%""“““\\“ A o Fcon <

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


http://ageconsearch.umn.edu
mailto:aesearch@umn.edu
https://makingagift.umn.edu/give/yourgift.html?&cart=2313

Risk & Sustainable Management Group

Risk & Uncertainty Program Working Paper: 2/R04

Supermodularity and Risk Aversion

John Quiggin

Australian Research Council Federation Fellow, University of Queensland

and

Robert G. Chambers

Professor and Adjunct Professor, respectively, University of Maryland and
University of Western Australia

Research supported by an Australian Research Council Federation Fellowship

http://www.arc.gov.au/grant programs/discovery federation.htm

Schools of Economics and Political Science
University of Queensland
Brisbane, 4072

rsmg@ugq.edu.au
http://www.uq.edu.au/economics/rsmg

THE UNIVERSITY
OF QUEENSLAND
W

AUSTRALIA




Supermodularity and Risk Aversion'

John Quiggin? and Robert G. Chambers?
Risk and Sustainable Management Group

Risk and Uncertainty Working Paper 2/R04

March 2004

"'We thank David Hennessy for useful comments.
2Quiggin is an Australian Research Council Federation Fellow at the University of Queensland.
3Chambers is Professor of Agricultural and Resource Economics at the University of Maryland,

College Park and Adjunct Professor, School of Agricultural and Resource Economics, University of

Western Australia.



Abstract

In this paper, we consider the relationship between supermodularity and risk aversion. We
show that supermodularity of the certainty equivalent implies that the certainty equivalent
of any random variable is less than its mean. We also derive conditions under which
supermodularity of the certainty equivalent is equivalent to aversion to mean-preserving

spreads in the sense of Rothschild and Stiglitz.



1 Introduction

The concept of supermodularity has revitalized the study of comparative statics, providing
a range of new tools to unify and extend existing results. Relatively little, however, seems
to be known about the implications of supermodularity for preferences under uncertainty.
Supermodularity of demand and cost functions has a natural economic interpretation in
terms of the complementarity of goods in consumption and production. If choice under
uncertainty is viewed as a problem involving bundles of state-contingent commodities or
income levels, it seems natural to ask how the supermodularity relates to other properties
of preferences under uncertainty, such as risk aversion. The central idea of risk aversion is
that, for a given expected income, it is undesirable to have high incomes in some states of
nature and low incomes in others. Put another way, for a fixed expected income, incomes
are complementary across states of nature. Risk aversion, thus, seems closely associated
with supermodularity of preferences over state-contingent outcomes.

The standard representation of preferences under uncertainty, the expected-utility
model, appears to yield an uninteresting answer to this question. Because the expected-
utility functional is an addition, that is, additively separable in its arguments, it is trivially
both supermodular and submodular in state-contingent incomes or commodities.*

A more appropriate canonical representation of preferences under uncertainty is the
certainty equivalent, considered as a real-valued function on a space of state-contingent in-
come vectors. Quiggin and Chambers (1998) show that concepts such as constant absolute
risk aversion and constant relative risk aversion can be characterized simply in terms of the
certainty equivalent for general preferences, without relying on the expected-utility model.
An important feature of the certainty equivalent is that it is a cardinal representation of
preferences. This overcomes an objection to the use of supermodularity as a representa-
tion of complementarity, namely that supermodularity is not invariant under monotone
transformations.

In this paper, we consider the relationship between supermodularity and risk aversion.

ISome results can be obtained with respect to secondary concepts in the expected-utility model. For
example, Athey (2002) shows that, under expected utility, decreasing absolute risk aversion is equivalent to

the requirement that an agent’s marginal utility «'(w + s) should be log-supermodular in (w, s).



We draw on results dealing with the closely related concepts of Schur concavity and order-
increasing rearrangements to show that supermodularity of the certainty equivalent implies
that the certainty equivalent of any random variable is less than its mean. This seems
to be the most basic notion of risk aversion. We also derive conditions under which
supermodularity is equivalent to Schur concavity of the certainty equivalent, that is, to
aversion to mean-preserving spreads in the sense of Rothschild and Stiglitz (1970). These
latter conditions encompass expected-utility theory, mean-variance preferences, Yaari’s
(1987) dual model and the rank-dependent model of Quiggin (1982). We then illustrate
how supermodularity concepts can be applied with two simple examples. Finally, we offer

some concluding comments.

2 Notation

Uncertainty is represented by a state space ). Consistent with the literature on supermod-
ularity and Schur concavity, we focus on the case where = {1...5} is discrete and finite.?
We consider preferences over state-contingent income distributions y € ®°, represented by
a total ordering < . Denote by 1 € R° the unit vector, by u; € R° the ith element of the

standard orthonormal basis, and by A C R#°
AN={y:y=plpcR}.

Under standard assumptions of continuity and monotonicity, a canonical representation

of preferences is given by the certainty equivalent
e(y)=inf{e:y <Xel}.

For any preference function W : % — R representing <, the certainty equivalent may be

defined implicitly by the relationship

Wiy =W().

2This approach maximizes comparability with the literature on supermodularity and rearrangement in-

creasing functions. However results for the case when {2 is an interval with Lebesgue measure or a more

general measurable set may be obtained using standard limiting arguments.



The certainty equivalent e (y) satisfies Aczél’s(1990) agreement property

e(pl) = p.

Denote by R () the set of all permutations p of the set €, and for any y € R°, peR () ,

the permuted vector y” where
P _
Yois) = Vs

We confine attention to the case of symmetric preferences so that for any y € R, peR (Q),

e(y)=e(y").

Symmetry implies that all states have probability 1/S. The assumption of equally probable
states is purely technical, since any problem of interest can be formulated in this way

(Blackorby, Davidson and Donaldson 1977). Hence, we can define the mean

For the analysis in this paper, it is often sufficient to confine attention to the set
R*(Q) C R (9) consisting of rotations of order {1...5} . The rotation of order k takes 1 to
k,2tok+1, 5 to k—1 and, more generally, s to (s + k — 1)mod S. Thus, the rotation of
order 1 is the identity.

3 Supermodularity and Schur concavity

Supermodularity is defined with respect to a partial order. Let Y C ¥ be a set ordered

by the traditional co-ordinatewise < relation, that is:
y<y eu<y Vk

For any vectors, y,y’, the join and the meet, respectively, for this partial ordering are

defined by

yVy = (max{yi,y},...max{ys, ys})
yAy = (min{y,vi},...,min{ys,ys}).

3



Observe that y Vy’ is the minimal element of ¥ such that y,y <y Vy'
A mapping f : % — R is supermodular (submodular) ? if for all y,y’

FOVY)+HFGAY) 2 fF+ ).

If —f is supermodular then f is submodular. Supermodularity may also be defined in
terms of increasing differences. A function f : 2 — R has increasing differences if, for
any t > t', g(z) = f (z,t) — f (z,t") is an increasing function of z. A function f: % — RN
has increasing differences if for any s,t and x, the function f (R - R,

A~

f (‘%87 ‘%t) = f (X*S,tv *%87 ‘%t) )

obtained by allowing only z, and z; to vary from x *, has increasing differences. Topkis
(1998, Corollary 2.6.1) shows that a mapping f : R — R is supermodular if and only if it
displays increasing differences.

There is a close link between supermodularity and Schur concavity. Following Marshall

and Olkin (1979), y’ € R is said to majorize y € ®°, denoted y < y’, if, for s = (1,2, ..., 5)

8 8
dvk = > Yy
k=1 k=1
S S

Y uw = D v
k—1 k—1

where yz) is the k-th element of the increasing rearrangement of y, that is, the result of

the permutation (not necessarily unique) such that

A function f is Schur-convexr at y if

yy =< f©)

for all y’ in a neighborhood of y. A function is Schur-convex on a set U if it is Schur-convex

at y for all y €U. If a function is Schur-convex on its entire domain, then we shall refer

3Supermodularity is sometimes referred to as L-superadditivity, where L is mnemonic for lattice. See, for

example, Marshall and Olkin (1979).
4More precisely (X_s, T, T+) denotes x with z, replaced by ., and x; replaced by ;.
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to it simply as Schur-convex. A function is Schur-concave in these senses if —f is Schur-
convex. A symmetric concave function is Schur-concave, and a symmetric convex function
is Schur-convex (Marshall and Olkin 1979).

If y and y’ are interpreted as random variables with all states equally probable, the
condition y <y’ is equivalent to the statement that y is less risky than y’ in the sense of
Rothschild and Stiglitz (1970). Hence, in the context of choice under uncertainty, Schur
concavity of the certainty equivalent is the property of aversion to increases in risk in the
sense of Rothschild and Stiglitz.

‘Risk aversion’ is commonly identified with Schur concavity. As Machina (1984) ob-
serves, however, Schur concavity coincides with the requirement e (y) < E (y) in the case
of expected-utility preferences, but not in general. Hence it is useful to distinguish the lat-
ter weaker notion of risk aversion explicitly from the stronger, and perhaps, more familiar

notion. We, therefore, say that e is weakly risk-averse if, for all y

e(y) <E(y).

Because F (y)1 =y, Schur concavity (risk aversion in the sense of Rothschild and

Stiglitz) implies weak risk-aversion. The converse is not generally true.

4 Supermodularity and risk aversion

The primary goal of this paper is to elucidate the relationship between Schur concavity of
preferences (risk-aversion in the sense of Rothschild and Stiglitz) and supermodularity of
the certainty equivalent. There are a number of different approaches that may be taken
to the analysis of this question. We consider three: direct characterizations of supermod-
ularity and Schur concavity; analysis based on the concept of arrangement-increasingness;
and analysis based on the crucial role of the certainty ray A in characterizing preferences

under uncertainty.



4.1 Direct characterization

For important classes of preferences, there exist well-known necessary and sufficient con-
ditions for Schur concavity. Many are summarized in Marshal and Olkin (1979). In the
case of expected utility, Schur concavity is equivalent to concavity of the utility function
u. In many cases, it is possible to show that similar conditions are necessary or sufficient
for supermodularity of the certainty equivalent e.

We will rely on the following result due to Topkis (1998, Lemma 2.6.4):

Lemma 1 : If f; (x) is increasing and supermodular on R° for i =1 ...k, T is a convex
subset of B! containing the range of fi (x) on N° fori=1 ..k, and g (t1,ts...t3,X) is super-
modular in (t1,ts...tk, X) on (xleTi) X X and increasing and convex in t; on T; for i =1
.k, and for allty in Ty ford in {1..k}\ {¢} and allx in X, then g (fi (x), f2 (X)...fr (X),X)

is supermodular on R°.
An immediate corollary is:

Corollary 2 Increasing expected-utility preferences are Schur-concave if and only if the

associated certainty equivalent is supermodular.

Proof Let

for increasing u : * — R and

so that
e(y)=g9(f1(y),..fs(¥)).

The fs are increasing and are trivially both submodular and supermodular. Hence,
if preferences are Schur-concave (Schur-convex), u is concave (convex), g is convex
(concave), and e is supermodular (submodular). For necessity, observe that if pref-
erences are not Schur-concave, u must be strictly convex over some interval [a, b].

Hence, on any sub-lattice Y of R such that Y C [a, b}s, e is strictly submodular.ll
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Lemma 1 can be used to demonstrate the equivalence of Schur concavity and super-

modularity for the case of rank-ordered models of the form

e(Y)==u*1(jE:U%anu(yJ)

where 7 (s) denotes the rank of y;, with ties broken consistently with the original ordering
of the ys (Quiggin 1982; Yaari 1987). In this case, preferences are Schur-concave if and

only if u is concave and w; > wq > ... > wg. (Chew, Karni and Safra 1987). Letting

[s(y)= Wy (s5)U (Ys) s

fs displays increasing differences in y if and only if wy > ws > ... > wg. That is, an increase
in any v, t # s can only lower the rank of y, and this will always increase w, () if and only

if wy > ws > ... > wg. The remainder of the argument is as in Corollary 2.

4.2 Arrangement-increasingness

Another link between Schur concavity and supermodularity is provided by the concept
of arrangement-increasingness (Boland and Proschan 1988; Hennessy and Lapan 2003).
Consider the matrix Z € R x RM constructed from a set of M column vectors y € R .
The ordering of the rows is chosen so as to coincide with the ordering of the elements of an
arbitrarily chosen vector y'. An elementary rearrangement is a reordering of the elements

of some y™, m = 2 ... n to yield y" such that either

y/m — ym
or, for a given pair ¢, d
w k#cd
Y = yr k=d
v k=c

That is, an elementary rearrangement either leaves y™ unchanged or interchanges the ¢
and d elements only. Assume, without loss of generality, that ¢ < d. A rearrangement is
said to be ‘order-increasing’ if it increases the extent to which the vectors y™ are similarly

ordered, in the sense that y'™ = y™ if and only if y* < y7*. That is, for all m for which

7



the ordering of ™ and y"* does not coincide with that of y! and y) , these elements must
be interchanged.

The notion of an arrangement-increasing reordering may be illuminated further by
focusing on the rows, rather than the columns, of Z. Let 7€ R denote the n-th row of
the matrix Z . An elementary arrangement-increasing reordering of the columns of Z is
equivalent to the replacement of two rows ¥¢ and ¥¢ , ¢ < d, by their meet Ay and join

yeVy? respectively. For example, let

1 3 2
Z=1216
3 5 4
Then
11 2
Z'=|2 3 6
3 5 4
represents an elementary arrangement-increasing reordering applied to rows 1 and 2 of Z.

Moreover,
11 2

Z'=12 3 4

3 56
represents an elementary arrangement-increasing reordering applied to rows 2 and 3 of Z”.
Note that since the columns of Z” are comonotonic (have the same ordering) no further
arrangement-increasing reordering is possible. Whenever Z” is derived from Z by a finite
sequence of elementary arrangement-increasing reorderings, we say that Z” represents an

arrangement-increasing reordering of Z.

An elementary arrangement-increasing reordering of the columns of Z implies a ma-

jorization of the vector z € RV of row sums > ¥, defined by

2n = Zan.

A function f : ®Y xRM — R is arrangement-increasing if, whenever Z’ is an arrangement-

increasing reordering of Z, f (Z) < f(Z').



These observations form the basis of the following lemma, proved by Boland and

Proschan (1988):
Lemma 3 a) Let f: RY xRM - R,g: RM - R,
F(Z)=3 93"

Then f is arrangement-increasing if and only if g is supermodular

(b)) Let f RV xRM - R,g: RY - R

f(Z)=g (Z y’m> :
Then f is arrangement-increasing if and only if g s Schur-convez.

If the results of Boland and Proschan are to be applied to develop a link between
supermodularity and weak risk-aversion, it is necessary to focus on matrices that might
be used to represent paths from y to E (y)1. The crucial tool in applying the results of

Boland and Proschan is the set of vectors:

y':ip € R" (D)}

This set has S members, each of which is a rotation of y. If all the y, are different, then
all the members of the set {y”: p € R* ()} are distinct vectors, which can be regarded as
the columns of a square matrix.

We therefore consider the matrix Z having as columns the vectors y*, with the natural

ordering, so that y! = y. We illustrate for the case S = 3 :

Y1 Ys Yo
Z=1 v n s
Ys Y2 U1
As can be seen from the illustration, the rows of Z constitute a maximally disordered®

set of S vectors, each of which contains the elements (y1,y2...ys). We next consider the

5The set is maximally disordered in the sense that it cannot be derived as an order-increasing rearrange-
ment of any other set. For S = 3, this set is unique, but, in general, any relabelling of the elements will yield

a similarly disordered set.



maximally ordered matrix
A W)
Z= Y2 Y2 Y2
Ys Ys Y3
Observe that, beginning at Z, we can define a sequence of order-increasing rearrangements
leading to Z . Each member of this sequence is derived by replacing a pair of rows y*, y’,
i < 7, with their meet y°Ay’ and join y*Vy’respectively.
Denote an arbitrary member of this sequence by M and consider the function defined
by
FM) = ézijew).

We have:
f@ = Y
= e(y)
f(Z) _ Zsys
= E(y)

By Lemma ?7(a), f is arrangement-increasing if and only if e is supermodular. Hence, if

e is supermodular, e (y) < E (y). This proves:
Proposition 4 : If e is supermodular, preferences are weakly risk-averse.

Corollary 5 : If preferences are Schur-convez, e is not supermodular.

4.3 Schur concavity and the role of the certainty ray

The direct characterizations derived above show that in important cases, supermodularity
and Schur concavity are equivalent. This does not seem generally true. The increasing-
differences characterization of supermodularity implies that, for a twice differentiable func-
tion, supermodularity is equivalent to the requirement that all cross-partial derivatives be
positive. By contrast, Schur concavity is equivalent to the requirement that the matrix of

cross-partial derivatives be negative definite. These two requirements are not identical.

10



The example of expected utility, however, suggests that imposing appropriate consis-
tency conditions on the certainty equivalent will generate classes of preferences over which
supermodularity and Schur concavity are equivalent. An important difficulty in estab-
lishing such a relationship is that Schur concavity is a local property of preferences, in
the sense that, if a function is Schur-concave at each y in its domain, then it is globally
Schur-concave. No comparable property applies for supermodularity in general, although
for twice differentiable functions, supermodularity can be characterized by the requirement
that cross derivatives should be everywhere non-negative. In particular, the characteriza-
tion of supermodularity in terms of rearrangements imposes restrictions on function values
over sets that are not contained in any small neighborhood of y.

In the analysis of risk preferences, however, the certainty ray, A\, plays a crucial role.
And, for y in a sufficiently small neighborhood of some pl, the set {y”:pc R(9)} is
contained in an arbitrarily small neighborhood of y.

The weak definition of risk aversion relies exclusively on comparisons between vectors
y and elements of A. In this section, therefore we begin by characterizing the relation-
ship between supermodularity andweak risk aversion, before going on to derive conditions
under which risk aversion in the sense of Rothschild and Stiglitz (1970) is equivalent to
supermodularity of the certainty equivalent.

The crucial property is that the global behavior of any function known to be a member
of the class can be determined by its behavior in an arbitrarily small neighborhood of the
certainty ray A. That is, global preferences can be determined by preferences over small

gambles. More precisely, we have:

Definition 1 : A class E of certainty equivalents 1s characterized by preferences over
small gambles if, for e € E :(a) e is Schur-concave if and only if there exists an open set U,
A C U, such that e is Schur-concave on U; and (b) e is supermodular if and only if there

exists an open set U, A C U, such that e is supermodular on any sublattice of R° contained

in U,

This condition is satisfied, by all certainty equivalent functions of the expected-utility

class, since the utility function u can be determined, up to an affine transformation, by

11



behavior in arbitrarily small neighborhoods of the certainty ray. Similarly, in the case
of Yaari’s (1987) dual model, probability weights can be inferred from observation of
arbitrarily small gambles, and this is sufficient to characterize behavior everywhere.

We can then obtain an immediate characterization for preferences that are twice dif-

ferentiable

Proposition 6 : Let a class E of symmetric certainty equivalents be characterized by
preferences over small gambles and let e € E be twice differentiable. Then e is supermodular

if and only if it is Schur-concave.

Proof Consider the matrix of second derivatives evaluated at pl, with typical elements

__ Pelpl
st — 3y83yt .

Symmetry requires that (i) for any s,t, ess = ey, and (ii) for any q¢ # r, s # t,
eqr = €st. That is, all diagonal entries of the matrix of second derivatives evaluated
at pul are equal, as are all off-diagonal entries. Now consider the vector of first
derivatives evaluated at pl, with entries denoted e;. Symmetry requires that all the

es be equal, and the agreement property implies

Zeszl

so that e; = 1/.9 for all s, u. Differentiating again, we obtain

€ss T Zest =0.

€5t — — L €
st — S—l 85+

Hence, either egs < 0, e, > 0, in which case the certainty-equivalent is supermodular

Hence, for any s,t,s # t,

and Schur-concave in a neighborhood of A, or ess > 0, ey < 0 in which case the

certainty-equivalent is submodular and Schur-convex in a neighborhood of A W

Corollary 7 Let preferences display constant relative risk aversion (radial homotheticity)
on §Ri and let e € E be twice differentiable. Then e is supermodular if and only if it is

Schur-concave.
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Proof Under constant relative risk aversion, preferences are completely characterized by

their behavior in any neighborhood of 0 (in the relative topology inherited from

?5). W

5 Applications

In the state-contingent interpretation, the risky random variables appearing in economic
analysis are simply vectors of state-contingent commodities, prices or income levels. Hence,
comparative static results from standard consumer theory may be applied directly to the
case of uncertainty. Topkis (1998, Section 2.8) gives a range of applications of supermod-
ularity concepts to consumer theory. We now illustrate how similar arguments can be

applied to problems of choice under uncertainty.

5.1 Asset demand

Consider a simple two-period asset demand problem with fixed initial wealth W, which
may be consumed in period 0 or allocated to purchase securities yielding state-contingent
income in period 1. The ex ante financial security payoffs are given by the S x J non-
negative matrix A, where A has full column rank. The prices of the financial securities
are given by v e/ If the portfolio is denoted h, period 1 state-contingent income is given
by

y = Ah.

The individual chooses the portfolio, h, to maximize
max {e (Ah) + (W —vh)}.
If markets are complete, there exist unique state-claim prices p € R satisfying
pA=v.
Thus, the portfolio selection problem can be rewritten as
max {e (Ah) — p’Ah} + W
= max{e(y) - Py} + W

13



Applying Corollary 2.8.2 of Topkis (1998) now shows that, for a supermodular certainty
equivalent, demand is decreasing in the state-claim prices. Hence, if e is supermodular,
and thus, by Proposition 4, the individual is weakly risk-averse, the demand for each
state-contingent income is decreasing in each state-claim price. Intuitively, it would not be
surprising if increasing ps should decrease the demand for ys. When the certainty equivalent
is supermodular, so that the individual is weakly risk-averse, state-contingent incomes are
complementary, and thus as y, decreases so do the other state-contingent demands, thus
mitigating the dispersion of incomes across states of nature.

Because markets are complete, it follows trivially that
h=A"y,

so that comparative-static results for the optimal asset holdings can be derived from the
monotone comparative static results implied by supermodularity of the certainty equiva-
lent.

More generally, even if markets are not complete, there still exists a unique set of state-
claim prices, p € R, lying in the subspace generated by the columns of A, which prices

any asset lying in that subspace so that if y = Ah for some h, then
p'y = vh,

These prices are given by

p/ _ V/(A/A)ilA/.

Thus, if investors face no background risk, then their portfolio choice decision in the absence

of complete markets can be written as

= max{e(y) — p'y}+W.

Supermodularity of the certainty equivalent again leads to monotone comparative static
results just as in the case of complete markets. Comparative static results for optimal
asset holding are now available by combining the definition of p with the recognition that

the unique portfolio that yields asset position y is given by (A’ A)flA’ y.

14



5.2 Demand for insurance

A characterization of risk-aversion in terms of supermodularity and complementarity yields
some immediate implications for behavior, independent of any hypothesis regarding func-
tional form. Consider the proposition that demand for insurance against adverse events
should increase with wealth. This proposition is consistent with ordinary economic in-
tuition (namely, that insurance seems like a normal good) and with casual observation.
On the other hand, the widely accepted hypothesis of decreasing absolute risk aversion
generally implies the opposite.
We will focus on the first of these issues. Assuming constant absolute risk aversion to
abstract from wealth effects, we can use supermodularity of the certainty equivalent to
characterize the sense in which demand for insurance increases with wealth. The proof is
analogous to Topkis’s (1998, Example 2.8.1) treatment of the Le Chatelier principle.

Let y € ®° denote the individual’s state-contingent endowment of wealth and consider
m &€ §Ri such that m > 0O, on some event £ C S, and m = O, on E’, the complement of F.

Let y¥ € R denote the endowment on E’ so that

ys sEF
0 seckF.

v =
Define
v(m;y)=sup{v e R:e(y +m—-vl)>e(y)}.

Proposition 8 Suppose e is supermodular and displays constant absolute risk aversion.

Consider y,§ such that, for some § > 0, y¥ = %, y¥ > §¥ + 61. Then v(m;y) >

v(m;y).
Proof Apply supermodularity to ¥,y + z. Observe that

Y)V(F+m) = y+m
Y)ANF+m) = ¥.
Hence, supermodularity implies:

e(y+tm)+e()=>e(y)+e(y+m)

15



or
e(y+tm)—e(y)=e(¥+m)—e(y).
As shown by Quiggin and Chambers (1998), constant absolute risk aversion is equiva-
lent to translation homotheticity of the certainty equivalent, that is, the requirement
that, for all y,6
e(y+61)=-e(y)+6.

Hence for any v > 0, constant absolute risk aversion implies:

e(y+tm—ovl)—e(y) = e(y+m)—e(y)—v
>e(y+m)—e(y)—v

= e(y+m—vl)—e(y) N

6 Concluding comments

The representation of random variables as state-contingent vectors provides a natural lat-
tice structure to which the concepts of supermodularity theory may be applied. The
certainty equivalent provides a natural cardinal representation of preferences under uncer-
tainty. In this paper, we have shown that supermodularity of the certainty equivalent is a
natural concept of risk aversion that is equivalent to the standard definition for the most
commonly used models of choice under uncertainty, but does not depend on any specific
functional form. We have also shown how these concepts may be related to the notion of
arrangement increasingness. The applicability of supermodularity concepts to problems
of comparative statics for risk-averse decision-makers has been illustrated by two simple

examples.

16



7 References

ACZEL, J. (1990), “Determining Merged Relative Scores”, Journal of Mathematical
Analysis and Applications, 150, 20—40.

ATHEY, S. (2002), “Monotone Comparative Statics Under Uncertainty”, Quarterly
Journal of Economics, 117, 187-223.

BLACKORBY, C., DAVIDSON, R. and DONALDSON, D. (1977), “A Homiletic Ex-
position of the Expected Utility Hypothesis”, Economica, 44, 351-58.

BOLAND, P. and PROSCHAN, F. (1988), “Multivariate Arrangement Increasing Func-
tions With Applications in Probability and Statistics”, Journal of Multivariate Analysis,
25, 286-98.

CHEW, S.H., KARNI, E. and SAFRA, Z. (1987), “Risk Aversion in the Theory of
Expected Utility With Rank-Dependent Preferences”, Journal of Economic Theory, 42,
370-81.

HENNESSY, D. and LAPAN, H. (2003), “A Definition of ‘More Systemic Production
Risk’ With Some Welfare Implications”, Economica, 70, 493-508.

MACHINA, M. (1984), “Temporal Risk and the Nature of Induced Preferences”, Jour-
nal of Economic Theory, 33, 199-231.

MACHINA, M. and SCHMEIDLER, D. (1992), “A More Robust Definition of Subjec-
tive Probability”, Econometrica, 60, 745-80.

MARSHALL, A. and OLKIN, I. (1979). Inequalities: Theory of Majorization and Its
Applications (New York; Academic Press).

QUIGGIN, J. (1982), “A Theory of Anticipated Utility”, Journal of Economic Behavior
and Organization, 3, 323—43.

QUIGGIN, J. and CHAMBERS, R.G. (1998), “Risk Premiums and Benefit Measures
for Generalized Expected Utility Theories”, Journal of Risk and Uncertainty, 17, 121-37.

ROTHSCHILD, M. and STIGLITZ, J. (1970), “Increasing Risk: I. a Definition”, Jour-
nal of Economic Theory, 2, 225—43.

TOPKIS, D.M. (1998). Supermodularity and Complementarity (Princeton; Princeton

University Press).

17



YAARI, M. (1987), “The Dual Theory of Choice Under Risk”, Econometrica, 55, 95—
115.

18



