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Abstract

This paper aims to develop a semi-Lagrangian Bernstein-Bézier high-order finite element method for solving the

two-dimensional nonlinear coupled Burgers’ equations at high Reynolds numbers. The proposed method combines

the semi-Lagrangian scheme for the time integration and the high-order Bernstein-Bézier functions for the space

discretization in the finite element framework. Unstructured triangular Bernstein-Bézier patches are reconstructed in

a simple and inherent manner over finite elements along the characteristic curves defined by the material derivative. A

fourth-order Runge-Kutta scheme is used for the approximation of departure points along with a local L2-projection to

compute the solution at the semi-Lagrangian stage. By using these techniques, the nonlinear problem is decoupled and

two linear diffusion problems are solved separately for each velocity component. An implicit time-steeping scheme is

used and a preconditioned conjugate gradient solver is used for the resulting linear systems of algebraic equations. The

proposed method is investigated through several numerical examples including convergence studies. It is found that

the proposed method is stable, highly accurate and efficient in solving two-dimensional coupled Burgers’ equations at

high Reynolds numbers.

Keywords: Burgers’ equations; High Reynolds numbers; Bernstein-Bézier finite elements; Semi-Lagrangian

method; L2-projection

1. Introduction

In the last decades, a huge effort has been made by the Computational Fluid Dynamics (CFD) community on the

development of either commercial or open-source software due to its great importance in various industrial and en-

vironmental [1] purposes including aerodynamics [2, 3, 4], polymers [5], combustion [6] and whether prediction [1].
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In general, mathematical models describing physical phenomena in these problems consists of the well-established

Navier-Stokes equations. Hence, solving the coupled Burgers’ system presents a crucial step in whatever CFD soft-

ware. Computational techniques used to solve these problems can be classified into (i) Eulerian techniques, (ii)

Lagrangian procedures and (iii) semi-Lagrangian methods. In the framework of finite elements, the most popular

Eulerian methods are the streamline upwind Petrov-Galerkin methods [7, 8], Galerkin/least-squares methods [9, 8]

and Taylor-Galerkin methods [10, 11]. Recently, much effort has been made on the development of efficient numer-

ical schemes for solving coupled Burgers’ equations [12, 13, 14, 15, 16]. For example, in [12] authors used both

differential quadrature and finite difference methods for solving the coupled Burgers’ system at high Reynolds num-

bers. A mesh-free method based on radial basis functions has been used in [13, 16] for solving the nonlinear coupled

Burgers’ equations. However, it is well known that these Eulerian methods do not perform very satisfactory when the

Reynolds number reaches high values unless small time steps and highly refined grids are used in the simulations. In

the case of high Reynolds numbers as those considered in this study, these requirements are practically not feasible

and may limit the performance of these Eulerian methods. Fully Lagrangian techniques on the other hand, appear

theoretically well suited for the numerical solution of advection problems due to the possibility of using large time

steps in the simulations. In practice, the computational mesh for the Lagrangian methods moves along the fluid par-

ticle trajectories which may yield to mesh distortion after few time steps in the computations. Thus, because of this

drawback, the Lagrangian methods are not recommended for the numerical solution of coupled nonlinear Burgers’

problems. In the semi-Lagrangian method, known also in the framework of finite elements by Galerkin-characteristics

method, to overcome the drawback of fully Lagrangian methods and keeping their advantage, the computational mesh

is taken to be fixed while back-tracking the solution along the characteristic curves. The main advantage of the semi-

Lagrangian method lies on the fact that the Courant-Friedrichs-Lewy (CFL) condition is highly relaxed compared to

its Eulerian counterparts, see for example [17, 18, 19, 20, 21]. In addition, the Lagrangian treatment in the semi-

Lagrangian method greatly reduces the time truncation errors in the Eulerian methods, see [22, 18, 23, 24] among

others. Thus, the semi-Lagrangian finite element method has the potential to be more suitable than Eulerian and

Lagrangian methods for coupled Burgers’ system on unstructured meshes. It should be noted that the techniques

studied in [17, 18, 19, 20, 21, 23, 24] are based on Lagrange basis functions for which only a second-order accuracy

is achieved in their numerical approximations. The aim of the present work is to develop high-order basis functions

for the finite element solution of the coupled Burgers’ equations.

In general, most of semi-Lagrangian finite element methods are second-order accurate in space and time but the

accuracy of this class of numerical methods depends on the order of the interpolation polynomials used to compute

the solution in the convection stage and on the time integration procedure for the diffusion stage. For example, to

achieve a second-order accuracy in the semi-Lagrangian finite element method, the interpolation polynomials have to

be at least second-order accurate and the time integration must be at least semi-implicit for the diffusion terms. In

addition, it has been observed that the error in the conventional semi-Lagrangian finite element method for convection-

diffusion problems decreases as the time step increases at certain range of parameters, see for instance [20, 19]. High-
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order accurate numerical methods for convection-dominated problems have the potential to reduce the computational

effort required for a given order of solution accuracy. The state of the art in this field is more advanced for the

Eulerian methods than for the semi-Lagrangian methods. For example, high-order discretization techniques such

as those relying on spectral or hp-finite element methods have been shown to achieve fast convergence with low

numerical diffusion and dispersion errors for advection-diffusion problems, see for example [25, 26]. It was shown

that the hp-finite element method delivers exponential convergence for elliptic problems with piecewise analytic data,

see the survey [27] and further references are therein. A similar performance was also proven for boundary-layer

and singularly perturbed problems in [28, 29]. A study reported in [30] reveals that the choice of high-order shape

functions is critical to the stability and efficiency of the finite element discretization. Particularly, high-order finite

elements based on Lobatto shape functions have proven to possess better conditioning compared to other types of

high-order shape functions widely used in the literature, compare for instance [31]. Assessment of different high-order

shape functions including Bernstein, Lobatto and Lagrange Gauss-Lobatto polynomials for interior acoustic problems

reported in [32], has shown the advantage of high-order polynomials in reducing the pollution errors and the good

performance of Bernstein polynomials when combined with the Krylov subspace solvers. In a closely related study

[33], Bernstein shape functions have been demonstrated to yield comparable, and even better performance in terms of

accuracy and memory requirements compared to the well-established partition of unity finite methods. The Bernstein

polynomials are well known in the field of computer aided geometric design and computer graphics. However, their

applications in the finite element community have until now not been widely adopted. Although hierarchical basis

functions are often chosen in the design of high-order finite elements for their suitability in p-adaptivity. Recently,

attention has been paid to the favorable properties of the Bernstein polynomials [34, 35]. Especially, it has been shown

that the Bernstein-Bézier finite elements on simplicial domains, hexahedra and pyramids yield optimal complexity for

the standard finite element spaces. In a more recent work [36], the Bernstein basis functions combined to an additive

Schwarz preconditioner was successfully implemented for challenging applications including boundary layers, non-

linear reaction-diffusion problems and wave propagation of solitons.

The main focus of the present study is the development of a class of high-order semi-Lagrangian finite element

methods to numerically solve the two-dimensional coupled Burgers’ equations at high Reynolds numbers. This goal

is achieved by the implementation of Bernstein-Bézier finite elements for the semi-Lagrangian method. It should

be stressed that combining the semi-Lagrangian method with the Bernstein-Bézier finite elements, to the best of

our knowledge, is reported for the first time. In the context of semi-Lagrangian finite element methods, Bernstein

polynomials are used as shape functions associated with elements of the computational mesh to calculate the departure

points and update the global solutions. The positivity of these local basis functions and the variation diminishing

properties make them a very attractive alternative to the standard Lagrange polynomials. Different from most of

the studies on the coupled Burgers’ equations which are usually devoted to improving the accuracy of computed

solutions in the case of low Reynolds numbers, this study mainly focuses on keeping the stability of the solution at

high Reynolds numbers, which is significant in practical applications and also challenging in numerical computations.
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In addition, the main contribution in this work is using the Bernstein-Bézier functions to interpolate the solution from

previous time step using a local L2-projection procedure introduced in [19, 24]. The idea behind the L2-projection

approach consists of evaluating the solution at the departure points using a set of quadrature points distributed in the

host element. Thus, we combine both main advantages of the semi-Lagrangian method related to the use of large

time steps and the ability of Bernstein-Bézier finite elements in preserving high-order accuracy on relatively coarse

meshes. A fully implicit time integration scheme is used for the viscous terms and the associated linear systems of

algebraic equations are solved using an iterative algorithm. In this study, to increase the efficiency of the proposed

method, we also implement a static condensation procedure within the preconditioned conjugate gradient solver. This

procedure ensures the elimination of interior Degrees of Freedom (DoFs) at the elemental level leading to reduced

linear systems to be solved using the preconditioned conjugate gradient solver proposed in [36]. The performance

of the proposed semi-Lagrangian Bernstein-Bézier finite element method is demonstrated for several test examples

of coupled Burgers’ equations. The obtained results confirm the high performance of this procedure compared to

the conventional ordering techniques without the static condensation. In addition, numerical results presented in the

current work demonstrate that an interesting feature of the Bernstein-Bézier finite elements is to allow large time steps

and coarse meshes in the simulations without deteriorating the high-order accuracy of the computed solutions.

This paper is organized as follows. In section 2 we present the two-dimensional coupled Burgers’ equations

and the calculation of departure points. Formulation of the semi-Lagrangian Bernstein-Bézier finite element method

for solving the two-dimensional coupled Burgers’ equations is formulated in section 3. This section includes the

Bernstein-Bézier finite elements and an implicit time stepping scheme to solve the diffusion stage. Section 4 is

devoted to numerical results for several examples of two-dimensional unsteady nonlinear coupled Burgers’ equations.

Our new approach is demonstrated to enjoy the expected efficiency as well as the accuracy. Concluding remarks are

summarized in section 5.

2. Semi-Lagrangian method for time integration

In the present work, given a two-dimensional bounded domain Ω ⊂ R2 with Lipschitz boundary ∂Ω and a time

interval [0,T ], we are interested in solving the unsteady nonlinear coupled Burgers’ equations reformulated in the

dimensionless form as

∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y

=
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
,

(1)
∂v
∂t
+ u
∂v
∂x
+ v
∂v
∂y

=
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
,

where u(t, x) = (u(t, x), v(t, x))⊤ is the velocity field at time t and position x = (x, y)⊤, with u and v denote the velocity

in x-direction and y-direction, respectively. In (1), Re is the Reynolds number controlling the relative importance of

convection terms compared to diffusion terms. Note that the system (1) is solved subject to given initial and boundary
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conditions. We assume that appropriate boundary conditions are given in such a way the problem is well defined and

has a unique solution. The main idea behind the semi-Lagrangian method is to reformulate the problem (1) using the

total derivative as

Du
Dt

=
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
,

(2)
Dv
Dt

=
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
,

where the material derivative Dw
Dt =

∂w
∂t + u ∂w

∂x + v ∂w
∂y measures the rate of change of a generic function w following

the trajectories of the flow particles. The semi-Lagrangian method imposes a regular grid at the new time level and

to backtracks the flow trajectories to the previous time level. At the old time level, the quantities that are needed are

evaluated by interpolation from their known values on a regular grid. Hence, we divide the time interval [0,T ] into N

subintervals [tn−1, tn] with length ∆t = tn − tn−1 for n = 1, 2 . . . ,N. To discretize in time with the Cauchy problem (2),

we consider a second-order implicit scheme of Gear type also known in the literature by Backward Differentiation

Formula (BDF2) [37]. Thus, integrating the equations (2) along the characteristic curves yields

3u(tn+1,X(tn+1, x)) − 4u(tn,X(tn, x)) + u(tn−1,X(tn−1, x))
2∆t

=
1

Re

(
∂2u(t,X(tn+1, x))

∂x2 +
∂2u(t,X(tn+1, x))

∂y2

)
,

(3)
3v(tn+1,X(tn+1, x)) − 4v(tn,X(tn, x)) + v(tn−1,X(tn−1, x))

2∆t
=

1
Re

(
∂2v(t,X(tn+1, x))

∂x2 +
∂2v(t,X(tn+1, x))

∂y2

)
,

where the characteristic curves X(τ, x) are solutions of the backward differential equations

dX(τ, x)
dτ

= u
(
τ,X(τ, x)

)
, ∀ τ ∈ [tn, tn+1],

(4)

X(tn+1, x) = x.

Here, X(τ, x) =
(
X(τ, x),Y(τ, x)

)⊤ is the departure point at time τ of a particle that will arrive at x at time tn+1. Since

the space discretization in this work is carried out using finite elements, it should be noted that the semi-Lagrangian

method does not follow the flow particles forward in time as the Lagrangian methods do, instead it traces backwards

the position at time tn of particles that will reach the points of a fixed mesh at time tn+1, see Figure 1 for an illustra-

tion. By so doing, the semi-Lagrangian method avoids the grid distortion difficulties that the conventional Lagrangian

methods have. Here, the backward treatment in the semi-Lagrangian method does not require the particle to move

in one direction since this later dynamic is mainly related to the flow velocity in the problem under study. Although

the velocity field covers all directions, the semi-Lagrangian method calculates the characteristic curves for which the

departure points X(τ, x) are reaching the mesh point x at time tn+1. It should also be stressed that accurate approxima-

tions of the characteristic curvesX(τ, x) are crucial to the overall accuracy of the semi-Lagrangian method. In [19, 24],

an extrapolation procedure based on the mid-point rule is used to approximate the solution of (4), but this method is

only second-order accurate and it involves an iterative procedure which may become computationally demanding. It
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is worth mentioning that the semi-Lagrangian method should be interpreted as a time stepping scheme for which the

departure points are required to be accurately approximated by solving the backward differential equations (4). This

time integration scheme should not be confused with the time integration method used for the diffusion terms as this

later is mainly affected by the spatial discretization used for the diffusion operator. As the semi-Lagrangian method

integrates the convection part in time using the total derivative D
Dt , the solution of the backward differential problem

(4) should be highly accurate to guarantee the high-order accuracy of the overall semi-Lagrangian Bernstein-Bézier

finite element method. In the current work, we consider the fourth-order explicit Runge-Kutta method to approximate

the solution of the differential equations (4) as

K(1) = ∆tu (tn+1, x) ,

K(2) = ∆tu
(
tn+ 1

2
, x −

1
2

K(1)
)
,

K(3) = ∆tu
(
tn+ 1

2
, x −

1
2

K(2)
)
, (5)

K(4) = ∆tu
(
tn, x −K(3)

)
,

X(tn, x) = x −
1
6

(
K(1) + 2K(2) + 2K(3) +K(4)

)
.

In (5), fourth-order extrapolation formulas are used to approximate the velocity fields u(tn+1, ·) and u(tn+ 1
2
, ·) for n ≥ 4.

Lower-order extrapolation formulas are used in the case of n = 1, 2 and 3. Notice that, in general the departure points

X(tn, x) do not coincide with the spatial position of the point x. To find the host element where such point is located

we adapt the search-locate algorithm proposed in [38] for unstructured finite elements. For the calculation of the

departure points X(tn−1, x)), we use the same procedure as (5). Note that to solve the backward differential equations

(4), the stages in the Runge-Kutta method (5) have been reversed. To demonstrate this step, we consider for a small

step ∆s, the transformations τ = tn+1 +
tn−tn+1
∆s s and Y(s, x) = X(τ, x). Hence, solving differential equations (4) is

equivalent to solve

dY(s, x)
ds

=
dX(τ, x)

ds
= −
∆t
∆s

dX(τ, x)
dτ

= −
∆t
∆s

u
(
τ,X(τ, x)

)
= v

(
s,Y(s, x)

)
, ∀ s ∈ [0,∆s],

(6)
Y(0, x) = x,

where v (s,Y(s, x)) = − ∆t
∆s u

(
τ,X(τ, x)

)
. Thus, the approximation of the initial problem (6) by the Runge-Kutta method

is carried out as

R(1) = ∆sv (0, x) ,

R(2) = ∆sv
(
∆s
2
, x +

1
2

R(1)
)
,

R(3) = ∆sv
(
∆s
2
, x +

1
2

R(2)
)
, (7)

R(4) = ∆sv
(
∆s, x + R(3)

)
,

Y(∆s, x) = x +
1
6

(
R(1) + 2R(2) + 2R(3) + R(4)

)
.
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Next, we substitute Y(∆s, x) and v in (7) by its values Y(∆s, x) = X(tn, x) and v
(
s,Y(s, x)

)
= − ∆t

∆s u
(
τ,X(τ, x)

)
,

respectively. This yields,

R(1) = ∆sv (0, x) = −∆tu (tn+1, x) = −K(1),

R(2) = ∆sv
(
∆s
2
, x +

1
2

R(1)
)
= −∆tu

(
tn+ 1

2
, x +

1
2

R(1)
)
= −K(2),

R(3) = ∆sv
(
∆s
2
, x +

1
2

R(2)
)
= −∆tu

(
tn+ 1

2
, x +

1
2

R(2)
)
= −K(3), (8)

R(4) = ∆sv
(
∆s, x + R(3)

)
= −∆tu

(
tn, x + R(3)

)
= −K(4),

X(tn, x) = x +
1
6

(
R(1) + 2R(2) + 2R(3) + R(4)

)
= x −

1
6

(
K(1) + 2K(2) + 2K(3) +K(4)

)
,

which reduces to equations (5). Using the notation wn(x) = w(tn, x), ŵn(x) = w(tn,X(tn, x)) to denote the values of

the generic function w at (tn, x) and (tn,X(tn, x)), respectively, the semi-discrete system (3) becomes

un+1(x) −
2∆t
3Re

(
∂2un+1(x)
∂x2 +

∂2un+1(x)
∂y2

)
=

4
3

ûn(x) −
1
3

ûn−1(x),

(9)

vn+1(x) −
2∆t
3Re

(
∂2vn+1(x)
∂x2 +

∂2vn+1(x)
∂y2

)
=

4
3

v̂n(x) −
1
3

v̂n−1(x).

It is clear that an advantage of the semi-Lagrangian method lies on the fact that the equations (9) are decoupled and

can be solved separately for each solution component. Note that at time t = 0 only one initial condition is provided

and to obtain the second condition we use the implicit Euler scheme. It should also be noted that, one could also use

the fourth-order Runge-Kutta method (5) for solving the diffusion part in the considered problems however, this would

not improve the accuracy of the overall method as the computed numerical solutions are expected to be more affected

by the accuracy of the spatial discretization than its temporal counterparts. Indeed, at high Reynolds numbers, the

diffusion part in the problem under study becomes negligible and it behaves as an hyperbolic system of conservation

laws for which high-order spatial discretization is required for the accurate resolution of shocks. In these cases, a

second-order time stepping scheme as the one considered in our study is enough to preserve the high-order accuracy

of the scheme for shock capturing at high Reynolds numbers. It should also be stressed that using higher order time

stepping schemes (such as the fourth-order Runge-Kutta method) for the viscous terms in our study would not change

the obtained numerical results but it would increase the computational cost of the proposed method.

3. Finite elements for space discretization

To formulate our finite element semi-Lagrangian method for solving the Burgers’ equations (1), we first discretize

the spatial domain Ω into a quasi-uniform partition Ωh ⊂ Ω of non-overlapping triangular elementsKe, e = 1, . . . ,Ne.

The conforming finite element space for the solution that we use is defined as

W
p
h =

{
wh ∈ C0(Ω̄)

⋂
H1

0(Ω) : wh

∣∣∣∣
Ke
◦ FKe ∈ Pp(K̂), ∀ Ke ∈ Ωh

}
, (10)
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where Pp(K̂) is the set of polynomials of degree ≤ p defined on the reference element K̂ and FKe : K̂ −→ Ke is

an one-to-one mapping between physical and reference elements. Hence, we formulate the finite element solution

un+1
h (x) =

(
un+1

h (x), vn+1
h (x)

)
at time tn+1 as

un+1
h (x) =

m∑
j=1

Un+1
j φ j(x), vn+1

h (x) =
m∑

j=1

Vn+1
j φ j(x), (11)

where {φ j}
m
j=1 is the set of global nodal basis functions ofWp

h and m denotes the total number of DoFs associated to

the finite element spaceWp
h . Next, assuming for simplicity purposes, the problem (9) is supplied with homogeneous

Dirichlet boundary conditions on ∂Ω, we replace u(tn, x) and v(tn, x) by their discrete forms un
h and vn

h in (9), then we

multiply the system by a test function φi(x), i = 1, . . . ,m and we integrate over the domain Ωh, the following weak

problem is obtained
m∑

j=1

Un+1
j

( ∫
Ωh

φ j(x)φi(x)dx +
2∆t
3Re

∫
Ωh

∇φ j(x) · ∇φi(x)dx
)
=

∫
Ωh

(4
3

ûn
h(x) −

1
3

ûn−1
h (x)

)
φi(x)dx,

(12)
m∑

j=1

Vn+1
j

( ∫
Ωh

φ j(x)φi(x)dx +
2∆t
3Re

∫
Ωh

∇φ j(x) · ∇φi(x)dx
)
=

∫
Ωh

(4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
φi(x)dx,

which can be rewritten in a compact finite element form as(
M +

2∆t
3Re

S
)

Un+1 = bu,

(13)(
M +

2∆t
3Re

S
)

Vn+1 = bv,

where Un+1 and Vn+1 are m-valued vectors with entries Un+1
j and Vn+1

j , respectively. The mass matrix M and stiffness

matrix S are m × m-valued matrices the entries of which are

Mi j =

∫
Ωh

φ j(x)φi(x)dx, and S i j =

∫
Ωh

∇φ j(x) · ∇φi(x)dx, 1 ≤ i, j ≤ m.

respectively. The right-hand sides bu and bv are m-valued vectors with entries

bu
i =

∫
Ωh

(4
3

ûn
h(x) −

1
3

ûn−1
h (x)

)
φi(x)dx, 1 ≤ i ≤ m,

(14)

bv
i =

∫
Ωh

(4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
φi(x)dx, 1 ≤ i ≤ m.

In the present, a Bernstein-Bézier polynomial basis is adopted for the spatial discretization. It should also be noted

that since the Bernstein polynomials are only interpolatory at the mesh grid vertices, a numerical procedure is needed

to impose inhomogeneous Dirichlet type boundary conditions. In the present work, this is achieved by using the

L2-projection on the Bernstein-Bézier basis of the local boundary data Lagrange interpolate.

3.1. Bernstein-Bézier finite elements

Let us consider the non-overlapping triangulation of the computational domain Ω and let K̂ be the master element

defined by

K̂ =
{
η = (η, ξ) : 0 ⩽ η ⩽ 1, 0 ⩽ ξ ⩽ 1 − η

}
. (15)
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Figure 1: A schematic diagram showing the main quantities used in the approximation of the departure points. Here, K is a given mesh element

and
(
ηk,l, ξk,l

)
is a Gauss integration point used in the reference element K̂ and mapped onto xk,l in the element K whereas, K∗ and K∗∗ are the

host elements where the departure point X(tn, xk,l) and X(tn−1, xk,l) belong, respectively. Here, FK is the affine one-to-one mapping.

We define the barycentric coordinates ζi (i = 1, 2, 3) relative to the master element K̂ by

ζ1(η) = η, ζ2(η) = ξ and ζ3(η) = 1 − η − ξ. (16)

For a multi-index α ∈ Z3
+, we define |α| =

3∑
i=1

αi and α! =
3∏

i=1

αi!. Let α,β ∈ Z3
+ such that β ⩾ α i.e., βi ⩾ αi

for 1 ⩽ i ⩽ 3, we set
(
β

α

)
=

3∏
i=1

(
βi

αi

)
where

(
βi

αi

)
=

βi!
αi!(βi − αi)!

. Using these notations, the Bernstein-Bézier shape

functions are simply written as

Bp
α(η) = p!

ζα1
1 (η)
α1!

ζα2
2 (η)
α2!

ζα3
3 (η)
α3!

,

where |α| = p.Hence, the Bernstein-Bézier basis for the space Pp(K̂) of polynomials of total degree at most p consists

of the following shape functions:

• Vertex-based shape functions defined by

Bp
(p,0,0)(η) = ζ

p
1 (η), Bp

(0,p,0)(η) = ζ
p
2 (η), Bp

(0,0,p)(η) = ζ
p
3 (η).
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• Edge-based shape functions defined by

Bp
(p−k,k,0)(η) =

p

k

 ζ p−k
1 (η)ζk

2(η), 1 ⩽ k ⩽ p − 1,

Bp
(0,p−k,k)(η) =

p

k

 ζ p−k
2 (η)ζk

3(η), 1 ⩽ k ⩽ p − 1,

Bp
(k,0,p−k)(η) =

p

k

 ζ p−k
3 (η)ζk

1(η), 1 ⩽ k ⩽ p − 1.

• Cell-based shape functions defined by

Bp
(i, j,p−i− j)(η) =

 p

i + j


i + j

i

 ζ i
1(η)ζ j

2(η)ζ p−i− j
3 (η), 1 ⩽ i ⩽ p − 2, 1 ⩽ i + j ⩽ p − 1.

It should also be stressed that one of the most important proprieties of the Bernstein polynomials lies on the fact that

their product yields a scaled Bernstein polynomial as

Bp
α(η)Bq

β(η) =

α + βα
p + q

p


Bp+q
α+β(η), (17)

where |α| = p and |β| = q . Furthermore the integral of a Bernstein polynomial over the reference triangle element has

a simple form: ∫
K̂

Bp
α(η)dη =

|K̂ |p + 2

2


. (18)

On the other hand the gradient of Bernstein polynomials can be computed as follows:

∇Bp
α(η) = p

3∑
k=1

Bp−1
α−ek

(η)∇ζk, (19)

where ek is a multi-index with its kth entry is a unity and its remaining entries are zero, and Bp−1
α−ek
= 0 if α − ẽk has

a negative component. It should be noted that the Bernstein polynomials are non-negative and form a partition of

unity on the element K̂ . Moreover, these polynomials have some attractive features such as variation diminishing and

monotonicity preserving properties, see for instance [39, 40] and further references can be found therein.

For a polynomial degree p ⩾ 1, the number of DoFs per element is given by

Ne =


3, if p = 1,

6, if p = 2,

3 + 3(p − 1) +
(p − 2)(p − 1)

2
, if p ⩾ 3.

(20)
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Note that, in contrast to the Lagrange finite elements where the degrees of freedom refer to nodal point evaluations, a

global orientation of edges is required to enable matching edge modes of a similar shape, thus ensuring C0 conformity

[33, 26, 31]. Finite element approximations with varying polynomial order can also be used by assigning to each

vertex, edge and cell in the mesh an arbitrary polynomial degree, see [34, 33] among others.

3.2. Assembly of finite element matrices

In this section, we describe the procedure used to assemble the mass and stiffness matrices along with the right-

hand side vectors in the finite element discretization (13). Let us denote by Ii the set of indices of all elements defining

the support of the basis function φi. Hence, the span {φi}i=1,...,m ofWp
h is defined element-wise as

φi(x) =


Bp
αe

(
ηe

)
, if x ∈ Ke, ∀e ∈ Ii,

0, elsewhere,

where ηe = F−1
Ke

(x) and |αe| = p. Using this notation the entries Mi j and S i j of the mass and stiffness matrices become

Mi j =
∑

e∈Ii
⋂
I j

∫
Ke

Bp
αe

(
ηe

)
Bp
βe

(
ηe

)
dx =

∑
e∈Ii

⋂
I j

MKe
αe,βe
,

(21)

S i j =
∑

e∈Ii
⋂
I j

∫
Ke

∇Bp
αe

(
ηe

)
· ∇Bp

βe

(
ηe

)
dx =

∑
e∈Ii

⋂
I j

SKe
αe,βe
.

The right-hand side terms in (14) becomes

bu
i =

∑
e∈Ii

∫
Ke

(
4
3

ûn
h(x) −

1
3

ûn−1
h (x)

)
Bp
αe

(
ηe

)
dx =

∑
e∈Ii

bu,Ke
αe
,

(22)

bv
i =

∑
e∈Ii

∫
Ke

(
4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
Bp
αe

(
ηe

)
dx =

∑
e∈Ii

bu,Ke
αe
.

Next, let us consider a generic element K ∈ {Ke, e ∈ Ii
⋂
I j}, a generic α ∈ {αe, e ∈ Ii

⋂
I j} and a generic

β ∈ {βe, e ∈ Ii
⋂
I j}. By setting η = F−1

K
(x), the evaluation of the entries of finite element matrices Mi j and S i j is

reduced to the computation of the entries of the element matrices Mα,β and S α,β as

Mα,β =

∫
K

Bp
α
(
η
)
Bp
β

(
η
)
dx =

∫
K̂

det(JK )Bp
α(η)Bp

β(η) dη,

(23)

S α,β =

∫
K

∇Bp
α
(
η
)
· ∇Bp

βe

(
η
)
dx =

∫
K̂

det(JK )
(
J−1
K
∇̂Bp
β

)
·
(
J−1
K
∇̂Bp
α

)
dη,

where JK =
(

dFK
dη

)⊤
is the Jacobian matrix, the operator ∇ and ∇̂ are defined as ∇ =

( ∂
∂x ,

∂
∂y

)⊤ and ∇̂ =
( ∂
∂η
, ∂
∂ξ

)⊤,

respectively. Since the geometry is interpolated using the affine map FK , the Jacobian matrix JK has constant entries

and det
(
JK

)
=
|K|

|K̂ |
and therefore analytical integration rules as those proposed in [34, 35] can be used for the evaluation

11



of both entries of element stiffness and mass matrices. Thus, using the proprieties (17) and (18), the integral over the

element K in (23) can be evaluated as

Mα,β =
|K|

|K̂ |

(
α+β
β

)
(

2p
p

) ∫
K̂

B2p
α+β(η) dη =

|K|

|K̂ |

(
α+β
β

)
(

2p
p

)(
p+2

2

) . (24)

Similarly, using the property (19), the entries of the element stiffness matrix can be computed as

S α,β =
3∑

k=1

3∑
l=1

(
J−1
K
∇̂ζk

)
·
(
J−1
K
∇̂ζl

)
Mα−ek,β−el . (25)

Hence, using the same notation as above, the evaluation of the right-hand entries in (14) is reduced to the computation

of the entries bu
α and bv

α

bu
α =

∫
K

(4
3

ûn
h(x) −

1
3

ûn−1
h (x)

)
Bp
α
(
η
)
dx =

|K|

|K̂ |

∫
K̂

(4
3

ûn
h(x) −

1
3

ûn−1
h (x)

)
Bp
α
(
η
)
dη,

(26)

bv
α =

∫
K

(4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
Bp
α
(
η
)
dx =

|K|

|K̂ |

∫
K̂

(4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
Bp
α
(
η
)
dη.

It is evident that, if the above integrals are evaluated exactly then it is easy to show that the semi-Lagrangian method

is unconditionally stable in the L2-norm, see for instance [18]. In a general framework, this cannot be done and one

has to approximate the integrals by numerical integration. In the current study, we consider the procedure proposed in

[34] to compute the Bernstein-Bézier moments. Note that it has shown in [34] that the Duffy transformation enables

a tensorial reconstruction of the Bernstein-Bézier basis on simplices. Thus, the well-established sum factorization is

used to efficiently evaluate and integrate these polynomials based on the Stroud conical quadrature. This transforma-

tion maps the unit quadrilateral with coordinates r = (r, s) ∈ Q̂ = [0, 1]2 to the reference triangle K̂ and it can be

defined by

η = r, ξ = (1 − r)s. (27)

Let us denote by Bp
i (s) =

(
p
i

)
si(1 − s)p−i the one-dimensional Bernstein polynomial on the unit interval [0, 1]. Hence,

it is shown in [34] that

Bp
α(η) = Bp

α1 (r)Bp−α1
α2 (s). (28)

Thus, the integrals in (26) become

bu
α =

|K|

|K̂ |

∫ 1

0

(∫ 1

0

(
4
3

ûn
h(x) −

1
3

ûn−1
h (x))

)
(1 − r)Bp

α1 (r)dr
)

Bp−α1
α2 (s)ds,

(29)
bv
α =

|K|

|K̂ |

∫ 1

0

(∫ 1

0

(
4
3

v̂n
h(x) −

1
3

v̂n−1
h (x)

)
(1 − r)Bp

α1 (r)dr
)

Bp−α1
α2 (s)ds.

Recall the q-point Gauss-Jacobi quadrature defined as∫ 1

0
w(z) f (z) dz ≈

q∑
g=0

w(d)
g f (z(d)

g ), (30)

12



where the weight function w(z) = (1 − z)d, with d > −1, {z(d)
g } is the set of abscissa, and {w(d)

g } are the associated

weights. In our case, we set d = 1 for the variable r and d = 0 for the variable s. Hence, the quantities needed are

{z(0)
g }, {w

(0)
g }, {z

(1)
g } and {z(1)

g }, and the evaluation of the Bernstein-Bézier moments (29) yields

bu
α ≈

|K|

|K̂ |

q∑
k=1

w(1)
k Bp−α1

α2

(
z(0)

k

)  q∑
l=1

w(1)
l Bp

α1 (z(1)
l )

(4
3

ûn
h(xk,l) −

1
3

ûn−1
h (xk,l)

) ,
(31)

bv
α ≈

|K|

|K̂ |

q∑
k=1

w(1)
k Bp−α1

α2

(
z(0)

k

)  q∑
l=1

w(1)
l Bp

α1 (z(1)
l )

(4
3

v̂n
h(xk,l) −

1
3

v̂n−1
h (xk,l)

) ,
where xk,l = FK

(
ηk,l

)
and ηk,l =

(
z(1)

k , (1 − z(1)
k )z(0)

l
)
. By setting ûn

k,l = ûn
h(xk,l), ûn−1

k,l = ûn−1
h (xk,l), v̂n

k,l = v̂n
h(xk,l) and

v̂n−1
k,l = v̂n−1

h (xk,l), the integrals in (31) are rewritten as

bu
α ≈

|K|

|K̂ |

q∑
k=1

w(1)
k Bp−α1

α2

(
z(0)

k

)  q∑
l=1

w(1)
l Bp

α1 (z(1)
l )

(4
3

ûn
k,l −

1
3

ûn−1
k,l

) ,
(32)

bv
α ≈

|K|

|K̂ |

q∑
k=1

w(1)
k Bp−α1

α2

(
z(0)

k

)  q∑
l=1

w(1)
l Bp

α1 (z(1)
l )

(4
3

v̂n
k,l −

1
3

v̂n−1
k,l

) .
Note that the crucial step in this approach is the evaluation of the coefficients ûn

k,l, û
n−1
k,l , v̂

n
k,l and v̂n−1

k,l . Let us denote

by K∗ and K∗∗ the elements where the departure points X(tn, xk,l) and X(tn−1, xk,l) belong, respectively. Hence, the

coefficients in (32) are computed as

ûn
k,l = un

h

(
X(tn, xk,l)

)
=

∑
|α|=p

Un
αBp
α(η∗),

ûn−1
k,l = un−1

h

(
X(tn−1, xk,l)

)
=

∑
|α|=p

Un−1
α Bp

α(η∗∗),

v̂n
k,l = vn

h

(
X(tn, xk,l)

)
=

∑
|α|=p

Vn
αBp
α(η∗),

v̂n−1
k,l = vn−1

h

(
X(tn−1, xk,l)

)
=

∑
|α|=p

Vn−1
α Bp

α(η∗∗),

where η∗ = F−1
K∗

(
X(tn, xk,l)

)
and η∗∗ = F−1

K∗∗

(
X(tn−1, xk,l)

)
. These summations are evaluated using the well-established

Casteljau algorithm [41] on the reference element. It is worth noting that although we have considered only Dirichlet-

type boundary condition in (1), the proposed method can also be used for general boundary conditions. For complete-

ness, the formulation of our method for the general Robin-type boundary conditions is included in Appendix A. In

summary, Algorithm depicts the steps used by the Bernstein-Bézier semi-Lagrangian finite element method to solve

the coupled burgers’ system.

Note that, since the cell-based shape functions are internal i.e., they vanish on the element boundaries and are

therefore not connected to the neighboring elements, the static condensation can be applied at the elemental level to

remove the internal DoFs from the global finite element system during the assembly. Once the matrix and the right-

hand side of the statically condensed system are formed, the internal DoFs in the solution can be recovered during

13



Algorithm The Bernstein-Bézier semi-Lagrangian finite element method.
1: Compute the entries Mi j and S i j according to (21)-(25) and assemble the finite element matrices M and S.

2: for each time step do

3: for each mesh element K do

4: For each Stroud quadrature point xk,l calculate the departure points X(tn, xk,l) and X(tn−1, xk,l) using (5).

5: Identify the mesh elements K∗ and K∗∗ where the departure points X(tn, xk,l) and X(tn−1, xk,l) belong.

6: Evaluate the Bernstein-Bézier moments bu
α and bv

α using (32).

7: Compute the entries bu
i and bv

i according to (22) and assemble the global right-hand side vectors bu and bv.

8: end for

9: Compute Un+1 and Vn+1 by solving the linear system (13).

10: Update the solutions un+1
h and vn+1

h element-wise according to (11).

11: end for

Re = 103 Re = 104 Re = 105

Figure 2: Convergence results using the L2-error for Example 1 in the squared domain for Re = 103 (left), Re = 104 (middle) and Re = 105 (right)

using different meshes and polynomial degrees at time t = 1.

the post-processing by solving element-wise local linear problems. This procedure is very efficient in reducing the

size and enhancing the condition number of hp-finite element system matrices. Furthermore, the considered method

requires solution of uncoupled elliptic problems such that their finite element discretization leads to linear systems

of algebraic equations for which, very efficient solvers can be implemented. Therefore, by taking advantage of these

properties, we solve the linear systems in (13) by the preconditioned conjugate gradient solver. This yields to an

efficient method for solving this class of linear systems of algebraic equations, see for example [36].

4. Numerical results

We present numerical results for two examples of Burgers’ equations to demonstrate the accuracy and efficiency

of the proposed semi-Lagrangian Bernstein-Bézier finite element method. The analytical solutions for these examples
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are known, so that we can evaluate the relative L1-error and relative L2-error at time tn as

L1-error =

∫
Ω

∣∣∣un
h − un

exact

∣∣∣ dx∫
Ω

∣∣∣un
exact

∣∣∣ dx
, L2-error =

√∫
Ω

∣∣∣un
h − un

exact

∣∣∣2 dx√∫
Ω

∣∣∣un
exact

∣∣∣2 dx

, (33)

where un
exact and un

h are respectively, the exact and numerical solutions at gridpoint xh and time tn. We also define the

CFL number associated to the Burgers’ system (1) as

CFL = max
x,y

(√
|u|2 + |v|2

)
∆t

h/p
. (34)

Note that to avoid the departure points to exit the computational domain we adopt the adaptive techniques discussed in

[42]. The idea behind this adaptive procedure consists on adjusting the approximation of departure points in (4) using

adaptive time sub-intervals. For the problems considered in the present study, this procedure is needed only for those

Gauss-Jacobi quadrature points located at the inflow boundary of the computational domain. In all our computations

carried out in this section, the resulting linear systems of algebraic equations are solved using the preconditioned

conjugate gradient solver using the mass matrix as a preconditioner as discussed in [36]. The tolerance used for the

stopping criteria is set to 10−6h/p, which is small enough to guarantee that the algorithm truncation errors dominate

the total numerical errors. It should be noted that, to attend this tolerance, the maximum number of iterations in the

linear solver does not overpass 40 iterations in all our simulations carried out in this section. All the computations

were performed on an Intel® Core(TM) i7-7700HQ CPU @ 2.80GHz with 8 GB of RAM.

4.1. Example 1

Our first test case consists on solving the Burgers’ system (1) in a squared domain Ω = [0, 1] × [0, 1] subject to

initial and boundary conditions obtained from the following analytical solution

u(x, y, t) = −

4π exp
(
−

5π2t
Re

)
cos (2πx) sin (πy)

Re
(
2 + π exp

(
−

5π2t
Re

)
sin (2πx) sin (πy)

) ,
(35)

v(x, y, t) = −

2π exp
(
−

5π2t
Re

)
sin (2πx) sin (πy)

Re
(
2 + π exp

(
−

5π2t
Re

)
sin (2πx) sin (πy)

) .
This example has also been used in [43, 44] among others to examine numerical methods for solving the two-

dimensional Burgers’ equations. Notice that the analytical solution (35) is used to quantify the errors and convergence

rates in the proposed semi-Lagrangian Bernstein-Bézier finite element method for solving the Burgers’ equations for

three different Reynolds numbers Re = 103, Re = 104 and Re = 105 using different polynomial degrees p. In Figure 2

we present the convergence results obtained for the L2-error using different meshes and different polynomial degrees
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Table 1: Results for Example 1 in the squared domain for Re = 103 and Re = 105 on a mesh with h = 1
20 at time t = 1 using different timesteps

and two polynomial degrees p = 6 and p = 7.

Re = 103 Re = 105

p ∆t L1-error Rate L2-error Rate L1-error Rate L2-error Rate

4E-02 2.6519E-05 — 4.3371E-05 — 2.6483E-06 — 4.3476E-06 —

6 2E-02 6.7930E-06 1.965 1.1087E-05 1.968 6.9814E-07 1.923 1.1494E-06 1.919

1E-02 1.7328E-06 1.971 2.8296E-06 1.970 2.3838E-07 1.550 4.1446E-07 1.472

4E-02 2.6518E-05 — 4.3370E-05 — 2.6511E-06 — 4.3371E-06 —

7 2E-02 6.7888E-06 1.966 1.1079E-05 1.969 6.7877E-07 1.966 1.1082E-06 1.969

1E-02 1.7168E-06 1.983 2.7989E-06 1.985 1.7203E-07 1.980 2.8088E-07 1.980

Table 2: Computational costs for simulations obtained for Example 1 in the squared domain for Re = 103 at t = 1 using different meshes,

polynomial degrees and CFL numbers. Note that the CPU times are given in seconds.

h = 1
4 h = 1

8 h = 1
16

p CFL = 4 CFL = 8 CFL = 10 CFL = 4 CFL = 8 CFL = 10 CFL = 4 CFL = 8 CFL = 10

4 6.210 2.355 2.531 22.986 11.719 9.286 52.434 26.118 21.321

5 9.934 4.565 3.774 38.464 18.104 14.878 85.325 42.746 33.899

6 14.215 6.198 5.525 55.676 27.722 22.417 127.071 64.095 50.270

7 19.990 9.035 8.246 78.646 39.780 31.919 181.886 90.708 73.396

at time t = 1 with CFL = 6. The convergence rates referred to by slopes of the error plots are also included in this

figure. It is clear that keeping the polynomial degree p fixed and refining the spatial step h results in a substantial

decrease in the computed L2-errors. From the values of convergence rates in Figure 2, we also observe that the ex-

pected order of convergence is achieved for each selected polynomial degree p. It has also been observed that these

convergence rates have not been deteriorated by the increase in the values of the Reynolds number, and the order of

the proposed semi-Lagrangian Bernstein-Bézier finite element method remains almost the same for the considered

Reynolds numbers Re = 103, Re = 104 and Re = 105.

It should be mentioned that to reduce the computational cost, the considered CFL number is chosen large enough

which yield explicit Eulerian-based methods noncompetitive. In general, for a stable explicit Eulerian-based method,

the CFL number must be less than unity. To examine the accuracy of the proposed BDF2 time stepping, we summarize

in Table 1 both L1-error and L2-error obtained for Re = 103 and Re = 105 at time t = 1 using different timesteps and
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Figure 3: Computational mesh used for Example 1.

two polynomial degrees p = 6 and p = 7. Note that to relatively minimize errors of the spatial discretization, a fine

structured mesh with h = 1
20 is used in these simulations. For each polynomial degree p, we refine the timestep ∆t

and compute the corresponding L1-error and L2-error. The associated convergence rates in the time stepping are also

included in Table 1. It is evident that decreasing the time step ∆t results in a decrease of L1-error and L2-error for all

considered polynomial degrees p and Reynolds numbers. The second-order convergence of the BDF2 time stepping

is also achieved in this example, compare the convergence rates in Table 1. A slightly better convergence results are

obtained for the simulations with Re = 103 than those obtained with Re = 105. It should also be stressed that similar

results, not reported here for brevity, have been obtained using other polynomial degrees and Reynolds numbers.

To quantify the comparison for this example, we present in Table 2 the computational costs obtained using different

polynomial orders, mesh sizes and CFL numbers. Here, for each polynomial order and mesh size we increase the CFL

number until the L1-error starts to increase. Hence, three consistent values of CFL numbers are included in Table 2. It

is evident to observe that the CPU time decreases proportionally to the inverse of the CFL number since the number

of time steps decrease when the value of CFL increases for a fixed polynomial order and a fixed mesh size. Thus, this

feature makes the proposed semi-Lagrangian method able to achieve high accuracy as well as high efficiency for the

coupled Burgers’ equations at high Reynolds numbers using relatively coarse meshes and large time steps.

Next, we examine the performance of the proposed semi-Lagrangian Bernstein-Bézier finite element method to

solve the coupled Burgers’ system on unstructured grids. To this end, we solve the above example in a circular domain

centered at the origin with radius 2. A coarse mesh with 216 elements as shown in Figure 3 along with CFL = 9 are

used in our simulations for this test example. Note that, for brevity in the presentation, we omit the results for the

component u and we present the numerical solution of the component v only. In Figure 4 we display the results of the

solution v using p = 2, 3 and 4 at time t = 1 for Re = 104. Note that for this test example, the solution (35) vanishes

when the Reynolds number reaches high values. We also include the analytical solution in this figure for comparison

reasons. For a better insight, Figure 5 exhibits radial cross-sections at y = 0 of the solution v for the results using
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p = 2 p = 3

p = 4 Exact

Figure 4: Snapshots of the solution v for Example 1 in the circular domain with Re = 104 at time t = 1 using p = 2, 3 and 4.

the considered polynomial degrees. The clear indication from Figure 4 and Figure 5 is that the numerical diffusion is

clearly pronounced in the results obtained using quadratic polynomials (p = 2) for both Reynolds numbers Re = 103

(left plot) and Re = 104. From the same figures, the numerical solutions obtained using the cubic polynomials

reduce this numerical dissipation and those results obtained using the quartic polynomials appear to provide the most

accurate results compared to the analytical solution for this example. Refining the polynomial degrees further we

have observed no visible differences in the results obtained using our method and the analytical solutions. It should

be pointed out that the performance of the proposed semi-Lagrangian Bernstein-Bézier finite element method is very

attractive since the computed solutions remain stable and highly accurate even when coarse meshes are used without

requiring nonlinear solvers or small time steps to be taken in the simulations.

18



Re = 103 Re = 104

Figure 5: Radial cross-sections at y = 0 of the solution v for Example 1 in the circular domain using different polynomial degrees for Re = 103 (left

plot) and Re = 104 (right plot).

Re = 103 Re = 104

Figure 6: Convergence results using the L2-error for Example 2 in the squared domain for Re = 103 (left) and Re = 104 (right) using different

meshes and polynomial degrees at time t = 1.
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4.2. Example 2

To assess the numerical performance of our semi-Lagrangian Bernstein-Bézier finite element method to accurately

solve the nonlinear Burgers’ system with steep gradients, we solve the Burgers’ system (1) in a squared domain

Ω = [0, 1] × [0, 1] equipped with initial and boundary conditions obtained from the following analytical solution

u(x, y, t) =
3
4
−

1

4
(
1 + exp

(
−

(4x − 4y + t) Re
32

)) ,
(36)

v(x, y, t) =
3
4
+

1

4
(
1 + exp

(
−

(4x − 4y + t) Re
32

)) .
A similar test example has been considered in [45, 43, 46, 44, 47] among others. Unlike the previous example, the

solution of this problem is expected to develop strong shocks at high Reynolds numbers which are challenging to

capture using the conventional Eulerian-based finite element methods. First, we perform a convergence study for this

problem in the same manner as in the previous test example. In Figure 6 we report the convergence plots in terms

of the L2-error for two Reynolds numbers Re = 103 and Re = 104 using different meshes and polynomial degrees

at t = 1 with CFL = 6. We also include the convergence rates referred to by slopes of the error plots in this figure.

Again, by maintaining the polynomial degree p fixed and adopting the h-refinement it yields a decay of all values of

the L2-error. For instance, at the high Reynolds number Re = 104 for which the convection is strongly dominated

in (1), obtaining satisfactory results is evident in this case and it can noted that the p-refinement strategy is precise

enough in this situation. For Re = 103 which can be considered as a critical value for which shocks are developed in

the computed solutions, it can be observed from Figure 6 that all optimal orders are clearly attained in the proposed

method. Note that the convergence rates in Figure 6 reveal that the expected order of convergence is achieved in our

semi-Lagrangian Bernstein-Bézier finite element method for both Reynolds numbers Re = 103 and Re = 104. It is also

evident from the results reported in Figure 6 that the convergence rates in the proposed semi-Lagrangian Bernstein-

Bézier finite element method are not highly affected by the Reynolds numbers taken in the numerical simulations.

Thus, fixing the polynomial degree p and adopting an h-refinement results in a decrease of the computed errors for

the selected Reynolds numbers.

As in the previous example, convergence rates in time for the semi-Lagrangian Bernstein-Bézier finite element

method have also been assessed in this test example. To achieve this comparison, we compute the L1-error and L2-

error using a fixed fine mesh with h = 1
20 and we carry out some numerical experiments varying the polynomial degree

p and the timestep ∆t. The obtained results for Re = 103 and Re = 104 at time t = 1 using the polynomial degrees

p = 6 and p = 7 are listed in Table 3. It is clear that decreasing the timestep ∆t yields a decrease in both L1-error

and L2-error for all considered polynomial degrees and Reynolds numbers. It is also evident that the semi-Lagrangian

Bernstein-Bézier finite element method using the BDF2 time stepping exhibits an accuracy of the expected second-

order convergence in time. As in the previous example, a slightly more accurate L1-error and L2-error are obtained

for the simulations with Re = 103 than those obtained with Re = 104.

20



Table 3: Results for Example 2 in the squared domain for Re = 103 and Re = 104 on a mesh with h = 1
20 at time t = 1 using different timesteps

and the polynomial degrees p = 6 and p = 7.

Re = 103 Re = 104

p ∆t L1-error Rate L2-error Rate L1-error Rate L2-error Rate

4E-02 5.4241E-04 — 7.6452E-04 — 2.0808E-03 — 8.4176E-03 —

6 2E-02 1.3937E-04 1.960 1.9580E-04 1.965 5.3520E-04 1.959 2.1726E-03 1.954

1E-02 3.5321E-05 1.980 4.9517E-05 1.983 1.4320E-04 1.902 5.8578E-04 1.891

4E-02 5.4241E-04 — 7.6453E-04 — 2.0806E-03 — 8.4175E-03 —

7 2E-02 1.3938E-04 1.960 1.9580E-04 1.965 5.2087E-04 1.998 2.1088E-03 1.997

1E-02 3.5318E-05 1.981 4.9516E-05 1.983 1.3416E-04 1.957 5.5533E-04 1.925

Figure 7: Computational geometry (left plot) and the computational mesh (right plot) used for Example 2.
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Re = 102 Re = 103 Re = 104

Figure 8: Snapshots of the solution u for Example 2 in the complex domain with Re = 102 (first column) Re = 103 (second column) and Re = 104

(third column) at time t = 1 obtained using p = 3 (first row), p = 5 (second row) and p = 7 (third row) and the exact solution (forth row).
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Re = 102 Re = 103 Re = 104

Figure 9: Cross-sections at the diagonal x = 1 − y of the solution u for Example 2 in the complex domain using different polynomial degrees for

Re = 102 (left plot), Re = 103 (middle plot) and Re = 104 (right plot).

Now we turn our attention to the performance of the proposed semi-Lagrangian Bernstein-Bézier finite element

method for solving the coupled Burgers’ equations in a complex domain. To this end, we solve the equations (1) and

(36) in the domain shown in Figure 7. The domain consists of a unit square with a circular hole of radius R = 0.5

and only quarter of this domain is used in our simulations. Figure 7 also illustrates the unstructured mesh with 168

elements used in the simulations for this test example. Since the solution in (36) satisfies u + v = 3/2, we omit the

results for the component v and we present the numerical results for the component u only. In Figure 8 we present

snapshots of the solution obtained at t = 1 using CFL = 6 and different polynomial orders. Here, results are presented

for three different Reynolds coefficients namely, Re = 102, Re = 103 and Re = 104. The analytical solutions are also

included in Figure 8 for comparison reasons. It is clear that, by increasing the values of the Reynolds number Re,

the convective term becomes dominant and steep internal layers are formed near the vicinity of the front lines in the

computational domain. At the high Reynolds number Re = 104, the cubic Bernstein-Bézier elements fail to produce

good results and the results obtained using higher polynomial degrees match the analytical solution. Note that for the

case with Re = 104, the numerical solution develops a strong shock which can not be captured by Bernstein-Bézier

elements of low degrees. Apparently, noticeable oscillations are detected for results obtained when low values of

polynomial orders are used. These results give a clear view of the overall nonlinear convective pattern and effects of

the Reynolds numbers. It is worth remarking that the steepness of the diagonal shock with increasing Re is evident

from these plots and the shock region is smaller for Re = 104 than for Re = 102. These features clearly demonstrate

the high accuracy achieved by the proposed semi-Lagrangian Bernstein-Bézier finite element method for solving the

coupled Burgers’ system at high Reynolds numbers using coarse meshes and large timesteps. To further illustrate

the effect of the p-refinement on the numerical solutions for this example, we present in Figure 9 the cross-sections

of the numerical solutions at the main diagonal y = 1 − x for Re = 102, Re = 103 and Re = 104 using different

polynomial degrees. At Re = 102, no significant differences are observed in the obtained results using the considered

polynomial degrees p = 3, 5 and 7. Increasing the Reynolds number to Re = 103 and 104, nonphysical oscillations

are clearly visible in those regions where the solution gradients are steep when small values of the polynomial order
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are used p = 3 and p = 5. However, for p = 7, the solution structures are in good agreement with the exact solution

presented in Figure 9. From the same results we can confirm that the Bernstein-Bézier finite elements of order p = 7

are suitable to capture the sharp gradients in the solutions and produce highly accurate results for this example on a

coarse mesh without requiring nonlinear solvers or small timesteps to be taken in the simulations. It should be stressed

that the oscillations appearing in the shock areas at high Reynolds numbers in Figure 8 and Figure 9 should not be

confused with the Gibbs and Runge phenomena widely known in numerical methods for solving hyperbolic equations

of conservation laws because the Bernstein-Bézier basis functions are monotone by reconstruction. In addition, the

local L2-projection used in the present study for the semi-Lagrangian method has the properties to overcome the Gibbs

and Runge phenomena by introducing numerical diffusion at the shock regions. It is expected that the oscillations in

Figure 8 and Figure 9 to be eliminated by either refining the mesh or by increasing the degree of Bernstein-Bézier

basis functions.

Finally, from the computational results obtained for this class of two-dimensional coupled Burgers’ problems, one

may conclude the following: (i) the proposed semi-Lagrangian Bernstein-Bézier finite element method highly resolve

these test problems on coarse meshes, (ii) the convergence rates of the method are not deteriorated when increasing

both the Reynolds numbers and CFL numbers. These features, as well as its favorable high-order accuracy and

strong stability properties, make the proposed semi-Lagrangian Bernstein-Bézier finite element method an attractive

alternative for solvers based on Eulerian-based finite element discretizations of the nonlinear Burgers’ equations.

5. Conclusions

We presented a semi-Lagrangian Bernstein-Bézier finite element method for solving two-dimensional coupled

Burgers’ system on unstructured meshes at high Reynolds numbers. A key idea to obtain an efficient and stable

finite element method is the use of high order Bernstein-Bézier basis functions on coarse computational meshes along

with the modified method of characteristics to accurately resolve the convection terms using large time steps. The

proposed method preserves the advantages of the semi-Lagrangian integration including the unconditional stability,

reduction of time truncation errors, decoupling the system and eliminating the nonlinear terms, while achieving high-

order accuracy in the computed solutions at all selected Reynolds numbers. Numerical results for two examples

of Burgers’ equations with known analytical solutions are able to provide very accurate results in both regular and

complex geometries. It has been shown that the proposed semi-Lagrangian Bernstein-Bézier finite element method

enjoys the computational advantages and it achieves accurate solutions for high Reynolds numbers. In the second

paper in this series, we will extend the work presented here to solving the incompressible Navier-Stokes equations in

three space dimensions using unstructured tetrahedral meshes.
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Appendix A. Formulation for Robin-type boundary conditions

Let us consider the coupled Burgers’ equations (1) subject to the following Robin-type boundary conditions

u +
1

Re
∂u
∂n

= gu, on [0,T ] × Γ,

(A.1)

v +
1

Re
∂v
∂n

= gv, on [0,T ] × Γ,

where n is the outward unit normal on the boundary Γ, gu and gv are the prescribed boundary functions. Using the

implicit BDF2 scheme for the time integration results in

un+1 −
2∆t
3Re

(
∂2un+1

∂x2 +
∂2un+1

∂y2

)
=

4
3

ûn −
1
3

ûn−1,

(A.2)

vn+1 −
2∆t
3Re

(
∂2vn+1

∂x2 +
∂2vn+1

∂y2

)
=

4
3

v̂n −
1
3

v̂n−1,

with a similar approximation for the boundary conditions (A.1) as

un+1 +
1

Re
∂un+1

∂n
= gn+1

u , on Γ,

(A.3)

vn+1 +
1

Re
∂vn+1

∂n
= gn+1

v , on Γ.

For the weak form, we multiply the system (A.2) by a test function w and we integrate over the domain Ω to obtain

the following equations∫
Ω

un+1wdx −
2∆t
3Re

∫
Ω

(
∂2un+1

∂x2 +
∂2un+1

∂y2

)
wdx =

4
3

∫
Ω

ûnwdx −
1
3

∫
Ω

ûn−1wdx,

(A.4)∫
Ω

vn+1wdx −
2∆t
3Re

∫
Ω

(
∂2vn+1

∂x2 +
∂2vn+1

∂y2

)
wdx =

4
3

∫
Ω

v̂nwdx −
1
3

∫
Ω

v̂n−1wdx.

Using the Green theorem, system (A.4) becomes∫
Ω

un+1wdx +
2∆t
3Re

∫
Ω

∇un+1 · ∇wdx −
2∆t
3Re

∮
Γ

∂un+1

∂n
wdx =

4
3

∫
Ω

ûnwdx −
1
3

∫
Ω

ûn−1wdx,

(A.5)∫
Ω

vn+1wdx +
2∆t
3Re

∫
Ω

∇vn+1 · ∇wdx −
2∆t
3Re

∮
Γ

∂vn+1

∂n
wdx =

4
3

∫
Ω

v̂nwdx −
1
3

∫
Ω

v̂n−1wdx.

Next, we replace the normal derivatives 1
Re
∂un+1

∂n and 1
Re
∂vn+1

∂n in (A.5) by the approximation values in (A.3)∫
Ω

un+1wdx +
2∆t
3Re

∫
Ω

∇un+1 · ∇wdx +
2∆t
3

∮
Γ

un+1wdx =
4
3

∫
Ω

ûnwdx −
1
3

∫
Ω

ûn−1wdx +
2∆t
3

∮
Γ

gn+1
u wdx,

∫
Ω

vn+1wdx +
2∆t
3Re

∫
Ω

∇vn+1 · ∇wdx −
2∆t
3

∮
Γ

vn+1wdx =
4
3

∫
Ω

v̂nwdx −
1
3

∫
Ω

v̂n−1wdx +
2∆t
3

∮
Γ

gn+1
v wdx.
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Following the same procedure as presented in Section 3, we replace the solution (u, v) by its discrete form and the test

function w by the basis function φi to obtain(
M +

2∆t
3Re

S +
2∆t
3

MΓ
)

Un+1 = bu + bΓu ,
(A.6)(

M +
2∆t
3Re

S +
2∆t
3

MΓ
)

Vn+1 = bv + bΓv ,

where M is the m × m-valued mass matrix, the entries of which are

MΓi j =

∮
Γh

φ j(x)φi(x)dx, 1 ≤ i, j ≤ m,

bΓu and bΓv are m-valued right-hand side vectors with entries

bu,Γ
i =

2∆t
3

∮
Γh

gn+1
u (x)φi(x)dx, 1 ≤ i ≤ m,

(A.7)

bv,Γ
i =

2∆t
3

∮
Γh

gn+1
v (x)φi(x)dx, 1 ≤ i ≤ m.

To compute the entries MΓi j of MΓ we follow the same procedure used to compute the entries of M. Thus, we

consider the edge E ⊂ Γh of a generic element K , there exists at least and only two vertex-based shape functions

and (p − 1) edge-based shape functions Bp
α|E , 0. The shape functions defined along the edge E can be written as a

one-dimensional restriction of the two-dimensional Bernstein polynomials and defined by

• Vertex-based shape functions defined by

φq1 (x) = Bp
(p,0)(ζ) = ζ

p, φq2 (x) = Bp
(0,p)(ζ) = (1 − ζ)p.

• Interior-based shape functions defined by

φe(x) = Bp
(p−k,k)(ζ) =

p

k

 ζ p−k(1 − ζ)k, 1 ⩽ k ⩽ p − 1.

Here, ζ is defined such that x = ζq1 + (1 − ζ)q2 where q1 and q2 are the vertices of the edge E. Therefore,

MΓα,β =
∮

E
Bp
α

(
ζ
)
Bp
β

(
ζ
)
dx,

=

∫ 1

0
|E|Bp

α(ζ)B
p
β(ζ) dζ,

(A.8)

= |E|

(
α+β
β

)
(

2p
p

) ∫ 1

0
B2p
α+β(ζ)dζ,

= |E|

(
α+β
β

)
(

2p
p

) 1(
p+1

1

) ,
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where |E| is the length of the edge E. On the other hand, the approximation of the new quantities in the right-hand

side is carried out as follows: for a given edge E where φi , 0, there exists an integer α where

φi(x) = Bp
α(ζ), x = ζq1 + (1 − ζ)q2.

Thus, ∮
E

gn+1
u (x)φi(x)dx = |E|

∫ 1

0
gn+1

u (x)Bp
α(ζ)dζ,

(A.9)

≈ |E|
q∑

k=1

w(0)
k Bp

α(z
(0)
k )gn+1

u (xk),

where
(
z(0)

k ,w
(0)
k

)
and xk = z(0)

k q1 + (1− z(0)
k )q2 denote the Gauss-Jacobi quadrature points and their associated weights,

respectively.
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