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A Simpler Proof of Jensen’s Coding Theorem

Sy D. Friedman*
M.I.T.

Beller-Jensen-Welch [82] provides a proof of Jensen’s remarkable Coding The-

orem, which demonstrates that the universe can be included in L[R] for some real

R, via class forcing. The purpose of this article is to present a simpler proof of

Jensen’s theorem, obtained by implementing some changes first developed for the

theory of strong coding (Friedman [87]).

The basic idea is to first choose A ⊆ ORD so that V = L[A] and then gener-

ically add sets Gα ⊆ α+, α O or an infinite cardinal (O+ denotes ω) so that Gα

codes both Gα+ and A∩α+. Also for limit cardinals α,Gα is coded by 〈Gᾱ|ᾱ < α〉.

Thus there are two “building blocks” for the forcing, the successor coding and the

limit coding. We modify the successor coding so as to eliminate Jensen’s use of

“generic codes” (this improves an earlier modification of this type, due to Welch

and Donder). And we thin out the limit coding so as to eliminate the technical

problems causing Jensen’s split into cases according to whether or not O# exists.

Theorem. (Jensen) There is a class forcing P such that if G is P-generic over

V then V [G] |= ZFC+V = L[R], R ⊆ ω. If V |= GCH then P preserves cardinals.

It is not difficult to class-generically extend V to make GCH true. And any

“reshaped” subset of ω1 can be coded by a real via a CCC forcing. (See Section

One below for a definition of “reshaped”.) So it suffices to prove that V can be

coded by a “reshaped” subset of ω1, preserving cardinals, assuming the GCH. As

a first step, force A ⊆ ORD such that for each infinite cardinal α, Lα[A] = Hα =

all sets of hereditary cardinality less than α.

Section One The Successor Coding Rs.

Fix an infinite cardinal α. Sα is defined to be a certain collection of “strings”

s : [α, |s|) −→ 2, α ≤ |s| < α+. For s to belong to Sα we require that s is “reshaped”.
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This means that for η ≤ |s|, L[A∩α, s ↾ η] |= card(η) ≤ α. The reshaping of s allows

us to code s by a subset of α, in the manner which we now describe.

For s ∈ Sα define structures A0
s = Lµ0

s
[A ∩ α, s∗], As = Lµs

[A ∩ α, s∗] as

follows (where s∗ = {µs↾η|s(η) = 1}) : If |s| = α then µ0
s = α. For |s| > α,

µ0
s =

⋃
{µs↾η|η < |s|} and in general µs = least p.r. closed ordinal µ greater than

µ0
s such that Lµ[A ∩ α, s

∗] |= card(s) ≤ α. These ordinals are well-defined due to

the reshaping of s.

For s ∈ Sα we write α(s) = α. Note that if |s| = α(s) then s = ∅; in this

case we think of s as “labelled” with the ordinal α(s), so that there are distinct

sα ∈ Sα, α(sα) = α.

For later use we also define structures Âs and A
′
s for s ∈ Sα as follows: let µ̂s =

largest p.r. closed µ such that µ = µ0
s or Lµ[A ∩ α, s

∗] |= |s| is a cardinal greater

than α. Then Âs = Lµ̂s
[A ∩ α, s∗]. The ordinal µ′

s and structure A′
s are defined in

the same way, except we replace p.r. closure of µ by the weaker condition ω ·µ = µ.

For s ∈ Sα+ write s̄ < s to mean that π(s̄) = s where π : A −→ As is an

elementary embedding with some critical point α(s̄) < α+ and where π(α(s̄)) = α+.

Then π = πs̄s is unique. Let s̄ ≤ s denote s̄ < s or s̄ = s. We have the following

facts:

(a) {α(s̄)|s̄ < s} is CUB in α+.

(b) If t̄ is a proper initial segment of s̄ then t̄ < πs̄s(t̄) = t and πt̄t = πs̄s ↾ At̄.

(c) As =
⋃
{Rng(πs̄s)|s̄ < s}.

Now for s ∈ Sα+ let bs = {s̄|s̄ < s}. We use the strings s̄ ∗ i with s̄ < s ↾ η,

i = 0 or 1, to code s(η). A condition in the successor coding Rs is a pair (u, ū)

where:

1) u ∈ Sα

2) ū ⊆ {bs↾η|s(η) = 0}, card (ū) ≤ α in As.

To define extension of conditions, we need a couple of preliminary definitions. We

say that ū restrains s̄ ∗ 1 if s̄ ∈ b for some b ∈ ū and s̄ lies on u if u(α(s̄)) = 1

and u(〈α(s̄), η〉) = s̄(η) for η ∈ Dom(s̄). Also let 〈Zγ |γ < α+〉 be an Lα+-definable

partition of the odd ordinals less than α+ into α+ disjoint pieces of size α+. We use

the Zγ ’s to code A∩α+ into Gα. For u ∈ Sα, u
even (δ) = u(2δ), uodd (δ) = u(2δ+1).

Extension of conditions for Rs is defined by: (u0, ū0) ≤ (u1, ū1) iff u0 extends

u1; ū0 ⊇ ū1; ū1 restrains s̄∗1, s̄∗1 lies on ueven0 −→ s̄∗1 lies on ueven1 ; γ < |u1|, γ /∈ A,
2



δ ∈ Zγ , u
odd
0 (δ) = 1 −→ uodd1 (δ) = 1. Note that Rs ∈ As.

Lemma 1.1. Suppose G is Rs-generic over As and let Gα =
⋃
{u|(u, ū) ∈ G for

some ū}. Then G,A ∩ α+, s belong to Lµs
[Gα].

Proof. We can write (u, ū) ∈ G iff u ⊆ Gα and s̄ ∈ b ∈ ū, s̄∗1 lies on Geven
α −→ s̄∗1

lies on ueven and γ < |u|, γ /∈ A, δ ∈ Zγ , G
odd
α (δ) = 1 −→ uodd(δ) = 1. So

G ∈ Lµs
[A ∩ α+, Gα, s]. And γ ∈ A ∩ α+ iff Godd

α (δ) = 1 for unboundedly many

δ ∈ Zγ , so G,A ∩ α
+ ∈ Lµs

[Gα, s]. Finally note that for any η < |s|, s̄ lies on Geven
α

for unboundedly many s̄ < s ↾ η by a density argument using the fact that for

η < |s|, (u, ū) ∈ Rs, bs↾η is almost disjoint from {u|u extends some s̄ ∗ 1 restrained

by ū}. So s(η) = 1 iff s̄ ∗ 1 lies on Geven
α for unboundedly many s̄ < s ↾ η. Thus

s ↾ η can be recovered by induction on η ≤ |s|, inside Lµs
[Gα]. ⊣

Lemma 1.2. R<s =
⋃
{Rt|t ⊆ s, t 6= s} has the α++-CC in Âs.

Proof. If µ̂s = µ0
s then this is vacuous. Otherwise we need only observe that R<s ∈

Âs and (u0, ū0), (u1, ū1) incompatible −→ u0 6= u1 and Sα has cardinality α+ in

Âs. ⊣

Lemma 1.3. Rs is ≤ α-distributive in As.

Proof. Suppose (u0, ū0) ∈ R
s and 〈Di|i < α〉 are predense on Rs, 〈Di|i < α〉 ∈ As.

By induction we define conditions (ui, ūi) and elementary submodels Mi of As with

(ui, ūi) ∈ Mi+1, for i ≤ α. Choose M0 to contain α as a subset and to contain

〈Di|i < α〉, s, A ∩ α+ as elements. Having defined (ui, ūi) and Mi, choose Mi+1 to

contain Mi as a subset and (ui, ūi) as an element. Choose (ui+1, ūi+1) to extend

(ui, ūi), meet Di, guarantee that if s(η) = 1, η ∈Mi then s̄ ∗ 1 lies on ueveni+1 − u
even
i

for some s̄ < s ↾ η, guarantee that if γ ∈ A ∩ (Mi ∩ α
+) then uoddi+1(δ) = 1 for some

δ /∈ domuoddi , δ ∈ Zγ , and finally choose ūi+1 to contain all bs↾η with s(η) = 0, η ∈

Mi. The last requirement can be imposed because the facts that |s| has cardinality

≤ α+ in As, Hα+ ⊆ As imply that any subset of |s| of cardinality ≤ α belongs to

As.

For λ ≤ α limit,Mλ =
⋃
{Mi|i < λ} and uλ =

⋃
{ui|i < λ}, ūλ =

⋃
{ūi|i < λ}.

By construction, uλ codes A ∩ (Mλ ∩ α
+) as well as s̄ = s ◦ π−1 where π is the

transitive collapse map for Mλ. Thus the sequence of ordinals 〈Mi ∩ α
+|i < λ〉 is

cofinal in |uλ| and belongs to L[uλ], since the entire sequence 〈M i|i < λ〉 can be
3



recovered in L[uλ], M i = transitive collapse (Mi). This shows that uλ is reshaped,

so (uλ, ūλ) is a condition. Finally note that (uα, ūα) is an extension of (u0, ū0)

meeting each of the Di’s. ⊣

Corollary 1.4. R<s is ≤ α-distributive in Âs.

Proof. By Lemma 1.2 it suffices to prove ≤ α-distributivity in A0
s. This is easily

proved by induction on |s|, using Lemma 1.3 at successor stages. ⊣

Lemma 1.5. If D ⊆ R<s, D ∈ Âs is predense and s ⊆ t ∈ Sα+ then D is predense

on Rt.

Proof. It suffices to show that if D ⊆ Rs, D ∈ As is predense, s ⊆ t ∈ Sα+ then D

is predense on Rt; for then, as in the proof of Corollary 1.4, we can induct on |s|

and use Lemma 1.2.

Suppose D is predense on Rs, D ∈ As and (u, ū) belongs to Rt. We can extend

(u, ū) to guarantee that for some t̄ < t, ū = {bt↾(η+1)|t(η) = 0, η ∈ Rng πt̄t}, D, s ∈

Rng(πt̄t) and |u| = α(t̄) + 1, u(α(t̄)) = 0, u ∈ At̄↾α(t̄). Let (u∗, ū∗) be the least

extension of (u, ū∩As) ∈ R
s meeting D. We claim that (u∗, ū∗ ∪ ū) is an extension

of (u, ū), and this will prove the lemma. Clearly γ < |u|, δ /∈ A, δ ∈ Zγ , u
∗odd(δ) =

1 −→ uodd(δ) = 1, since (u∗, ū∗) extends (u, ū ∩ As). Suppose r < t ↾ η, t(η) = 0

where η ∈ Rng πt̄t and r ∗ 1 lies on u∗even. If η < |s| then r ∗ 1 lies on ueven, as

desired, since (u∗, ū∗) extends (u, ū ∩ As). If α(r) < α(t̄) then |r| < α(t̄) so again

r ∗ 1 lies on ueven since |u| > α(t̄) > |r ∗ 1|. If α(r) = α(t̄) then r ∗ 1 cannot lie on

u∗even, by choice of u. Finally if α(r) > α(t̄) then since η ≥ |s| we have α(r) > |u∗|

by leastness of (u∗, ū∗). So r ∗ 1 cannot lie on u∗even. ⊣

Section Two Limit Coding.

We begin with a rough indication of the forcing Pu for coding u ∈ Sα, α an un-

countable limit cardinal, into a subset of α. Pu ⊆ Au consists of P<u =
⋃
{Pu↾ξ|ξ <

|u|} together with certain p : Card∩α −→ V such that p(β) = (pβ, p̄β) ∈ R
p
β+ for

β ∈ dom(p). (We use Card to denote the class of infinite cardinals.) Also for un-

countable limit cardinals β < α we (inductively) require that p ↾ β ∈ Ppβ − P<pβ .

We also insist that p code u in the following sense: For ξ < |u| and β ∈ Card∩α

define M ξ
β = Σ1 Skolem hull of β ∪ {u ↾ ξ, A∩ α} in Au↾ξ and bξβ =M ξ

β ∩ β
+. Then
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code u by: u(ξ) = 1 iff podd
β+ (bξ

β+) = 1 for sufficiently large β ∈ Card∩α. Recall that

the successor coding Rp
β++ makes use of odd ordinals (in the Zγ ’s) so the successor

and limit codings do not conflict. For p, q ∈ Pu we write p ≤ q iff p(β) ≤ q(β) in

Rp
β+ for each β ∈ Card∩α.

To facilitate the proofs of extendibility and distributivity for Pu we thin out

the forcing, in a number of ways. For this purpose we need appropriate forms of �

and ⋄, in a relativized form. Jensen observed that his proofs of these principles for

L go through when relativized to reshaped strings. Precisely:

Relativized � Let S =
⋃
{Sα|α an infinite cardinal}. There exists 〈Cs|s ∈ S〉

such that Cs ∈ As and:

(a) If α(s) < |s| then Cs is closed, unbounded in µ0
s, ordertype (Cs) ≤ α(s).

If |s| is a successor ordinal then ordertype (Cs) = ω.

(b) ν ∈ Lim(Cs) −→ for some η < |s|, ν = µ0
s↾η and Cs ∩ ν = Cs↾η.

(c) Let π : 〈A, C〉
Σ1−→ 〈A0

s, Cs〉 and write crit(π) = ᾱ, A = Lµ̄[A, s̄
∗]. If

π(ᾱ) = α(s) then L[A, s̄∗] � |s̄| is not a cardinal > ᾱ and

(c1) C ∈ Lµ[A, s̄
∗] where µ is the least p.r. closed ordinal greater than µ̄ s.t.

Lµ[A, s̄
∗] � card(|s̄|) ≤ ᾱ.

(c2) π extends to π′ : A′ Σ1−→ A′
s where A′ = Lµ′ [A, s̄∗], µ′ = largest ordinal

either equal to µ̄ or s.t. ω · µ′ = µ′ and Lµ′ [A, s̄∗] � |s̄| is a cardinal greater than ᾱ.

(c3) If ᾱ is a cardinal and π(ᾱ) = α then A = A0
s̄ and C = Cs̄.

Relativized ⋄ Let E = all s ∈ S such that |s| limit and ordertype (Cs) = ω.

There exists 〈Ds|s ∈ E〉 such that Ds ⊆ A
0
s and:

(a) D ∈ Âs 6= A
0
s, D ⊆ A

0
s −→ {ξ < |s|

∣∣∣∣s ↾ ξ ∈ E,Ds↾ξ = D ∩ A0
s↾ξ} is

stationary in Âs.

(b) Ds is uniformly Σ1-definable as an element of A′
s.

(c) If A′
s � α

++ exists then Ds = ∅.

Now we use these combinatorial structures to impose some further restrictions

on membership in Pu −P<u. First some definitions. For p ∈ Pu and β ∈ Card∩α,

(p)β denotes p ↾ Card∩[β, α), D ⊆ P<u is predense if every p ∈ P<u is compatible

with an element of D and for β ∈ Card∩α,D is β-predense if every condition

p ∈ P<u can be extended to some q such that p ↾ β = q ↾ β and q meets D (i.e., q
5



extends an element of D). And p reduces D below β if every q ≤ p can be further

extended to r such that r meets D and (q)β = (r)β.

Requirement A. (Predensity Reduction) Suppose p ∈ Pu − P<u.

(A1) If u ∈ E and Du ⊆ P
<u is β-predense for all β ∈ Card∩α then p meets

Du.

(A2) If |u| is a successor ordinal, D ⊆ P<u is predense and D ∈ A0
u then p

reduces D below some β < α.

Requirement B. (Restriction) For p ∈ Pu let |p| denote the least ξ s.t. p ∈ Pu↾ξ.

If p belongs to Pu and ξ < |p| then there exists r s.t. p ≤ r and |r| = ξ.

Requirement C. (Nonstationary Restraint) Suppose Au � α inaccessible and

p ∈ Pu. Then there exists a CUB C ⊆ α s.t. C ∈ Au and β ∈ C −→ pβ = ∅.

The remaining Requirement D will be introduced at a later point when we

discuss strong extendibility at successor stages.

Extendibility and distributivity for Pu are stated as follows. Let q ≤β p signify

that q ≤ p and q ↾ β = p ↾ β. (P<u)β denotes {(p)β|p ∈ P
<u}, for β ∈ Card∩α. ∆−

distributivity for P<u asserts that ifDβ is β+-predense on P<u for each β ∈ Card∩α

then every p ∈ P<u can be extended to meet each Dβ .

(∗)u p ∈ P
u, β ∈ Card∩α −→ ∃q ≤β p (q ∈ Pu − P<u)

(∗∗)u (P<u)β is ≤ β-distributive in Âu for β ∈ Card∩α.

And if α is inaccessible in A0
u then P<u is ∆-distributive in Âu.

These are proved by a simultaneous induction on |u|. As the base case |u| = α

is vacuous we assume from now on that |u| > α. The following consequences of

predensity reduction are needed in the proof.

Lemma 2.1. (Chain Condition for P<u) Suppose (∗∗)u holds. Then P<u has the

α+-CC in Âu.

Proof. We may assume that Âu 6= A
0
u. Suppose D ⊆ P

<u is predense and D ∈ Âu.

Consider D∗ = {p ∈ P<u|p reduces D below some β ∈ Card∩α}. Then D∗ ∈ Âu.

By (∗∗)u and Lemma 1.2, D∗ is β-predense for all β ∈ Card∩α. (Use ≤ β+-
6



distributivity of (P<u)β+ and β++-CC of RG
β+ ⊆ β++ denoting the (P<u)β+-

generic, to reduce D below β+.) Apply relativized ⋄ to obtain ξ < |u| such that

u ↾ ξ ∈ E, Du↾ξ = D∗ ∩ A0
u↾ξ and Du↾ξ is β-predense for all β ∈ Card∩α. Thus by

predensity reduction and restriction, D∗ ∩ A0
u↾ξ is predense on P<u and therefore

so is D ∩A0
u↾ξ, a subset of D of Âu-cardinality ≤ α. ⊣

Lemma 2.2. (Persistence for P<u) Suppose (∗∗)u holds, D ⊆ P<u is predense,

D ∈ Âu and u ⊆ v ∈ Sα. Then D is predense on Pv.

Proof. By restriction, if p ∈ Pv − Pu then p extends some q in Pu − P<u. By the

chain condition for P<u we can assume that D ∈ A0
u and hence by induction we can

assume that |u| is a successor ordinal. But then by predensity reduction, q reduces

D below some β ∈ Card∩α and hence so does p. In particular p is compatible with

an element of D. ⊣

We can now turn to the proofs of (∗)u, (∗∗)u.

Lemma 2.3. Assume (∗∗)u and |u| a limit ordinal. Then (∗)u holds.

Proof. We first claim that if p ∈ P<u and 〈Dβ |β0 ≤ β < α〉 ∈ A0
u, Dβ ⊆ P

<u

β+-predense for each β then there is q ≤β0
p meeting each Dβ . We prove this with

α replaced by β1 ∈ Card∩α+, by induction on β1. The base case β1 = β+
0 and

the case of β1 a successor cardinal follow easily, using (∗∗)u. If β1 is singular in

A0
u then we can choose γ0 < γ1 < · · · approximating β1 in length λ < β1 and

consider 〈Eδ|δ < λ〉 where Eδ = all q meeting each Dβ , λ ≤ β < γδ, |q| least

so that 〈Dβ |β0 ≤ β < β1〉 ∈ A
0
u↾|q|. Then we are done by induction. If β1 is

inaccessible in A0
u then either β1 = α, in which case the result follows directly from

the second statement of (∗∗)u, or β1 < α, in which case we can factor P<u as

(P<u)β+

1

∗P
G

β
+

1 (where Gβ+

1

denotes
⋃
{pβ+

1

|p ∈ G}, G the generic for P<u). Then

choose (q)β+

1

≤ (p)β+

1

that reduces each Dβ , β0 ≤ β < β1 below β+
1 , using (∗∗)u and

the β+
1 -CC of P

G
β
+

1 . By induction on α, we can extend q to meet all the Dβ ’s.

Now write Cu = {µ0
u↾ξi
|i < λ} and choose a successor cardinal β0 < α to

be at least as large as λ and the β given in the statement of (∗)u, if λ < α. Now

inductively define a subsequence 〈ηj |j < λ0〉 of 〈ξi|i < λ〉 and conditions 〈pj |j < λ0〉

as follows. First suppose λ < α. Let p denote the condition given in the statement

of (∗)u. Set p0 = p, η0 = least ξi s.t. p ∈ P<u↾ξi ; pj+1 = least q ≤β pj s.t. for
7



all γ, β0 ≤ γ < α, q meets all γ+-predense D ⊆ P<u↾ηj , D ∈ M
ηj

γ+ = Σ1 Skolem

hull of γ+ ∪ {p, α} in 〈A0
u↾ηj

, Cu↾ηj
〉, ηj+1 = least ξi s.t. pj+1 ∈ P

<u↾ξi ; pδ = g.l.b.

〈pj |j < δ〉, ηδ =
⋃
{ηj |j < δ} for limit δ ≤ λ0. The ordinal λ0 is determined by the

condition that ηλ0
is equal to |u|. If λ = α then the definition is the same, except in

defining pj+1 require pj+1 ≤β∪ℵi+1
pj where ηj = ξi and only require pj+1 to meet

γ+-predense D as above for γ between β ∪ ℵi and α.

We must verify that pδ as defined above is indeed a condition for limit δ. (There

is no problem at successor stages, using Lemma 2.2 and the first paragraph of the

present proof.) First we show that for γ ∈ Card∩α, pδγ is reshaped. We need only

consider γ ≥ β and in case λ = α we need only consider γ ≥ β∪ℵi where ηδ = ξi. By

construction if γ ∈Mηδ
γ = Σ1 Skolem hull of γ ∪{p, α} in 〈A0

u↾ηδ
, Cu↾ηδ

〉 then pδγ is

π[(P<u↾ηδ)γ ] generic over TC(Mηδ
γ ) where π : Mηδ

γ −→ TC(Mηδ
γ ) is the transitive

collapse. And |pδγ | is Σ1-definably singularized over TC(Mηδ
γ ). Write TC(Mηδ

γ ) as

〈A, C〉. By genericity and cofinality-preservation for π[(P<u↾ηδ)γ ], pδγ codes A and

by Relativized � (c1), C is constructible from A. So pδγ is reshaped. IfMηδ
γ ∩α = γ

then pδγ is again reshaped because of Relativized �(c1), (no genericity argument

required). Lastly if γ′ = min(Mηδ
γ ∩ (ORD−γ)) < α then use the first argument,

but with π[(P<u↾ηδ)γ′ ] replacing π[(P<u↾ηδ)γ ].

Next we show that pδ ↾ γ ∈ Apδγ
. As pδ ↾ γ is definable over TC(Mηδ

γ ) ∈ L[A∩

γ, pδγ ] this amounts to showing that µpδγ
is large enough. By (∗∗)u↾ηδ

and Lemma

2.1 we know that P<u↾ηδ has the α+-CC in Âu↾ηδ
and hence (when Mηδ

γ ∩ α 6= γ)

pδγ is in fact π
′−1[(P<u↾ηδ)γ′ ]-generic over A′, where π′ (with domain A′) is the

extension of π−1 given by Relativized � (c2) and γ′ = min(Mηδ
γ ∩ (ORD−γ)). And

thus A′[pδγ ] � |pδγ | is a cardinal. But by Relativized � (c1), TC(Mηδ
γ ) appears

relative to pδγ before the next p.r. closed ordinal after the height of A′. So pδ ↾

γ ∈ Apδγ
. If Mηδ

γ ∩ α = γ then no genericity argument is required; we only need

Relativized � (c1).

Requirements B, C are easily checked, the latter using the fact that in case of

α inaccessible in A0
u we required pj+1 ≤β∪ℵi+1

pj(ηj = ξi) and therefore can use

diagonal intersection of clubs. To check Requirement (A1) note that ifMηδ
γ ∩α 6= γ

then either pδγ /∈ E or Dpδγ
= ∅, since A′

pδγ
� γ++ exists and we can apply

Relativized ⋄ (c). If Mηδ
γ ∩ α = γ then pδγ ∈ E iff u ↾ ηδ ∈ E by Relativized �

(c3) and if these hold then by Relativized ⋄ (b), π′[Dpδγ
] = Du↾ηδ

, where π′ comes

8



from Relativized � (c2). So all we need to arrange is that our initial condition p

be chosen to meet Du, in case u ∈ E, and otherwise choose η0 to be at least ξω, so

that u ↾ ηδ /∈ E for limit δ. ⊣

Lemma 2.4. Assume |u| limit and (∗)v, (∗∗)v for v ⊆ u, v 6= u. Then (∗∗)u holds.

Proof. We may assume that Âu 6= A
0
u. We need only make a small change in the

construction of the proof of Lemma 2.3. Given predense 〈Di|i < β〉 on (P<u)β in

Âu with β < α, select ξ < |u| of cofinality > β such that Di ∩ (P
<u↾ξ)β is predense

on (P<u↾ξ)β for all i < β and then choose the continuous sequence 〈ξi|i < β〉 from

Cu↾ξ by: ξ0 = ωth element of Cu↾ξ, ξi+1 = least ξ∗ ∈ Cu↾ξ greater than ξi s.t.

q ∈ (Pu↾ξi)β −→ ∃r ≤ q(r ∈ (Pu↾ξ∗)β, r meets Di), ξλ =
⋃
{ξi|i < λ} for limit

λ ≤ β. Then u ↾ ξλ /∈ E and 〈ξi|i < λ〉 ∈ Au↾ξλ for limit λ.

Now repeat the construction of the proof of Lemma 2.3, extending along the ξi’s

instead of along Cu, hittingDi at stage i+1.We can guarantee 〈Di∩(P
<u↾ξi )β|i < λ〉

is ∆1〈A
0
u↾ξλ

, Cu↾ξλ〉 in our choice of ξi’s as well, so hitting the Di’s does not interfere

with the proof that pδ is a condition for limit δ. The proof of ∆-distributivity is

similar. ⊣

Lemma 2.5. Suppose (∗∗)u holds and |u| is a successor ordinal. Then (∗)u holds.

Proof. We may assume that the given p belongs to Av−A
0
v where v = u ↾ (|u|−1).

Write Cu = 〈ξj|j < ω〉. Now proceed as in the construction of the proof of Lemma

2.3, making successive ≤β-extensions below p (where β is given in the statement of

(∗)u), p ≥β p0 ≥β p1 ≥β · · · so that pj+1 meets all γ+-predense D ⊆ P<u in M
ξj
γ+ ,

whereM
ξj
γ+ = Σ1 Skolem hull of γ+∪{p, α, ξ0, · · · , ξj−1} inAv ↾ ξj, for all γ ∈ [β, α).

If we set q̂ = g.l.b. 〈pi|i ∈ ω〉 then q̂ meets the requirements for being a condition at

all γ ∈ Card∩α+ with the exception of γ in C∪{α}, C = {γ|Mγ∩α = γ}, Mγ = Σ1

Skolem hull of γ∪{p, α} in 〈Av, Cu〉. The reason is that for γ ∈ α−C, Tγ = TC(Mγ)

belongs to Aq̂γ , since Tγ � |q̂γ | is a cardinal and q̂γ is generic over Tγ .

To make q̂ into a condition q ∈ Pu we must do two things. First extend

q̂γ+ for γ ≥ β so as to code u(|v|) = 0 or 1. This is easily done as there are no

conflicts between the successor and limit codings. Second for γ ∈ C we extend

q̂γ to qγ = q̂γ ∗ u(|v|). The only remaining question is whether the reatraint q̂γ
9



will allow us to do this. But γ ∈ C −→ q̂γ = ∅ since C is contained in the CUB

witnessing Requirement C for q̂ at α. ⊣

Lemma 2.6. Suppose (∗)u and (∗∗)v, v ⊆ u 6= v hold and |u| is a successor. Then

(∗∗)u holds.

Proof. We must show that if v = u ↾ (|u|−1) and p ∈ (Pv)β−(P<v)β , 〈Di|i < β〉 ∈

Av are predense on (Pv)β then there exists q ≤ p meeting each Di. For simplicity

we assume β = ω.

Definition. Suppose f(β) = Mβ is a function in Av from Card+ ∩α (Card+

denotes all successor cardinals) into Av such that card (Mβ) ≤ β for all β ∈ Dom(f)

and suppose p ∈ Pv. Then Σp
f = {q ∈ Pv| ∀ β ∈ Dom(f), q(β) meets all predense

D ⊆ Rpβ+ , D ∈Mβ}.

Sublemma 2.7. Σp
f is dense below p in Pv.

Before proving Sublemma 2.7 we establish the Lemma, assuming it. Choose

a limit ordinal λ = ωλ < µv such that 〈Di|i < ω〉, Cv ∈ Av ↾ λ = Lλ[A ∩ α, v
∗]

and Σ1 cof(Av ↾ λ) = ω. Choose a Σ1(Av ↾ λ) sequence λ0 < λ1 < · · · cofinal in

λ such that 〈Di|i < ω〉, Cv, x ∈ Av ↾ λ0 where x is a parameter defining the λi’s.

Set M i
γ = least M ≺Σ1

Av ↾ λi such that γ ∪ {x, 〈Di|i < ω〉, α, Cv} ⊆ M, for each

γ ∈ Card+ ∩α. Define fi(γ) =M i
γ .

Choose p = p0 ≥ p1 ≥ · · · successively so that pi+1 meets Di and Σpi

fi
. Set

p∗ = g.l.b. 〈pi|i ∈ ω〉. We show that p∗ is a well-defined condition. If |v| > α

then thanks to (∗∗)v it will suffice to show that if D ∈ M i
γ ∩ A

0
v is predense on

(P<v)γ , γ ∈ Card∩α then some pj reduces D below γ. (For then, p∗γ codes a

generic over the transitive collapse of M i
γ ∩A

0
v.) If |v| = α then instead of P<v = ∅

use Pα = {p ↾ β+
∣∣β ∈ Card∩α, p ∈ Pv}, ordered in the natural way. Note that

Pα is cofinality-preserving, by applying (∗∗) at cardinals < α.

Choose j ≥ i so that for k > j, pk reduces D no further than pj . Let γ
′ be

least so that pj reduces D below γ′. Then γ′ < α by Predensity Reduction for p.

If γ′ ≤ γ then of course we are done. If γ′ > γ is a double successor cardinal then

we reach a contradiction since by definition pj+1 reduces D further. If γ′ = δ+, δ a

limit cardinal then by Predensity Reduction at δ,D is reduced below some δ′ < δ,

another contradiction. If γ′ is a limit cardinal then the same argument applies,

replacing γ′ by (γ′)+.
10



Finally we have:

Proof of Sublemma 2.7. It suffices to show the following.

Strong Extendibility Suppose g ∈ Av, g(β) ∈ Hβ++ for all β ∈ Card∩(β0, α)

and p ∈ Pv. Then there is q ≤β0
p such that g ↾ β ∈ Aqβ for all β ∈ Card∩(β0, α].

For, Strong Extendibility allows us to extend to a condition q such that for all

β ∈ Card∩α, g ↾ β ∈ Aqβ , where g(β) = f(β) ∩ Hβ++ . Then successively extend

each q(β) to meet predense D in f(β).

We now break down Strong Extendibility into the ramified form in which it

will be proved. For any µ such that µ0
v ≤ µ < µv, k ∈ ω− {0} and β ∈ Card∩α let

Mµ,k
β = Σk Skolem hull of β ∪ {α} in A∗

v ↾ µ = 〈Lµ[A ∩ α, v
∗, Cv], A ∩ α, v

∗, Cv〉.

(Notice that this structure is Σ1 projectible to α without parameter.)

SE(µ, k) Suppose p ∈ Pv and β0 ∈ Card∩α. Then there exists q ≤β0
p such that

TC(Mµ,k
β ) ∈ Aqβ for all β ∈ Card∩(β0, α).

It suffices to prove SE(µ, k) for all µ, k as above. We do so by induction on

µ and for fixed µ, by induction on k. To verify the base case of this induction we

must impose one last requirement on our conditions.

Requirement D Suppose p ∈ Pv − P<v and g ∈ A0
v, g(β) ∈ Hβ++ for all

β ∈ Card∩α. Then g ↾ β ∈ Apβ
for sufficiently large β ∈ Card∩α.

This requirement is respected by our earlier constructions. Now, if k = 1

and µ is a limit ordinal then we can use a Σ1(A
∗
v ↾ µ) approximation to µ and

induction (or Requirement D if µ = µ0
v) to obtain q ≤ p satisfying the conclusion

of SE(µ, 1), using the Σf ’s for f ∈ A
∗
v ↾ µ. Similarly if µ is a successor, k = 1 then

use 〈Σk(A
∗
v ↾ µ− 1)|k ∈ ω〉 to approximate Σ1(A

∗
v ↾ µ), using the Σf ’s, f definable

over A∗
v ↾ µ− 1.

Suppose k > 1. By induction we can assume that TC(Mµ,k−1
β ) ∈ Apβ

for large

enough β. If C = {β < α|β = α∩Mµ,k
β } is unbounded in α then successively extend

p ↾ β for β ∈ C so that TC(Mµ,k
β′ ) ∈ Aqβ′

for β′ < β. There is no problem at limits

since TC(Mµ,k
β ), C ∩ β ∈ Apβ

for β ∈ C.

If α is Σk(A
∗
v ↾ µ)-singular then choose a continuous cofinal Σk(A

∗
v ↾ µ)

sequence β0 < β1 < · · · below α of ordertype λ0 = cof(α). Also choose βi+1

large enough so that Mµ,k−1
βi+1

|= βi is defined. This is possible since A∗
v ↾ µ =

⋃
{Mµ,k−1

β |β < α}. Now define N i
β for i < λ0, β < βi to be the Σk Skolem hull of β

11



in Mµ,k−1
βi

. Then 〈TC(N i
β)|β < βi〉 ∈ Apβi

for i < λ0 since it is easily defined from

Mµ,k−1
βi

∈ Apβi
. Successively λ0-extend p ↾ βi, producing p = p0 ≥λ0

p1 ≥λ0
· · ·

where TC(N i
β) ∈ Apiβ

for β ∈ (λ0, βi). This is possible by induction on α, and since

TC(N i
β) is easily defined from 〈TC(N i

β̄
)|β̄ < β〉 for limit β < βi. (We must also

require that pi+1 meets Σpi

fi
where fi(β) = N i

β .) pλ is well-defined for limit λ ≤ λ0

and Apλ0β
contains 〈TC(N i

β)|i < λ0〉 and hence TC(Mµ,k
β ) for β > λ0. Then use

induction to fill in on (0, λ0] so that SE(µ, k) is satisfied.

Lastly, there is the intermediate case where α is Σk(A
∗
v ↾ µ)-regular but C =

{β < α|β = α ∩ Mµ,k
β } is bounded in α. Then Σk+1(A

∗
v ↾ µ)-cof (α) = ω and

we apply induction to produce p = p0 ≥ p1 ≥ · · · so that pi+1 ↾ [βi, βi+1] obeys

SE(µ, k) where β0 < β1 < · · · is a cofinal ω-sequence of successor cardinals below

α. Let q = g.l.b. 〈pi|i ∈ ω〉.

This completes the proof of Sublemma 2.7 and hence of (∗∗)u. ⊣

Section Three Proof of Jensen’s Theorem

A condition in P is a function p from an initial segment of Card into V such

that Dom(p) has a maximum α(p), for any α ∈ Dom(p), p(α) = (pα, p̄α), if α ∈

Dom(p) ∩ α(p) then p(α) belongs to Rp
α+ , p(α(p)) = (s(p), ∅) where s(p) ∈ Sα(p)

and for uncountable limit cardinals α ∈ Dom(p), p ↾ α ∈ Ppα . And q ≤ p in P if

α(p) ≤ α(q), s(p) ⊆ qα(p) and for α ∈ Dom(p) ∩ α(p), q(α) ≤ p(α) in Rq
α+ .

For any α ∈ Card, s ∈ Sα, P
s denotes all p ↾ α for p ∈ P such that α(p) = α

and s(p) = s. And Pα denotes all p ∈ P such that α(p) < α.

Now suppose α is an uncountable limit cardinal and s ∈ Sα, |s| = α + 1. By

Lemma 2.2, G P-generic −→ G ∩ P<s is P<s-generic over A0
s = Lµ[A ∩ α], µ the

least p.r. closed ordinal greater than α. As the forcing relation for P<s restricted

to sentences of rank < α belongs to Lµ[A ∩ α], it follows that the forcing relation

p 
 ϕ, p ∈ P and ϕ ranked, is 〈L[A], A〉-definable: p 
 ϕ iff for some α as above, ϕ

has rank < α, p ∈ Lα[A] and Lµ[A ∩ α] |= “p 
 ϕ”, µ the least p.r. closed ordinal

> α.

Now note that P preserves cofinalities, as otherwise Ps would change cofi-

nalities for some s as above, contradicting Distributivity (Lemmas 2.4, 2.6) and

Chain Condition (Lemmas 1.2, 2.1). If G is P-generic then L[G] = L[X ] where
12



X = Gω ⊆ ω1. Finally by Jensen-Solovay [68], X can be coded by a real via a

CCC forcing. This completes the proof of Jensen’s Coding Theorem, subject to the

verification of Relativized � and ⋄.

Section Four Relatived Square and Diamond

For completeness, we prove Relativized � and ⋄. As relativization causes no se-

rious problems, we first establish unrelativized versions, and then afterward indicate

what modifications are required. We begin with �.

First we prove � in the following form:

Global � Assume V = L. Then there exists 〈Cµ|µ a singular limit ordinal〉 such

that:

(a) Cµ is CUB in µ

(b) ordertype (Cµ) < µ

(c) µ̄ ∈ LimCµ −→ Cµ̄ = C∩µ̄.

In the proof we shall take advantage of Jensen’s Σ∗ theory, as reformulated in

Friedman [94]. For the convenience of the reader we describe that theory here.

For simplicity of notation, for limit ordinals µ we let J̃µ denote Jα where

ωα = µ. So ORD(J̃µ) = µ.

Let M denote some Jα, α > 0. (More generally, our theory applies to “accept-

able J-models”.) We make the following definitions, inductively. We order finite

sets of ordinals by the maximum difference order: x < y iff α ∈ Y where α is the

largest element of (y − x) ∪ (x− y).

1) A Σ∗
1 formula is just a Σ1 formula. A predicate is Σ∗

1 (Σ∗
1, respectively) if

it is definable by a Σ∗
1 formula with (without, respectively) parameters. ρM1 = Σ∗

1

projectum of M = least ρ s.t. there is a Σ∗
1 subset of ωρ not in M and pM1 =

least p s.t. A ∩ ρM1 /∈ M for some A Σ∗
1 in parameter p (where p is a finite set of

ordinals). HM
1 = HM

ωρM
1

= sets x in M s.t. M -card (transitive closure (x)) < ωρM1 .

For any x ∈ M, M1(x) = First reduct of M relative to x = 〈HM
1 , A1(x)〉 where

A1(x) ⊆ HM
1 codes the Σ∗

1 theory of M with parameters from HM
1 ∪ {x} in the

natural way: A1(x) = {〈y, n〉| the nth Σ∗
1 formula is true at 〈y, x〉, y ∈ HM

1 }. A

good Σ∗
1 function is just a Σ1 function and for any X ⊆M the Σ∗

1 hull (X) is just

the Σ1 hull of X.
13



(2) For n ≥ 1, a Σ∗
n+1 formula is one of the form ϕ(x)←→Mn(x) |= ψ, where

ψ is Σ1. A predicate is Σ∗
n+1 (Σ∗

n+1, respectively) if it is defined by a Σ∗
n+1 formula

with (without, respectively) parameters. ρMn+1 = Σ∗
n+1 projectum of M = least ρ

such that there is a Σ∗
n+1 subset of ωρ not in M and pMn+1 = pMn ∪p where p is least

such that A ∩ ρMn+1 /∈ M for some A Σ∗
n+1 in parameter pMn ∪ p. H

M
n+1 = HM

ωρM
n+1

=

sets x inM s.t.M -card (transitive closure (x))< ωρMn+1. For any x ∈M,Mn+1(x) =

(n + 1) st reduct of M relative to x = 〈HM
n+1, An+1(x)〉 where An+1(x) ⊆ HM

n+1

codes the Σ∗
n+1 theory of M with parameters from HM

n+1 ∪ {x} in the natural way:

An+1(x) = {〈y,m〉| the m
th Σ∗

n+1 formula is true at 〈y, x〉, y ∈ HM
n+1}. A good Σ∗

n+1

function f is a function whose graph is Σ∗
n+1 with the additional property that for

x ∈ Dom(f), f(x) ∈ Σ∗
n hull (HM

n ∪ {x}). The Σ∗
n+1 hull (X) for X ⊆ M is the

closure of X under good Σ∗
n+1 functions.

Facts. (a) ϕ, ψΣ∗
n formulas −→ ϕ ∨ ψ, ϕ ∧ ψ are Σ∗

n formulas

(b) ϕΣ∗
n or

∏∗
n (= negation of Σ∗

n) −→ ϕ is Σ∗
n+1

(c) Y ⊆ Σ∗
n hull (X) −→ Σ∗

n hull (Y ) ⊆ Σ∗
n hull (X)

(d) f good Σ∗
n function −→ f good Σ∗

n+1 function

(e) Σ∗
n hull (X) ⊆ Σ∗

n+1 hull (X)

(f) There is a Σ∗
n relation W (e, x) s.t. if S(x) is Σ∗

n then for some e ∈ ω,

S(x)←→W (e, x) for all x.

(g) The structure Mn(x) = 〈H
M
n , An(x)〉 is amenable.

(h) HM
n = JAn

ωρM
n

where An = An(0).

(i) Suppose H ⊆ M is closed under good Σ∗
n functions and π : M −→ M,

M transitive, Range (π) = H and pMn−1 ∈ H (if n > 1). Then π preserves Σ∗
n

formulas: for Σ∗
nϕ and x ∈ M, M |= ϕ(x) ←→ M |= ϕ(π(x)). And (for n > 1),

π(pM̄n−1) = pMn−1.

Proof of (i) Note that H ∩Mn−1(π(x)) is Σ1-elementary in Mn−1(π(x)). And

π−1[H ∩Mn−1(π(x))] = 〈J
A
ωρ, A(x)〉 for some ρ, A,A(x). But (by induction on n)

A = AM
n−1 ∩ J

A
ωρ, A(x) = An−1(x)

M̄ ∩ JA
ωρ. And ρ = ρM̄n−1 using our assumption

about the parameter pMn−1. And π−1(pMn−1) = p̄ must be pM̄n−1 as M̄ = Σ∗
n−1 hull of

HM̄
n−1 ∪ {p

M̄
n−1}. ⊣

Theorem 4.1. By induction on n > 0 :
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1) If ϕ(x, y) is Σ∗
n then ∃y ∈ Σ∗

n−1 hull (HM
n−1 ∪ {x})ϕ(x, y) is also Σ∗

n.

2) If ϕ(x1 · · ·xk) is Σ∗
m, m ≥ n and f1(x), · · · , fk(x) are good Σ∗

n functions,

then ϕ(f1(x) · · ·fk(x)) is Σ∗
m.

3) The domain of a good Σ∗
n function is Σ∗

n

4) Good Σ∗
n functions are closed under composition.

5) (Σ∗
n Uniformization) If R(x, y) is Σ∗

n then there is a good Σ∗
n function f(x)

s.t. x ∈ Dom(f)←→ ∃y ∈ Σ∗
n−1 hull (HM

n−1 ∪ {x})R(x, y)←→ R(x, f(x)).

6) There is a good Σ∗
n function hn(e, x) s.t. for each x,Σ∗

n hull ({x}) =

{hn(e, x)|e ∈ ω}.

Proof. The base case n = 1 is easy (take Σ∗
0 hull (X) =M for all X). Now we prove

it for n > 1, assuming the result for smaller n.

1) Write ∃y ∈ Σ∗
n−1 hull (HM

n−1∪{x})ϕ(x, y) as ∃ȳ ∈ H
M
n−1ϕ(x, hn−1(e, 〈x, ȳ〉))

using 6) for n − 1. Since hn−1 is good Σ∗
n−1 we can apply 2) for n− 1 to conclude

that ϕ(x, hn−1(e, 〈x, ȳ〉)) is Σ
∗
n. Since the quantifiers ∃e∃ȳ ∈ H

M
n−1 range over HM

n−1

they preserve Σ∗
n-ness.

2) ϕ(f1(x) · · ·fk(x)) ←→ ∃x1 · · ·xk ∈ Σ∗
n−1 hull (HM

n−1 ∪ {x}) [xi = fi(x)

for 1 ≤ i ≤ k ∧ ϕ(x1 · · ·xk)]. If m = n then this is Σ∗
n by 1). If m > n then

reason as follows: the result for m = n implies that An(〈f1(x) · · ·fk(x)〉) is ∆1 over

Mn+1(x). Thus Am−1(〈f1(x) · · ·fk(x)〉) is ∆1 over Mm−1(x). So as ϕ is Σ∗
m we get

that ϕ(f1(x) · · ·fk(x)) is also Σ1 over Mm−1(x), hence Σ∗
m.

3) If f(x) is good Σ∗
n then dom(f) = {x|∃y ∈ Σ∗

n−1 hull of HM
n−1 ∪ {x}(y =

f(x))} is Σ∗
n by 1).

4) If f, g are good Σ∗
n then the graph of f ◦g is Σ∗

n by 2). And f ◦g(x) ∈ Σ∗
n−1

hull(HM
n−1∪{x}) since the latter hull contains g(x), f is good Σ∗

n and Fact c) holds.

5) Using 6) for n−1, let R(x, ȳ)←→ R(x, hn−1(ȳ))∧ ȳ ∈ H
M
n−1. Then R is Σ∗

n

by 2) for n− 1 and using Σ1 uniformization on (n− 1) s.t. reducts we can define a

good Σ∗
n function f̄ s.t. R(x, f̄(x))←→ ∃ȳ ∈ HM

n−1R(x, ȳ). Let f(x) = hn−1(f̄(x)).

Then f is good Σ∗
n by 4).

6) Let W be universal Σ∗
n as in Fact f). By 5) there is a good Σ∗

n g(e, x) s.t.

∃y ∈ Σ∗
n−1 hull(HM

n−1 ∪{x}) W (e, 〈x, y〉)←→ W (e, 〈x, g(e, x)〉) (and g(e, x) defined

−→ W (e, 〈x, g(e, x)〉)). Let hn(e, x) = g(e, x). If y ∈ Σ∗
n hull ({x}) then for some

e,W (e, 〈x, y′〉) ←→ y′ = y so y = hn(e, x). Clearly hn(e, x) ∈ Σ∗
n hull ({x}) since
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hn is good Σ∗
n. ⊣

Now we are ready to prove Global �. Assume V = L and let µ be a singular

limit ordinal. Our goal is to define Cµ, a CUB subset of µ. Let β(µ) ≥ µ be the least

limit ordinal β such that µ is not regular with respect to J̃β-definable functions, and

let n(µ) be least so that there is a good Σ∗
n(µ)(J̃β(µ)) partial function from an ordinal

less than µ cofinally into µ. Note that ρ
β(µ)
n(µ) ≤ µ as otherwise such a partial function

would belong to J̃β(µ), contradicting the leastness of β(µ). Also µ ≤ ρ
β(µ)
n(µ)−1, else

we have contradicted the leastness of n(µ).

For X ⊆ J̃β(µ) let H(X) = Σ∗
n(µ) hull of X in J̃β(µ). For some least parameter

q(µ) ∈ J̃β(µ), H(µ∪{q(µ)}) = J̃β(µ). (“Least” refers to the canonical well-ordering of

L.) Also let α(µ) =
⋃
{α < µ|α = H(α∪{q(µ)})∩µ}. Then (unless α(µ) =

⋃
∅ = 0)

α(µ) = H(α(µ) ∪ {q(µ)}) ∩ µ and α(µ) < µ. To see the latter note that for large

enough α < µ,H(α∪ {q(µ)}) contains both the domain and defining parameter for

a good Σ∗
n(µ) partial function from an ordinal less than µ cofinally into µ.

If µ < β(µ) let p(µ) = 〈q(µ), µ, α(µ)〉 and if µ = β(µ) let p(µ) = α(µ).

We are ready to define Cµ. Let C
0
µ = {µ̄ < µ| For some α, µ̄ =

⋃
(H(α ∪

{p(µ)}) ∩ µ)}. Then C0
µ is a closed subset of µ. If C0

µ is unbounded in µ then

set Cµ = C0
µ. If C

0
µ is bounded but nonempty then let µ0 =

⋃
C0

µ and define

C1
µ = {µ̄ < µ| For some α, µ̄ =

⋃
(H(α ∪ {p(µ), µ0}) ∩ µ)}. If C

1
µ is unbounded

then set Cµ = C1
µ. If C

1
µ is bounded but nonempty then let µ1 =

⋃
C1

µ and define

C2
µ = {µ̄ < µ| For some α, µ̄ =

⋃
(H(α ∪ {p(µ), µ0, µ1}) ∩ µ)}. Continue in this

way, defining Ck
µ for k ∈ ω until Ck

µ is unbounded or empty. Note that α0 > α1 >

· · · where αk is greatest so that
⋃
(H(αk ∪ {p(µ), µ0, · · · , µk−1}) ∩ µ) = µk, since

αk ∈ H(αk ∪ {p(µ), µ0, · · · , µk−1, µk}). So for some least k(µ) ∈ ω, C
k(µ)
µ is indeed

unbounded or empty. If C
k(µ)
µ is unbounded then set Cµ = C

k(µ)
µ .

If C
k(µ)
µ = ∅ then we choose Cµ to be an ω-sequence cofinal in µ, coding

approximations to the structure J̃β(µ), as follows. (This is necessary to establish

Relativized � (c).) Note that H = H({p(µ), µ0, · · · , µk(µ)−1}) is cofinal in µ since

C
k(µ)
µ = ∅. Assume first that n(µ) = 1, when Cµ is more easily described. Then

H is also cofinal in β(µ), else H ∈ J̃β(µ) and µ is singular inside J̃β(µ). Let h =

h1(e, x) be the canonical good Σ∗
1 Skolem function for J̃β(µ), so H = {h(e, p)|e ∈ ω}

where p = {p(µ), µ0, · · · , µk(µ)−1}. Let σ̄n = max({h(e, p)|e < n} ∩ µ) and σn =
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max({h(e, p)|e < n} ∩ β(µ)). Then Cµ = {δ0, δ1, · · · } where δn is an ordinal coding

TC(Σ∗
1 hull (σ̄n ∪ {p}) restricted to σn), where TC denotes “transitive collapse”.

By the Σ∗
1 hull of X restricted to σn we mean the closure of X under hδn , obtained

by interpreting the Σ∗
1 definition of h in J̃σn

.

Now suppose n(µ) > 1, C
k(µ)
µ = ∅. Then if ρ(µ) denotes ρµ

n(µ)−1, H is cofinal

in ρ(µ), else H ∈ J̃ρ(µ) and µ is singular in J̃ρ(µ). Let h be the canonical good

Σ∗
n(µ) Skolem function for J̃ρ(µ) and let p = {p(µ), µ0, · · · , µk(µ)−1}. Let σ̄n =

max({h(e, p)|e < n}∩µ), σn = max({h(e, p)|e < n}∩ρ(µ)). Then Cµ = {δ0, δ1, · · · }

where δn is an ordinal coding TC(Σ∗
n(µ) hull (σ̄n∪{p}) restricted to σn). The Σ

∗
n(µ)

hull of X restricted to σn is the closure of X under hσn , obtained by replacing the

(n(µ) − 1) st reduct Mn(µ)−1(x) by Mn(µ)−1(x) ↾ σn in the Σ∗
n(µ) definition of h.

(Recall that Mn(x) = 〈J
An

ωρM
n
, An(x)〉; by Mn(x) ↾ σ we mean 〈J̃An

σ , An(x) ∩ J̃
An
σ 〉.)

Clearly Cµ is CUB in µ, and by the same argument used to justify α(µ) < µ,

the ordertype of Cµ is less than µ. (These facts are obvious when C
k(µ)
µ = ∅.) So to

prove Global � we only need to check coherence: µ̄ ∈ LimCµ −→ Cµ̄ = Cµ ∩ µ̄.

Lemma 4.2. µ̄ ∈ Ck
µ −→ Ck

µ̄ = Ck
µ ∩ µ̄.

Proof. First suppose that k = 0. Given µ̄ ∈ C0
µ we can choose α < µ̄ such that

µ̄ =
⋃
(H(α∪{p(µ)})∩µ),whereH is the operation of taking the Σ∗

n(µ) hull. Also let

ρ =
⋃
(H(α∪{p(µ)})∩ρµ

n(µ)−1). Let π : J̃β̄ −→ J̃β(µ) be the inverse to the transitive

collapse of H = Σ∗
n(µ) hull (µ̄∪{p(µ)}) restricted to ρ. Note that any x ∈ H belongs

to H(µ′, ρ′) = Σ∗
n(µ) hull (µ′ ∪ {p(µ)}) restricted to ρ′, for some µ′ < µ̄, ρ′ < ρ and

µ′, ρ′ can be chosen to be in H. It follows that H ∩ µ = µ̄ and therefore when

µ < β(µ), π(µ̄) = µ. Also note that Σ∗
n(µ)−1 hull (ρ ∪ {p(µ)}) ∩ ρµ

n(µ)−1 = ρ,

so H is closed under good Σ∗
n−1 functions. It follows that π : J̃β̄ −→ J̃β(µ) is

Σ∗
n−1-elementary and µ̄ is Σ∗

n(µ)−1(J̃β̄)-regular, Σ
∗
n(µ)(J̃β̄)-singular. So β̄ = β(µ̄),

n(µ) = n(µ̄). Also π(q(µ̄)) = q(µ). Since α(µ̄) < α it must be that α(µ̄) = α(µ). So

π(p(η̄)) = p(µ). Now it is easy to see that C0
µ̄ = C0

µ ∩ µ̄.

Now suppose k = 1. The above argument shows that µ̄ ∈ C1
µ −→ C0

µ̄ = C0
µ ∩ µ̄

and hence, since µ0 < µ̄, µ̄0 = µ0. Now again, the above argument shows that

C1
µ̄ = C1

µ ∩ µ̄. The general case k ≥ 0 now follows similarly. ⊣

Coherence now follows easily: if µ̄ ∈ LimCµ and Cµ = Ck
µ then by Lemma 4.2,

Ck
µ̄ = Ck

µ ∩ µ̄ is unbounded in µ̄ so Cµ̄ = Ck
µ̄ and we’re done. If Ck

µ = ∅ for some k
17



then lim Cµ = ∅ so coherence is vacuous.

To establish the appropriate relativized form of � we need:

Lemma 4.3. Suppose π : 〈J̃µ̄, C̄〉
Σ1−→ 〈J̃µ, Cµ〉. Then C = Cµ̄ and π extends

uniquely to a Σ∗
n(µ)-elementary π̃ : J̃β(µ̄) −→ J̃β(µ) such that p(µ) ∈ Rng π̃.

Proof. First suppose that Cµ = Ck
µ for some k. For µ′ ∈ Cµ form H(µ′) as H

was formed in the proof of Lemma 2 for µ̄. Then π(µ′) : J̃β(µ′) −→ J̃β(µ) with

range H(µ′) is Σ∗
n(µ)−1-elementary and J̃β(µ) =

⋃
{H(µ′)|µ′ ∈ Cµ}. And π(µ′) ↾

µ′ = id ↾ µ′, π(µ′)(p(µ′)) = p(µ). Now let X = Range(π) and form X̃ = Σ∗
n(µ)

hull (X ∪ {p(µ)}) in J̃β(µ). If y ∈ X̃ then for some µ′ ∈ Cµ, y = π(µ′)(y′) where

y′ ∈ Σ∗
n(µ) hull ((X ∩ J̃µ′) ∪ {p(µ′)}). In particular if y ∈ J̃µ then y ∈ Σ∗

1 hull (X)

in 〈J̃µ, Cµ〉 = X. So the inverse to the transitive collapse of X̃ = π̃ is a Σ∗
n(µ)-

elementary embedding extending π, with p(µ) in its range. If π̃ : J̃β̄ −→ J̃β(µ)

then µ̄ = π̃−1(µ) is singular via a Σ∗
n(µ)(J̃β̄) partial function since either Σ∗

n(µ) hull

of µ′ ∪ {p(µ)} in J̃β(µ) is unbounded in µ for some µ′ <
⋃
(Rng(π) ∩ µ), in which

case we can assume µ′ ∈ Rng π and by Σ∗
n(µ)-elementary of π̃ we’re done, or if not

µ∗ = µ∩Σ∗
n(µ) hull (µ

∗∪{p(µ)}) in J̃β(µ) where µ
∗ =

⋃
(Rng π∩µ), contradicting the

definition of α(µ). Since µ̄ is Σ∗
n(µ)−1(J̃β̄)-regular, we get β̄ = β(µ̄), n(µ) = n(µ̄).

Then the Σ∗
n(µ)-elementarity of π̃ guarantees that C = Cµ̄. The uniqueness of π̃

follows from the fact that J̃β(µ̄) = Σ∗
n(µ) hull (µ̄ ∪ {p(µ̄)}) and π̃ ↾ µ̄ is determined

by π.

If Ck
µ = ∅ for some k then Cµ was defined as a special ω-sequence cofinal in µ.

That definition was made precisely to enable the preceding argument to also apply

in this case. ⊣

Relativized � Let S =
⋃
{Sα|α an infinite cardinal}. There exists 〈Cs|s ∈ S〉

such that Cs ∈ As and:

(a) Cs is closed, unbounded in µ0
s, ordertype (Cs) ≤ α(s).

If |s| is a successor ordinal then ordertype (Cs) = ω.

(b) ν ∈ Lim(Cs) −→ for some η < |s|, ν = µ0
s↾η and Cs ∩ ν = Cs↾η.

(c) Let π : 〈A, C〉
Σ1−→ 〈A0

s, Cs〉 and write crit(π) = ᾱ, A = Lµ̄[A, s̄
∗]. If

π(ᾱ) = α(s) then L[A, s̄∗] � |s̄| is not a cardinal > ᾱ and

(c1) C ∈ Lµ[A, s̄
∗] where µ is the least p.r. closed ordinal greater than µ̄ s.t.
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Lµ[A, s̄
∗] � card(|s̄|) ≤ ᾱ.

(c2) π extends to π′ : A′ Σ1−→ A′
s where A′ = Lµ′ [A, s̄∗], µ′ = largest ordinal

either equal to µ̄ or s.t. ω · µ′ = µ′ and Lµ′ [A, s̄∗] � |s̄| is a cardinal greater than ᾱ.

(c3) If ᾱ is a cardinal and π(ᾱ) = α then A = A0
s̄ and C = Cs̄.

Relativized ⋄ Let E = all s ∈ S such that ordertype (Cs) = ω. There exists

〈Ds|s ∈ E〉 such that Ds ⊆ A
0
s and:

(a) D ∈ Âs 6= A
0
s, D ⊆ A

0
s −→ {ξ < |s|

∣∣∣∣s ↾ ξ ∈ E,Ds↾ξ = D ∩ A0
s↾ξ} is

stationary in Âs.

(b) Ds is uniformly Σ1-definable as an element of A′
s.

(c) If A′
s � α

++ exists then Ds = ∅.

We now make the necessary modifications to obtain Relativized �. First, if µ

is a singular limit ordinal and J̃µ |= α is the largest cardinal then we thin out Cµ

to give it ordertype ≤ α : By induction on limit µ̄ ≤ µ define C∗
µ̄ as follows. For

µ̄ ≤ α, C∗
µ̄ = µ̄. Otherwise C∗

µ̄ = {ith element of Cµ̄|i ∈ C
∗
µ̄0

where µ̄0 = ordertype

(Cµ̄)}. This defines C∗
µ. It is easily verified that the C∗

µ enjoy all the properties of

the Cµ except they are only defined when µ is a singular limit ordinal such that

J̃µ |= There is a largest cardinal. In addition, ordertype C∗
µ ≤ α(µ), the largest

cardinal of J̃µ.

Now suppose V = L, α is a cardinal, s ∈ Sα, |s| > α and s is a 0-string, meaning

that s(µ) = 0 for all η ∈ Dom(s). Then we can choose our predicate A = ∅, define

Cs = C∗
µ0
s
and Relativized � will hold for such 0-strings. The final comment is that

all we have done will relativize to arbitrary strings s ∈ Sα, defined relative to an

arbitrary predicate A ⊆ ORD, Hα = Lα[A] for all cardinals α

Now we turn to Relativized ⋄. Again we begin with a nonrelativized version.

Let α be a cardinal and assume V = L.

⋄ on α+ Let E = all µ < α+ s.t. Cµ has ordertype ω. There exists 〈Dµ|µ ∈ E〉 s.t.

Dµ ⊆ J̃µ and:

(a) If D ⊆ J̃α+ then {µ ∈ E|D ∩ J̃µ = Dµ} is stationary in α+.

(b) Dµ is uniformly Σ1 definable as an element of J̃β′(µ) where β
′(µ) = largest

β s.t. either β = µ or ωβ = β and J̃β |= µ is a cardinal greater than α.

(c) If J̃β′(µ) |= α++ exists then Dµ = ∅.
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Proof. For µ ∈ E let Dµ = ∅ if J̃β′(µ) |= α++ exists and otherwise let 〈Dµ, Fµ〉 be

least in J̃β′(µ) such that Fµ is CUB in µ and µ̄ ∈ Fµ −→ µ̄ /∈ E or Dµ̄ 6= Dµ ∩ J̃µ̄.

If 〈Dµ, Fµ〉 doesn’t exist let Dµ = ∅. Properties (b), (c) are clear. To prove (a),

suppose it fails and let 〈D,F 〉 be least in J̃α++ such that D ⊆ J̃α+ , F is CUB in

α+ and µ ∈ F −→ µ /∈ E or Dµ 6= D ∩ J̃µ. Let σ be least such that ωσ = σ

and 〈D,F 〉 ∈ J̃σ. Then J̃σ |= α+ is the largest cardinal. Let H = Σ1 Skolem hull

of {α+} in J̃σ and µ =
⋃
(H ∩ α+). Then J̃β′(µ) is the transitive collapse of the

Σ1 Skolem hull of µ ∪ {α+} in J̃σ; let π : J̃β′(µ) −→ J̃σ have range equal to the

latter hull. Then we have a contradiction provided µ ∈ E. But the fact that H is

unbounded in µ implies that C0
µ = ∅ so ordertype (Cµ) is ω and µ ∈ E. ⊣

Now as with Relativized �, if V = L and α is a cardinal, s ∈ Sα is a 0-string in

E, |s| > α then we can choose A = ∅ and define Ds = Dµ0
s
where the latter comes

form ⋄ on α+. Finally, relativize everything to arbitrary reshaped strings s ∈ Sα

and an arbitrary predicate A ⊆ ORD, Lα[A] = Hα for all cardinals α.

This completes the proof of Relativized � and ⋄.
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