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Abstract
Numerous research methods have been developed to detect anomalies in the areas of security and risk analysis. In healthcare, 
there are numerous use cases where anomaly detection is relevant. For example, early detection of sepsis is one such use 
case. Early treatment of sepsis is cost effective and reduces the number of hospital days of patients in the ICU. There is no 
single procedure that is sufficient for sepsis diagnosis, and combinations of approaches are needed. Detecting anomalies in 
patient time series data could help speed the development of some decisions. However, our algorithm must be viewed as 
complementary to other approaches based on laboratory values and physician judgments. The focus of this work is to develop 
a hybrid method for detecting anomalies that occur, for example, in multidimensional medical signals, sensor signals, or other 
time series in business and nature. The novelty of our approach lies in the extension and combination of existing approaches: 
Statistics, Self Organizing Maps and Linear Discriminant Analysis in a unique and unprecedented way with the goal of 
identifying different types of anomalies in real-time measurement data and defining the point where the anomaly occurs. The 
proposed algorithm not only has the full potential to detect anomalies, but also to find real points where an anomaly starts.
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SOFA	� Sequential organ failure assessment
ICU	� Intesive care unit
SKAB	� Skoltech anomaly benchmark
NAB	� Numenta anomaly benchmark
MQTT	� Message queuing telemetry transport

1  Introduction

With the increased use of sensor technology, a special focus 
of scientific research is anomaly detection. It is performed by 
defining a region within the value space that represents nor-
mal behaviour, and finding information that does not belong 
to those regions. Anomaly detection in the medical field is 
an important problem that has been extensively studied and 
various of different deep learning approaches has been pro-
posed in different medical areas [1, 2]. Inconsistent behav-
ior of the different anomaly is a major challenge e.g heart 
rate in particular context can be normal while in a different 
context could indicate a health concern. On the other side, 
dynamic changes in monitoring environments could yield to 
higher false positive rates where normal examples appear as 
abnormal. The ability to recognize the sepsis disease as one 
of the leading cause of death in the world condition, as soon 
as possible provides the best chances for recovery. Although 
the medical societies have proposed a new criteria for sepsis 
recognition [3], early detection and treatment of sepsis is still 
challenging. When sepsis is detected, the organ damage is 
already progressed and leads to potentially irreversible stage. 
The general symptoms and signs of sepsis are non-specific, 
so we should look for specific signs e.g anomalies that will 
point us to the etiology of sepsis. Automatically initiating 
timely medical interventions that include the use of antibi-
otics, intravenous fluids, and targeted recovery treatments 
can halve the risk of dying. Patients with suspected sepsis 
should be referred immediately to an appropriate medical 
facility for the treatment of sepsis. Early treatment of sep-
sis is cost-effective, reducing the hospital days of patients 
in intensive care units. There is no unique technique that 
can be sufficient to diagnose sepsis and the combinations of 
different approaches are needed. A different studies based 
on patient retrospective data [4] that includes more than 40 
different patients features are used for optimal treatments 
strategy in sepsis disease and sepsis classification [5–7]. To 
the best of our knowledge, no study, based on the wave-
form vital sign parameters from patient bedside time series 
data, has been conducted in the context of sepsis disease and 
anomaly detection. However, our algorithm must be seen 
as complementary to other approaches based on laboratory 
signs and physician estimation. Early treatment of sepsis is 

cost-effective, reducing the hospital days of patients in inten-
sive care units. We tried to detect the moments of abnormali-
ties in patients times series data that could support physician 
decision and potentially leads to early treatment of sepsis 
disease. In our previous research, we developed a new hybrid 
algorithm for sepsis disease risk classification based on sta-
tistic, Dynamic Time Warping (DTW) and DTW Barycenter 
Averaging (DTW-DBA) [8]. Although we have obtained 
significant precision in risk detection within a certain inter-
val, the disadvantage of our approach is the impossibility of 
accurately defining the beginning of the event. . Addition-
ally, we also applied our algorithm for sensor signals based 
on integrated environmental sensors developed specifically 
for mobile applications and wearables. Since the Internet of 
Things (IoT) generates a tremendous amount of data, anoma-
lies occur as part of such a system. They can be related to 
problems like indicators for critical situations in industrial 
systems or like detecting an abnormal behavior in medical 
devices or patient data. Therefore, it is very important both 
to recognize anomalies in an early stage and also to identify 
the time instance where anomalies starts.

In this paper, we present hybrid models that are able to 
detect anomalies and find the time instances when anomaly 
starts or stops. Our proposed algorithm integrates multiple 
scientific fields by combining statistical methods, SOM 
and LDA and can identify different types of anomalies in 
real-time measured data and defines the point at which the 
anomaly occurs. The results show that the proposed algo-
rithm has not only the full potential to detect anomalies, but 
also to find real points when an anomaly starts.

2 � Related Works

In real-time applications, we have usually an insufficient 
amount of abnormal observations for model training. On the 
other side, sometimes it is very difficult to generate anoma-
lies according to the limitations of the system. Different sta-
tistical and Machine Learning (ML) methods are reported 
in the literature to address anomaly prediction issues, using 
historical and real-time data. The authors in [9] published a 
systematic review about different anomaly detection, analy-
sis and prediction approaches based on ML and statistical 
methods. They collected different scientific methods used 
in an intelligent inhabitant environment, transportation sys-
tems, smart objects and healthcare systems. They critically 
appraise research studies and synthesize findings quali-
tatively and quantitatively. The authors in [10] suggested 
detection and data recovery based on a multivariate statisti-
cal analysis approach that exploits spatial density. Research 
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study [11] uses a Gaussian mixture approach to detect the 
probabilistic abnormality in the sphere of motion, occupancy 
and door sensors. They use the mixture of a finite number of 
Gaussian distributions with unknown parameters to generate 
data points. Here the alerts are generated for specific activity 
event and weakness of this method is that no warning is gen-
erated in case of absence of activity event. The researchers in 
study [12, 13] proposed a hierarchical Markov model and a 
semi Markov model to predict sequential data and abnormal 
human behavior for embedded state sensors in smart home 
settings. An improved Hidden Markov model using frequent 
common patterns for anomaly detection is also suggested in 
medical studies [14, 15]. A major obstacle for using HMM 
for anomaly detection is the huge training time for behavio-
ral model construction.

The authors [16] in recent published study proposed 
model that uses spurious correlation coefficient to calcu-
late the graph entropy. The proposed model reduces the dis-
tance between two climate events with similar graph entropy. 
The focus of this research was to detect an abnormal graph 
from the dynamic graph instead of trying to detect changes. 
The proposed algorithm ignores the spatial information of 
the dynamic graph and could not recognize outliers with 
an abnormal neighbor structure. The study [17] proposed 
new approach for regression based on delegating classifi-
ers to predict radon concentration in soil gas concentration 
and anomalies by delegating the samples to the next lower 
level that do not meet the desired threshold. The authors 
[18] employed SOM for data clustering in the first phase 
and then applied the shortest path algorithm to recognize 
anomalous events. A method based on statistical measure 
percentiles is used in supervised learning over the patterns 
of normal behavior to detect abnormal long periods of inac-
tivity in a home [19]. Bayesian statistic and forecasting are 
used in many studies to define behavioral patterns, that are 
statistically estimated based on three probabilistic features: 
activation likelihood, sequence likelihood and event dura-
tion likelihood [20, 21]. As the authors conceded, that the 
amount of data to evaluate the models was small and should 
be increased.

Different ML techniques are also represented in the 
recent study to detect and predict anomaly behavior of the 
data. A new approach for anomaly detection using deep 
learning techniques with delayed prediction is represented 
in the recent study [22]. Authors in [23] introduced a novel 
computational approach based on Recurrence Quantifica-
tion Analysis. This approach is suitable for multivariate 
time series data and provides multiple predicted value 
candidates and selects that closest to the measured value 
as the predicted value. Authors in [24] proposed a long 

short-term memory based anomaly detection method 
for discord search from univariate time series data. The 
structural features from normal training data are learned 
and then using statistical strategy based on the prediction 
error for observed data anomaly detection is performed. 
The main disadvantage of this approach is that it can not 
be directly address multivariate sequences and bias exists 
in the selection of public data.

Algorithms based on clustering techniques work by 
grouping similar objects in a cluster and then assuming that 
the anomalies do not belong to any cluster, or are very far 
from the central cluster, or belong to clusters with low grav-
ity. Generally, k-nearest neighbours (kNN) anomaly detec-
tion schemes are classified into two categories: density-
based and distance-based schemes [25]. Combinations of 
self-adaptive and dynamic k-means are also used for training 
data to learn weights prior to anomaly detection [26]. SOM 
are introduced for anomaly detection in combination with 
the kNN approach and Particle Swarm Optimization (PSO). 
The authors in [27] use the competitive learning process 
of the SOM and data-clustering technique in the anomaly 
detection. Singular Value Decomposition (SVD) is also one 
of the most popular methods for anomaly detection [28–30]. 
Algorithms based on principal component classifier - Prin-
cipal Component Analysis (PCA) are also used with big-
dimensional data [31, 32]. The hybrid model that combine 
Recurrent Neural Networks and Convolutional Neural Net-
works with SVD is presented in the recent study [33]. The 
power of the LDA and Logistic Regression (LR) is also used 
as approach to solve problems of detecting atypical objects 
[34, 35]. To our knowledge, our proposed hybrid combina-
tion of statistic, SOM and LDA has not yet been studied in 
context of time series data.

3 � Methodology

3.1 � Step 1: Data Sets

Sensor data: We used measurements from fifteen IoT kits 
containing Bosh BME680 environmental data sensors 
[36]. These sensors measure humidity, air quality and tem-
perature. A Raspberry Pi was used as an access point and 
data sink for the IoT kits. The communication between the 
individual devices was performed via Message Queuing 
Telemetry Transport (MQTT). The Raspberry Pi publishes 
a measurement request via MQTT to what the kits listen 
and then respond with the measured values. The received 
measurements are then written into a database. All sen-
sors were placed on a table in the middle of the 9 m 2 room. 
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The window and the opposite door were opened for 5 min 
each hour to create anomalous measurements. Afterwards 
they were closed again for 55 min, as it was found that this 
time was necessary for the readings to settle back to normal 
levels.This information is used to validate our model. We 
defined different data sets using 5 min intervals, 30 minutes 
intervals and randomly generated time intervals for testing 
and validation. All data measurements are stored in Post-
gresSQL database. An visualisation of sensors measurement 
is presented by Fig. 1 .

Waveforms data: As written in [4], the MIMIC-III 
Waveform Database (MIMICWF) contains contains a huge 
number of recordings of multiple physiologic signals and 
time series of vital signs collected in an Intesive Care Unit 
(ICU). Numeric data from MIMICWF typically include 
heart and respiration rate, SpO2, systolic, mean and diastolic 
blood pressure with others as available [4]. The three vital 
sign measurements are used in this study: heart rate, respira-
tory rate and mean arterial pressure. As in vital sign time 
series data, we could not get information about the status of 
the patients’ diseases, we merged patients waveform data 
with Medical Information Mart for Intensive Care (MIMIC-
III) numeric data to get already labeled data by the differ-
ent Sepsis criteria [3]. Here we tried to recognize certain 
states of dysfunction and disease, but also tried to find the 
starting points of abnormal activity. The main idea behind 
our algorithm in the medical domain is to find out the best 
representative classes in the positive (disease) and negative 
(no-disease) direction.

The first decision to make for data splitting is to decide 
the proportion of data in the test set. Empirical studies show 
that the best results are obtained if we use 20–30% of the 
data for testing and the remaining 70–80% of the training 
[37, 38]. In our splitting choice, we followed the studies [39] 
that provided an explanation for this empirical result. Here, 
for fraction p of the data that goes into the training set, the 
idea is to select a pone out of all possible values p, for which 

the product between p and (p − 1) is the largest possible and 
it was for p between 0.7 and 0.8. Here we considered two 
factors: sample size and computation intensity. The sample 
size is large enough, so we used 30% for test data and 70% 
for data training. In order to estimate how well our model 
has been trained and to estimate the model properties, we 
used an external validation data set.

3.2 � Step 2: Data Transformation and SOM 
Classification

One of the most popular artificial neural network algo-
rithm in the unsupervised learning category is the SOM. 
SOM is a type of the artificial neural network, whose 
training is performed by unsupervised learning in order to 
obtain a low-dimensional discrete representation of input 
patterns. This discrete representation of data is called a 
map. Self-organizing folders store information on the 
topological properties of inputs by using the function 
of adjacent neurons. This model was first described as a 
neural network by Teuvo Kohonen [40], therefore these 
networks are also called Kohonen maps. SOMs work in 
two phases: learning and mapping. Learning builds a map 
using input patterns. The mapping classifies the input vec-
tor. Our proposed hybrid model with steps described in 
detail is presented in Figs. 2, 3 and 4.

The first step in Fig. 2 represents data acquisition and 
the definition of data sets. First, we divided the data set 
into a positive data set (data set with anomaly) and a nega-
tive data set (data set without anomaly). Following study 
[39], we divide the data set in a training and in a testing 
part. We used time series measurements from D different 
sensors Sd with n time series length. We mark with Nf  the 
total number of features used in our data set. Then, we can 
represent each feature’s measurement, in the form Eq. (1):

where d denote sensor index, i represent feature and k is time 
index, respectively. Thus, each sensor measurement can be 
presented by Eq. (2)

We provided descriptive statistics and an exploratory data 
analysis to find the approach to derive state space models 
from multiple time series data. Before we formed an input 
training vector for SOM, we represented data using the Han-
kel matrix [41]. Input-output data from Markov parameters 
are traditionally used to build the Hankel matrix, but there 
also exists the strategy where the Hankel matrix itself is 

(1)�i,d = [f
(1)

i,d
, ..., f

(k)

i,d
, ..., f

(n)

i,d
]T

(2)Sd = [�1,d, �2,d.., �Nf ,d
].
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Fig. 1   An example for signal representation- Sensor 1
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identified from input-output data as explained in [42]. For 
each sensor Sd and each feature i, i = (1, ..Nf ) , we con-
structed the Hankel matrix [41] �i,d , i = (1, ..Nf ) from �i,d , 
as it is represented in Eq. (3):

where an represents the last measurement in taken window 
size n. After we made transformation of input data in Hankel 
matrix trajectory, we calculated standard deviation �i

d
 over 

the each column in Hankel matrix �i,d . Similarly, we calcu-
lated the mean value �i

d
 for each column in Hankel matrix 

�i,d . Using above described statistical transformation, the 
final form of each input data is represented by Eq. (4)

For each series separately, we repeated the same procedure. 
We used the statistic knowledge and the Hankel matrix and 
the transformed one dimensional time series in the multidi-
mensional matrix Eq. (5)

(3)�i,d =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 a2 ... ar
a2 a3 .. ar+1
.

.

an−r an−r+1 .. an

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, where ak = f
(k)

i,d

(4)
�D =

[
�1,d, �2,d, ..�Nf ,d

,�1,d,�2,d, ..�Nf ,d

]T

where i = (1, ..Nf )

where X represents target input data for competitive learn-
ing (SOM). Here we trained SOM network S� to compute 
the class vectors of each of the training inputs. According 
to [43], we used M ∼ 5

√
N number of classes, where N rep-

resent number of observations and M is the total number of 
neurons. Taking into account to keep data variability, we 
tried made more trials to define the best class size to reduce 
the maximum number of neurons. Using this approach, we 
could also take into account the various window size and 
different time series lengths.

3.3 � Step 3: Evaluation of Best Classes

After applying data transformation and SOM unsupervised 
learning, our next steps, see Fig. 3, describe the approach 
to find the best representative classes for the state of anom-
aly and also the best representatives for the non-anomaly 
state. For each measurement ak of each input from the data 
set, using a trained SOM network, we defined a position 
as “1” if an element is a member of classc and as “0” 
otherwise

We calculated the membership to each class as it is pre-
sented in pseudo-code:

(5)X =
[
�1,�2, ..,�d, ..�D

]

LDA

2

LD coefficient L

predictor variables i=2

= + K

K-constant X –row vect. val

Error

... ...

...

... ... ...

...

... ...

Anomaly

No Anomaly

Fig. 4   (Algorithm design - 3.part )
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3.4 � Step 4: Membership Analysis and Error 
Estimation

The next step is to check the cumulative membership to the 
best classes �+ and �− . Let’s define by [���d]C+ and [���d]C− the 
cumulative membership to the best classes in positive and 
negative direction defined by Eq. (10):

For each training and testing element from the Ti , we calcu-
lated cumulative membership to the best classes in positive 
(anomaly) and negative (no-anomaly) direction. The final 
result will be as it follows by equations Eqs. (11) and (12):

(9)

C+ = {i ∣, d̂i ∈ Dmax},Dmax ⊆ D ∧ ∀d̂i ∈ Dmax ∶ d̂i ≥ d̂k,

∣ Dmax ∣= 𝛽, d̂k ∈ D ⧵ Dmax

C− = {i ∣, d̂i ∈ Dmin},Dmin ⊆ D ∧ ∀d̂i ∈ Dmin ∶ d̂i ≤ d̂k,

∣ Dmin ∣= 𝛽, d̂k ∈ D ⧵ Dmin

D = {d̂1, d̂2, ..., d̂m} 2𝛽 < m

(10)

[
���d
]
C+

=

n∑

l=1

∑

c ∈ �+

[
��

]
c,l

[
���d
]
C−

=

n∑

l=1

∑

c ∈ �−

[
��

]
c,l

For each relative frequency distribution over the each 
class 

[
�d
]
c
 we calculated the mean value over the each rows 

as it follows by Eq. (6):

After this step, four column vectors: �1, �2 , �3 and �4 with 
the same dimension (m × 1) are obtained. Let’s denote with 
�̂1,2 the mean value between �1 and �2 . Similarly, for �̂3,4 we 
calculated the mean value between �3 and �4 as it follows 
Eq. (7):

The calculated final difference in Eq. (8):

is used to find the best representative classes for anomaly 
and the best representative classes for non-anomaly. Let’s 
define in Eq. (9) with C+ and C− the best � representative 
classes for anomaly and non-anomaly respectively:

(6)

�1 =
1

h

∑

d∈T1

�d �2 =
1

q

∑

d∈T2

�d

�3 =
1

l

∑

d∈T3

�d �4 =
1

w

∑

d∈T4

�d

(7)�̂1,2 =
1

2
(�1 + �2)�̂3,4 =

1

2
(�3 + �4)

(8)�̂ = �̂1,2 − �̂3,4 =
[
d̂1, d̂2, ..., d̂m

]T
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Now, we calculate how many elements from (11) and (12) 
have 𝛾 [i]

C+

> 𝛾
[i]

C−

 and vice versa as it is defined in (13):

(11)�+
1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
[1]

C+
�
[1]

C−

�
[2]

C+
�
[2]

C−

....

....

�
[h]

C+
�
[h]

C−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�+
2
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
[h+1]

C+
�
[h+1]

C−

�
[h+2]

C+
�
[h+2]

C−

....

....

�
[q]

C+
�
[q]

C−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)�−
3
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
[q+1]

C+
�
[q+1]

C−

�
[q+2]

C+

�
[q+2]

C−

....

....

�
[q+l]

C+

�
[q+l]

C−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�−
4
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
[q+l+1]

C+

�
[q+l+1]

C−

�
[q+l+2]

C+

�
[q+l+2]

C−

....

....

�
[w]

C+

�
[w]

C−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For each dataset Ti, i = (1, 2, 3, 4) using (13), we calculated 
the cardinality of a set as it is presented in (14):

The final error is calculated by (15) as it follows:
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Fig. 5   SOM visualization



	 International Journal of Computational Intelligence Systems           (2022) 15:50 

1 3

   50   Page 10 of 16

3.5 � Step 5: Linear Discriminant Model

After we finalized the previous steps, our next goal is to create 
a linear model representation using the LDA. The goal is to 
build a model as linear combination of the best predictors (in 

our case the best classes), that the best separates two classes 
(in our case: anomaly and no-anomaly). In this step we aim 
at investigating how to build a linear model from the previ-
ous steps using the best � classes. LDA performs dimensional 
reduction while preserving as much of the class discrimina-
tory information as possible. As we only have information 
that anomaly exists in a data set, without knowing the pre-
cise moment, we defined two classes 0 (no -anomaly) and 1 
(anomaly). The training and testing data set for LDA contain 
the elements from 

[
�d
]
c
 reduced to the best � classes. Using the 

linear type of discriminant function, we classify [44, 45] each 
row of the data according to the relative frequency distribu-
tion over the best � classes into one of the groups “+” or “−” 
and calculate the posterior matrix � , unconditional predictive 
probability density of the sample observations �log as well as 
constant K and � linear coefficients Li describing the boundary 
between the regions separating each pair of groups. The final 
model is presented in 4 and given by Eq. (16).
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Fig. 7   Anomaly detection for Sensor1 using proposed approach [40, 44]

Table 1   The results: Angus 
criterion [3]

Interval (h) Positive Negative Precision Recall F1 LDA error

4 78 78 0.64 0.63 0.64 36.53
8 73 73 0.67 0.75 0.71 34.01
12 72 72 0.68 0.81 0.74 34.00
24 59 59 0.58 0.68 0.63 36.97
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where 
[
�d
]
i
 represents relative frequency distribution for the 

best � classes. Using the proposed approach, we used exter-
nal validation data set to investigate how good the model 
could classify the new case in domain.

(16)D =
∑

i∈{C+,C−}

Li◦
[
�d
]
i

4 � Results

In the first step, we implemented our approach using 
measurements collected over 15 sensors during a 24 h 
interval. To create different datasets, we defined data-
sets through different time intervals (5, 15 and 30 min). 
For example, we used 30 minutes data intervals with 

Table 2   The results: Martin 
criterion [3]

Interval (h) Positive Negative Precision Recall F1 LDA error

4 33 33 0.68 0.79 0.73 29.10
8 33 33 0.77 0.73 0.75 27.61
12 33 33 0.74 0.78 0.76 27.69
24 25 25 0.73 0.88 0.80 27.00

Table 3   The results: CDC 
criterion [3]

Interval (h) Positive Negative Precision Recall F1 LDA error

4 138 146 0.62 0.64 0.63 37.27
8 130 142 0.60 0.67 0.63 37.09
12 129 135 0.66 0.66 0.66 38.24
24 81 81 0.66 0.74 0.70 34.06

Table 4   The results: Sepsis3 
criterion [3]

Interval (h) Positive Negative Precision Recall F1 LDA error

4 210 73 0.82 0.69 0.75 35.74 %
8 203 71 0.84 0.70 0.76 35.63 %
12 192 67 0.80 0.68 0.74 36.25 %
24 123 43 0.80 0.74 0.77 31.82%

Table 5   The results:The results: 
SOFA criterion [3]

Interval (h) Positive Negative Precision Recall F1 LDA error

4 240 43 0.92 0.79 0.85 32.85
8 231 42 0.92 0.78 0.84 31.41
12 224 41 0.91 0.77 0.83 31.53
24 135 26 0.91 0.72 0.80 28.81

Table 6   The results: all 
criterion satisfied [3]

Interval Positive Negative Precision Recall F1 LDA error

90 min 50 31 0.93 0.78 0.85 17.87
4 h 49 31 0.91 0.86 0.88 17.40
8 h 48 32 0.86 0.88 0.87 21.15
12 h 44 29 0.89 0.89 0.89 19.23
24 h 38 16 0.95 0.92 0.93 7.67
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measurements collected over every 10 seconds from 15 
sensors. Every hour, we generated 5 minutes of anom-
aly. The best results (presented in the next figures) are 
obtained using a 30 minutes data interval. We used as 
SOM parameter 25 classes and trained the SOM network. 

The SOM weights that presented the weight distribu-
tion from the i-th input to the layer’s neurons are shown 
in Fig. 5a. The most negative connection is shown as 
black, zero connections as red, and the strongest posi-
tive connections as yellow. The neuron locations in the 

Fig. 8   Vital sign measurements and statistic transformation
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topology that indicates how many of the training data are 
associated with each of the neurons are shown in Fig. 5b. 
The presented topology is a 5-by-5 grid, so there are in 
total 25 neurons. The maximum number of hits associ-
ated with any neuron is 194. Thus, there are 194 input 
vectors in that cluster. SOM Neighbor Weight Distances 
are described by Fig. 5c.The graphical representation of 
the best classes and histogram for the sensor example are 
given in Fig. 6. As result, we can conclude that the best 
five representative classes for anomaly are 1, 16, 12, 22 
and 13, and the best five representative classes for non-
anomaly are classes 10, 19, 5, 15 and 20.

As we have information about the existence of anom-
aly for intervals, we could validate the proposed approach 
not only to recognize anomaly, but also to find the time 
instance when the anomaly stars (time: 10:00, interval 
9:45–10.15). Using LDA, we built a linear model using 
the best classes that we got in the previous steps. As we 

have information that each hour an anomaly starts and 
remains for the duration of 5 minutes, we can validate our 
approach and check how well our proposed model recog-
nizes the anomaly and if it recognizes it, how precise it is 
with respect to the time point. The final output of the lin-
ear and SOM classification for the above mentioned time 
interval is given by Fig. 7.

We also tried to apply our algorithm over the patient’s 
MIMICWF matched dataset. We applied our algorithm 
over 964 patients from matched subset of MIMICWF data. 
The 3 vital sign parameters are used in this study: heart 
rate, mean arterial pressure and respiratory rate. As the 
length of vital sign measurements is different for the indi-
vidual patients, using our approach, we tested the model 
over different window size. We defined different window 
size (over 4, 8, 16 and 24 hours) and applied our algo-
rithm over the data that are labeled by different criterion 
[3]: Angus, Martin, CDC, Sepsis3 and Sequential Organ 
Failure Assessment (SOFA). We also defined different 
numbers of classes to find the best representative classes 
for diseases.We tried to identify specific pattern for dis-
ease patients and using LDA we tried to identify interval 
points of “disease” behavior. Furthermore, we also created 
one data set where we selected patients that were posi-
tive (negative) for all criterion and then applied algorithm 
over that data set. The final results for patient dataset (the 
one admission) are represented in the  Tables 1, 2, 3, 4, 
5 and 6.

We tried to apply our algorithm for data set of 171 
patients (Table 6), where patients are positive if they are 
labeled in all criterion as positive (102 patients) and simi-
larly we found all patients that are labeled as negative (69 
patients) by all criterion. Here we investigated also interval 
100 min. The results are presented as follows:

The final results shows that the best sensitivity results 
by algorithm over 4 hours is for the SOFA criterion as it 
is represented in Table 5 . The worst results we get for the 
CDC criterion in Table 3. An example of original vital sign 
with the final results of classification is presented in Fig. 8.

Additionaly, we evaluate our anomaly detection algo-
rithm using open sourced anomaly detection benchmarks: 
Skoltech Anomaly Benchmark (SKAB) [46], Yahoo Web-
scope [47] and Numenta Anomaly Benchmark (NAB)NAB 
[48]. SKAB dataset contain a multivariate time series 
collected from the sensors installed on the test bed. We 
used data from experiments with normal mode (no-anom-
aly) and data obtained from the other experiments (with 
anomaly). As it is explained [49], in NAB cases where 
univariate time series are included, the anomaly labeling 
mechanism is sometimes not relevant because window size 
is marked as anomalous even when in that window exists 
probably only 1–2 points that are anomalous. We used 
synthetic anomaly and no-anomaly NAB dataset. In the 

Table 7   The results of algorithm evaluation [46–48]

Dataset Precision Recall F1 LDA error

SKAB [46] 0.71 1 0.83 19.55
YahooA1 [47] 1 0.51 0.68 32
YahooA2 [47] 0.75 0.90 0.81 22
YahooA3 [47] 0.80 0.90 0.84 14.5
NAB synthetic data [48] 0.66 1 0.80 10

Table 8   Average performance on the data set groups for different 
algorithms [50] vs our hybrid algorithm (H-algorithm)

Dataset Algorithm Precision Recall F1

YahooA1 SVM 0.46 0.76 0.58
YahooA1 kNN 0.44 0.76 0.56
YahooA1 Arima 0.41 0.75 0.73
YahooA1 AdVec 0.44 0.48 0.46
YahooA1 H-algorithm 1 0.51 0.68
YahooA2 SVM 0.82 0.98 0.9
YahooA2 kNN 0.48 0.98 0.65
YahooA2 Arima 0.4 0.97 0.57
YahooA2 AdVec 1 0.29 0.45
YahooA2 H-algorithm 0.75 0.90 0.81
YahooA3 SVM 0.83 0.64 0.72
YahooA3 kNN 0.87 0.68 0.76
YahooA3 Arima 0.66. 0.54 0.60
YahooA3 AdVec 1 0.02 0.03
YahooA3 H-algorithm 0.80 0.90 0.84
SKAB Conv-AE [51] 0.70
SKAB MSET [46] – – 0.73
SKAB LSTM [46] – – 0.64
SKAB H-algorithm 0.71 1 0.83
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next Fig. 9, we present one result from anomaly labeled 
NAB data.

As the last anomaly benchmark dataset, we used public 
available Yahoo Webscope dataset, that contains synthetic as 
well as real data. The anomalies in Yahoo A1 Benchmark are 
marked by humans and therefore may not be consistent [47]. 
All other Yahoo dataset are sythetic. The highest F1 score 
is obtained for Yahoo A3 synthetic dataset and the lowest 
result is obtained using Yahoo A1 dataset. The results are 
presented in the Table 7:

We also investigated the other machine learning 
approaches and made a comparison to our hybrid approach 
(Table  8) . The results demonstrate that our algorithm shows 
comparable performance in Yahoo A1, Yahoo A3 and SKAB 
dataset with a slight favor for support vector machines for 
A2 dataset.

5 � Conclusion

In our approach, we demonstrated how the hybrid model 
using statistical methods, neural networks and discrimi-
nant analysis could be applied to solve a complex anomaly 
problem not only in the area of smart sensors, but also in 
complex medical problems using medical big data. Our pro-
posed model has potential to detect anomalies, positions of 
the objects and the real moment when the anomaly starts. 
Using the validation data set (time series data that are not 
presented to our model in the training or testing phase) the 
algorithm correctly identify anomalies and sensor types 
(number). The algorithm detects the real time point when 
anomaly starts with 93 percent of accuracy. In the case of 
only one sensor, the algorithm detects an existing anomaly 
10 seconds later than it really starts. We also used time 
series data for vital signs and tried to apply our model 
to detect anomalies in patient behavior and to recognize 
diseases.

The algorithm shows also the potential to recognize 
“disease” behavior over the time series data where we use 
only 3 vital sign parameters. The best results of classifica-
tion we got for patient data set where we included patients 
that were positive/negative by all criterion with precision 
of 0.95 and Recall over 0.92. Modeling and validation of a 
proposed approach is performed in Python, MATLAB and 
PostgreSQL environment. The next phase of our research 
will be focused on the fusion of the proposed model with 
genetic algorithms and Stochastic Petri Nets. Our goal is to 
optimize the parameters of the proposed model by genetic 
algorithms and apply it on the results derived by Stochastic 
Petri Nets to improve classification strategy.
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