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Abstract

Automatic image-based severity estimation is an important task in computer-aided diagnosis. Severity estimation by deep learning
requires a large amount of training data to achieve a high performance. In general, severity estimation uses training data annotated
with discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult in images with ambiguous severity, and
the annotation cost is high. In contrast, relative annotation, in which the severity between a pair of images is compared, can avoid
quantizing severity and thus makes it easier. We can estimate relative disease severity using a learning-to-rank framework with
relative annotations, but relative annotation has the problem of the enormous number of pairs that can be annotated. Therefore,
the selection of appropriate pairs is essential for relative annotation. In this paper, we propose a deep Bayesian active learning-to-
rank that automatically selects appropriate pairs for relative annotation. Our method preferentially annotates unlabeled pairs with
high learning efficiency from the model uncertainty of the samples. We prove the theoretical basis for adapting Bayesian neural
networks to pairwise learning-to-rank and demonstrate the efficiency of our method through experiments on endoscopic images of
ulcerative colitis on both private and public datasets. We also show that our method achieves a high performance under conditions
of significant class imbalance because it automatically selects samples from the minority classes.

Keywords: Computer-aided diagnosis, Learning to rank, Active learning, Relative annotation, Endoscopic image dataset

1. Introduction

Automatic image-based severity estimation is important to
assist medical doctors in clinical practice. Deep learning has
been applied to many disease severity estimations (Cho et al.,
2019; Klang et al., 2021; Takenaka et al., 2020). Severity es-
timation using deep learning requires the collection of a large
amount of training data annotated with severity labels by medi-
cal experts. Since medical experts need to carefully identify dis-
ease severity for many images, creating training data demands
laborious efforts.

Standard annotations (hereafter referred to as absolute anno-
tations) represent disease severity as discretized severity labels.
Figure 1(a) shows the absolute annotations for endoscopic im-
ages of ulcerative colitis (UC). Absolute annotation can be dif-
ficult even for medical experts. This is because disease severity
is inherently continuous, and when expressed in discrete sever-
ity levels, the levels can be ambiguous in intermediate cases.
For example, when medical experts annotate medical images to
be classified into four severity levels (0, 1, 2, and 3), they fre-
quently encounter images near the intermediate severity levels
(0.5, 1.5, and 2.5). Assigning discrete severity levels to these
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images is a time-consuming task that potentially leads to vari-
ability in decision outcomes. It has also been reported that ab-
solute annotation has high variability not only between different
medical experts but also within the same medical expert (Hirai
and Matsui, 2008).

Relative annotation is a promising alternative to absolute an-
notation in that it offers an easier process. Figure 1(b) shows the
relative annotations for UC endoscopic images, where we com-
pare the severity of the two images and attach relative labels that
indicate the result of the comparison. Relative annotation tends
to be easier for annotators compared to absolute annotation, and
it helps reduce subjective bias. Consequently, relative annota-
tion leads to less variability in decision outcomes across differ-
ent annotators. Relative annotation has been used for pairwise
learning-to-rank (LTR) methods, mainly for ranking tasks in
information retrieval (Carterette and Petkova, 2006; Liu, 2009;
Leaman et al., 2013; Hofmann et al., 2013). In computer vi-
sion, relative annotation is also used in image analysis applica-
tions because it is easy to perform and is stable when labeling
continuously changing data (Parikh and Grauman, 2011). Re-
cently, relative annotation has been applied to medical images,
and reports have indicated that it reduces annotation costs and
labeling errors (Kadota et al., 2022a; Saibro et al., 2022).

Image pair datasets with relative annotation can be used for
ranking tasks to estimate the order of image severity. Given
an image pair (xi, x j), where xi has a higher severity than x j,
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(a) Absolute annotation (b) Relative annotation

<
Mild (Mayo 1) Severe (Mayo 3)

Figure 1: Absolute and relative annotations.

a ranking function f (x), which outputs a scalar value called a
rank score, is trained such that f (xi) > f (x j) is satisfied. Since
f (x) gives a higher rank score to an image with higher severity,
it can be used as the severity of x. Therefore, we can estimate
the order of severity for multiple images by comparing their
rank scores. Furthermore, a calibration method using a small
number of absolute annotations allows f (x) to be used in the
classification task as the absolute severity instead of the relative
severity (Kadota et al., 2022a). In addition, f (x) can be used
for two-class classification when medical experts determine the
threshold for f (x) (Saibro et al., 2022).

A critical challenge in LTR with relative annotation is the
need to carefully select and annotate highly effective pairs from
all possible pairs for learning. In relative annotation, there are
N(N − 1)/2 possible pairs for N image samples. Even though
individual relative annotation is easy, it is practically difficult
to annotate all possible pairs. In addition, even if all pairs
were used for training, the training time would be consider-
ably longer, and less effective pairs for learning could reduce
performance. Therefore, it is essential to preferentially select
and annotate pairs with high learning effectiveness suitable for
severity estimation from all pairs.

In this paper, we address the problem of pair selection for rel-
ative annotations by using an active learning framework based
on a Bayesian convolutional neural network (Bayesian CNN).
For a trained model, Bayesian CNN estimates the uncertainty of
the sample. We employed a Bayesian CNN because it can esti-
mate uncertainty by applying Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016b) without changing the network struc-
ture for the pairwise LTR framework. The proposed method
features active learning, in which the Bayesian CNN is intro-
duced into the LTR framework to find pairs with high uncer-
tainty and gradually add relative annotations to them. The ex-
periments described in later sections show that the proposed
method achieves high performance on training data with signif-
icantly fewer pairs than N(N − 1)/2.

We also provide theoretical justification for the uncertainty
estimation in LTR based on the Bayesian CNN. Our method
applies MC dropout to CNNs with a Siamese network struc-
ture of pairwise ranking approaches. The application of MC
dropout to CNNs in regression and classification tasks has al-
ready been demonstrated (Gal et al., 2017). Here, we prove that
MC dropout is equally effective for CNNs in a Siamese net-
work structure in the ranking task. Our findings indicate that
the proposed method may be effective not only for severity es-
timation with relative annotation but also for various other ap-
plications. Furthermore, through experiments using both pri-

vate and public UC endoscopic image datasets, we demonstrate
the effectiveness of the proposed method in severity estimation.
Medical image datasets generally have class imbalance because
there are more images with normal or mild disease than those
with severe disease. We found that the proposed method pref-
erentially selects important samples from the minority classes
and thereby reduces the class imbalance.

The main contributions of this paper are as follows:

1. We propose an active learning method that introduces
Bayesian CNN into a learning-to-rank framework to ad-
dress the pair selection problem, an essential challenge in
relative annotation.

2. We theoretically demonstrate the applicability of MC
dropout in estimating uncertainty for a pairwise LTR task
using a Bayesian Siamese neural network (NN).

3. We experimentally demonstrate that the proposed method
improves the severity estimation performance by select-
ing pairs with high learning efficiency on a UC endoscopy
image dataset. In addition, we verify the generalization
ability of the proposed method using a public dataset. We
also confirm that the proposed method is robust to class
imbalances by selecting minority but important samples
with high priority.

4. We prove the usefulness of the proposed method in a sever-
ity classification task that classifies each image into one of
the discretized severity levels, which is a common task in
medical image diagnosis.

A preliminary version of this paper was published as a confer-
ence paper at MIUA2022 (Kadota et al., 2022b). In the current
version, we add the following new and significant contributions.

• We prove that MC dropout can be applied to pairwise
LTR by deriving the variational lower bounds in pairwise
LTR with Siamese network structures. We then show how
this allows us to treat the Siamese network structure with
dropout as a Bayesian model and obtain uncertainty esti-
mates for its features (corresponds to Contribution 2).

• We experimentally verify the effectiveness of our method
in the task of relative severity estimation using a public
dataset of UC endoscopic images (as a part of Contribu-
tion 3).

• To use the proposed method in the multi-class classifi-
cation tasks commonly used in clinical practice to make
treatment decisions, we integrate a technique to estimate
the discrete severity levels by calibrating the rank score
to the UC severity score into the proposed method (corre-
sponds to Contribution 4).

2. Related work

2.1. Disease severity estimation
2.1.1. Severity estimation based on endoscopic images

Many methods have been proposed to estimate disease sever-
ity based on endoscopic images. Liu et al. introduced a classifi-
cation method that estimates three endoscopic severity levels of
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Figure 2: (a) Deep Bayesian active learning-to-rank for relative severity estimation; step 1 (green arrows): generating a small number of pairs using randomly
selected images from an unlabeled image set and annotating these pairs for the initial training; step 2 (red arrow): training the Bayesian CNN using the labeled
image pair set; step 3 (blue arrows): selecting high-uncertainty images from the unlabeled image set to create pairs and attaching relative labels to the pairs. (b)
Multi-task learning for severity classification.

esophageal cancer: normal, premalignant, and cancerous (Liu
et al., 2020). Klang et al. used an NN to estimate five sever-
ity levels of Crohn’s disease using capsule endoscopy (Klang
et al., 2021). However, these methods come with high annota-
tion costs due to the need for absolute annotation that attaches
discrete levels to continuously changing lesions on endoscopic
images. Cho et al. used endoscopic images of pathologically
confirmed gastric lesions to estimate five severity levels of gas-
tric cancer (Cho et al., 2019). Although they demonstrated
the feasibility of estimating pathologically diagnosed severity
based on endoscopic images, their annotation process involved
obtaining pathological images through biopsies, leading to con-
siderable annotation costs.

2.1.2. Ulcerative colitis (UC) severity estimation
Several studies have investigated deep learning applications

to UC severity estimation. Takenaka et al. used a dataset in-
cluding the Ulcerative Colitis Endoscopic Index of Severity
(UCEIS) for severity estimation (Takenaka et al., 2020). UCEIS
is a discrete severity score ranging from zero to eight points
based on vascular pattern, bleeding, and erosion/ulceration,
but it incurs a very high annotation cost. Palot et al. pro-
posed an ordinal regression-based method to estimate the Mayo

score, which categorizes UC severity into four levels (Polat
et al., 2022a). They proposed a unique loss function that fo-
cuses on severity order, but the annotation cost is high because
they use discrete severity levels as ground truth. To avoid the
costly annotation of all captured images, Schwab et al. pro-
posed a weakly supervised learning method that estimates UC
severity (Stidham et al., 2019). Becker et al. proposed a
method to reduce annotation costs by automatically extracting
images suitable for UC severity scoring from endoscopic video
frames (Becker et al., 2021). Although these studies tackle the
issue of annotation costs in medical image datasets, they do
not inherently solve the quantization error in disease severity,
which is the root cause of rising annotation costs.

2.2. Learning to rank (LTR) with relative annotation

2.2.1. LTR for general image analysis
LTR with relative annotation has been applied to image anal-

yses such as attribute evaluation and image quality assessment
(IQA). Parikh et al. proposed a relative attribute model that pre-
dicts attribute similarity to images instead of a general classifi-
cation model that predicts the category of an attribute (Parikh
and Grauman, 2011). In addition, Souri et al. proposed us-
ing a CNN-based architecture to predict the strength of relative
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attributes (Souri et al., 2016). Ma et al. used a CNN-based pair-
wise LTR architecture for IQA (Ma et al., 2017), and Liu et al.
used a Siamese network structure to predict the quality rank-
ing of images using a dataset featuring relative annotations for
IQA (Liu et al., 2017). These studies focus on IQA but do not
address the critical issue of relative annotation, which causes
an enormous increase in the number of annotations due to pair
creation.

2.2.2. LTR for medical image analysis
Recent studies have reported the successful application of

LTR with relative annotation to the image analysis of contin-
uously changing lesions. Kalpathy-Cramer et al. modeled rela-
tive severity using relative annotations and proposed continuous
severity scores for the retinopathy of prematurity (Kalpathy-
Cramer et al., 2016). They found poor absolute agreements on
classification but good relative agreements on disease severity
in expert diagnoses. Li et al. developed a Siamese NN approach
to assess changes between disease severity at a single time point
and longitudinal patient visits, focusing on continuous disease
changes (Li et al., 2020). Lyu et al. proposed automatically
selecting high-quality images based on image quality ranking
using pairwise LTR (Lyu et al., 2021). As mentioned above,
using LTR with relative annotation, Kadota et al. found that
annotation costs could be reduced (Kadota et al., 2022a), while
Saibro et al. found that labeling errors could be reduced (Saibro
et al., 2022). However, although these studies show the effec-
tiveness of relative annotation, they do not solve the issue of
pair selection in relative annotation.

2.3. Active learning
2.3.1. Diversity-based sampling

Diversity-based sampling, one of the main techniques in ac-
tive learning, is a selection strategy to efficiently find sam-
ples representative of the entire data distribution in the feature
space. Dasgupta et al. proposed efficient sample selection us-
ing hierarchical clustering (Dasgupta and Hsu, 2008). Sener et
al. reformulated active learning as core-set selection and exam-
ined the core-sets by solving a greedy k-center problem (Sener
and Savarese, 2018). Thapa et al. applied an active learning
method based on core-set to semantic segmentation and depth
estimation of endoscopic images (Thapa et al., 2022). Sourati
et al. proposed a sampling based on Fisher information for
CNNs (Sourati et al., 2018). Smailagic et al. proposed a se-
lection method for unlabeled samples using a distance function
in the feature space (Smailagic et al., 2020). The sample selec-
tion implemented in these studies assumes absolute annotation
and does not consider relative annotation that creates pairs.

2.3.2. Uncertainty-based sampling
Many techniques for uncertainty-based sampling have been

proposed in medical image analysis to select samples with high
uncertainty as informative samples. Yang et al. and Gorriz et al.
used pixel-wise sample uncertainty to determine effective an-
notation regions in their segmentation tasks (Yang et al., 2017;
Gorriz et al., 2017). Tang et al. used active learning with un-
certainty selection and pseudo labels for the classification and

segmentation of endoscopic images (Tang et al., 2023). Wen
et al. proposed a sample selection method for pathology im-
ages using patch-wise uncertainty (Wen et al., 2018). Nair et al.
used voxel-wise uncertainty measures for 3D lesion segmenta-
tion (Nair et al., 2020). These methods do not assume any LTRs
with relative annotations because they deal with segmentation
or detection tasks.

In the field of natural language processing, Wang et al. have
recently reported a method for applying a Bayesian CNN to
LTR (Wang et al., 2021). Although their method seems sim-
ilar to ours, their purpose, structure, and application are quite
different. Specifically, their objective is to rank sentences (an-
swers) for a given sentence (query) according to their relevance.
For this purpose, their network always takes two inputs (e.g.,
f (xi, x j)), whereas our network takes one input (e.g., f (xi)).
These differences make it impossible to use their method for
active relative annotation tasks and thus to compare our method
with theirs.

3. Deep Bayesian active learning-to-rank

In relative annotation, labeled image pair sets Dk
L =

{(xi, x j,Ci, j)}, where xi, x j are input images, Ci, j is the ground
truth of the pair (relative label), and k is the number of rep-
etitions, are obtained by repeatedly selecting images from the
unlabeled image set DU = {xi} to create pairs that are then an-
notated by medical experts. Our purpose is to achieve a high
performance with a small number of pairs by selecting images
from the unlabeled image set that are highly effective in learn-
ing.

We employed a Bayesian CNN for uncertainty estimation in
pairwise LTR to select highly effective samples for training.
This is because MC dropout with the Bayesian CNN can esti-
mate uncertainty without changing the network structure of the
pairwise LTR, which uses relative annotation. While ensemble-
based methods can also be used to estimate uncertainty in deep
neural networks (Beluch et al., 2018), they require substantial
computational resources due to the need to train multiple net-
works, and the cost would be further amplified in Siamese net-
work structures. For these reasons, we adopted the Bayesian
CNN for uncertainty estimation in active learning for pairwise
LTR.

As shown in Fig. 2(a), the proposed method consists of
Bayesian inference based on the LTR algorithm for dis-
ease severity estimation and uncertainty-based active learning.
While the Bayesian CNN is trained on the basis of the LTR al-
gorithm, medical experts gradually add relative labels to the se-
lected image pairs based on the uncertainty the Bayesian CNN
provides. The proposed method consists of three steps. In
step 1, we generate a small number of pairs using randomly
selected images from an unlabeled image set. Medical experts
annotate these pairs for the initial training. In step 2, we train
the Bayesian CNN using the labeled image pair set to estimate
the rank score and uncertainty of the individual training sam-
ples. In step 3, high-uncertainty images are selected from the
unlabeled image set based on the estimated uncertainty to cre-
ate pairs, and the medical expert attaches relative labels to the
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pairs. We repeat steps 2 and 3 K times to train the Bayesian
CNN while gradually increasing the training data by adding la-
beled image pairs.

3.1. Preparing pairs for initial training (step 1)

Relative annotation is generally performed by randomly se-
lecting the number of pairs that can be annotated since this
number increases quadratically with the image data. However,
random selection results in many images of the majority class
and can thus lead to a dataset with low learning efficiency due
to many similar images. Therefore, the proposed method ran-
domly selects as small a number of images as possible for the
dataset in the initial training and prepares a labeled image pair
set D0

L as follows. First, given a set of N unlabeled images,
randomly sample R images, namely, r% of all images (i.e.,
R = rN/100 image samples). Then, the set of R pairs is formed
by randomly selecting from R − 1 samples for each R sample.
The strategy for pair formation is arbitrary. Here, we form R
pairs instead of all possible R(R−1)/2 pairs to limit the number
of pairs to be annotated. This strategy is used to avoid annotat-
ing O(R2) and thus to annotate all samples of R at least once.
Medical experts attach relative labels to these image pairs. Rel-
ative labels Ci, j are defined for image pairs (xi, x j) as follows:

Ci, j =


1, if xi has more severity than x j,
0.5, else if xi and x j have equal severity,
0, otherwise.

(1)

Through this step, we obtain the annotated image pair setsD0
L =

{(xi, x j,Ci, j)} and |D0
L| = R for initial training.

3.2. Training a Bayesian CNN (step 2)

In active learning, uncertainty-based sampling is gener-
ally used to reduce the annotation cost for training data.
Uncertainty-based sampling preferentially selects highly effec-
tive samples for learning. Gal et al. proposed approximate
Bayesian inference with MC dropout for applying this sam-
pling method to deep learning (Gal and Ghahramani, 2016b;
Gal et al., 2017). Their sampling strategy is to obtain the model
uncertainty of samples in regression and classification tasks
through a Bayesian CNN. While they provide theoretical proof
that MC dropout functions as a Bayesian CNN, their study did
not consider it in Siamese network structures for ranking tasks.

LTR with relative annotations generally uses a pairwise LTR
algorithm with a Siamese network structure. We propose an
uncertainty-based active learning method that applies Bayesian
CNN to Siamese network structures for ranking tasks. A
Bayesian CNN is trained with a labeled image pair set D0

L and
obtained as a ranking function. The obtained CNN outputs a
rank score that represents the input image’s severity order and
the uncertainty of the rank score. We used RankNet (Burges
et al., 2005), a pairwise ranking method with a Siamese network
structure, for the LTR algorithm. We employed RankNet be-
cause it utilizes a neural network as the model, and uncertainty
can be easily estimated by applying MC dropout. RankNet uses
a probabilistic ranking cost function in training. The proposed

method performs approximate Bayesian inference by applying
MC dropout to the Siamese neural network.

Let f (·) be a ranking function that is a CNN with L-weighted
layers. Given a single image x, the CNN returns a scalar value
f (x) as the ranking score for x. Let Wl be the l-th weight tensor
of the CNN. The Bayesian CNN is trained on the mini-batch
M sampled from D0

L, with dropout performed using the loss
function LM defined as follows:

Lrank
M
= −

∑
(i, j)∈IM

{
Ci, j log Pi, j + (1 −Ci, j) log(1 − Pi, j)

}
+ λ

L∑
l=1

∥Wl∥
2
F , (2)

where IM is a set of index pairs by the elements in mini-batch
M, Pi, j = sigmoid( f (xi)− f (x j)) is a probability obtained from
output values, λ is a constant value for weight decay, and ∥ · ∥F
is a Frobenius norm. The first term in Eq. (2) is a probabilistic
ranking loss function (Burges et al., 2005) for the CNN to learn
rank scores. The loss function is a cross-entropy loss defined
by the target probability Ci, j as ground truth and the probabil-
ity Pi, j obtained from the output values. The second term in
Eq. (2) is a weight regularization term that can be derived from
the Kullback-Leibler divergence between the approximate pos-
terior and the posterior of the CNN weights (Gal and Ghahra-
mani, 2016b). The CNN is trained to minimize the loss func-
tion LM for each mini-batch while performing dropout. With a
probability of pdropout, if the binary random variable takes one,
it is sampled for every unit in the CNN at each forward calcu-
lation, and if the corresponding binary variable takes zero, the
output of the unit is set to zero.

The rank score of the unlabeled image x∗ is the average of
the predictions by the trained Bayesian CNN calculated as y∗ =
1
T
∑T

t=1 f (x∗;ωt) where T is the number of sampling operations
by MC dropout, ωt is the t-th realization of the set of CNN
weights obtained by MC dropout, and f (·;ωt) is the output of
f (·) given a set of weights ωt.

The prediction uncertainty obtained from the Bayesian CNN
is defined as the variance of the posterior distribution of y∗.
This uncertainty is used to select images for annotation in ac-
tive learning and plays an important role in obtaining a highly
effective dataset for learning. The variance of the posterior dis-
tribution, Varq(y∗ |x∗)[y∗], which represents the uncertainty, is ap-
proximately obtained using MC dropout as follows:

Varq(y∗ |x∗)[y∗]=Eq(y∗ |x∗)[(y∗)2] −
(
Eq(y∗ |x∗)[y∗]

)2

≈
1
T

T∑
t=1

( f (x∗;ωt))
2
−

 1
T

T∑
t=1

f (x∗;ωt)

2

+const., (3)

where q(y∗|x∗) is the posterior distribution estimated by the
model. In the next step, the absolute value of the uncertainty
is not required, and thus, the constant term can be ignored.

3.3. Uncertainty-based sample selection (step 3)
The estimated uncertainty and relative annotations provide a

new set of annotated image pairs. We use a trained Bayesian
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CNN to estimate the rank scores and associated uncertainties
for the unlabeled images and select the top s% of images with
high uncertainty. As in step 1, image pairs are generated from
the selected images, and the medical expert annotates the image
pairs with relative labels. The image pairs with newly attached
relative labels are added to the current set of annotated image
pairsD0

L. The updatedD1
L is used to retrain the Bayesian CNN.

We repeat steps 2 and 3 K times to increase the size of the
annotated setDk

L (k = 0, . . . ,K).

3.4. Additional absolute annotation for multi-class classifica-
tion

As shown in Fig. 2(b), to apply the proposed method to a
multi-class classification task, the training set with relative la-
bels is additionally annotated with absolute labels for multi-task
learning. The training set obtained in step 3 has relative labels
attached to the pairs but no absolute labels attached to the indi-
vidual images. For a classification task, absolute labels need to
be used as ground truth, so we perform absolute annotation on
each image to the obtained training set. In addition, to calibrate
the rank score to the disease severity score, LTR and regression
are trained simultaneously with absolute and relative labels by
multi-task learning. The regression loss function is defined by
the squared error loss function for each sample of the pairs as
follows:

Lreg
M
=

∑
(i, j)∈IM

{
( f (xi) − Ai)2 + ( f (x j) − A j)2

}
, (4)

where Ai and A j are absolute labels of xi and x j, respectively.
The loss function of multi-task learning is defined as the sum
of the LTR loss function Lrank

M
in Eq. (2) and the regression loss

function Lreg
M

.

4. Theoretical analysis of Bayesian learning-to-rank

4.1. Evaluating log evidence lower bound for ranking

In this section, we demonstrate that model uncertainty can be
estimated by utilizing MC dropout in the context of LTR em-
ploying a Siamese network. The validity of the MC dropout-
based uncertainty estimation for an NN was originally shown
by Gal and Ghahramani on general classification and regression
tasks (Gal and Ghahramani, 2016a). Their approach involved
obtaining an approximate distribution of the posterior distri-
bution over the weights of the NN through variational infer-
ence, which is attributed to maximizing the log-evidence lower
bound. This was then shown to be equivalent to minimizing the
loss function (cross-entropy for classification or mean squared
error for regression) with L2 regularization and MC dropout.
Our proof process follows that of the aforementioned general
classification and regression cases, and we primarily establish
the equivalency between a log-evidence lower bound and the
loss function with L2 regularization and MC dropout in the con-
text of LTR with a Siamese network.

We consider the adaptation of MC dropout to the Siamese
network structure for the case of an NN with a single hidden

layer. We use the Siamese network structure consisting of sin-
gle hidden layer NNs to simplify the explanations in this sec-
tion, but the generalization to multi-layer NNs is straightfor-
ward. Let W1 and W2 be the weight matrices connecting the
first layer to the hidden layer and the hidden layer to the out-
put layer, respectively, and let b be the bias. Let X1 and X2 be
training data matrices with the n-th training sample (xn

1)⊤ and
(xn

2)⊤ (n = 1, . . . ,N) in the n-th row, respectively. The output
data matrices for the inputs X1 and X2 are denoted by Y1 and
Y2 that contain the n-th output vector (yn

1)⊤ and (yn
2)⊤ in the n-th

row, respectively. Given data matrices X1, X2, Y1, and Y2, we
estimate the ranking function y = f (x) obtained by the pairwise
LTR of the Siamese network structures. Let c =

[
c1, . . . , cN

]⊤
be the relative label matrix with the n-th relative label cn for xn

1
and xn

2. Then, we can write the generative model for the ranking
task as follows:

p(c | X1,X2)=
∫

p(c | Y1,Y2)p(Y1,Y2 | X1,X2)dY1dY2

=

∫
p(c | Y1,Y2)p(Y1,Y2 | X1,X2,W1,W2, b)

· p(W1,W2, b)dW1dW2dbdY1dY2, (5)

where W1 is a Q×U matrix derived from Q-dimensional inputs
and U hidden units, W2 is a U × D matrix derived from U hid-
den units and D-dimensional outputs, and b is a U-dimensional
vector of bias terms.

From Eq. (5), the log-evidence lower bound of the pairwise
LTR can be written as follows (the calculation process is de-
scribed in the Supplementary Materials):

LGP−VI B

∫
p(Y1,Y2 | X1,X2,W1,W2, b)q(W1,W2, b)

· log(p(c | Y1,Y2))dW1dW2dbdY1dY2

− KL(q(W1,W2, b)||p(W1,W2, b)), (6)

where q(W1,W2, b) is the approximating variational distribu-
tion, and KL is the Kullback-Leibler divergence.

The integrand of the first term in Eq. (6) can be rewritten as
a sum:

log (p(c | Y1,Y2)) =
N∑

n=1

log(p(cn | yn
1, y

n
2)). (7)

As a result, Eq. (6) is expressed as follows:

LGP−VI B
N∑

n=1

∫
p(yn

1, y
n
2 | x

n
1, x

n
2,W1,W2, b)q(W1,W2, b)

· log(p(cn | yn
1, y

n
2))dW1dW2dbdyn

1dyn
2

− KL(q(W1,W2, b)||p(W1,W2, b)). (8)

The integrands in the sum of Eq. (8) can be re-parameterized
not to depend directly on W1, W2, and b but rather on the stan-
dard normal and Bernoulli distributions. Let z1 and z2 be bi-
nary vectors whose element follows the Bernoulli distribution,
as q(z1,q) = Bernoulli(p1) with p1 ∈ [0, 1] for q = 1, . . . ,Q and
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q(z2,u) = Bernoulli(p2) with p2 ∈ [0, 1] for u = 1, . . . ,U. Let
ϵ1 ∈ RQ×U , ϵ2 ∈ RU×D, and ϵ ∈ RU be random matrices and a
vector whose element independently follows the standard nor-
mal distribution. We re-parameterize the integrands as follows:

W1 =M1diag(z1) + σϵ1,
W2 =M2diag(z2) + σϵ2,

b = m + σϵ,

yn
1 =

√
1
U

W⊤
2 ϕ(W

⊤
1 xn

1 + b),

yn
2 =

√
1
U

W⊤
2 ϕ(W

⊤
1 xn

2 + b),

(9)

where M1 = [mq]Q
q=1, M2 = [mu]U

u=1, and m are variational pa-
rameters, diag(z) is an operation that returns a diagonal matrix
with the elements of vector z on the main diagonal, σ > 0 is a
scalar, and ϕ(·) is an element-wise nonlinear function.

Next, using Monte Carlo integration with a distinct single
sample, we estimate each integral for all pair samples as fol-
lows:

LGP−MCB
N∑

n=1

log(p(cn | ŷn
1(xn

1,Ŵ
n
1,Ŵ

n
2,b̂

n),ŷn
2(xn

2,Ŵ
n
1,Ŵ

n
2,b̂

n)))

− KL(q(W1,W2, b)||p(W1,W2, b)), (10)

where ŷn
1, ŷn

2, Ŵn
1, Ŵn

2, and b̂n are the realizations of yn
1, y

n
2, Wn

1,
Wn

2, and bn sampled on the basis of Eq. (9).
The first term of the sum in Eq. (10) can be written from the

prediction probabilities of RankNet as follows:

log(p(cn | ŷn
1, ŷ

n
2)) = log(sigmoid(ŷn

1 − ŷn
2))

= log
(

1
1 + exp(ŷn

2 − ŷn
1)

)
. (11)

Using Monte Carlo integration, we can approximate the KL
divergence term with the variational parameters M1, M2, and
m and the probabilities p1, p2 (the details of the approximation
are described in the Supplementary Materials). Furthermore,
we can scale the objective by 1/N and optimize it to yield the
maximization objective as follows:

LGP−MC ∝
1
N

N∑
n=1

log(p(cn | ŷn
1, ŷ

n
2))

−
p1

2N
||M1||

2
2 −

p2

2N
||M2||

2
2 −

1
2N
||m||22. (12)

In the training of an NN, a regularization term is often added
to the loss function. The L2 regularization weighted by some
weight decays λ is often used, and we can obtain the following
equation to minimize the objective:

Ldropout B E + λ1||W1||
2
2 + λ2||W2||

2
2 + λ3||b||22, (13)

where E is the loss function.
The optimal parameters for maximizing Eq. (12) lead to the

same as those for minimizing Eq. (13) if the weight decays in

Normal (Mayo 0) Mild (Mayo 1) Moderate (Mayo 2) Severe (Mayo 3)

Figure 3: Examples of endoscopic images of ulcerative colitis at each Mayo
(severity).

Eq. (13) are properly determined. The two equations converge
to the same limit with the correct stochastic optimizer. The
above results prove that MC dropout can be applied to pairwise
LTR with the Siamese network structure.

4.2. Acquisition function for pairwise ranking

The predictive distribution of the Siamese network model is
represented as a joint probability, such as p(Y1,Y2 | X1,X2) in
Eq. (5). In addition, Y1 and Y2 are independent of each other,
and thus the distribution can be expressed as follows:

p(Y1,Y2 | X1,X2,W1,W2, b)
= p(Y1 | X1,W1,W2, b)p(Y2 | X2,W1,W2, b). (14)

Therefore, we define the variance of the posterior distribu-
tion of the output value, y∗, for the single input x∗, as shown in
Eq. (3), as an acquisition function of the model uncertainty.

5. Experiment

To evaluate the effectiveness of our method, we conducted
experiments on the disease severity estimation task using one
private and one public dataset for UC severity. In these exper-
iments, we evaluated the estimation performance of the pro-
posed method for two use cases. In the first use case, we ex-
amine the accuracy of estimating the relative labels, that is,
correctly identifying the image with higher severity in a given
endoscopic image pair. The objective of this evaluation is to de-
termine the effectiveness of treatment and to assess changes in
severity during follow-up in clinical practice. We quantitatively
compare the proposed method to baseline methods and also an-
alyze the relationship between uncertainty and class prior dis-
tribution for the datasets obtained by active learning.

In the second use case, we evaluate the performance of es-
timating UC severity levels in classification tasks. By attach-
ing additional absolute labels to the dataset obtained by active
learning, we estimate UC severity classification by multi-task
learning (Kadota et al., 2022a) combining LTR and regression.
The performance and annotation cost of the proposed method
are compared with those of conventional multi-class classifica-
tion methods.
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Table 1: Quantitative performance evaluation of the accuracy of estimating relative labels. The labeling ratio shows the percentage of relative labels used in training.
The labeling ratio of 100% indicates that the labels were created from all training data using the pairing method described in Section 5.1.2. ‘*’ indicates a statistically
significant difference between the proposed method and each compared method at p < 0.05 by multiple statistical comparisons using McNemar’s test.

Data Method Labeling
ratio Overall Neighboring

0–1 1–2 2–3 Mean

Private

Baseline 50% 0.861∗ 0.827∗ 0.837∗ 0.628∗ 0.763∗

Baseline (all data) 100% 0.875 0.855∗ 0.870 0.635∗ 0.785
Core-set 50% 0.851∗ 0.785 0.827∗ 0.632∗ 0.747∗

Proposed w/o UBS 50% 0.856∗ 0.818∗ 0.842∗ 0.634∗ 0.763∗

Proposed 50% 0.880 0.787 0.871 0.736 0.797

Public

Baseline 50% 0.838∗ 0.803 0.748∗ 0.731∗ 0.760∗

Baseline (all data) 100% 0.878 0.827∗ 0.806 0.778∗ 0.804
Core-set 50% 0.836∗ 0.802 0.741∗ 0.705∗ 0.749∗

Proposed w/o UBS 50% 0.857∗ 0.804 0.776∗ 0.749∗ 0.776∗

Proposed 50% 0.882 0.793 0.813 0.806 0.804

5.1. Relative severity estimation

5.1.1. Dataset
To examine the performance of the proposed method for rel-

ative label estimation, we used two datasets (one private and
one public) with absolute severity labels for UC.

The private dataset contains 10,265 endoscopic images from
388 ulcerative colitis (UC) patients at Kyoto Second Red Cross
Hospital. The Ethical Review Committee of Kyoto Second
Red Cross Hospital approved the experiments using the pri-
vate dataset. Multiple medical experts carefully annotated a
Mayo score, which determines UC severity on a four-point
scale (Mayo 0–3) for each image. Figure 3 shows examples of
endoscopic images in which the Mayo score was determined.
Schroeder et al. (Schroeder et al., 1987) defined a scoring sys-
tem to assess UC activity as Mayo scores in which the endo-
scopic findings of UC in the system are divided into four stages:
Mayo 0 is a normal or inactive disease, Mayo 1 is a mild disease
with erythema, decreased vascular pattern, and mild friability,
Mayo 2 is a moderate disease with marked erythema, absent
vascular pattern, collapse, and erosion, and Mayo 3 is a severe
disease with spontaneous bleeding and ulceration. The private
dataset has a large class imbalance and contains 6,678, 1,995,
1,395, and 197 samples for Mayo 0, 1, 2, and 3, respectively.
Note that medical imaging datasets usually have class imbal-
ances because the number of patients with normal or mild dis-
ease is typically larger than the number of patients with severe
disease.

The public dataset we used is the LIMUC dataset (Polat et al.,
2022b) annotated with Mayo scores for UC. This dataset con-
tains 11,276 images from 564 patients, all annotated by at least
two medical experts. The public dataset also has class imbal-
ance: Mayo 0, Mayo 1, Mayo 2, and Mayo 3 are 6,105, 3,052,
1,254, and 865, respectively. In principle, the same settings
were used in the evaluation of all experiments with the private
dataset.

5.1.2. Evaluation metrics
We defined the accuracy of relative label estimation, namely,

the percentage of relative labels correctly estimated for pairs,

as a performance metric. In this experiment, we created pairs
of two images and attached a relative label to each pair based
on the Mayo score. Estimated relative labels were attached by
comparing the rank scores of the image pairs. According to
Li et al., the severity rank score obtained from the Siamese net-
work can provide a continuous measure of the change in disease
severity between images (Li et al., 2020).

The number of pairs (O(N2)) that can be created from the N
samples is too large when creating image pairs, so we limited
the number of pairs for random sampling as follows. By se-
lecting one sample from N − 1 samples for each N sample, we
created N pairs (instead of O(N2) pairs). We also utilized this
pair creation method in Section 3 for selecting the initial set of
R samples. This setting, which is typical for pairwise LTR eval-
uations (Kadota et al., 2022a; Xu et al., 2021; You et al., 2019),
was used for all pair creations.

We performed five-fold cross-validation on all methods. The
datasets were divided into training (60%), validation (20%),
and test (20%) sets using patient-based sampling to ensure that
images from the same patient were not included in different
sets. For a fair evaluation, we created the image pairs within
each set after dividing the training, validation, and test sets.
Therefore, there were no duplicate images or image pairs be-
tween each set.

5.1.3. Implementation details
The experimental environment was Ubuntu 18.04 and two

NVIDIA TITAN RTX 24GB GPUs. We implemented our
method with Tensorflow 1.13.1 and Keras 2.2.4. We used the
DenseNet-169 structure (Huang et al., 2017) as the backbone of
the Bayesian CNN. We trained the CNN with dropout (pdropout
= 0.2) and weight decay (λ = 1×10−4) settings in the convolu-
tional and fully connected layers. We used the Adam optimizer
to optimize weight parameters. The initial learning rates were
set to 1×10−5 for the private dataset and 2×10−5 for the public
dataset. All images in the datasets were resized to 224 × 224
pixels and normalized to values between 0 and 255.

The hyperparameters for active learning in all experiments
were set to K = 6 for the number of iterations, s = 5% for the
selection rate from the training data at each sampling, r = 20%
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for the selection rate from the training data when sampling the
initial training data, and T = 30 for the number of estimates
for uncertainty estimation. The initial annotation ratio r = 20%
was selected as a realistically low-cost option in the relative
annotation scenario. The annotation ratio of the labeled dataset
after all iterations (6 in this case) was 50% (r+ sK = 20+5×6),
assuming 100% for the case with all training data.

5.1.4. Compared methods
The proposed method was compared with four methods,

which are referred to as ‘baseline,’ ‘baseline (all data),’ ‘pro-
posed w/o UBS,’ and ‘Core-set’ (Sener and Savarese, 2018).
The baseline was trained by randomly sampling r + sK pairs
of training data (the same number as for the proposed method).
The baseline (all data) was trained using N pairs created us-
ing all training samples. The annotation ratio of the baseline
(all data) was 100%, which is twice the maximum annotation
ratio of the proposed method (that is, r + sK = 50%). The
proposed w/o UBS was trained with increasing training data
by K iterations using random sampling, instead of uncertainty-
based sampling (UBS) to confirm the effect of UBS. Core-set
represents a diversity-based sampling strategy that was used in
place of UBS to assess its efficacy. Core-set utilized 1664-
dimensional features extracted from DenseNet-169 trained on
ImageNet. Note that all methods shared the same backbone
architecture, DenseNet-169-based CNN, to ensure a fair com-
parison. For all methods, rank scores were calculated based on
the average of the predictions estimated T = 30 times using
Bayesian CNN.

5.1.5. Quantitative evaluation with test data
We evaluated the accuracy of the relative severity estima-

tion between the image pairs by comparing the estimated rank
scores. Specifically, given a pair (xi, x j) where xi is more severe
than x j, the estimate is considered “accurate” if f (xi) > f (x j).

Relative severity estimation is typically utilized in clinical
practice to assess changes in disease severity. In general, it is
difficult to compare severity when the difference in severity be-
tween pairs is small. Therefore, we prepared two types of test
sets according to the difference in severity between pairs. Note
that these test sets are obtained from virtual relative annotations
with relative labels attached using Mayo labels.

“Overall” case: We prepared a randomly paired test set from
all Mayo scores. Specifically, we selected images so that the
number of samples for each Mayo score was equal and ran-
domly created pairs from the selected images. This test set
contains many easy pairs, such as pairs with Mayo 0 (normal
images) and Mayo 3 (severe images), which have very different
degrees of severity, as shown in Fig. 3. This test set was used to
evaluate the overall performance of each method.

“Neighboring” case: We created a neighboring pair test set
with Mayo 0–1, Mayo 1–2, and Mayo 2–3, paired from neigh-
boring Mayo score images. Neighboring pairs are similar in
severity, making it difficult to determine their relative severity.
In clinical applications, it is important to achieve high accuracy
in cases where severity comparison is difficult. This test set
evaluates the performance of each method in difficult cases.

Overall

Neighboring

Figure 4: Accuracy of relative label estimates for baseline (blue), Core-set (or-
ange), proposed w/o UBS (green), and proposed method (red) at each labeling
ratio. The black dotted line indicates the result of baseline (all data).

Table 1 shows the mean accuracy of relative label estimation
by each method in five-fold cross-validation. The labeling ratio
column shows the percentage of relative labels used in training.
The labeling ratio of 100% indicates that the labels were cre-
ated from all training data using the pairing method described
in Section 5.1.2. ‘*’ denotes a statistically significant differ-
ence at p < 0.05 by McNemar’s test using Holm’s method of
multiple statistical comparisons.

In the results for the “Overall” test set, the proposed method
achieved a higher performance than all other methods. In par-
ticular, it outperformed the baseline (all data) despite using half
the amount of training data. The performances of the baseline
and the proposed w/o UBS were lower than those of the base-
line (all data). These methods used a smaller size (by half) of
the training data than the baseline (all data). This difference is
due to class imbalances in the training data, as described in Sec-
tion 5.1.6 below. We used the two datasets with large class im-
balances, where the number of samples decreases as the sever-
ity increases. The proposed method mitigated class imbalances
in the training data and improved the performance by automat-
ically selecting samples from minority classes.

In the results for “Neighboring” (difficult case), the proposed
method outperformed all other methods in terms of mean accu-
racy for neighbor pairs. The performance comparison for each
pair showed that the proposed method performed better than the
other methods on “Mayo 1–2” and “Mayo 2–3”. In particular,
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Baseline (Labeling ratio of 50%) Proposed (Labeling ratio of 50%)Initial (Labeling ratio of 20%)

Figure 5: Box plots of estimated rank scores at each Mayo score. The initial labeling ratio was measured with 20% (iteration K = 0). The results of the baseline
and the proposed method estimates were measured with a labeling ratio of 50% (iteration K = 6). The estimate is considered reasonable if there is little overlap in
the distribution of rank scores for each Mayo score.

Iteration 0 (Labeling ratio of 20%) Iteration 3 (Labeling ratio of 35%) Iteration 6 (Labeling ratio of 50%)

Figure 6: Class proportions of each Mayo score for accumulated sampled images at iterations K = 0 (labeling ratio of 20%), K = 3 (labeling ratio of 35%), and
K = 6 (labeling ratio of 50%). For a labeling ratio of 20%, the class proportions were the same for the baseline and the proposed method. The proposed method
mitigates the class imbalance problem by selecting more samples from minority classes (Mayo 2 and 3).

the proposed method improved the accuracy of “Mayo 2–3” by
more than 10% compared to the other methods on the private
dataset. The more severe the disease, the greater the need for
treatment, so evaluating treatment effects on severe diseases is
critical. The proposed method performed better on severe im-
age pairs and is thus considered superior to the other methods in
terms of clinical application. However, the results of “Mayo 0–
1” showed that the accuracy of the proposed method was lower
than that of the other methods. This is because the proposed
method mitigates the class imbalance in the training data and
thus has fewer images labeled “Mayo 0–1” in the training data.

Figure 4 shows the change in the accuracy of estimating rel-
ative labels at each iteration (each labeling ratio) for the “Over-
all” and “Neighboring” test sets. The horizontal axis is the la-
beling ratio, the vertical axis is the mean accuracy for five-fold
cross-validation, and the black dotted line is the baseline (all
data) result with a labeling ratio of 100%. As we can see, the
accuracy of the proposed method (red) improved as the amount
of training data increased, and the improvement was more pro-
nounced than that of the other methods. The accuracy of the
proposed method was better than that of the baseline (all data)
when the labeling ratio was 40% in the “Neighboring” test set.
In contrast, the baseline (blue), the proposed w/o UBS (green),
and Core-set (orange) showed only marginal improvement in
accuracy as the amount of training data increased, with lim-
ited gains from the initial training. As shown in Table 1, the
accuracies of the compared methods were lower than that of

the proposed method, especially for Mayo 2–3, which is a pair
of minority classes. The lack of significant accuracy increase
over iterations in the compared methods can be attributed to
the effect of class imbalance in the pair creation. These results
indicate that active learning with uncertainty-based sampling
effectively selects highly effective pairs for learning.

Figure 5 shows box plots of the estimated rank scores at each
Mayo score from the baseline and the proposed method. The
horizontal axis shows each Mayo score, and the vertical axis
shows the mean estimated rank scores. The left figure, “Initial”,
shows the method where no iterations were performed, and the
network was trained using only the initial training data (label-
ing ratio of 20%). The baseline and the proposed method refer
to the results obtained using the training data with a labeling ra-
tio of 50%. In the box plots, we consider the rank scores to be
reasonable when there is little overlap in the distribution of rank
scores at each Mayo score, as the estimated difference in sever-
ity is clear. In the initial and the baseline results, the rank score
distributions of Mayo 2 and 3 overlapped significantly, while in
contrast, the proposed method reduced the overlap. These re-
sults indicate that the estimated rank score and the Mayo score
are highly correlated in the proposed method.

5.1.6. Relationship between uncertainty and class imbalance
As discussed in Section 5.1.5, the proposed method signif-

icantly improved the accuracy of relative label estimation by
automatically sampling from minority classes. These results
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Baseline (Labeling ratio of 50%)

Proposed (Labeling ratio of 50%)

Figure 7: Box plots of model uncertainty for each Mayo score for the baseline
and the proposed method. The performance of each method was measured at a
labeling rate of 50%. In the baseline, the minority classes (Mayo 2 and 3) had
higher uncertainty than the majority class. The proposed method mitigated the
class imbalance and reduced the uncertainty in Mayo 2 and 3.

suggest a relationship between the model uncertainty using the
Bayesian CNN and the minority classes in the dataset. There-
fore, we examined the number of samples of each Mayo score
and the uncertainty of the sampled images in the training data
updated by iterations.

Figure 6 shows the class proportions of the Mayo score of
the samples in the training data of the baseline and the pro-
posed method when the labeling ratio is 20% (k = 0), 35%
(k = 3), and 50% (k = K = 6). The horizontal axis shows
the Mayo scores, and the vertical axis shows the average num-
ber of images in the five-fold cross-validation. We analyzed the
difference between uncertainty-based and random sampling by
the number of images in each Mayo score. The initial train-
ing data in each method (labeling ratio of 20%) had the same
class imbalance as the entire dataset due to random sampling.
In addition, at the labeling ratios of 35% and 50% in the base-
line, the training data had class imbalances similar to the initial
training data. In the baseline, this class imbalance in the train-
ing data affected the performance. Thus, the performance im-
provement was limited despite increasing the number of images
in the training data. In contrast, the proposed method gradually
mitigated the class imbalance by selecting more minority class
images (Mayo 2 and 3) as the number of iterations increased.
As a result, the accuracy of relative label estimation was signif-
icantly improved, even though the amount of training data was
half that of the baseline (all data).

Figure 7 shows the model uncertainty distribution of the sam-
ple at each Mayo score on the training data for the baseline and
the proposed method. These results were obtained using the
training data with a labeling ratio of 50%. The horizontal axis
shows the Mayo scores, and the vertical axis shows the uncer-
tainty of the samples in the training data. In the baseline, the un-
certainty in the minority classes (Mayo 2 and 3) is higher than
in the majority classes (Mayo 0 and 1). In the proposed method,
the uncertainty of the sample at each Mayo score is not much
different, and the uncertainty for Mayo 2 and 3 is lower than
the baseline uncertainty. These results indicate that the uncer-
tainty is correlated with the class imbalance, and the smaller the
sample size of the class, the higher the uncertainty. Therefore,
the proposed method achieved a high performance thanks to us-
ing class-balanced training data obtained by uncertainty-based
sampling as discussed in Section 5.1.5. The proposed method
is thus useful for ranking tasks in medical images because se-
rious class imbalance problems often occur in medical image
datasets.

5.1.7. Qualitative evaluation
We examined the distribution of the samples selected by UBS

in the feature space. Figure 8 shows the distribution of selected
samples at the first iteration just after the initial training and
Mayo scores in the feature space using t-SNE. In this visualiza-
tion, we extracted 1664-dimensional features from images us-
ing DenseNet-169 trained on ImageNet and compressed these
features into a two-dimensional map with t-SNE. The left panel
shows the distribution of all training data and the correspond-
ing Mayo scores. The middle and right panels show the differ-
ences in the distribution of selected samples using the proposed
method, based on the presence or absence of UBS. The pro-
posed method without UBS selected samples uniformly, pre-
dominantly choosing samples from Mayo 0, the majority class.
In contrast, with UBS, the proposed method selected samples
from minority classes more frequently, thereby reducing class
imbalance.

5.2. Multi-class classification

5.2.1. Dataset
To investigate the effectiveness of the proposed method in

classification tasks, we conducted experiments to evaluate its
performance for multi-class classification. In these experi-
ments, we used the private dataset with large class imbal-
ances, and the test data preserved the class imbalance. We
also used five-fold cross-validation, and the dataset was divided
into training (60%), validation (20%), and test (20%) sets with
patient-based sampling.

5.2.2. Evaluation metrics
We used precision, recall, and F1-score as performance met-

rics for multi-class classification. We evaluated classification
performance primarily on F1-scores because the dataset has
a large class imbalance. The rank scores obtained from the
trained CNN are not categorical scales and cannot be used in
classification evaluations without modification. Therefore, we
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Ground truth Proposed w/o UBS Proposed

Figure 8: t-SNE visualization of the feature distribution and the sampling results after initial training. In the middle and right panels, colored dots represent selected
images.

Table 2: Comparison of the number of relative and absolute labels and the
annotation time for training data after additional absolute annotations.

Method Labels Time (s)*
Relative Absolute

Conventional 0 8,214 164,280
Baseline** 4,106 4,106 86,226
Baseline (all data) 8,214 8,214 172,494
Proposed w/o UBS** 4,106 3,378 71,666
Proposed** 4,106 2,475 53,606
* Relative: 1 (s/pair), Absolute: 20 (s/image)
** Relative labeling ratio of 50%

Table 3: Classification performance evaluation on test data.
Method Precision Recall F1-score
Conventional 0.626 0.642 0.629
Baseline 0.661 0.623 0.627
Baseline (all data) 0.632 0.655 0.640
Proposed w/o UBS 0.629 0.634 0.620
Proposed 0.682 0.641 0.649

determined the class by quantizing the rank score to the near-
est integer for converting the rank scores to the discrete severity
classes (Mayo scores). For example, a rank score of 1.7 is clas-
sified as Mayo 2.

5.2.3. Compared methods
We compared the proposed method with baseline, baseline

(all data), and proposed w/o UBS in Section 5.1.4, and a con-
ventional CNN-based method. In the conventional method, the
CNN backbone used DenseNet-169 (the same as the proposed
method) and was trained with categorical cross-entropy as the
loss function. All 8,214 training samples with absolute labels
(Mayo scores) were used to train the conventional method.

5.2.4. Annotation efficiency evaluation
Table 2 shows the relative and absolute labels and annotation

costs of the training data for each method in the classification
tasks. We used the training data with a relative labeling ratio of

50% in the baseline, the proposed w/o UBS, and the proposed
method. Annotation times were calculated as follows. The rel-
ative annotation takes one second per pair, and the absolute an-
notation takes 20 seconds per image (Kadota et al., 2022a). As
shown in Table 2, the annotation time of the proposed method
was less than that of all other methods and was as low as about
one-third of that of the conventional method. Interestingly, the
proposed method had about 900 fewer absolute labels than the
proposed w/o UBS. The proposed method preferentially selects
minority class images with the highest learning effect to create
pairs. We believe the number of absolute labels was reduced be-
cause the proposed method repeatedly selected the same minor-
ity class images during active learning. Note that the proposed
method always generates non-duplicate pairs and performs rel-
ative annotation, even if active learning selects the same image
repeatedly.

5.2.5. Classification performance evaluation
Table 3 shows the classification performance of each method.

As we can see, the F1-score of the proposed method was higher
than all other methods. In particular, it performed better than
the baseline (all data) trained with all training images. We
found that the proposed method can preferentially select the
more effective images for learning in classification. In addi-
tion, the proposed method achieved a higher F1-score than the
conventional method. These findings demonstrate the superi-
ority of the proposed method in terms of significantly reducing
the annotation cost for disease severity classification.

6. Conclusion

We proposed a deep Bayesian active learning-to-rank for ef-
ficient relative annotation by uncertainty-based sampling. We
theoretically proved that MC dropout can be applied to esti-
mate the model uncertainty of a pairwise LTR using a Bayesian
Siamese neural network. The proposed method actively de-
termines effective sample pairs for additional relative annota-
tion by estimating the model uncertainty of the samples using
Bayesian CNN. Experimental results showed that the proposed
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method achieves high performance with a small number of sam-
ples by selecting highly effective images for learning in rank-
ing and classification tasks. We also found that it is robust to
class imbalances because it selects a minority but significant
samples. The proposed method has two drawbacks. First, it
is computationally expensive because it requires multiple esti-
mations of output values to obtain uncertainty. In future work,
we plan to investigate an active learning-to-rank approach that
allows for multiple estimations in a short time. Second, uncer-
tainty may become inaccurate for datasets from domains that
are different from the training dataset. We will explore domain
generalization for an active learning-to-rank approach that cal-
ibrates uncertainty across multiple domains.
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