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Abstract

Meshless methods for convection-dominated flow problems have the potential to reduce the computational effort required
for a given order of solution accuracy compared to mesh-based methods. The state of the art in this field is more advanced for
elliptic partial differential equations than for time-dependent convection–diffusion problems. In this paper, we introduce a new
meshless method that it based on combining the modified method of characteristics with the radial basis functions during the
solution reconstruction. The method belongs to a class of fractional time-stepping schemes in which a predictor stage is used for
the discretization of convection terms and a corrector stage is used for the treatment of diffusion terms. Special attention is given
to the application of this method to solve convection-dominated flow problems in two-dimensional domains. Numerical results
are shown for several test examples including the incompressible Navier–Stokes equations and the computed results support our
expectations for a stable and highly accurate meshless method.

Keywords: Meshless method; Radial basis functions; Modified method of characteristics; Convection-dominated flows; Incompressible
Navier–Stokes equations

∗ Corresponding author.
E-mail address: halassi.abdoul@gmail.com (A. Halassi).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2016.11.003&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2016.11.003
http://www.elsevier.com/locate/matcom
mailto:halassi.abdoul@gmail.com
http://dx.doi.org/10.1016/j.matcom.2016.11.003


1. Introduction

Convection–diffusion equations have been widely used to model many applications in physical and engineering
areas such as weather prediction, ocean circulation, petroleum reservoir etc. The common characteristic in these
applications is convective terms are distinctly more important than the diffusive terms; particularly when the Peclet
number reaches high values. It is also well-established that these convective terms are a source of computational
difficulties and oscillations. On the other hand steep fronts, shocks and boundary layers are among the difficulties
that most of numerical methods fail to resolve accurately, see for instance [20]. It is well known that the mesh-based
methods use fixed grids and incorporate some upstream weighting in their formulations to stabilize the schemes. These
mesh-based methods include the Petrov–Galerkin methods, the streamline diffusion methods and also many other
methods such as the high resolution methods from computational fluid dynamics, in particular, the Godunov methods
and the essentially non-oscillatory methods, see [8,28] among others. The main shortcoming of these methods lies
on the fact that the accuracy of these methods is affected by the quality of the meshes, stabilization techniques and
solution of Riemann problems, which hinders their applications to solving real problems with irregular domains and
complex Riemann problems.

Recently, significant developments in meshless methods for solving linear as well as nonlinear partial differential
equations have been achieved. For instance, the meshless local Petrov–Galerkin and local boundary integral equa-
tions methods were investigated in [1,2]. These methods basically transformed the original problem into a local weak
formulation and the shape functions were constructed from using the moving least-squares approximation to interpo-
late the solution variables. The meshless radial basis functions (RBF) have been subject to several studies and their
applications to solve partial differential equations have also been covered in the literature. The RBF approximations,
particularly the multiquadric basis functions, were first devised for scattered geographical data interpolation in [31,19].
In the interpolation framework, a review on the application of RBF methods for scattered data can be found in [15].
Theoretical results for RBF methods have also been presented in [5,21] among others. These results include solv-
ability, convergence and stability of the RBF interpolation in a general concept. Application of the RBF methods to
steady and time-dependent partial differential equations has also been investigated, see for example [13,16]. Recent
local formulations of RBF methods have been achieved during this last years [3,26,25,30,24] and some of these local
RBF methods have been used to solve hyperbolic systems of conservation laws such as Euler system of gas dynam-
ics and shallow water equations in [27,32,17,7,23]. However, for practical applications in hyperbolic systems, these
methods may become computationally demanding due to Riemann solvers in their implementations.

In the current study we propose a stabilized meshless method for convection-dominated flow problems which is
simple, accurate and Riemann solver free. This is achieved by combining the Modified Method of Characteristics
(MMC) with a class of local radial basis functions. Because of the hyperbolic nature of advective transport in the
considered equations, the MMC has been successfully applied to solve convection-dominated flow problems. The
MMC carries out the temporal discretization by following the movement of particles along the characteristic curves
of the governing equations, see for example [9,29]. Because the solution of advective part is much smoother along the
characteristics than they are in the time direction, MMC eliminates the stability restrictions on the Courant number
and generates accurate solutions even if large time steps are used in the computations. The idea of developing stable
meshless methods to integrate partial differential equations has a long tradition for elliptic class of these equation. This
field of research is very active for elliptic equations, where a vast number of numerical schemes have been designed
based on global as well local RBF techniques. All of these meshless methods are easy to formulate and to implement.
However, their direct application to transient partial differential equations of hyperbolic type results in instabilities,
presence of nonphysical oscillations and poor resolution of shocks. The main focus of our work is the development
of a truly meshless RBF method to numerically solve the convection-dominated diffusion problems. The key idea in
the current approach is a predictor–corrector solver for which the MMC is used in the predictor stage whereas the
corrector stage uses the RBF method. The results using the proposed meshless method are presented for three test
problems. To the best of our knowledge, solving convection-dominated flow problems using these numerical tools is
reported for the first time.

This paper is organized as follows. In Section 2 we present the stabilized meshless method for time-dependent
convection–diffusion problems. This section includes both the first fractional step used in the predictor stage to resolve
the convection terms and the second fractional step used in the corrector stage for the diffusion terms. Implementation
of modified method of characteristics is also covered in this section. Numerical results and examples are presented in



Section 3. We present numerical results for linear convection–diffusion equations and incompressible Navier–Stokes
problems. Section 4 contains concluding remarks.

2. A stabilized meshless method

We consider the two-dimensional convection–diffusion flow problem,

∂u

∂t
+ v(t, x) · ∇u − ν1u = 0, (t, x) ∈ (0, T )× Ω ,

u(0, x) = u0(x), x ∈ Ω ,
(1)

where x = (x, y)T , Ω is a spatial bounded subdomain in R2 and [0, T ] is a time interval. Here u(t, x) denotes
the concentration of some species, v(t, x) = (v1(t, x), v2(t, x))T the velocity field, ν is the diffusion (viscosity)
coefficient, and u0(x) is a given initial function. We assume that appropriate boundary conditions are given in such a
way the problem is well defined and has a unique solution. In practice, these conditions are problem dependent and
their discussion is postponed for Section 3 where numerical examples will be presented.

The convection–diffusion equation in (1) can also be reformulated in a transport form as

Du

Dt
− ν1u = 0, (t, x) ∈ (0, T )× Ω ,

u(0, x) = u0(x), x ∈ Ω ,
(2)

where the material derivative is defined as

Du

Dt
=
∂u

∂t
+ v(t, x) · ∇u. (3)

Note that Du
Dt measures the rate of change of the function u following the trajectories of the flow particles. In the

current study we also consider the modified method of characteristics (MMC) in our meshless method. The key idea
behind the MMC is to impose a regular collocation at the new time level, and to backtrack the flow trajectories to
the previous time level. At the old time level, the quantities that are needed are evaluated by interpolation from their
known values on a regular collocation.

To formulate our meshless method with more details, we divide the time interval [0, T ] into N subintervals
[tn, tn+1] of length 1t such that tn = n1t (n = 1, 2, . . .) with T = N1t , and we assume without loss of
generality, a uniform collocation points covering the computational domain Ω as shown in Fig. 1. We use the notations
un(x) = u(tn, x), ui (t) = u(t, xi ) and un

i = u(tn, xi ) unless otherwise stated. In the current study we also consider
fractional time intervals [tn, tn+1/2] and [tn+1/2, tn+1] with size1t/2 to be used for the predictor and corrector stages,
respectively. In what follows we describe the steps used in our meshless method for solving the convection–diffusion
equation (1).

2.1. Radial basis functions

Let us assume a nodal distribution of M distinct points xi is used as a collocation in the computational domain as
shown in Fig. 1. In the present study, for each nodal point xi we introduce mid collocation point denoted by xi+1/2.
The starting point in the interpolation by local RBF is to interpolate the linear or nonlinear flux function f (ui , t) by
the expansion

f (ui , t) ≃


j∈Ii,m

λ j (t)ϕ
xi − x j


, (4)

where Ii,m is a local set containing the index i and indices of the neighboring points to xi . In (4), λ j ’s are the unknown
coefficients to be calculated, ri j =

xi − x j
 is the distance between the points xi and x j , and ϕ


∥xi − x j∥


is the

radial basis function. Many radial basis functions exist in the literature and in the current study we consider the
infinitely smooth multiquadrics radial basis function defined as

ϕ(r) =


1 + ϵ2r2, (5)



Fig. 1. Illustration of uniform collocation points covering the computational domain. Here, for a collocation point xi the set Ii is shown and the
blue points are used in the predictor stage whereas the corrector stage uses all the points in the set Ii . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

where ϵ ≠ 0 is the shape parameter controlling the fitting of a smooth surface to the data. Selection of optimal values
for the shape parameter has been subject of several studies, see [15,6,11] among others. In the present work we used
the following selection

ϵ = 0.8
√

ns

dm
, (6)

with ns is the cardinal number of the set Ii,m and dm denotes the smallest nodal distance in Ii,m . Note that other
selections for the shape constant ϵ and other radial basis functions can easily be incorporated in our analysis without
major conceptual modifications.

The selection of the set Ii,m may depend on the problem under study and for purpose of this study upwinding
techniques are adopted for the selection of the set Ii,m . Thus, for each collocation point xi the associated set Ii,m
contains the index i and indices of the m nearest neighboring points to xi . It is evident that for this selection the
cardinal number of the set Ii,m is defined as ns = m +1. Using this selection of the set Ii,m the expansion coefficients
λi (t) in (4) are obtained by solving the following linear system of ns × ns algebraic equations

B[i]Λ[i]
= f(u)[i], (7)

where B[i] is an ns × ns matrix with entries ϕ

∥xi − x j∥


, Λ[i] and f(u)[i] are ns-valued vectors with entries λi and

f (ui ), respectively. For the choice of radial basis function ϕ in (5), the interpolation matrix B[i] in (7) is guaranteed
to be nonsingular for any set of distinct points and the invertibility is therefore guaranteed, see for example [19,21].

Because of the linearity of the linear combination (4), time and space derivatives of the interpolant (4) may be
calculated in a straightforward manner. For instance, the temporal and first-order spatial derivatives at the points xi
can be calculated as

∂ f (u)

∂t
=


j∈Ii,m

∂λ j

∂t
ϕ
xi − x j


,

∂ f (u)

∂x
=


j∈Ii,m

λ j (t)
∂ϕ

∂x

xi − x j

,

∂ f (u)

∂y
=


j∈Ii,m

λ j (t)
∂ϕ

∂y

xi − x j

.

Similarly to (7), the partial derivatives can also be written in a compact matrix form as

∂f(u)[i]

∂t
= B[i] ∂Λ

[i]

∂t
,

∂f(u)[i]

∂x
= H[i]

x Λ[i],
∂f(u)[i]

∂y
= H[i]

y Λ[i],

where H[i]
x and H[i]

y are ns-valued row matrices with entries ∂ϕ
∂x

xi − x j


and ∂ϕ
∂y

xi − x j


, respectively. Using
Eq. (7), the spatial derivatives can also be reformulated as

∂f(u)[i]

∂x
= H[i]

x


B[i]

−1
f(u)[i],

∂f(u)[i]

∂y
= H[i]

y


B[i]

−1
f(u)[i].



Note that for time-dependent convection–diffusion problems of type (1), the spatial derivatives need to be
evaluated several times during the time integration procedure. Therefore, for efficiency reason, global spatial
derivative matrices Dx and Dy are formed once and the derivatives can be evaluated by a single matrix by vector
multiplication as

∂f(u)
∂x

= Dx f(u),
∂f(u)
∂y

= Dyf(u). (8)

Here, the derivative matrix Dx is an M × M matrix the entries of which are ns × ns sub-matrices di j defined as

di j =


H[i]

x


B[i]

−1
, if j ∈ Ii,m,

0, if j ∉ Ii,m,

with i = 1, . . . ,M . The derivative matrix Dy can be formulated in a similar manner as for the matrix Dx . The second-
order spatial derivatives can be approximated using the same procedure and we denote by Dxx and Dyy the derivative

matrices associated with ∂2

∂x2 and ∂2

∂y2 , respectively.

It should be stressed that a direct application of the RBF method for solving convection-dominated flow problems
results in oscillatory and unstable solutions independently of the number of collocation points and the CFL condition
used in the simulations. In the current work, to stabilize the RBF solution for the convection–diffusion problem (1)
we consider a predictor–corrector approach. In the predictor stage, predicted values of the solution are computed on
the blue midpoint nodes at time tn + α1t . To do this, we solve at these midpoint nodes a transport equation using the
modified method of characteristics (MMC) applied at the convection part in (2). We find the backward characteristic
foot X0 corresponding to a given blue node. Since the solution is constant on a characteristic, the solution in a
midpoint blue node at time tn + α1t is equal to the solution at time tn in the point X0. This one is evaluated by a
RBF interpolation process. At the corrector stage, the solution in the reference node must be calculated for the stage
n + 1. Therefore, the numerical fluxes are approximated on the reference node using the interpolated solutions at the
characteristics feet using the midpoints stencil Ii+1/2,m . Then, the solution at the reference node can be calculated
using the first order Euler scheme and adding the diffusion part of Eq. (1).

2.2. The predictor stage

Following for example [22,9], the characteristic curves of Eq. (2) are the solution of initial value problem for
ordinary differential equations

dXi+1/2(τ )

dτ
= v


τ,Xi+1/2(τ )


, τ ∈ [tn, tn+1],

Xi+1/2(tn+1) = xi+1/2.

(9)

Note that Xi+1/2(τ ; tn+1, xi+1/2) =

X i+1/2(τ ; tn+1, xi+1/2), Yi+1/2(τ ; tn+1, xi+1/2)

T , is the departure point at time
τ of a particle that will arrive at xi at time tn+1. The MMC does not follow the flow particles forward in time, as the
Lagrangian schemes do, instead it traces backwards the position at time tn of particles that will reach the points
of a fixed collocation point at time tn+1. By so doing, the MMC avoids the solution distortion difficulties that the
conventional Lagrangian schemes have. The solutions of (9) can be expressed as

X i+1/2(tn) = xi+1/2 −

 tn+1/2

tn
vi+1/2


τ, X i+1/2(τ )


dτ,

:= xi+1/2 − δi+1/2. (10)

It is worth remarking that the departure points in (10) are calculated in the interval [tn, tn+1/2] instead of [tn, tn+1].
This is motivated by the idea of reconstructing a predictor–corrector scheme where the predictor stage is computed at
the fractional time tn+1/2 completed by a corrector stage computed at the end time tn+1. This fractional time stepping
is also supported by the analysis reported in [4].



To compute the displacement δ j,i+1/2 in (10) we consider the following iterations

δ
(0)
i+1/2 =

1t

4
vi+1/2


tn, xi+1/2


,

δ
(k)
i+1/2 =

1t

4
vi+1/2


tn, xi+1/2 − δ

(k−1)
i+1/2


, k = 1, 2, . . . .

(11)

Once the characteristic curves X i+1/2(tn) are known, a solution at the collocation point xi+1/2 is reconstructed as

un
i+1/2 = u


tn+1/2, xi+1/2


,

= u

tn, X i+1/2(tn)


,

:= un
i+1/2, (12)

whereun
i+1/2 is the solution at the characteristic foot X i+1/2(tn) computed by interpolation from the collocation points

in the set Ii,m where the departure point resides i.e.

un
i+1/2 = R[i+1/2]un, (13)

where R[i+1/2] is i th row of the RBF interpolation matrix which is formulated as follows.
To interpolate solution at the characteristics foot X i+1/2(tn) using RBF method, one assumes that

un
i+1/2 =


j∈Ii,m

λ j (t)ϕ(∥X i+1/2 − x j∥, ε),

where Ii,m contains the collocation points surrounding X i+1/2. The expansion coefficients λ j ’s are determined by
imposing the interpolation condition at all the points x j contained in the local support Ii,m as

un
j =


k∈Ii,m

λ j (t)ϕ(∥x j − xk∥, ε) = u(x j ).

This results to a linear system to be solved for λ j ’s as in Eq. (7). Local expansion coefficients are determined by
matrix inversion and the interpolant of the solution is expressed as

un
i+1/2 = h[i+1/2]Λ[i]

= h[i+1/2]


B[i]

−1
u[i], (14)

where B[i] is the same m × m local distance matrix defined in (7) and h[i+1/2] is a m-valued line-vector defined by

h[i+1/2]

j = ϕ(∥X i+1/2 − x j∥, ε).

The i th row of the global RBF interpolation matrix, R is formulated as follows:

R[i+1/2]

j =

h[i+1/2]


B[i]

−1

j
, if j ∈ Ii,m,

0, if j ∉ Ii,m .

2.3. The corrector stage

Applied to the diffusion part in (1), the meshless RBF method approximates the solution ui at each collocation
point xi , i = 1, 2, . . . ,M as

ui (t) := u(t, xi ) =


j∈Ii,m

λ j (t)ϕ
xi − x j


. (15)

Inserting the above expansion in (1) and using the spatial derivative matrices, the formulation of the system (1) can be
obtained as

un+1
i = un

i+1/2 −1tvn
i+1/2 ·


∇

[i+1/2]un


+1tν


D[i]
xx un

+ D[i]
yyun


, (16)



where ∇[i+1/2] is composed by the i th rows of the gradient RBF matrices Dx and Dy in (8) associated with the
mid collocation points xi+1/2, D[i]

xx and D[i]
yy are the i th rows of the RBF matrices Dxx and Dyy associated with the

collocation points xi . In (16), the solutions u and u are vectors with entries ui and ui , respectively. Note that the
time discretization (16) is only first-order accurate. However, other high-order time stepping schemes can be applied
without major conceptual modifications.

In summary, the implementation of our RBF algorithm to solve the convection–diffusion equation (1) is carried out
in the following steps:

1. Compute the departure points X i+1/2(tn) associated with the material derivative (3) using the iterative procedure
(10)–(11).

2. Compute the approximations un
i+1/2 = u


tn, X i+1/2(tn)


employing the interpolation procedure (13).

3. Update the solutions un+1
i using (16).

Note that, since the radial basis functions are time-independent, the system matrix of the linear system resulting from
the proposed RBF method is also time-independent. A major advantage is then the ability to retain the system matrix
assembled at the first time step to be reused at later time steps without alteration. This is achieved by factorizing the
system matrix using an LDL⊤ decomposition where L is a lower and D is a diagonal matrix. This factorization is only
done at the first time step while resolving the system is reduced to forward-, diagonal- and backward-substitutions at
any time step after updating the right-hand side of the system. This can significantly increase the efficiency when a
large number of time steps is needed, compared to updating the matrix and fully solving the system if a time-dependent
radial basis functions are to be used. It should also be stressed that to solve the linear systems resulted from the RBF
method we used the Singular Value Decomposition (SVD) algorithm [14]. The performance of the SVD solver for
solving highly ill-conditioned systems as those obtained in the current study is commonly well-established.

3. Numerical results

We present numerical results for a linear passive advection–diffusion of a Gaussian pulse problem and for a
nonlinear viscous Burgers. For these test examples the analytical solution is known, so that we can evaluate the
error function e = e(tn) at time tn as

en
i = un

i − u(tn, xi ), (17)

where u(tn, xi ) and un
i are the exact and numerical solutions, respectively, at collocation point xi and time tn . The

following discrete error-norms are defined

∥e∥L1 =


i

|ei |, ∥e∥L2 =


i

|ei |
2
 1

2

.

Furthermore, we define the CFL number associated to (1) as follows

CFL = max (|v1|, |v2|)
1t

dmin
, (18)

where dmin denotes the smallest nodal distance in all collocation points. In all our simulations, the CFL number is
fixed to 0.85 and the time step 1t is adjusted according to (18).

3.1. Gaussian pulse problem

This example solves the advection–diffusion problem of rotating a Gaussian pulse extensively used in the literature
to test the accuracy of transport methods such us the semi-Lagrangian (SLAG) method, see for example [22,29,10].
The equations are of the form (1) with v = (−4y, 4x)T . Initial and boundary conditions are taken from the analytical
solution

u(t, x, y) =
σ 2

σ 2 + 4νt
exp


−
(x̄ − x0)

2
+ (ȳ − y0)

2

σ 2 + 4νt


,



Fig. 2. Results for the Gaussian pulse problem after 1 revolution (first row) and 3 revolution (second row) using 50 × 50 collocation points.

where x̄ = x cos(4t)+y sin(4t), ȳ = −x sin(4t)+y cos(4t), x0 = 0.5, y0 = 0.75 and σ 2
= 0.002. The computational

domain is [0, 1]× [0, 1] and the time period required for one complete rotation is π
2 . In all our simulations for this test

example, a set of 50×50 collocation points is used and the diffusion coefficient is set to ν = 10−3. The purpose of this
advection–diffusion problem is to compare the numerical results obtained using our RBF method to those computed
using the mesh-based SLAG method.

In Fig. 2 we display the numerical results computed using the RBF scheme after 1 revolution and 3 revolutions. In
Fig. 3 we present the associated 10 equi-distributed contour lines of these solutions. For comparison reasons, we have
also included in these figures the computational resulted obtained using the conventional SLAG scheme and the ana-
lytical solutions using a mesh of 50×50 gridpoints. The one-dimensional plots in Fig. 4 correspond to a cross-section
at the horizontal line with y = 0.75 of the results obtained after 1 revolution and 3 revolutions. A visual comparison of
the results in these figures shows severe numerical dissipation, overshoot, deformation and phase errors in the numer-
ical solutions obtained using the SLAG method. For instance, SLAG results after 3 revolutions exhibit nonphysical
oscillations and substantially greater distortion, specially at the feet of the Gaussian pulse where the gradient is rela-
tively sharp. From the same figures we observe an absence of these oscillations in the numerical results obtained using
the RBF method. It is evident that, after one revolution, both methods give roughly similar results with some small
differences on the maximum value of the numerical solutions. However, by increasing the number of revolutions to 3,
the RBF results are more accurate than those of the conventional SLAG method. It is clear that the RBF scheme per-
forms best for this test example. It should be pointed out that rotating the Gaussian pulse for more than 3 revolutions
results in nonphysical solutions for the SLAG method whereas the RBF scheme still produces satisfactory results.

To present a quantitative comparison of the results computed by the RBF and SLAG methods we summarize in
Table 1 the L1 and L2 errors, the minimum (min) and maximum (max) values of the computed solutions. We present
numerical results after 1 and 3 revolutions using three numbers of points in the mesh for SLAG method and in the
collocation sets for RBF method. In terms of the L1 and L2 errors the RBF results are more accurate than the results
obtained using the conventional SLAG method for considered collocations sets. From the values of max and min in
Table 1 we observe high and negative values for the conventional SLAG results that are avoided in the RBF results.



Fig. 3. Results for the Gaussian pulse problem after 1 revolution (first row) and 3 revolution (second row) using 50 × 50 collocation points.

Table 1
Results for the Gaussian pulse problem after 1 and 3 revolutions. Note that the analytical maximum after 1 revolution is 0.75 and after 3 revolutions
is 0.5.

Method Points min max L1-error L2-error

After 1 revolution

50 × 50 −0.00004835 0.743688 0.00077532 0.00046215
RBF 100 × 100 −0.00002492 0.750814 0.00034651 0.00024431

200 × 200 −0.00000295 0.747554 0.00016793 0.00013205

50 × 50 −0.01231785 0.735426 0.00713903 0.00668748
SLAG 100 × 100 −0.00027517 0.758223 0.00278025 0.00241946

200 × 200 −0.00006934 0.760817 0.00287571 0.00200973

After 3 revolutions

50 × 50 −0.00014402 0.496551 0.00097533 0.00086411
RBF 100 × 100 −0.00005921 0.500914 0.00044708 0.00031209

200 × 200 −0.00000576 0.496684 0.00020654 0.00014327

50 × 50 −0.02678958 0.491842 0.01476431 0.01145755
SLAG 100 × 100 −0.00083346 0.521730 0.00602190 0.00518927

200 × 200 −0.00022091 0.524413 0.00537023 0.00478164

3.2. Burgers flow problem

In this example we consider the following Burgers equation which evolves to a highly convective steady state

∂u

∂t
+ λy


u −

1
2


∂u

∂x
+ λx


u −

1
2


∂u

∂y
−1u = 0,



Fig. 4. Cross-sections at y = 0.75 of the results for the Gaussian pulse problem after 1 revolution (left) and 3 revolutions (right) using 50 × 50
collocation points (first row) and 100 × 100 collocation points (second row).

where λ is a constant controlling the magnitude of the nonlinear convective terms [18]. The boundary conditions are
Dirichlet given by the exact steady state solution

u(x, y) =
1
2


1 − tanh


λxy

2


.

We first solve this problem in the squared domain Ω = [−5, 5] × [−5, 5]. To define initial conditions for this
problem we first divide the domain into four equally sub-squares as: Ω1 = [−5, 0] × [−5, 0], Ω2 = [−5, 0] × [0, 5],
Ω3 = [0, 5]× [−5, 0] and Ω4 = [0, 5]× [0, 5]. Then, the solution is alternated between these sub-squares as follows:

u(0, x, y) =


0, if (x, y) ∈ Ω1 ∪ Ω4,

1, if (x, y) ∈ Ω2 ∪ Ω3,
1
2
, if x = 0 or y = 0.

(19)

We used our RBF method to compute the steady-state solutions for three different values of λ namely, λ = 1, λ = 5
and λ = 10. This test example has been solved in [18] using the conventional finite element SLAG method and
therefore, these results are compared to those obtained using our RBF method.

Fig. 5 illustrates the obtained steady-state solutions obtained using the RBF and SLAG methods along with the
analytical steady-state solutions using a mesh of 50 × 50 gridpoints. The collocation points for the RBF method are
uniformly distributed in the computational domain. In Fig. 6 we plot 10 equi-distributed contours of the corresponding
results. It is clear that, by increasing the values of λ the convective terms become larger and steep boundary layers
are formed near the vicinity of center lines in the computational domain. For low values of λ, the boundary layers are
wide and diffuse in the flow domain. As λ increases, the boundary layers concentrate and move towards the domain
center. It is apparent that the solution structures are in good agreement with the previous work in [18]. These plots give
a clear view of the overall flow pattern and the effect of the convection control parameter λ on the structure of steady



Fig. 5. Results for the Burgers flow problem at different values of λ using the SLAG method (first column), RBF method (second column) and
exact solution (third column) on a collocation set of 50 × 50 points.

boundary layers in the cavity. It is worth remarking that the thinning of the boundary layers with increasing λ is evident
from these plots, although the rate of this thinning is slower for the SLAG method than for the RBF method. These
features clearly demonstrate the high accuracy achieved by the proposed RBF method for solving viscous Burgers
problems at steady-state regimes. In addition, compared to the results published for example in [18], it can be seen
that our RBF method resolves accurately the solution features and the boundary layers seem to be localized in the
correct place in the flow domain.

To further visualizing the comparisons, we display in Fig. 7 cross-sections at the main diagonal using two
collocation sets with 50 × 50 and 200 × 200 points. For consistency, same numbers of gridpoints are used in meshes
for the SLAG method. For λ = 10, it is clear that the SLAG and RBF methods produce practically identical results on
the mesh of 200×200 nodes. This can be attributed to the small physical diffusion presented in the problem. However,
decreasing the value of λ to 5 or 1 the results computed by RBF method are more accurate than those computed by
the SLAG method. Apparently, by using the RBF method, high resolution is achieved in those regions where the flow
gradients are steep such as the moving fronts. Comparing the results obtained using the considered methods, it is
clear that the SLAG method produces diffusive solutions resulting in smearing the shocks. On the other hand, this
numerical diffusion has remarkably been reduced in the results computed using the RBF method. Needless to say that
for convection-dominated situation, the RBF method does not diffuse the fronts or gives spurious oscillations near the
steep gradients. Our RBF method accurately approximates the numerical solution to this steady-state flow problem.
The results shown here compare favorably with those published in the literature for the viscous Burgers problems, see
for instance [18].

Next we solve the above Burgers flow problem in a circular domain centered in (0, 0) and with radius 5. The initial
conditions are the same as before and given by (19). We also consider the same values for the convection coefficient
λ = 1 and λ = 5 as in the previous test example. It should be stressed that, since the RBF method is a collocation
method, the distribution of collocation points in the computational domain would influence the accuracy of its results.



Fig. 6. Results for the Burgers flow problem using different values of λ using the SLAG method (first column), RBF method (second column) and
exact solution (third column) on a mesh of 50 × 50 collocation points.

To illustrate this effect for this test example, we consider two collocation sets of points namely Uniform distribution
and Halton distribution as depicted in Fig. 8. The total number of points for each collocation set is 1663 for both the
Uniform distribution and Halton distribution. It is clear that the total numbers of collocation points are the same for
both sets but their distributions are completely different.

In Fig. 9 we illustrate the obtained results at steady-state regime using the considered collocation sets. It can be
clearly seen that the complicated solution structures are being captured by the RBF method. However, the results
obtained using the Uniform distribution exhibits better resolution compared to those obtained using the Halton
distribution. It should be pointed out that for small values of the convection coefficient λ the RBF method exhibits
similar results for both distributions. However, for large values of λ the accuracy of RBF method using the Halton
distribution is deteriorated. The results shown here compare favorably with those obtained for the same flow problem
on a squared domain. For a better insight we present in Fig. 10 cross-sections of the results along the diagonal line



Fig. 7. Cross sections at y = x of the results for the Burgers flow problem using 50 × 50 collocation points (first row) and 200 × 200 collocation
points (second row).

Fig. 8. Sets of collocation points used for the Burgers flow problem in a circular domain.

shown in Fig. 9. It is clear that, for λ = 5, the computed results on Halton distribution are more diffusive than those
computed using the Uniform distribution. Compared to the numerical results obtained using λ = 1, the RBF method
shows no sensibility to the qualitative distribution of the collocation points in the computational domain. Overall, the
proposed RBF method demonstrates its ability to capture the correct dynamics for this test example. No extensive
numerical dissipation has been detected in the results obtained using the RBF method. Furthermore, the obtained
results for the considered flow problem demonstrate the ability of the presented RBF method to capture the small
solution features within the computational domain without generating nonphysical oscillations.



Fig. 9. Results for the Burgers flow problem in a circular domain using different values of λ using the uniform (first column), Halton (second
column) and exact solution (third column).

Fig. 10. Cross sections at y = x of the results for the Burgers flow problem in a circular domain using λ = 1 (left) and λ = 5 (right).

3.3. Incompressible Navier–Stokes problem

In what follows we test the ability of the new RBF to solve incompressible Navier–Stokes equations. These
nonlinear problems are not easy to solve since the velocity field depends on the solution itself rather than the time and



Table 2
Values of stream function and vorticity at the center of the primary vortex for the lid-driven cavity flow.

Re Ghia et al. [12] RBF method
ψ ω Location (x, y) ψ ω Location (x, y)

100 −0.103 3.166 (0.6172,0.7344) −0.100 3.173 (0.6179,0.7353)
1 000 −0.117 2.049 (0.5313,0.5625) −0.113 2.101 (0.5322,0.5619)

10 000 −0.119 1.880 (0.5117,0.5333) −0.115 1.892 (0.5109,0.5326)

space variables. Let us consider the incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u + ∇ p − ν1u = 0,

∇ · u = 0,
(20)

where u = (u, v)T is velocity field and p denotes the pressure. An alternative convection–diffusion formulation in
terms of vorticity and stream function can be constructed as

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− ν1ω = 0, (21)

where the vorticity, ω, and stream function, ψ , are given by

ω =
∂v

∂x
−
∂u

∂y
, u =

∂ψ

∂y
, and v = −

∂ψ

∂x
, (22)

together with the following Poisson problem

1ψ = −ω. (23)

Hence, the new RBF is applied to the convection–diffusion equation (21). We consider the standard problem of driven
cavity flow intensively studied in [12]. The flow domain is [0, 1] × [0, 1] and the upper boundary moves with the
velocity u = 1. Then the Reynolds number is defined as Re =

1
ν

. We impose the no-slip boundary condition. We
use a uniform collocation points with spacing dmin =

1
128 and we compute the steady state solution for Re = 100,

Re = 1000 and Re = 10 000. The obtained results for stream function and velocity field are shown in Fig. 11.
Compared to the results published in [12], it can be seen that our new RBF resolves accurately the flow structures
and the vortices seem to be localized in the correct place in the flow domain. The plots of streamline and velocity
fields give a clear view of the overall flow pattern and the effect of the Reynolds number on the structure of the steady
recirculating eddies in the cavity. In addition to the primary, center vortex, a pair of counterrotating eddies of a much
smaller strength develop in the lower corners of the cavity. At Re = 10 000, a third secondary vortex is seen in the
upper left corner and a tertiary vortex in the lower right corner appears. It is apparent that the flow structure is in good
agreement with the previous work [12].

For a low Re, the center of the primary vortex is located at the mid width and at about one-third of the cavity
depth from the top. As the Re increases, the primary vortex center moves the right and becomes increasingly circular.
Finally, with increasing Re this center moves down towards the geometric center of the cavity and becomes fixed in
its location for Re = 10 000. Values of stream function and vorticity at the center of primary vortices for different
Reynolds numbers are compared in Table 2 with numerical results by Ghia et al. [12]. Good agreement is obtained.

4. Conclusions

A new stabilized meshless method has been proposed for the numerical solution of convection-dominated flow
problems. This class of problems includes viscous Burgers equations and incompressible Navier–Stokes equations at
high Reynolds numbers. The numerical method consists of a predictor and corrector stage using radial basis functions
in both stages. To deal with the convection part in the governing equations the modified method of characteristics is
also used in the predictor stage to stabilize conventional radial basis functions. Compared to the standard mesh-based
methods applied to the same problem, our meshless method offers numerical techniques which are on one hand mesh



Fig. 11. Stream lines (first column) and velocity fields (second column) for the lid-driven cavity flow.



free and on the other hand free from any Riemann solver or upwind discretization. These properties make the proposed
method very attractive since mesh generation and Riemann solvers are not required in its formulation. To examine
the accuracy of the meshless method we solve several test problems for linear and nonlinear convection–diffusion
flows. Comparison to the well-established semi-Lagrangian method widely used in the literature to solve this kind of
applications has been presented in our study. The method is also applied to solve a transport problem in the north sea.
The obtained numerical results confirm the accuracy of the proposed meshless method and its performance for this
type of flow problems.

Finally, although we have restricted our numerical computations to the case of two dimensional convection-
dominated problems using fixed sets of collocation points, the more important implications of our research concern
the use of effective stabilized meshless methods for computational fluid dynamic problems in three spatial dimensions
implemented in parallel processing and using adaptive sets of collocation points for the radial basis functions.
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