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Abstract

Magnetic resonance angiography (MRA) has become a common way to study cerebral

vascular structures. Indeed, it enables to obtain information on flowing blood in a totally

non-invasive and non-irradiant fashion. MRA exams are generally performed for three main

applications: detection of vascular pathologies, neurosurgery planning, and vascular land-

mark detection for brain functional analysis. This large field of applications justifies the

necessity to provide efficient vessel segmentation tools. Several methods have been pro-

posed during the last fifteen years. However, the obtained results are still not fully sat-

isfying. A solution to improve brain vessel segmentation from MRA data could consist

in integrating high-level a priori knowledge in the segmentation process. A preliminary

attempt to integrate such knowledge is proposed here. It is composed of two methods de-

voted to phase contrast MRA (PC MRA) data. The first method is a cerebral vascular atlas

creation process, composed of three steps: knowledge extraction, registration, and data fu-

sion. Knowledge extraction is performed using a vessel size determination algorithm based

on skeletonization, while a topology preserving non-rigid registration method is used to

fuse the information into the atlas. The second method is a segmentation process involving

adaptive sets of gray-level hit-or-miss operators. It uses anatomical knowledge modeled by

the cerebral vascular atlas to adapt the parameters of these operators (number, size, and

orientation) to the searched vascular structures. These two methods have been tested by

creating an atlas from a 18 MRA database, and by using it to segment 30 MRA images,

comparing the results to those obtained from a region-growing segmentation method.

Key words: anatomical knowledge modeling, brain vessel segmentation, magnetic

resonance angiography, mathematical morphology.
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1 Introduction

Vessel segmentation and quantification from 3D cerebral angiographic images has

become an important field of research in medical image processing. Indeed, the

availability of accurate information concerning brain vessels is fundamental not

only for planning and performing neurosurgery procedures, but also for diagnosing

vascular pathologies such as aneurysms or stenoses. Recent research works (func-

tional imaging, magnetic transcranial stimulation) have also emphasized the role of

vessels as landmarks for localization of brain specific areas.

Although computed tomography angiography (CTA) remains the most accurate

way to generate 3D vascular images, magnetic resonance angiography [1] (MRA)

has become a commonly used acquisition process. Indeed MRA enables to obtain

flowing blood images without radiation or contrast agent injection. Two different

non-invasive MRA techniques have been developed: time of flight MRA [2] (TOF

MRA) and phase-contrast MRA [3] (PC MRA).

The advantages of 3D MRA acquisition coupled with the necessity to obtain re-

liable information from angiographic data has led to the development of several

vessel segmentation methods during the last fifteen years. Nearly all of them are

based on an intensive use of classical image processing tools. However, although

the majority of these concepts have been studied and applied for vessel segmenta-

tion purpose, the obtained results are still not fully satisfactory. In order to improve

the efficiency of vessel segmentation methods, an original approach could consist

in integrating high-level a priori anatomical knowledge in segmentation strategies.

This knowledge could then be used to guide image processing tools during the

segmentation.

Such a knowledge-based approach however generates several issues: what knowl-

edge can be used, how this knowledge can be modeled and how it can be integrated

in a segmentation algorithm. In this paper, a solution composed of two methods

is proposed. The first method enables to model high-level anatomical knowledge

(vascular density, vessel size, and vessel orientation,) into a cerebral vascular at-

las. The second method uses this atlas to guide mathematical morphology tools

(gray-level hit-or-miss operators) in a vessel segmentation process. Both methods

are designed for PC MRA data, taking advantage of the bi-modality (magnitude

and phase images) of this acquisition technique (Fig. 1).

The paper is organized as follows. In Section 2, a general overview of the main

strategies devoted to vessel segmentation from MRA is proposed. In Section 3,

the way to model anatomical knowledge concerning vessels by use of atlases is

discussed. Section 4 provides definitions and notations used in the paper. In Section

5, the first method, enabling to generate a cerebral vascular atlas from a database,

∗ Corresponding author: Nicolas Passat (passat@dpt-info.u-strasbg.fr).
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is detailed. In Section 6, the second method using such an atlas to guide gray-level

hit-or-miss operators during a vessel segmentation process is fully described. In

Section 7, both methods are validated on a 48 PC MRA database, 18 images being

used for atlas generation while the 30 other ones are used to evaluate the accuracy

of the segmentation process. Discussion on possible applications of vascular atlases

and on knowledge-based vessel segmentation methodology are presented in Section

8.

2 Previous work on vessel segmentation

Vessel segmentation is an active research area since 1990, already providing a large

amount of methods for 2D, multi-planar 2D, and 3D angiographic data. Several

publications presenting overviews of all vessel segmentation methods or of seg-

mentation algorithms devoted to specific angiographic images are available in the

literature [4–7]. In this section, we will only focus on methods devoted to vessel

segmentation from 3D MRA data.

2.1 Segmentation methods

Several criteria could be used to classify vessel segmentation methods: automation,

centerline or whole vessel detection, size of the searched vessels, general meth-

ods or methods designed for a specific organ. The classification proposed here is

based on the main image processing strategies used to carry out the segmentation.

According to this taxonomy, eight categories, being presented hereafter, can be

considered: filtering, mathematical morphology, region-growing, vessel tracking,

differential analysis, deformable models, statistical analysis, and artificial intelli-

gence.

Filtering methods have constituted the very first algorithms used for analysis of

MRA data [8]. In [9], it is proposed to use anisotropic diffusion to reduce the signal

to noise ratio without blurring the object boundaries. In [10], the dispersion range

of low-pass filters in the 13 main directions of a cubical neighborhood is used to

enhance the visibility of small vessels. The line segment model used in this method

is generalized to a cylinder of finite width in [11]. In [12], anisotropic filtering is

also carried out by previously determining the orientation of the vessels, finally

proposing a nonlinear approach. In more recent works, local structure estimation

is carried out as a preliminary step using six 3D selective filters in [13], while

computation of the local maximum mean is proposed in [14] to enhance vessel

visualization in maximum intensity projections (MIP) of MRA. It has to be noticed

that other methods involving multi-resolution filtering are classified as differential

analysis methods, since they use filters based on Hessian matrix analysis.

3



Mathematical morphology is an image processing framework designed for analysis

of signals in terms of shape. Many classical mathematical morphology tools have

been used in the field of MRA segmentation. Hysteresis thresholding is performed

in [15] as a preliminary step before analyzing the vascular network topology. More

recently, sophisticated concepts have also been involved in segmentation methods.

Indeed, watershed is used for segmentation of specific venous structures in [16] and

as a preliminary step in [17] before classifying the different connected component

into vessels or non vascular structures. Segmentation by gray-scale skeletonization

is also used in [18] to segment vascular structures containing subvoxel-sized ves-

sels. It has to be noticed that many other tools have also been applied for vessel

segmentation from CTA (gray-level opening and closing, thinning, . . . ).

Region-growing methods are based on the hypothesis that vessels can be recon-

structed from a seed point by iteratively adding voxels belonging to the vascular

network. This approach is used in [19,20] to improve MIP visualizations of ves-

sels, and in [21] to improve vein/artery discrimination. In [22], region-growing seg-

mentation is used for creation of 3D models for neurosurgery planning. A similar

method is also proposed in [23] for visualization purpose. The seed point used to

initialize the segmentation method is generally interactively defined by the user or

chosen according to an intensity criterion. The growing process is then carried out

according to given connectivity criteria and a threshold value indicating when the

method has to finish.

Vessel tracking methods are generally designed to segment the axis and boundary

of a vessel from an interactively defined initial point. Following an iterative pro-

cess, the method determines a vessel slice before computing the following slice

center along the vessel axis and the normal plane at the new position. This process,

behaving as an imaginary catheter is useful for segmentation and quantification of

vessels in case of pathology diagnosis. Such a strategy is proposed in [24], where

the point assumed to be located on the axis is determined by computing a center

likelihood measure. In [25], the whole vascular tree is segmented by recursively

applying the tracking method on each new detected branch. A method proposed

in [26] also enables a detection of whole vascular trees by using an adaptive box

surrounding the processed area to detect topology modifications.

Differential analysis methods are designed to segment vascular structures by com-

puting differential properties of the 3D data which are then considered as func-

tions. Following preliminary results proposed in [27], several methods are based

on multi-scale filtering using Hessian matrix analysis. In [28] the proposed method

uses a combination of eigenvalues of the Hessian matrix while both eigenvalues

and eigenvectors are considered in [29] to characterize vascular structures. Strate-

gies presenting similarities are proposed in [30] and [31,32]. They consider the

3D data as hypersurfaces in a 4D space and segment vessels as crest lines of such

surfaces.
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Deformable models are used in vessel segmentation methods in order to determine

vessel axes or vessel walls. These models are designed to evolve under external

and internal constraints such as vessel shape and intensity criteria. A level-set ap-

proach is proposed in [33] to segment vessel axes before estimating their radius.

In [34] a vessel model, using axial position and circumference parameters, is used

as a deformable model, assuming that the searched vessel present a circular cross-

section. In [35], a surface mesh which must present a correct topology in the region

of interest is deformed to fit the vessel walls in this region. It has to be noticed

that deformable models can be mixed with other segmentation strategies as in [36]

where Hessian matrix analysis is used to guide a B-spline curve deformation.

Statistical analysis methods are designed to find vascular structures by using dif-

ferent statistical distributions to model both flowing blood and background signals.

An expectation-maximization algorithm is generally used to classify each voxel of

the processed angiographic image. In [37], a Maxwell-Gaussian mixture density is

used to model the background signal distribution while a uniform distribution is

used for blood signal in PC MRA data. In [38], TOF MRA are processed by us-

ing a mixture of one Rayleigh and two normal distributions for background, and a

normal distribution for vessels. In [39], classification is performed in a hierarchical

way, to adapt the model to the different subvolumes of the processed TOF MRA.

Several artificial intelligence concepts have also been applied to the field of vessel

segmentation. The major part of vessel segmentation methods using artificial intel-

ligence are path finding techniques enabling to determine the trajectory of a vessel

from two given extremity points, even in case of signal loss caused by vascular

pathologies. Although most of them are devoted to CTA segmentation, applications

on MRA have also been proposed in [40]. Other artificial intelligence concepts have

been studied. A classification based on neural networks is then proposed in [41] to

segment vessels from non vascular structures.

2.2 Analysis

Despite a large amount of methods, one can observe that very few strategies have

been developed to take advantage of anatomical knowledge. The assumption that

vessels present a circular cross-section has been used in [34] for vessel modeling in

a deformable model method. Topology information is sometime provided by vessel

segmentation methods as in [42]. However, topology is never used to guide the seg-

mentation process, except in [43], where the tree structure of the searched vascular

network is used for guidance of a thinning process. Such hypotheses on vascular

structure anatomy, which could enable to create knowledge-based methods remain

very infrequent, hence forbidding to obtain strategies adapting their behavior to the

processed structures.
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One can also observe that multimodal data are generally not involved in vessel seg-

mentation processes. In [44], a method using both 3D MRA and 2D X-ray images,

is proposed for brain vessel visualization, taking advantage of the accuracy of X-

ray data and of the 3D information provided by MRA. In [45], another multimodal

approach is proposed for reconstruction of 3D vascular data from 2D X-ray images

and ultrasound data. Except such examples, this kind of method remains unusual.

Moreover, the few methods using multimodal data only consider angiographic im-

ages, while integration of non angiographic ones could provide useful information,

as shown in [16].

In the following section, the use of multimodal (angiographic and non angiographic)

images and of a priori anatomical knowledge is discussed. It is then observed that

both concepts can be used to build anatomical knowledge models leading to the

proposal of new kinds of knowledge-based vessel segmentation methods.

3 Anatomical knowledge modeling

3.1 Vascular knowledge

All the vessel segmentation methods presented in the previous section use very

little a priori knowledge. Indeed, they are generally based on two main hypotheses.

First, vessels (i.e. flowing blood) correspond to the voxels of highest value in MRA,

justifying the use of threshold-based strategies. Second, vessels present a tubular

shape (i.e. a circular or elliptic cross-section). This hypothesis is generally used to

guide deformable model evolution. It also enables to propose methods based on

medial axis detection such as vessel tracking or path-finding ones. Few methods

also use topological properties, assuming that vascular networks, or parts of them,

are generally organized in a tree structure.

Nevertheless, brain vascular networks present many other important properties con-

cerning density 1 , size, orientation, and adjacency with other structures. All these

properties may allow to create vascular models of brain vasculature designed to

guide segmentation tools. The way to model such knowledge by use of atlases is

now discussed.

3.2 Vascular atlases

Atlases modeling knowledge properties of n-D structures are generally defined as

n-D images. Therefore, they provide an easy and efficient way to store informa-

1 “Density” is defined here as the probability to find a vessel at a given position.
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tion according to spatial position. 3D atlases are then perfectly designed to model

knowledge concerning anatomical structures. Such atlases have already been pro-

posed for segmentation of cerebral non angiographic data [46]. Nevertheless, the

tortuosity and variability of brain vessels make the creation of vascular atlases a

hard task. Despite these difficulties, two attempts have recently been proposed.

In [47,48], a process is proposed to generate vascular atlases from any database of

segmented angiographic images. For each segmented image, an inverted distance

map is computed, providing a blurred image of the vasculature. An arbitrary ele-

ment of the database being defined as the reference template, the other ones are

then mapped on it, using affine registration (directly based on the distance maps

or on T2 MRI associated to MRA). Both mean and variance images obtained by

fusing the registered images finally constitute the vascular atlas.

In [49], the proposed atlas is designed from a PC MRA magnitude image (similar

to a classical T1 MRI), using semi-automated segmentation tools. Its main purpose

is to provide a set of regions presenting homogeneous properties about vessel size,

orientation and position relative to other brain structures. This atlas is then used for

guidance of region-growing segmentation from PC MRA phase images.

To our knowledge, these two results constitute the very first attempts to model

anatomical information on cerebral vascular structures. Despite their originality,

both of them present drawbacks. The first atlases are automatically generated by

directly registering segmented vessels [47] and by using affine transform [47,48].

Then the atlas generation process can hardly take into account the anatomy of the

neighboring cerebral structures, and may be inaccurate and error prone. Although

this strategy enables to generate atlases for any vascular structures (it has been ap-

plied for brain arterial structures and liver vessels), such atlases are not designed

for segmentation purpose. The second atlas described in [49] is devoted to segmen-

tation and takes into account information concerning the vessels in relation with

other cerebral structures. Despite these advantages, it has not been automatically

generated, and can contain imperfections. It also has to be noticed that it divides

the brain into a finite set of vascular areas. This finite number of regions could be

considered as a weakness, since there is no automated process to determine new

smaller regions from the initial ones.

The method proposed in Section 5 for cerebral vascular atlas generation, has been

developed to avoid these drawbacks. Indeed, it is designed to automatically gen-

erate atlases which are not composed of regions, but model knowledge as vector

fields. Moreover, vascular knowledge is fused by using non-rigid registration, al-

lowing a better precision than affine registration. Finally, registration is not per-

formed on angiographic images (PC MRA phase images) but on non vascular im-

ages associated to them (PC MRA magnitude images). This use of multimodal data

enables to preserve the relation between the vessels and the neighboring cerebral

structures.
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4 Background

4.1 Imaging

The proposed methods have been designed to be performed on PC MRA. A PC

MRA data is composed of two 3D images: a magnitude image, similar to a T1

MRI, and a phase image, only containing moving structure signal (flowing blood,

plus noise and artifacts). Both images are simultaneously acquired and are then

perfectly superimposed. Sagittal slices of PC MRA magnitude and phase images

are illustrated in Fig. 1. These images are generally made of non-isotropic voxels

of edges equal or close to 1 mm. A MRA image of the whole head can then be

composed of more than 150 slices, each one containing 2562 voxels.

Fig. 1. PC MRA sagittal slices. Left: magnitude image (pmag) slice, containing morpholog-

ical structures. Right: phase image (ppha) slice visualizing the flowing blood. By definition,

both images are perfectly superimposed.

4.2 Definitions and notations

In the following, a PC MRA data will be denoted by p while a set of PC MRA’s

will be denoted by P. The magnitude image (resp. phase image) associated to p

will then be denoted by pmag (resp. ppha). Since phase and magnitude images of p

are 3D gray-level images, they can be defined as functions. Then, if dx, dy, dz are

the dimensions of p, we have:

pα : [0, dx − 1] × [0, dy − 1] × [0, dz − 1] → Z

(x, y, z) 7→ v
,

where α = mag or pha and v is the gray-level value of the image at the current point

(x, y, z). For simplicity’s sake, we will consider that for a given set P, all p ∈ P have
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the same dimensions dx, dy, dz. The set [0, dx − 1] × [0, dy − 1] × [0, dz − 1] will be

denoted by I while a point (x, y, z) ∈ I will be denoted by x.

The following definitions and notations will be used in the sequel (E is a Euclidean

or digital space):

• P(X) – set of all subsets of X: ∀X ⊆ E,P(X) = {Y | Y ⊆ X};

• Xc – complementary of X: ∀X ⊆ E, Xc = {x ∈ E | x < X};

• Xp – translation of X by p: ∀X ⊆ E,∀p ∈ E, Xp = {x + p | x ∈ X};

• X̌ – symmetric of X: ∀X ⊆ E, X̌ = {−x | x ∈ X};

• R
E

– set of numerical functions F : E → R (R = R ∪ {−∞,+∞});

• F∗ – dual function of F: ∀F ∈ R
E
,∀x ∈ E, F∗(x) = −F(−x);

• Fp – translation of F by p: ∀F ∈ R
E
,∀p ∈ E,∀x ∈ E, Fp(x) = F(x − p);

• F(p,t) – translation of F by (p, t): ∀F ∈ R
E
,∀(p, t) ∈ E × R,∀x ∈ E, F(p,t)(x) =

F(x − p) + t;

•
∨

F∈F – supremum of F : for all F ⊆ R
E
,∀x ∈ E, (

∨

F∈F )(x) = supF∈F (F(x));

•
∧

F∈F – infimum of F : for all F ⊆ R
E
,∀x ∈ E, (

∧

F∈F )(x) = infF∈F (F(x));

• U(F) – umbra of F: ∀F ∈ R
E
,U(F) = {(p, t) ∈ E × R | t ≤ F(p)};

• F ⊕ B – dilation of F by B: ∀F ∈ R
E
,∀B ∈ P(E), F ⊕ B = supb∈B Fb;

• F ⊖ B – erosion of F by B: ∀F ∈ R
E
,∀B ∈ P(E), F ⊖ B = infb∈B F−b;

• F ⊕G – dilation of F by G: ∀F,G ∈ R
E
, F ⊕G =

∨

(p,t)∈U(G) F(p,t);

• F ⊖G – erosion of F by G: ∀F,G ∈ R
E
, F ⊖G =

∧

(p,t)∈U(G) F(−p,−t).

5 Vascular atlas generation

The method described in this section has been designed to generate vascular atlases

from any set of PC MRA’s of the brain. The obtained atlases model anatomical

knowledge on vessel size and orientation but also on vascular density, with respect

to the position of cerebral non vascular structures.

5.1 Input and output

The method takes as input a PC MRA database P = {pi}n−1
i=0

of arbitrary size n and a

PC MRA magnitude image p
re f
mag used as a reference image (p

re f
mag can be chosen in

P). It provides as output a vascular atlasA defined by:

A : I → [0, 1] × P(R+) × P([0, π[×[0, π[)

x 7→ (Ad(x),At(x),Ao(x)) = (d, t, o)
,
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where (d, t, o) represents the vascular density (d), the set of possible diameters of a

vessel (t), and the set of its possible orientations (o) at the current position x.

5.2 First step: Knowledge extraction

This first step consists in determining anatomical information for each MRA of

the database. Information about vessel position is first obtained by segmentation.

Information on vessel orientation and size is then determined using a quantitative

analysis method.

The vessel segmentation method takes as input P = {pi}n−1
i=0

and computes the seg-

mentation of pi for i = 0 to n − 1. The method used here [49] is based on a region-

growing algorithm, the results of which are then interactively corrected to provide

correct and accurate segmentations 2 . However, any method providing a discrete

binary image as result could also be used. Each segmentation of pi provides a 3D

binary image pi
seg containing the arterial and venous structures contained in pi:

pi
seg : I → {0, 1}

x 7→ d
,

where d = 1 if a vessel is located at x, and 0 otherwise. A new set Pseg = {p
i
seg}

n−1
i=0

of segmented images associated to P is then available. A segmented image example

is illustrated in the left picture of Fig. 3.

The set Pseg can be used to compute the probability of finding a vascular structure

at a given position. Nevertheless, it does not directly provide information on ves-

sel size and orientation. A quantitative analysis is then necessary to complete the

knowledge extraction step. In order to compute size and orientation parameters,

every binary image pi
seg is processed by a quantitative evaluation method fully de-

scribed in [50]. This quantitative evaluation is first based on an iterative topology

preserving skeletonization of the binary image. At each iteration, only simple vox-

els [51] (voxels whose deletion does not modify the object topology) are considered

and deleted from pi
seg. The final skeleton, obtained by successive layers removal,

has the same topology as the vessels and is centered inside each of them, but can

however present an irregular shape. Since a direct estimation of the tangent lines

from this skeleton could then lead to incorrect results, each branch is modeled by

a Bézier curve. The control points used for each curve are determined by sampling

the skeleton (i.e. by choosing points separated by a fixed number of voxels on the

2 These corrections constitute the only interactive part of the method. This interaction is

however necessary since, to our knowledge, there does not exist any vessel segmentation

method being fully automatic and fully reliable.
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Fig. 2. Successive steps of the quantitative estimation method applied on a virtual object.

From left to right: initial object; skeleton computation; cross-section planes computed by

intersecting the object and the digital normal planes; thickness image obtained from area

estimation (the gray-level depends on the estimated diameter of the cross-section planes).

discrete curve corresponding to the branch). The use of Bézier curves enables to

significantly smooth the skeletal structure, finally providing reliable medial axes

being correctly oriented and centered in the object. It is then possible to efficiently

determine the tangent line corresponding to the vessels axes, and hence to define

an image pi
ske

, which is composed of their orientations. Tangent lines also enable to

determine digital planes being normal to the vessel axes. The intersection of both

normal plane and vessel provides a model of the vessel cross-section for each point

of the skeleton. Each cross-section can be directly projected onto the three princi-

pal planes, providing three areas Ax, Ay, and Az which can be combined with the

normal vector (nx, ny, nz) associated to the tangent line to compute the cross-section

area:

A = Ax.nx + Ay.ny + Az.nz.

Assuming that cross-section planes present a circular or nearly circular shape, the

diameter can be directly evaluated from the area value, enabling to compute an

image pi
thi

modeling these diameters. The different steps of the quantitative analysis

method are illustrated on a simple shape example in Fig. 2.

That step finally provides, for every pi ∈ P, two 3D images pi
thi

and pi
ske

:

pi
thi

: I → R+

x 7→ t
,
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pi
ske

: I → [0, π[×[0, π[

x 7→ (pi
ske,θ

(x), pi
ske,φ

(x)) = o
,

where pi
thi

(x) = t (resp. pi
ske

(x) = o) is the diameter (resp. the 3D orientation) of

the vessel in the neighborhood of x (pi
thi

(x) and pi
ske

(x) are defined if and only if

pi
seg(x) , 0). It has to be noticed that θ represents the angular position of the vessel

with respect to the vertical axis (where θ = 0), while φ is the angular position of the

vessel with respect to the sagittal axis (where φ = 0). After this quantitative anal-

ysis, two new sets Pthi = {p
i
thi
}n−1
i=0

and Pske = {p
i
ske
}n−1
i=0

of diameter and orientation

images associated to P are available. Examples of skeleton and diameter images

are respectively illustrated in the middle and right parts of Fig. 3.

Fig. 3. 3D visualization of the computed parameters for an image pi of the database P.

From left to right: segmented vessels (pi
seg), skeleton (pi

ske
), vessel diameter (pi

thi
: gray-level

depending on the vessel diameter).

5.3 Second step: Non-rigid registration

In order to correctly combine the information of every image of the database, it is

necessary that the fused values correspond to the same position in the brain or the

head. Indeed, even though the principal parts of the human brain are quite similar

from one person to another, their size, shape and proportions can present variations.

It is then fundamental to find, for every processed image, a correct 3D deformation

field enabling to map them on a same reference. This can be done by use of non-

rigid registration. The registration algorithm used here (illustrated in Fig. 4) is the

one proposed in [52,53]. It relies on a hierarchical parametric modeling based on

B-spline functions. The parameters of the model are estimated by minimizing a

symmetric form of the standard sum of squared differences criterion. This method

has been chosen for its ability to preserve the topology of the registered anatomical

structures by constraining the Jacobian of the transformation to remain positive.

For all pi ∈ P, the PC MRA magnitude image pi
mag is registered onto the reference
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magnitude image p
re f
mag, providing a 3D deformation field Di. Then for any x ∈ I,

pi(x) is assumed to be equal to p
re f
mag(Di(x)), from an anatomical point of view.

Fig. 4. Result provided by the 3D non-rigid registration used in the proposed algorithm.

Left: reference magnitude image (p
re f
mag). Right: magnitude image of a patient case (pi

mag).

Middle: result obtained by registration of the left image on the right image. The deformation

field used here to obtain this image (Di) is then used to map the atlas on the phase image of

the patient.

5.4 Third step: Data fusion

This last step consists in fusing the pieces of knowledge of each image of the

database into a unique vascular atlas. The first part of the atlas (modeling vascular

density information):

Ad : I → [0, 1]

x 7→ d
,

is defined from the set Pseg, by computing the average image of all pi
seg ∈ Pseg:

∀x ∈ I,Ad(x) =
1

n

n−1
∑

i=0

pi
seg((Di)−1(x)).

By definition, Ad(x) ∈ [0, 1], and provides the probability to find a vascular struc-

ture at the current position x of p
re f
mag.

The second part of the atlas (modeling vessel size information):

At : I → P(R+)

x 7→ t
,
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is defined using average and standard deviation diameter values obtained from all

pi
thi
∈ Pthi:

∀x ∈ I,At(x) = [max{0, a(x) − σa(x)}, a(x) + σa(x)],

where:

a(x) =



















0 if N(x) = ∅

1
#N(x)

∑

i∈N(x) pi
thi

((Di)−1(x)) otherwise
,

with:

N(x) = {i ∈ [0, n − 1] | pi
seg((Di)−1(x)) = 1},

#X standing for the cardinal of a set X, andσa(x) standing for the standard deviation

associated to a(x). This definition, using the standard deviation and the average

value of the vessel diameters, enables to take into account their variability between

the different cases.

The last part of the atlas (modeling vessel orientation information):

Ao : I → P([0, π[×[0, π[)

x 7→ o
,

is defined by using the 3D orientation data provided by Pske to generate a set of

possible orientations:

∀x ∈ I,Ao(x) = Θ(x) × Φ(x),

where:

Θ(x) =



































∅ if N(x) = ∅

[0, π[ if N(x) , ∅ and σθ(x) ≥ π/4

[θ(x) − σθ(x), θ(x) + σθ(x)] (mod π) otherwise

,

Φ(x) =



































∅ if N(x) = ∅

[0, π[ if N(x) , ∅ and σφ(x) ≥ π/4

[φ(x) − σφ(x), φ(x) + σφ(x)] (mod π) otherwise

,
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with:

θ(x) =
∑

i∈N(x)

1

#N(x)
pi

ske,θ((D
i)−1(x)),

φ(x) =
∑

i∈N(x)

1

#N(x)
pi

ske,φ((D
i)−1(x)),

and σθ(x) (resp. σφ(x)) standing for the standard deviation associated to θ(x) (resp.

φ(x)). It has been chosen to set Θ(x) (resp. Φ(x)) to [0, π[, i.e. its maximum size, if

the standard deviation was higher than π/4. Indeed, in such cases, one can consider

that there is no significant vessel orientation at the position x.

The three parts, Ad, At, and Ao finally provide the whole atlas A. It has to be

noticed that the final atlasA can be modeled by the following function:

A′ : I → R
7

x 7→ (d, a, σa, θ, σθ, φ, σφ)(x)
,

which enables to store it in a simple way (as seven 3D gray-level images) and to

easily recover any useful information it contains.

6 Atlas-guided vessel segmentation

Vascular atlases generated by the previously described method are essentially de-

voted to guidance of vessel segmentation algorithms. In this section, the proposed

segmentation method uses such a cerebral vascular atlas. This atlas is used here

to constrain mathematical morphology operators (gray-level hit-or-miss transform)

for detection of vascular structures. In the first part of this section, background no-

tions on hit-or-miss transform and its gray-level generalization are provided. These

notions are necessary to understand and justify the segmentation method described

in the second part of the section.

6.1 Theoretical background: Gray-level hit-or-miss transform

The hit-or-miss transform is a classical tool for extraction of templates from binary

images. It uses a couple of structuring elements (A, B) ∈ P(E)×P(E) where A (resp.

B) has to fit the object (resp. the background). The binary hit-or-miss operation (⊗)
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can then be defined by:

X ⊗ (A, B) = {p ∈ E | Ap ⊆ X, Bp ⊆ Xc},

where X ∈ P(E) is a binary object of a given Euclidean or digital space (in our case,

E ⊂ Z3).

Any increasing operator can be extended to gray-level images by considering them

as stacks of binary images. However the hit-or-miss transform, as previously de-

fined, is not an increasing operation. Another definition (T) has then been proposed

in [54]:

X T (A, B) = {p ∈ E | Ap ⊆ X ⊆ Bp}.

The gray-level hit-or-miss operation can then be defined by:

F T (A, B) =
∨

{i(p,t) | A(p,t) ≤ F ≤ B(p,t)},

where F is a gray-level function, A, B : E → R are structuring functions (A ≤ B)

and i(p,t) is the impulse function defined by:

i(p,t)(x) =



















t if x = p

−∞ if x , p
.

In [54], it has then been demonstrated that:

[F T (A, B)](p) =



















(F ⊖ A)(p) if (F ⊖ A)(p) ≥ (F ⊕ B∗)(p)

−∞ otherwise
.

Choosing two structuring elements Ae and Be, and two gray-levels a and b, with

a ≥ b, it becomes possible to define the gray-level structuring elements A and B by:

A(p) =



















a if p ∈ Ae

−∞ if p < Ae

, and B(p) =



















b if p ∈ Be

+∞ if p < Be

,

and then obtain:

F ⊖ A = (F ⊖ Ae) − a, and F ⊕ B∗ = (F ⊕ B̌e) − b,
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and finally:

[F T (A, B)](p) =



















(F ⊖ Ae)(p) − a if(F ⊖ Ae)(p) ≥ (F ⊕ B̌e)(p) + a − b

−∞ otherwise
.

Using this definition is equivalent to compare, for each point, the minimum inten-

sity amin of all points within Ae and the maximum intensity bmax of all points within

Be. If amin ≥ bmax + a − b, then the point belongs to the transform.

6.2 Method

The proposed segmentation method is based on the use of the gray-level hit-or-miss

transform. Another definition of this gray-level mathematical morphology operator

[55] has already been used in [56] for the detection of the portal vein entry in

liver CTA. A fixed-sized operator was then described to fit this precise anatomical

structure. In this paper, we propose to use the gray-level hit-or-miss transform in an

adaptive way, to carry out a segmentation of the whole cerebral arterial and venous

trees.

6.2.1 Input and output

The method takes as input a PC MRA (p) of the whole head, composed of both

phase (ppha) and magnitude (pmag) images (see Fig. 1), a vascular atlas (A) gener-

ated by the method described in Section 5, and the reference PC MRA magnitude

image (p
re f
mag) associated to the atlas. It provides as output a binary image pseg of the

arterial and venous trees.

6.2.2 Shape of the structuring elements

In order to fit the searched vascular structures, two kinds of structuring elements

have to be determined. The element A, chosen for vessel modeling, is a discrete

sphere of radius rA, while the element B, chosen to model the neighboring back-

ground, is a set of 6 points sampled from a circle of radius rB, having the same

center than A and oriented according to angles (θB, φB). The choice of spheres in-

stead of ellipsoids for vessel modeling is justified by their higher robustness in case

of vessel tortuosity which may happen for many cerebral arteries. The use of points

sampled from a circle instead of a whole discrete circle can allow a better detection

of the background in case of vessel junctions or bifurcations, with a lower compu-

tation time. It has to be noticed that choosing (A, B) as being a discrete sphere and

a sampled discrete circle does not only generate one couple of structuring elements
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but a whole set of structuring elements of size and orientation depending on the ra-

dius and angular parameters (rA, rB, θB, φB). A subset of such structuring elements

is illustrated in Fig. 5. Moreover, two supplementary intensity parameters a and b

have to be added to these four shape parameters.

Fig. 5. Part of the family of the couple of structuring elements (A, B) used to carry out the

gray-level hit-or-miss segmentation. The elements A (discrete spheres modeling the ves-

sels) are represented in gray while the elements B (sampled discrete circles) are represented

in white.

6.2.3 Use of the atlas

The immediate approach consisting in applying every couple of structuring ele-

ments in each point of the studied MRA (ppha), to obtain the segmented image

(pseg):

pseg = {p ∈ ppha | ∃(rA, rB, θB, φB, a, b), (ppha ⊖ A)(p) ≥ (ppha ⊕ B̌) + a − b},

leads to a prohibitive computational complexity. Indeed, for a 2563 MRA, 5 distinct

values for rA (1 to 5 mm) and rB (rA + 1 mm to rA + 5 mm), 5 angular positions for

θB and φB, and 10 distinct values for a− b, this strategy requires to apply more than

1010 operators for one data. It is then necessary to reduce the algorithm complex-

ity. This can be done by selecting, for each voxel assumed to belong to a vessel,

a subset of structuring elements sufficiently small to allow an efficient computa-

tion time and sufficiently large to however correctly detect the vascular structures.

Anatomical knowledge modeled by the vascular atlas A can be used to make this

selection. Indeed, it provides a statistical estimation of vessel parameters (diameter

and orientation) for each voxel. It is then an efficient tool to determine subsets of

structuring elements adapted to every part of the processed image.
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6.2.4 Algorithm

The first step of the segmentation method consists in applying a 3D deformation

field on the vascular atlas A in order to obtain an atlas adapted to the considered

MRA. This can be done by using the same registration algorithm as the one in-

volved in the atlas generation process [52,53]. By registering p
re f
mag onto pmag, a 3D

deformation field is obtained, enabling to create a vascular atlas Areg correctly fit-

ting the cerebral structures of p.

The second step of the method is the determination of a set S of voxels assumed

to contain the vascular structures. The voxels contained in S will then be the only

ones to be processed by the gray-level hit-or-miss transform for vessel detection.

This step is crucial for complexity reduction of the method. Indeed, brain vessels

represent less than 3% of the image volume (generally containing more than 107

voxels). The set S is initialized to ∅. For each voxel x of p, x is added to S if and

only ifAd
reg(x) > 0. This means that all points presenting a vascular density equal to

0 (i.e. all points where the probability to find a vessel is null, according to the atlas)

will no longer be considered during the segmentation process. Eliminating such

voxels enables to avoid processing the background or areas presenting no vessels

(or no vessels which can be visualized by MRA) such as the cerebellum or the

skull.

The third step consists in determining, for all x ∈ S , a subset S x of structuring el-

ements (A, B) to be applied on the phase image ppha at position x. For each x ∈ S ,

S x is created by choosing elements (A, B) such as the radius of A (resp. the ori-

entation of B) is a possible radius (resp. a possible orientation) according to Areg

(i.e. rA ∈ A
t
reg(x) and (θB, φB) ∈ Ao

reg(x)). A supplementary constraint is added for

B which must be higher than the one of A and lower than twice it (rB ∈]rA, 2rA]).

Since the structuring elements are discrete objects, only discrete diameters and ori-

entations (orientations according to discrete lines) are considered. The determina-

tion of rA (resp. of rB) radii is done by selecting values of At
reg(x) ∩ N (resp. of

]rA, 2.rA] ∩ N). When At
reg(x) ∩ N = ∅ while At

reg(x) , ∅, the only selected value

is chosen as being min{n ∈ N | n > At
reg(x)}. In the same way, for all point x ∈ I,

the set Ao
reg(x) is discretized by intersection with ({ kπ

n
}n−1
k=0

)2 for a chosen sampling

value n ∈ N. WhenAo
reg(x) ∩ ({ kπ

n
}n−1
k=0

)2 = ∅ whileAo
reg(x) , ∅, the orientations are

chosen in { kθπ
n
,

(kθ+1)π

n
} × {

kφπ

n
,

(kφ+1)π

n
} such as [ kθπ

n
,

(kθ+1)π

n
] × [

kφπ

n
,

(kφ+1)π

n
] ⊃ Ao

reg(x)

(with kθ, kφ ∈ N). It has to be noticed that a fixed low value has been chosen for

a−b, enabling to detect vascular structures presenting a low contrast with the back-

ground.

The last step finally consists in applying the gray-level hit-or-miss transform on

each candidate point using the subset of adapted structuring elements. Then, for

each x ∈ S , all operators (A, B) ∈ S x are successively applied on ppha(x). If one of

them matches a structure (i.e. if (ppha ⊖ A)(x) ≥ (ppha ⊕ B̌)(x) + a − b), the point x

is added to the result image pseg. In order to obtain a volumic object, for each point
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x detected by a couple of structuring elements (A, B), a dilation by Ae is finally

carried out in pseg at the position x (if more than one operator (A, B) ∈ S x matches

a structure, the dilation is performed using the element A of highest radius).

7 Experiments and results

The validations and the result descriptions proposed in this section (atlas descrip-

tion and analysis, validations of vessel segmentations) have been carried out by an

anatomist.

7.1 Implementation

The proposed methods have been implemented on the Medimax 3 software plat-

form, using the ImLib3D 4 open source C++ library [57]. The computer used for

validations was composed of a 2.8 GHz Pentium IV processor with 2 GB of mem-

ory.

The first step of the atlas generation process requires 20 minutes for automatic

segmentation of each image of the database. The interactive correction time can

vary according to the quality of this first segmentation. The validation and correc-

tion of a 18 image database can then require several hours. For each image of the

database, the following quantitative analysis requires 5 minutes, while the second

step of the atlas generation process is performed in 10 minutes, which represent

the time required by the non-rigid registration method to superimpose two 3D PC

MRA magnitude images with a millimetric resolution 5 . The data fusion required

15 minutes for a 18 image database. The average computation time for the segmen-

tation method is 20 minutes to segment one PC MRA (10 minutes for non-rigid

registration and 10 minutes for segmentation).

7.2 MRA database

The validations have been made on a 48 PC MRA database. A subset of 18 images

has been used to create a vascular atlas, while the 30 remaining ones have been

used to test the segmentation method. The MRA exams were performed on a 1

3 Available at http://www-ipb.u-strasbg.fr/gitim.
4 Available at http://imlib3d.sourceforge.net.
5 Since non-rigid registration is independent from knowledge extraction, it could be pos-

sible to simultaneously carry out both steps on different computers, thus reducing the com-

putation time.
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Tesla whole-body scanner (Gyroscan NT/INTERA 1.0 T from Philips, gradient

slope 75 T/m/s). The flow encoding sequence (T1FFE/PCA) uses a TR of 10 ms

and a TE of 6.4 ms. The pool of patients was composed of males and females aged

from 21 to 80, who did not present cerebral vascular pathologies. Sagittal slices of

one of these images are illustrated in Fig. 1. The acquired images of dimensions

varying from 2562 × 150 to 2562 × 180 voxels, were made of non-isotropic voxels

of edges varying from 0.9 to 1.3 mm. The images have been processed to provide

isotropic data.

7.3 Vascular atlas

The atlas generation method proposed in Section 5 has been tested on a 18 MRA

database. The obtained vascular atlas is described and analyzed hereafter. It has

been computed to fit a chosen reference PC MRA magnitude image (p
re f
mag), and

then presents same properties as this image. It is then composed of 256×229×160

voxels, each voxel being a cube of 1.13 mm edges. Parts of this atlas are illustrated

in Fig. 6.

Fig. 6. Visualization of pieces of the processed atlas. Left: vascular density (Ad), visual-

ized as a maximum intensity projection of the sagittal slices; the brighter the region, the

higher the probability to find a vessel. Middle: average vessel diameters (part a of At),

visualized as a maximum intensity projection of the sagittal slices; the brighter the region,

the larger the vessels. Right: 3D visualization of a part of the orientation image (Ao). Lines

are oriented according to θ and φ; the gray level linearly depends on the θ value.

7.3.1 Vascular density

The vascular density (Ad) represents the probability to find a vessel at a given

position. A maximum intensity projection of this probability field is illustrated in

the left part of Fig. 6. One can clearly observe invariant structures such as many

veins and sinuses (superior sagittal sinus, straight sinus, transverse and sigmoid si-

nuses, jugular veins) but also arterial structures (carotid and pericallosal arteries).

The invariance of these structures could enable to interpret a part of the vascular
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density image as a classical graph. Other vessels appear as “vascular clouds”, such

as many arteries located in the medial part of the brain. Such vascular clouds do not

constitute modeling errors. They can correspond to a single vessel whose position

presents a high variability according to other brain or head structures. They can

also represent the vasculature of areas where the number of branches vary between

different patients. In both cases, these clouds provide information which is differ-

ent from more conventional graph models, but remains coherent with respect to

vascular density (homogeneous size and/or orientation fields are observed in most

of them, emphasizing the fact that they really model the density of a vessel or set

of vessels.) One can observe that vessels presenting less variable but more tortuous

trajectories are modeled as quite homogeneous structures. An example can be ob-

served in the left part of Fig. 6, where the internal carotids (under the polygon of

Willis), despite their non linear trajectory, are not modeled by a “vascular cloud”

but by a real vessel shape.

A more quantitative representation of these probabilities is proposed in Table 1. It

has to be noticed that the vessels are localized in a very small part of the whole

image. Indeed, less than 4% of the atlas is assumed to contain vessels sufficiently

large to be visualized in MRA data. This property of the atlas, which is correctly

correlated to the anatomical reality, is the one that enables to dramatically reduce

the complexity of the atlas-guided segmentation proposed in Section 6.

Probability # voxels Ratio

p = 0 9 028 698 96.26%

0 < p ≤ 0.1 209 718 2.23%

0.1 < p ≤ 0.2 87 390 0.93%

0.2 < p ≤ 0.3 27 031 0.29%

0.3 < p ≤ 0.4 13 192 0.14%

0.4 < p ≤ 0.5 7 092 0.08%

0.5 < p 6 719 0.07%

p , 0 351 142 3.74%

Total 9 379 840 100.00%

Table 1

Distribution of the probability (p) to find a vascular structure. First column: values of p;

second and third columns: number and ratio of voxels x such asAd(x) = p.

7.3.2 Vessel diameter

The generated atlas also provides information concerning the diameter of the dif-

ferent vessels. A maximum intensity projection of the diameter image of the atlas is
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proposed in the middle part of Fig. 6. The biggest vessels are localized in the neck

and in the venous parts (sinuses) while the positions corresponding to arterial struc-

tures present smaller sizes. This distribution of vessel diameters is summarized in

Table 2. It has to be noticed that very few diameters lower than 1 mm are observed.

This can be explained by the limitations of the MRA acquisition process which still

does not enable to obtain submillimetric data.

Diameter (mm) # voxels Ratio

0 < t ≤ 1.0 5 066 1.44%

1.0 < t ≤ 2.0 80 282 22.87%

2.0 < t ≤ 3.0 111 372 31.73%

3.0 < t ≤ 4.0 80 139 22.84%

4.0 < t ≤ 5.0 56 547 16.12%

5.0 < t ≤ 6.0 14 411 4.11%

6.0 < t 3 121 0.89%

Total 350 938 100.00%

Table 2

Distribution of the average diameter of the vessels in the vascular part of the image (part

presenting non zero values for Ad). First column: average diameter (t); second and third

columns: number and ratio of voxels x such as a(x) = t.

7.3.3 Vessel orientation

The atlas finally provides information concerning the orientation of the cerebral

vascular structures. A 3D visualization of the orientations for the left part of the

atlas is illustrated in the right part of Fig. 6. The distribution of the orientations is

summarized in Table 3.

One can observe that most of the voxels presenting a defined θ orientation have

a quite horizontal one (θ ∈ [π/3, 2π/3[). These voxels belong to cerebral parts of

the atlas containing venous structures which are often oriented in a nearly hori-

zontal plane (superior sagittal sinus, straight sinus). Most of these structures also

present a φ orientation close to the sagittal plane which explains the high ratio of

voxels such as φ ∈ [π/3, 2π/3[. However, a higher amount of voxels presenting a

vertical orientation (θ ∈ [0, π/6[∪[5π/6, π[) could have been expected. This can be

explained by the fact that many vessels presenting a vertical orientation are located

in the neck (carotid arteries, jugular veins). Indeed, the non-rigid registration used

in this method, which is essentially devoted to brain registration, provides satis-

factory results for cerebral structures, but less accurate ones for those located in

the neck. Then the standard deviation values generally obtained in this area are not

sufficiently low to define the orientation.
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More generally, the amount of voxels presenting defined orientation could be sig-

nificantly increased by no longer considering the absolute orientation of the vessels

but their relative orientation according to adjacent non vascular structures. As an

example, the superior sagittal sinus relative orientation according to the surface of

the skull is quite invariant. The same property can be observed for many vascular

and non vascular structures (straight sinus and superior frontier of the cerebellum,

brain superficial veins and cortex). In order to be modeled, such properties would

require a fusion between an atlas as the one presented here and non vascular atlases.

Orientation θ φ

(rad.) # voxels Ratio # voxels Ratio

Undefined 253 978 72.33% 261 496 74.48%

[0, π/6[ 3 540 1.01% 7 298 2.08%

[π/6, π/3[ 14 931 4.25% 24 873 7.08%

[π/3, π/2[ 31 174 8.88% 21 669 6.17%

[π/2, 2π/3[ 27 679 7.88% 16 898 4.81%

[2π/3, 5π/6[ 13 597 3.87% 14 685 4.18%

[5π/6, π[ 6 243 1.78% 4 223 1.20%

Total 351 142 100.00% 351 142 100.00%

Table 3

Distribution of the orientation of the vessels in the vascular part of the image (part present-

ing non zero values for Ad). First column: values of θ or φ; second and third (resp. fourth

and fifth) columns: number and ratio of voxels presenting the current orientation according

to θ (resp. φ).

Finally, this atlas enables to determine a set of invariant properties which seems

to be sufficiently coherent according to the anatomical reality to be used for guid-

ance of vessel segmentation processes such as the one analyzed hereafter. It has

to be noticed that the purpose of this first atlas is to be used for vessel segmen-

tation guidance, but not yet to describe in the most perfect way all cerebral ves-

sels. The invariant properties that it model have been checked and validated by an

anatomist. More systematic comparison of this atlas and other ones, created from

larger databases will be the object of further works.

7.4 Vessel segmentation

The brain vessel segmentation method proposed in Section 6 has been tested on 30

PC MRA data, using the vascular atlas described in Subsection 7.3. An example
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of vascular tree segmented by the method is illustrated in Fig. 7. The results have

been quantitatively compared to segmentations obtained with a region-growing al-

gorithm [49] and interactively corrected by an anatomist. In average, it has been

observed that 77% of vascular structures are correctly and automatically segmented

by the proposed method. The comparison also demonstrates that it generates 23%

of false negatives but only 1% of false positives.

The false positive ratio is quite satisfactory since it proves that the method is robust

when applied on images containing a high amount of noise and artifacts. Indeed,

the segmentation algorithm is essentially based on shape and size of structuring

elements, but not on threshold values. Then it is not sensitive to non-tubular high-

intensity artifacts which are generally the main cause of false positives generally

observed in segmented angiographic data.

Nevertheless, the proposed method still presents weaknesses concerning the false

negative ratio. These false negatives can be divided into two categories. The first

one correspond to segmentation errors caused by the non-rigid registration process.

Indeed, it might happen that the registration presents inaccuracies in areas where

non vascular cerebral structures can hardly be delineated. An example is the su-

perior border of the cerebellum, where the frontier between cerebellum and both

cerebral hemispheres is not easily visible. Registration inaccuracies in this region

can make straight sinus segmentation a hard task. The second category of non seg-

mented structures correspond to vascular regions presenting non circular sections

(sinuses, vessel junctions and bifurcations). In such cases, it may happen that the

spherical structuring elements used to perform the segmentation do not match the

vessels. Moreover, even if they detect a non tubular vascular structure, the vessel

reconstructed by dilating the segmented point by a sphere will be smaller than the

real vessel.

Finally, it appears that the obtained results are still not fully perfect, as the false

negative ratio remains high. However, they are quite promising since the method is

not sensitive to intensity variations, noise, and artifacts, which are the main causes

of segmentation errors in most vessel segmentation methods. This is an important

property since PC MRA data generally present a low signal to noise ratio and of-

ten contain artifacts. Moreover, all of the known problems that are identified, and

which can cause false negatives might be resolved in further works. Possible im-

provements are detailed in Subsection 8.2.
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Fig. 7. Segmented vascular tree obtained with the proposed method. The gray-levels corre-

spond to the radii of the structuring elements which permitted to segment the points.

8 Discussion

8.1 Possible uses of vascular atlases

The atlases that can be generated by the method proposed in this paper 6 are es-

sentially devoted to segmentation purpose. Indeed, reliable a priori information

concerning vessel position, diameter, and orientation can be useful for guidance

of several kinds of methods. Concerning methods based on filtering or application

of mathematical morphology operators, this knowledge can be used to reduce the

computation time without altering the accuracy of the result, as proposed in Sec-

tion 6. However, a priori information could also be used in order to improve the effi-

6 The proposed atlas generation method, initially designed to process bimodal PC MRA

data, has only been applied on such PC MRA images. Although it has not yet been proved

that it can be applied to other kinds of data, it can reasonably be assumed that it may provide

results of similar quality if applied on couples of bimodal images presenting similar prop-

erties. Such couples of images could be composed of T1 MRI/TOF MRA or T1 MRI/CTA.

The two main supplementary difficulties could then consist in the necessity to initially reg-

ister both images of each couple in a correct way (which is already done, by definition, for

PC MRA) and in the difference of resolution between millimetric and submillimetric data

if using CTA.
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ciency of deformable model algorithms. This kind of methods generally requires an

accurate initialization to provide correct results (an approximate initialization can

lead to an erroneous segmentation). A priori information on position and size of the

vessels could then allow to efficiently and automatically generate an initial model

shape close to the structures to be segmented. These parameters could also be used

to guide the model evolution, by integrating them in the energy function to mini-

mize. Many other applications of vascular atlases for segmentation purpose could

be cited, such as automatic initialization of vessel tracking algorithms, or guidance

of region-growing methods. For such vessel segmentation guidance applications, it

could be important to use atlases created from large image databases, in order to

fuse a maximal amount of information to efficiently model the possible variations

of vessel positions, sizes and orientations. As an example, for the segmentation

method proposed in this paper, an atlas created from an insufficiently large database

could lead to the non detection of vessels in brain regions erroneously considered

as presenting a null vascular density (a 18 case atlas however seems to avoid such

drawback, as observed during the validations on 30 images). The use of atlases

for segmentation guidance, as the use of any kind of a priori knowledge, has to be

considered with care.

The experiments (atlas generation and atlas-based segmentation) described in the

previous section deal with healthy patients MRA. It can be assumed that the use of

an atlas based on healthy people MRA is adapted to guide segmentation of MRA

data without vascular pathologies (for surgery planning or functional analysis). A

segmentation method based on such an atlas could however fail in segmenting se-

vere aneurysms and stenoses (which respectively correspond to broadening and

narrowing of vessels) since these pathological structures present properties differ-

ing from normal vessels. A way to enable the correct segmentation of MRA con-

taining pathologies guided by an atlas made from MRA of healthy patients could

consist in no longer considering the information provided by the vessel diameter

field. Indeed, the main difference between normal vessels and pathological struc-

tures is linked to their size. However, efficient use of vascular atlases for segmen-

tation of pathological structures would probably require to develop more complete

or more sophisticated vascular atlases as it will be discussed in the next subsection.

Other kinds of applications than segmentation guidance may be considered. As-

suming that the method is applied on a set of images not containing any cerebral

pathologies, the resulting atlas, although not adapted to segment pathological struc-

tures, could be used as a reference for analyzing segmented MRA of non-healthy

patients and detecting such structures. Since an atlas provides an estimation of the

expected diameter for each main vessel of the brain, it could be a useful reference to

help the clinicians to detect and quantify these pathological structures. Such an atlas

could also be used for anatomical comparison, in order to determine the variabil-

ity of the different vascular structures of the brain. This could lead to the creation

of reliable and exhaustive descriptions of these structures, taking into account all

their different configurations. Other applications such as creation of pathological
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atlases, or atlases discriminating veins and arteries for labeling purpose, could also

be considered.

8.2 Analysis and further works

The results obtained by application of both methods, and described in the previous

section, are already promising, but could still be improved.

The vascular atlas generated from a database of 18 angiographic data enables to

model knowledge on density and vessel size in a way being sufficiently accurate

to correctly guide the proposed vessel segmentation process. The density field pro-

vides information on vessels position which seem to be satisfying with respect to

the non vascular cerebral structures, while the vessel size fields are coherent with

the diameters of the different venous and arterial structures which can be visual-

ized in MRA images. However, size modeling is based on a Gaussian model and

then gives, at each point, a set of possible sizes depending on the mean and stan-

dard deviation of diameter values observed in the database. This model could then

be inaccurate in regions containing different vessels of very heterogeneous sizes.

This may happen in very few cases in the neck where small arteries separate from

larger ones, or at the confluence of straight and superior sagittal sinuses, where

small anastomoses sometime replace larger vascular structures. Although such ex-

amples remain unusual, they would justify the development of alternative vessel

size modeling strategies. Since the most frequent case leading to modeling inaccu-

racies correspond to the presence, in a same area, of several vessels presenting quite

different sizes or orientations, an alternative solution could consist in detecting the

presence of these different kinds of vessels at a same position, and to associate spe-

cific size and orientation Gaussian parameters to each of them. A labeling process

of the vascular tree skeleton during the knowledge extraction step could enable

such a preliminary detection. For each point of the atlas, it would then be necessary

to no longer associate single mean and variance values, but sets of mean and vari-

ance ones. Information concerning vessel orientation also remains less informative

than it could be. In the previous section, the main causes of these orientation in-

accuracies have been identified. The first one is the use of non-rigid registration

tools which are mainly devoted to brain structures, but still present less satisfactory

results in other anatomical structures of the head. The development of ad hoc non-

rigid registration devoted to the whole head should then constitute a first solution to

this problem. The second problem is the use of absolute orientation in the modeling

process. Cerebral vascular structures often present very precise orientation proper-

ties with respect to non vascular anatomical structures. It then seems necessary to

develop, in further works, methods involving both vascular and non-vascular atlases

for vessel property modeling.

Another solution to improve the efficiency of vascular atlases could consist in fus-
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ing the different anatomical properties into a unified way instead of modeling them

as independent fields. This could be done by creating atlases composed of adaptive

subsets of possible geometrical shapes assumed to model the vessels. Such shapes

could then gather information not only on size and orientation, but also on vessel

cross-section form (which is a parameter not yet integrated in the current method).

It has to be noticed that the creation of such atlases could provide an efficient way to

solve the main problem of the proposed segmentation method. Indeed, most of the

segmentation errors observed in the previous results are caused by the fixed shape

of the used structuring elements. These atlases would allow an automatic generation

of 3D structuring elements, the structure of which would evolve to fit the searched

vascular structures. This could also provide a more reliable way to segment and de-

tect pathological structures by also considering structuring elements corresponding

to shapes and sizes of aneurysms and stenoses.

Further works will then focus on development of such an atlas generation method,

but also on improvement of the existing one. Both methods will also be used to

propose new mathematical morphology-based vessel segmentation methods as the

one proposed in this paper. More generally, since the proposed results tend to prove

that anatomical knowledge can be efficiently used in vessel segmentation strategies,

further works will also consist in developing other kinds of methods based on this

assumption, but not necessarily using the same modeling strategies.
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