for the binary classification task of pneumonia
vs. normal. In accordance with the official configuration, the training, validation, and
testing sets consist of 25,184, 1,500, and 3,000 images, respectively [19].

SIIM-ACR Pneumothorax is a dataset that consists of more than 120,000 chest
X-rays, with each image being accompanied by precise manual segmentation masks
of the pneumothorax regions. Following Huang et al. [6], we divided the dataset into
three subsets: 70% for training, 15% for validation, and 15% for testing.

MS-CXR provides bounding box annotations along with paired sentences that
describe the clinical findings [10]. The dataset includes a total of 1,162 annotations of
881 cases, and we utilized all of them for the evaluation.

4.2 Comparison methods

We compared our framework with various existing state-of-the-art vision-language
representation learning methods to validate its effectiveness. These methods include
ConVIRT [4], GLoRIA [6], BioViL [10], M3AE [12], REFERS [9], MGCA [37],
MRM[5], CheXzero [13], MedKLIP [7], M-FLAG [14], and Med-UniC [38]. The spe-
cific contributions of most of these methods to the field have been discussed in Sec. 2.
It should be noted that we have tried our best to supplement the missing results of
these methods for different tasks. This was accomplished by either referring to other
published literature [7, 14, 38] or reproducing the experiments by ourselves.

Specifically, for the evaluation of fine-tuning disease classification, we compared
our method with ConVIRT, GLoRIA, BioViL, M3AE, REFERS, MedKLIP, MGCA,
MRM, and M-FLAG. For the evaluation of fine-tuning pneumothorax region segmen-
tation, we compared our method with ConVIRT, GLoRIA, MGCA, M-FLAG, and
Med-UniC. For the evaluation of zero-shot disease classification, we compared our
method with ConVIRT, GLoRIA, BioViL, and CheXzero. For the zero-shot phrase
grounding evaluation, we compared our method with ConVIRT, GLoRIA, and BioViL.

4.3 Implementation details

In our experiments, we adopted the widely used ViT-B/16 as our image encoder and
BERT with a width of 768 as our text encoder and ITM decoder. We set the batch
size to 128 and utilized the AdamW optimizer with a weight decay of 0.05, β1 = 0.9,
and β2 = 0.95. For the first iteration, the mask ratio used in BERT was set to 0.15,
and the initial learning rate was set to 1.5e-4 with 50 training epochs. For the second
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iteration, the mask ratio was set to 0, and the learning rate was adjusted to 3e-6 with
10 training epochs. All experiments were implemented using PyTorch, and we used
four NVIDIA A100 GPUs in parallel.

For the fine-tuning disease classification evaluation, we utilized the SGD optimizer
with a momentum of 0.9. The best learning rate was searched in the range of 1e-5 to
8e-3 to achieve optimal validation performance. For the fine-tuning segmentation task,
we utilized the AdamW optimizer with the learning rate of 4e-6, 2.5e-5, and 2e-5 for
1%, 10%, and 100% labeling rations.

4.4 Evaluation metrics

For disease classification, we evaluated the performance using the area under the curve
(AUC) score. We calculated the average AUC scores for the respective datasets, as
well as disease-level scores whenever possible. For region-of-interest segmentation, we
employed the Dice similarity coefficient (Dice). For phrase grounding, we assessed the
results based on the Intersection over Union (IoU) score and the contrast-to-noise ratio
(CNR) value. IoU measures the overlap between the generated saliency maps and the
ground-truth segmentation labels. CNR evaluates the contrast difference inside and
outside the bounding box.

4.5 Results for fine-tuning disease classification

In this section, we present the disease classification results of different methods in fine-
tuning settings. Three datasets (CheXpert, NIH ChestX-ray, and RSNA Pneumonia)
were evaluated. For each dataset, we utilized three percentages of labeled data (1%,
10%, and 100%) during the fine-tuning process to investigate the influence of the
fine-tuning sample number on the classification performance.

The AUC scores of different methods using varying ratios of annotations are shown
in Table 1. For a more comprehensive comparison, methods that use classification
labels (“‡”) or lack zero-shot capabilities (“†”) are also included. Our proposed method
outperforms five state-of-the-art methods, including ConVIRT, M-FLAG, GLoRIA,
BioViL, and MedKLIP, across three datasets. For instance, compared to MedKLIP,
our method achieves a 4.1%, 4.4% and 4.1% improvement on the RSNA Pneumo-
nia dataset with 1%,10% and 100% fine-tuning data, respectively. When compared
with two leading methods in CXR fine-tuning classification tasks, MGCA (relying on
classification annotations [5, 38]) and MRM (lacking zero-shot capability [35, 36]),
our method demonstrates competitive performance. Generally speaking, the proposed
method demonstrates comparable performance to existing algorithms in fine-tuning
classification tasks, while also offering advantages in clinical scenarios with limited
annotations (annotation-free) and task generalization (zero-shot capability).

In addition to the mean AUC scores, we also provide the classification results for
the 14 chest pathologies specific to the NIH ChestX-ray dataset (Table 2). Here, we
included several image self-supervised methods (Model Genesis [42], C2L [43], Context
Restoration [44], and TransVW [45]), as well as an ImageNet pre-trained model [1],
for comparison. Across most diseases, our proposed framework consistently achieves
the highest AUC scores, thereby validating its effectiveness in fine-grained disease
classification.
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Table 3 Results (Dice: %) for
pneumothorax region segmentation
on the SIIM-ACR Pneumothorax
dataset using different ratios of
labeled samples for fine-tuning.

Methods 1% 10% 100%
ConVIRT 25.0 43.2 59.9
GLoRIA 35.8 46.9 63.4
MGCA 49.7 59.3 64.2
M-FLAG 52.5 61.2 64.8
Med-UniC 56.7 62.2 64.4

Ours 61.3 72.2 88.7

4.6 Results for fine-tuning pneumothorax region segmentation

Region-of-interest segmentation is another important medical image analysis task that
offers various clinical applications, such as disease progression evaluation and treat-
ment planning. We evaluate the effectiveness of our proposed framework by applying
it to segment the pneumothorax regions using the SIIM-ACR Pneumothorax dataset
in the fine-tuning setting. Results are reported in Table 3.

Similar to the fine-tuning disease classification task, three different ratios of labeled
samples were employed to fine-tune the model for pneumothorax region segmenta-
tion. Significant improvements in segmentation performance across all three ratios are
obtained. Notably, as more labeled samples are introduced for fine-tuning, the segmen-
tation performance displays a more pronounced enhancement. Specifically, compared
to the respective best-performing comparison methods, the Dice similarity score is
increased by 4.6%, 10%, and 23.9% at the labeling ratio of 1%, 10%, and 100%, respec-
tively. Interestingly, this trend differs from what we observed in the fine-tuning disease
classification task, where larger improvements were observed with fewer fine-tuning
samples. One possible explanation for this discrepancy is that segmentation is a more
challenging task than classification, demanding more localized representations. Our
proposed framework learns strong visual representations, which can be further refined
when provided with additional hints from the fine-tuning samples. Consequently, these
refined representations enable better discriminatation of the target regions from the
surrounding background. Nevertheless, it is an intriguing observation, and we plan to
investigate it further in our following studies.

Table 4 Zero-shot disease
classification results (AUC: %) on
the RSNA Pneumonia and SIIM-
ACR Pneumothorax datasets.

Methods RSNA SIIM
ConVIRT 80.4 64.3
GLoRIA 71.5 53.4
BioViL 82.8 70.8

CheXzero 85.8 68.8
Ours 87.7 88.5
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4.7 Results for zero-shot disease classification

In this section, we present the zero-shot disease classification results on two datasets,
RSNA Pneumonia and SIIM-ACR Pneumothorax. Table 4 lists the results obtained by
different methods. Among the four comparison methods, different trends are observed
in the AUC scores on the two datasets. On the RSNA Pneumonia dataset, GLoRIA
achieves the lowest mean AUC score, while CheXzero obtains the highest score. On the
SIIM-ACR Pneumothorax dataset, although GLoRIA consistently achieves the lowest
classification results, the best score is given by BioViL instead of CheXzero. This
discrepancy suggests that the two datasets may possess different data characteristics
that affect the learning process.

Compared to the four existing state-of-the-art methods, our proposed framework
consistently demonstrates enhanced performance on both datasets. Particularly, on
the SIIM-ACR Pneumothorax dataset, our framework achieves a remarkable 17.7%
increase in AUC score when compared to the best-performing comparison method,
BioViL, thereby validating the effectiveness of the proposed report refinement method
and iterative learning process.

Table 5 Zero-shot phrase
grounding results on the
MS-CXR dataset.

Methods CNR mIoU
ConVIRT 0.818 0.238
GLoRIA 0.930 0.246
BioViL 1.027 0.266
Ours 1.257 0.266

4.8 Results for zero-shot phrase grounding

Phrase grounding serves as a powerful tool for improving the interpretability of deep
learning models. We evaluated the zero-shot phrase grounding performance of different
methods using the MS-CXR dataset (Table 5 and Fig. 3).

The quantitative results in Table 5 demonstrate that our proposed framework can
effectively enhance the zero-shot phrase grounding performance of the vision-language
representation learning model, as evidenced by both evaluation metrics, CNR and
mIoU. Particularly, the improvement in CNR is noteworthy. Specifically, our frame-
work achieves a CNR improvement of 0.439, 0.327, and 0.230 when compared to
ConVIRT, GLoRIA, and BioViL, respectively. CNR, which measures the difference
between the similarity values of inner and outer bounding box regions without rely-
ing on hard threshold values, is a more objective metric that could be more clinically
relevant, particularly when heatmap visualizations are needed instead of discrete seg-
mentation [10]. In other words, our method can be very helpful in clinical applications
where heatmap visualizations can provide more informative insights.

The example phrase grounding visualization results are presented in Fig. 3. For
comparison, we included two well-known vision-language pretraining methods, GLo-
RIA and BioViL. Multifocal pneumonia is a common condition in clinical practice;
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Fig. 3 Visualizations of phrase grounding with free text on the MS-CXR dataset. (1) to (5) represent
five examples in the dataset. White color sentences are the provided free-text annotations. Dashed
boxes indicate the annotations outlined by clinical experts. “Ours Iter1” and “Ours Iter2” represent
the models trained after the first and second iterations in our framework, respectively.

however, as depicted in Fig. 3(1), GLoRIA and BioViL can not handle this scenario
effectively. Additionally, GLoRIA often exhibits over-segmentation, as shown in Fig.
3(2) and Fig. 3(4). In contrast, both ’Ours Iter1’ and ’Ours Iter2’ demonstrate more
stable performance in grounding tasks, with ’Iter2’ slightly outperforming ’Iter1’ in
terms of IoU and CNR scores. These qualitative visualization results validate the effec-
tiveness of our proposed framework in highlighting important regions for zero-shot
tasks.

4.9 Ablation study

In this section, we present the results of our ablation studies, which aim to assess
the effectiveness of each component in our method. To conduct a comprehensive
evaluation, we performed both zero-shot and fine-tuning experiments. The zero-shot
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experiments include classification tasks on the NIH ChestX-ray dataset and the SIIM-
ACR Pneumothorax dataset and phrase grounding tasks on the MS-CXR dataset. The
fine-tuning experiments include classification tasks on the NIH ChestX-ray dataset
and segmentation tasks on the SIIM-ACR pneumothorax dataset. During the fine-
tuning process, we utilized All fine-tuning experiments were performed by utilizing
1% labeled data. The results are listed in Table 6.

Table 6 Results of ablation studies. The influence of different module combinations and different
dictionary construction methods is analyzed.

Methods

Zero-shot experiments Fine-tuning experiments
Classification Classification Classification Classification Segmentation

(AUC: %) (AUC: %) (AUC: %) (AUC: %) (Dice: %)
NIH ChestX-ray MS-CXR SIIM-ACR NIH ChestX-ray SIIM-ACR

Base model 72.6 65.9 77.6 78.0 60.2
Base+ITM 72.9 67.0 79.7 77.9 60.7
Ours Iter1 74.7 70.8 87.8 78.5 61.2

Ours Iter2 (GPT-4o) 75.7 72.2 88.0 78.6 61.4
Ours Iter2 (Claude-3) 75.5 73.1 88.5 78.6 61.3
Ours Iter2 (Manual) 76.1 73.0 88.5 78.7 61.3

Fig. 4 Example refined reports of “Ours Iter2 (Claude-3)”. The yellow sentences in parentheses
represent the supplement sentences via the dictionary matching. The sentences in blue are negative
sentences introduced to provide additional information by explicitly stating the absence of these
diseases.

We began our ablation studies with the base model, which utilized solely global
contrastive learning without the symmetric local contrastive loss and ITM. Then, we
added ITM (“Base+ITM” in Table 6) to check the influence of image-text match-
ing on the model performance. Next, we further incorporated the symmetric local
contrastive loss (“Ours Iter1” in Table 6), which formed our vision-language represen-
tation learning model with image-text matching determination capability (Fig. 2(a)).
Afterward, we introduced the report refinement method and trained our model in two
iterations. As demonstrated in Sec. 3.2.2, we incorporated several sentence generation
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methods, including: 1) using manually designed base templates (“Ours Iter2 (Man-
ual)”), 2) generating sentences based on the large language model Claude-3-Sonnet
with the highest similarity score (“Ours Iter2 (Claude-3)”), and 3) generating sen-
tences based on the large language model GPT-4o with the highest similarity score
(”Ours Iter2 (GPT-4o)”).

The results presented in Table 6 highlight the importance of each component in
our method. ITM can improve the results of the zero-shot experiments, while its
performance in the fine-tuning experiments is comparable to that of the base model.
The introduction of the symmetric local contrastive loss in “Ours Iter1” leads to
notable improvements across the majority of the tasks. Furthermore, our iterative
learning model, combined with report refinement (Manual, Claude-3-Sonnet, GPT-4o),
yields superior performance across all the experiments. In Fig. 4, we provide examples
of refined reports generated by “Ours Iter2 (Claude-3)”. Notably, the supplemented
sentences accurately identify the key information from the original sentences while
maintaining simplicity. This showcases the effectiveness of our approach in distilling
complex information into concise and easily understandable sentences.

Fig. 5 Results of ablation studies by fine-tuning with different ratios of refined reports. The zero-
shot classification results on the NIH dataset are reported, including the average scores for 14 diseases
(a) and the specific scores for five diseases (b-f).

To further analyze the effectiveness of the proposed report refinement and the
differences among various dictionary construction methods, we fine-tuned the model
using various refinement ratios in iteration 2. Specifically, 6 refinement ratios were
experimented with, including 0%, 20%, 40%, 60%, 80%, and 100%. For fair comparison,
we also report the fine-tuning results using different ratios of the original reports
(denoted as “Baseline”). Average zero-shot classification results on the NIH dataset
as well as the results for five specific diseases are reported (Fig. 5). Following BioViL
[10], we performed five runs with different seeds.
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Several interesting findings were observed. For the average results (Fig. 5a), the
baseline results showed no significant changes with increasing refinement ratios, indi-
cating that the model of “Iter1” had already converged, and further training would
not yield additional benefits. On the other hand, the proposed methods (Manually,
Claude-3, GPT-4o) achieved further improved performance across different refinement
ratios, underscoring the importance of report refinement. Besides, we found that the
performance gains were not monotonically increasing. For example, with the manually
constructed dictionary, the highest scores were achieved at the refinement ratio of 80%,
while with the dictionary created using Claude-3-Sonnet, the refinement ratio of 40%
became the best. One possible reason for this discrepancy could be that, although we
generated direct disease-related sentences to enhance the model’s capability using the
language model, these sentences might also include imprecise matching ones, leading
to degraded performance. This suggests that our dictionary construction and sentence
selection methods still have room for further improvement. Similar phenomena were
observed for specific diseases. Encouragingly, for mass, hernia, and pleural thicken-
ing, the performance improved continually with the increased adoption of refinement
reports. Among the different dictionary construction methods, Claude-3-Sonnet par-
ticularly excelled in pleural thickening, likely because the dictionaries generated for this
disease can better align with clinical practice, enhancing model learning (Appendix
Table S1). Conversely, for nodule and infiltration, while the manually constructed dic-
tionary maintained high performance, Claude-3-Sonnet (for nodule) and GPT-4o (for
both nodule and infiltration) exhibited performance declines. This could be caused by
the inability of these large language models to comprehensively capture the clinical
scenarios for these diseases (Appendix Table S1 and Table S2). These experiments indi-
cate that the proposed report refinement method can effectively enhance the medical
vision-language model’s ability to understand chest X-ray diseases. Although current
language models can not yet outperform manually constructed dictionaries in overall
performance, they have shown comparable or superior performance for certain specific
diseases.

The above experiments indicate that the proposed report refinement method can
effectively enhance the medical vision-language model’s ability to understand chest
X-ray diseases. Although the sentences generated by large language models (Claude-
3-Sonnet and GPT-4o) provide more detailed descriptions, they may not be precisely
aligned with the images and could introduce incorrect information. In contrast, man-
ually generated sentences focus on conveying the presence or absence of diseases,
sacrificing some detail but ensuring the accuracy of the supplemented information. In
this study, we retained the original sentences in the report during the refinement pro-
cess. By combining the original sentences with the manually generated ones, we achieve
a balance between providing detailed descriptions and offering straightforward guid-
ance regarding the presence of diseases. This approach ensures both comprehensive
information and clear indications of disease presence, thereby enhancing the overall
understanding of the radiology reports. The method labeled as “Ours Iter2 (Manual)”
with 100% report refinement ratio is our final approach. All results reported in Tables
1 to 5, labeled as “Ours”, are achieved using this method.
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5 Discussion and Conclusion

In this study, we developed a novel iterative vision-language representation framework
that incorporates a key semantic knowledge-emphasized report refinement method.
The primary objective of our work was to enhance the representation learning process
by refining complex radiology reports. Extensive experiments were conducted on five
external datasets, encompassing different medical image recognition tasks and evalu-
ation settings, to investigate the effectiveness of the proposed framework. The results
consistently demonstrated that our framework outperformed existing state-of-the-art
methods, showcasing its superiority and robustness.

Recently, the rapid development of large language models has brought new oppor-
tunities to the medical field. We also compared medical dictionaries constructed based
on the latest advanced language models. Although these language models demon-
strated suboptimal performance in our tests, we believe that with the advancement of
multimodal medical models, more comprehensive and fine-grained disease descriptions
from language models will emerge in the future, further enhancing the performance of
our model.

Despite obtaining promising results, our framework still has the following lim-
itations. Firstly, the performance of the report refinement method relies on the
constructed clinical dictionary, which can eventually impact the performance of the
optimized model in downstream tasks. Currently, the dictionary was constructed semi-
automatically, involving traversing all the training data. Fortunately, as shown in
the supplementary file (Appendix Table S1 and Table S2), the dictionary is rela-
tively simple and straightforward to construct. Secondly, as the two model-optimized
knowledge-enhancement metrics (similarity metric and matching metric) rely on Stage
1 trained image and text encoders, our framework needs to be trained in two itera-
tions. In future research, we will explore methods for integrating these different steps
and training the framework end-to-end.

In summary, our proposed key semantic knowledge-emphasized report refinement
method effectively refined the complex radiology reports to highlight crucial infor-
mation. Leveraging these refined reports, our iterative vision-language representation
learning framework enables effective utilization of knowledge within radiology reports
and facilitates the learning of meaningful medical image representations for various
downstream medical image analysis tasks, including fine-tuning disease classification,
fine-tuning region-of-interest segmentation, zero-shot disease classification, and zero-
shot phrase grounding. The consistent improvement in performance across different
tasks highlights the potential of our framework as a valuable medical foundation model
for diverse clinical applications.
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