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Abstract
The causes of market inefficiency are many. We suggest an additional cause — 
buyers’ random entry order. In a market where identical sellers compete for buyers 
of heterogeneous valuations, first come first served is the norm. Since all buyers 
choose the cheapest available good, a low-valuation buyer who enters the market 
late may find the remaining goods unaffordable, which causes markets not to clear. 
We therefore propose a coordination solution to the market inefficiency problem. 
We find that in a market where all the high-valuation buyers enter first and all the 
low-valuation buyers enter afterwards, the market clears effectively. Moreover, we  
find the inefficiency arising from buyers’ entry order becomes less of a problem in 
larger economies and vanishes in the limit.

Keywords Market efficiency · Coordination · Random entry

JEL Classification D47 · L11

1 Introduction

The standard causes of market inefficiency are related to externalities or informa-
tional problems that manifest in the pay-off relevant private information of some  
market participants (see [1–6]). Adverse selection [7–9] and signalling [10, 11] are  
prominent examples. In this article, we point out an additional phenomenon that  
gives rise to inefficient outcomes. It pertains to the order in which market partici-
pants enter the market. When there are, say, buyers with heterogeneous valuations, 
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and capacity-constrained sellers who price the goods before the buyers enter, the 
sellers typically use mixed strategies in pricing. The low pricing sellers trade with 
every buyer. Other sellers take some risk and target high-valuation buyers. The risk 
arises as buyers always choose the cheapest goods available. If high-valuation buy-
ers enter first, there are only high-priced goods left to the low-valuation buyers, and 
not all possible trades are consummated.

Consider, as an example, an online dating network where women and men search 
for partners. Women post the selection criteria of desired men such as hobbies, job, 
education, height and age. Men read the posts and contact the women if they think 
they meet the criteria. As a matter of fact, the men regard the women with low or 
few criteria as more attractive than the selective women because the chance of a 
match is higher. The criteria can be looked upon as implicit prices. Women and men 
are in the roles of sellers and buyers. Of course, the dating markets are much more 
complicated but for this example we assume that the women are pretty much alike 
except for the criteria they post. We also assume that once a woman receives a con-
tact, she leaves the dating network immediately so that there is no further search. 
Therefore, in this setting, the matches that form depend mainly on the price level 
(the posted selection criteria) and men’s timing of entering the market (the time they 
start searching online). Entering the dating network too late results in a lower chance 
of finding a match since the less picky women are not anymore in the market.

This observation about the importance of entry order can be used to study the 
value of coordination in markets where prices and competition amongst the sellers 
do not solve the problem. We employ a setting where there are equal numbers of 
sellers and buyers. The sellers are identical and each of them has a unit of an indi-
visible good for sale. The buyers are of two types. Half of them are low-valuation 
buyers whose reservation price is v < 1 , and the other half are high-valuation buyers 
with reservation price unity. Each buyer has unit demand for the good.

Our market setting is without any inherent frictions, like physically separated 
sellers, or private information of the market participants. We model the market as a  
two-stage game. In the first stage, the sellers set the prices to which they are com-
mitted to. In the second stage, the buyers arrive in the market in a random order, and 
each buyer chooses the cheapest remaining good if the price is below his valuation. 
This setting, without the possibility to revise prices, depicts the essence of the mech-
anism. It would still be present in a dynamic setting where prices could be adjusted 
if not all goods find a buyer. The high-valuation buyers would, of course, anticipate 
this, and they would not trade immediately. The dynamic setting would resemble the 
model of bargaining with one-sided incomplete information where the uninformed 
party makes the offers. This is covered in Fudenberg, Levine and Tirole.1 It is clear 
that the equilibrium in our market setting would exhibit pricing in mixed strategies, 
and decreasing prices in time but they would depend on the number of goods sold 
each period. As this is random, it seems a complicated problem to figure the equilib-
rium of the dynamic setting.

1 See Fudenberg et al. [17]. Infinite-Horizon Models of Bargaining with One-Sided Incomplete Informa-
tion. Game-theoretic models of bargaining, Cambridge University Press, West Nyack, NY, pp.73-98.
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We analyze three different scenarios. In the benchmark which captures the problem of 
the entry order, the buyers enter the market in a random order, and in a symmetric equi-
librium the sellers use mixed strategies in pricing. The remaining cases constitute the two 
polar ways of coordinating the buyers’ order of entry to the markets. In one case, all the 
low-valuation buyers enter the market first, and get the low-priced goods before the high-
valuation buyers. The equilibrium pricing is in mixed strategies, but the competition for 
the high-valuation buyers is more intense than in the benchmark case. As a result, the 
allocation is also more inefficient; in fact, this is the worst case from the efficiency point 
of view. In the other case, all the high-valuation buyers enter the market first. It turns out 
that the sellers’ symmetric pricing strategy is a pure one where every seller asks price v. 
All the possible trades are consummated, and there are no inefficiencies.

Studying the polar cases is useful and interesting for several reasons. First, one 
is able to pinpoint how the competition for a fixed resource, i.e. the high-valuation 
buyers, affects the outcome in a market setting with price competition. Secondly, 
the first policy reaction to the resulting inefficiency of the benchmark case, where 
some low-valuation buyers remain unserved, is likely to be that low-valuation buy-
ers should enter first. But this does not take into account the sellers’ response in 
pricing, and consequently it is instructive to show what happens in this case. Finally, 
the other polar case leads to efficiency and as we show in Sect. 5 it is implementable 
in a decentralised fashion without any policy intervention.

What is notable is that in all three cases the sellers’ expected pay-off is v; what-
ever the buyers do the sellers can respond in a way that retains their expected pay-off 
constant. For this reason, the value of coordination can be evaluated by considering 
the buyers only. We stress that the value of coordination does not arise from there 
being more resources available nor there being equilibria that can be Pareto-ranked; 
in all the cases, there is exactly one symmetric equilibrium. The inefficiencies arise 
because of the order in which the buyers enter the market, and for efficiency com-
parison, the ordering is the only thing we vary.

One would expect that if the markets are small strategic behaviour causes inef-
ficiencies, and as the market grows it becomes less important. This turns out true in 
our model. When the number of agents in the economy grows in such a way that the 
resources per capita remain constant, strategic behaviour vanishes; it becomes more 
and more probable that the sellers choose price v. In the limit, the equilibrium is  
efficient regardless of the order of entry by the buyers.

We follow [12] and measure the market (in)efficiency using the ratio between the 
expected value created and the value created if the market clears. In the benchmark 
case, we attain explicit expressions for the inefficiency, and we show that the ineffi-
ciency vanishes quite quickly as the economy grows. The case where the low-valuation 
buyers enter the market first is more complicated in terms of explicit expressions but  
we provide an approximate solution and conduct numerical analysis. We find that the 
inefficiencies are much more substantive, and vanish much more slowly than in the 
benchmark case as the economy grows. In the case where the high-valuation buyers 
enter the market first, the market clears and the outcome is efficient.

We are not aware of literature that focuses directly on market performance where 
the order in which the participants enter the market is studied. Of course, the value 
of coordination is recognised in a multitude of settings. For instance, almost by 
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definition, any model of congestion demonstrates the value of coordination. In traf-
fic settings, taxes and tolls are proposed in [13] and [14].

There are many reasons why achieving coordination is difficult without an outside 
party but the number of participants is clearly one of the most important. Knez and 
Camerer [15] suggest that coordination succeeds in a two-player game but difficul-
ties arise in a group of three or more players. Albrecht [16] uses a market setting to 
study a coordination problem. He studies it in a (imperfectly) competitive matching 
market with sunk investments which features Pareto-ranked equilibria. An outcome is 
deemed a coordination failure if the corresponding equilibrium is not Pareto-optimal. 
He shows that with sufficient heterogeneity of the participants all the equilibria are 
efficient once the solution concept is refined to trembling-hand perfectness.

The rest of the article is organised as follows. In Sect. 2, we develop a benchmark 
model where buyers enter the market in a random order. We derive the equilibrium strat-
egy for sellers and analyze market efficiency. In Sect. 3, we study the coordination model 
where buyers of one type enter the market before the other type. In Sect. 4, we provide 
numerical solutions for the equilibrium strategies and measures for market efficiency.  
We compare the results of the benchmark and the coordination games and discuss how 
market size, buyers’ valuation and coordinative actions affect market efficiency. In 
Sect. 5, we discuss the logic of coordination. In Sect. 6, we conclude the article.

2  Benchmark Model: Random Entry Order

We call the benchmark where buyers enter the market in a random order the Random 
Entry case and use the superscript R to represent it. We call the case where low-valuation 
(high-valuation) buyers enter the market first the Low-valuation (High-valuation) case 
and use the superscript L (superscript H) to represent it.

Consider an economy where there are 2n sellers (she), each with a unit of an indivis-
ible good, serving 2n buyers (he).2 The good is perishable so the unsold items cannot 
be put into the resale market with discounted prices.3 The sellers are identical, while the 
buyers are of two types. Half of the buyers value the good at unity and the other half 
at v < 1.4 All of this are common knowledge. The game is static and in two stages. In 
stage one, the sellers make the pricing decisions; once the prices are posted, the sellers 
do not adjust them. In stage two, the buyers enter the market in a random order. The 
choice set for each buyer is binary: he buys if his valuation is higher than the lowest 
available price, and otherwise he does not buy. All the sellers are in the same location 
so that the buyers can see all the prices and then choose the lowest-priced good.

2 If there are more sellers than buyers, a Bertrand-outcome where the sellers reduce the price to zero 
ensues. If there are more buyers than sellers, sellers will set high prices to target the high-valuation buy-
ers and leave some (or all) low-valuation buyers unserved. The profit will attract more sellers to enter the 
market. Equal numbers of buyers and sellers would be the outcome if we had an entry stage with entry 
cost c < v . We do not model this.
3 One can also think that the discount rate is so high that static analysis is sufficient.
4 One can make the buyers more valuable by increasing v or decreasing the proportion of low-valuation 
buyers; of these two ‘free’ variables, we fix the proportion of low-valuation buyers.
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We impose the following assumption.

Assumption 1 The valuation v of the low-type buyers is less than 1/2.

If v is higher, the equilibrium is a pure strategy one where each seller asks price 
v. Assumption 1 guarantees that the pricing is in mixed strategies, and that there is 
something to analyze.

We study symmetric equilibrium which is as simple as it gets since only the sellers 
have a strategic decision to make. A buyer’s optimal behaviour is to buy the cheapest 
good in the market as long as its price does not exceed his valuation. To derive the 
sellers’ pricing strategies, we first show that there is no pure strategy equilibrium. 
Note that most of the technical or long proofs are relegated to the Appendix 1.

Lemma 1 A symmetric pure strategy equilibrium does not exist in the Random Entry 
case.

Proof We prove by contradiction. Suppose there is a pure strategy equilibrium such 
that the sellers set the price at p′ . Assume first that p� = v . A seller who deviates and 
asks price p = 1 makes a trade if the last buyer to the market has a high valuation. 
This happens with probability one-half, and consequently the deviator’s expected 
pay-off is 1

2
> v.

Next, we show that no p� ∈ (v, 1] can be an equilibrium. In this price range, a seller 
makes a trade with probability one-half, and has expected pay-off 1

2
p′ . Asking a price 

p� − � results in a trade for certain and for small � , this is clearly a profitable deviation.
Finally, it is clear that a price less than v or greater than unity cannot constitute an 

equilibrium.   ◻ 

Next, we derive those features of the symmetric mixed strategy equilibrium we 
need in our analysis. It is clear that the sellers have a mass point �R

(n)
 at price v, and 

with probability 1 − �R
(n)

 they use a continuous mixed pricing strategy G on some 
interval [a, 1] where v < a < 1.5 This means that in equilibrium the sellers target 
consumers of both types, or the probability �R

(n)
 cannot be zero. Otherwise, 2n sellers 

would compete for n high-valuation buyers and leave all the low-valuation buyers 
unserved. The outcome would be similar to Bertrand competition where the sellers 
reduce the price to v.

As we are interested in the performance of the market, we need not solve the 
mixed strategy but it is enough to determine �R

(n)
 . It allows us to solve the probabili-

ties for all the possible numbers of unsold items. We find the following result.

Lemma 2 The expected number of unsold goods is n(1 − �R
(n)
).

5 The subindex refers to the size of the economy. We study three different scenarios with corresponding 
superindices, R,H and L.
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Next, we determine �R
(n)

 the probability that the sellers ask price v. The prices are 
either at v or continuous in the range of [a, 1] where v < a < 1 . In equilibrium, a 
seller’s pay-off from asking price v must equal the pay-off from asking price 1.

Denote a seller’s expected pay-off by U(p) where p is the price she asks.6 If a 
seller asks price v, she trades for certain. Therefore, her expected pay-off is

If a seller asks price p = 1 , we need to consider two cases. If fewer than half of the sell-
ers set their price at v, that is j < n , the seller does not trade regardless of the buyers’ entry 
order. Unity would be too expensive for the low-valuation buyers and high-valuation buy-
ers choose lower-priced goods. If at least half of the sellers set price at v, that is j ≥ n , the 
buyers’ entry order determines the trading probability. Let the indicators 1{j<n} and 1{j≥n} 
represent the two cases discussed above. The expected pay-off from price p = 1 is

The index j in the binomial sum keeps track of remaining n − 1 sellers who choose 
price p = v . The seller under study, with price p = 1 , makes a sale only if all the n 
low-valuation buyers are amongst the first j ≥ n buyers to arrive in the market. The 
number of ways this can happen is given by the numerator in the second term in the 
brackets; the denominator is the total number of ways one can choose j buyers from 
2n buyers. The pay-offs in Eqs. (1) and (2) should be equal in equilibrium. Imposing 
equality, and simplifying, we determine the probability that sellers ask price v.

(1)U(v) = v ⋅ 1 = v.

(2)

U(1) =

2n−1∑
j=0

(
2n − 1

j

)(
𝜌R
(n)

)j(
1 − 𝜌R

(n)

)2n−1−j[
1{j<n} ⋅ 0 + 1{j≥n} ⋅

(
n

j−n

)(
n

n

)
(
2n

j

) ⋅ 1
]
.

(3)

v =

2n−1∑
j=0

(
2n − 1

j

)(
𝜌R
(n)

)j(
1 − 𝜌R

(n)

)2n−1−j[
1{j<n} ⋅ 0 + 1{j≥n} ⋅

(
n

j−n

)(
n

n

)
(
2n

j

) ⋅ 1
]

=

2n−1∑
j=n

(
2n − 1

j

)(
𝜌R
(n)

)j(
1 − 𝜌R

(n)

)2n−1−j

(
n

j−n

)
(
2n

j

)

=
1

2

2n−1∑
j=n

(
n − 1

j − n

)(
𝜌R
(n)

)j(
1 − 𝜌R

(n)

)2n−1−j

=
1

2

n−1∑
j=0

(
n − 1

j

)(
𝜌R
(n)

)n(
𝜌R
(n)

)j(
1 − 𝜌R

(n)

)n−1−j

=
1

2

(
𝜌R
(n)

)n

⇒ 𝜌R
(n)

= (2v)1∕n.

6 Of course, the pay-off depends on the prices of all the other sellers but we suppress this dependence.
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This gives us what we need from the equilibrium strategy in a market where the 
buyers enter in a random order.

Proposition 1 In the Random Entry case, the symmetric mixed strategy equilibrium 
is such that the sellers ask price v with probability �R

(n)
 given by

  ◻

Following [12], we measure the market efficiency by

where TR is the ex ante expected value created in equilibrium, and T is the total 
value created from trades that would be generated if the market cleared. MR

(n)
= 1 

indicates the most efficient case and MR
(n)

= 0 the least efficient.7 We find that MR
(n)

 
increases in n and approaches 1 as n grows without bound.

This shows that in a large economy the inefficiency vanishes. Furthermore, fixing n, 
MR

(n)
 is U-shaped in v. The lowest value is at ṽ where the derivative equals zero.

We depict the behaviour of MR
(n)

 numerically in Sect. 4. The interpretation is as follows. 
When v is close to zero, the only thing that matters for efficiency is trading with the high-
valuation buyers. At the same time, competition for them is great as witnessed by the value 
of �R

(n)
 which is close to zero. The value of potential trades is also dominated by the high-

valuation trades, and the economy is close to efficiency. When v grows also the low- 
valuation buyers increase in importance and the value created in equilibrium (TR) increases.

When v is just below 1
2
 , the sellers take hardly any risk of not trading in equilib-

rium, and once again the economy is close to efficiency. As TR is convex and T lin-
ear in v, the efficiency measure reaches its minimum somewhere between zero and 

�R
(n)

= (2v)1∕n.

(4)

MR
(n)

=
TR

T
=

Value created by trades

Value created under market clearing
=

n ⋅ 1 + n ⋅ �R
(n)

⋅ v

n ⋅ 1 + n ⋅ v
=

1 + (2v)1∕nv

1 + v

𝜕MR
(n)

𝜕n
= −

21∕n ⋅ v1+1∕n log(2v)

n2(1 + v)
> 0 and lim

n→∞
MR

(n)
=

1 + 1 ⋅ v

1 + v
= 1.

�MR
(n)

�v
=

−n + 21∕nv1∕n(1 + n + v)

n(1 + v)2
= 0.

𝜕TR

𝜕v
= n(2v)1∕n

(
1 +

1

n

)
> 0.

7 As the high-valuation buyers always trade, the minimum value in our model is 1

1+v
 . An alternative 

would be to calculate which percentage of the potential gains are achieved, or (2v)
1∕nv

v
 , which would result 

in more impressive values of inefficiency. Also, assuming that there is a production cost 𝛾 < v that has to 
be paid whether a seller trades or not would make the inefficiency more pronounced.
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one-half. At the left endpoint of the interval, competition for the high-valuation buy-
ers is the greatest, and at the right endpoint of the interval, there is no competition 
at all for the high-valuation buyers. The graphs for T and TR are in the Appendix 2.

We have established that the buyers’ random entry to the markets associated with the 
sellers’ capacity constraints lead to pricing in mixed strategies. This gives rise to inefficient 
outcomes where not every profitable trade is consummated. As Expression (4) shows, in a 
small economy, market efficiency largely depends on the low-type buyers’ valuation for the 
good, while in a large economy the dependency as well as inefficiency vanishes.

3  Coordination

3.1  Low‑Valuation First

In this section, we analyze the model where the buyers coordinate on the entry order. To 
start with, we consider the case where all the low-valuation buyers enter the market first 
and all the high-valuation buyers enter after them. This could be the first reaction to the 
inefficiency of the previous section where the low-valuation buyers cannot trade as the 
high-valuation buyers who enter before them grab the low-priced goods. But this turns 
out to be a bad solution, or the worst possible, as it ignores the sellers’ reaction to the entry 
order. When the low-valuation buyers enter first, the competition for the high-valuation 
buyers is the highest, and consequently the inefficiencies are also at their highest level.

Lemma 3 A symmetric pure strategy equilibrium does not exist in the Low-valuation 
case.

Proof The argument is similar to that in Lemma 1. We prove by contradiction. Suppose 
there is a pure strategy such that the sellers choose the price p′ . First, p� = v cannot be 
an equilibrium. A seller who deviates to p = 1 makes a trade for certain as the last buyer 
to enter the market is a high-valuation one. The deviator gets the expected pay-off 1 > v.

Next, p� ∈ (v, 1] cannot be an equilibrium. At price p′ , sellers only get to trade 
with the high-valuation buyers and get expected pay-off p�∕2 . A seller who deviates 
to a slightly lower price p = p� − � makes a trade with a high-valuation buyer for 
certain. For any small � , the deviator gets a higher pay-off p� − �.

Clearly, any price less than v or higher than 1 cannot be an equilibrium. This com-
pletes the proof.  ◻ 

We know that the equilibrium must be in a mixed strategy such that there is a 
mass point at price p = v , and a continuous part on [b, 1] , v < b . Denote the prob-
ability that the sellers ask price v by �L

(n)
 . The pay-off of asking price v must be 

equal to that of asking price unity. In the former case, a seller makes a trade for 
certain. To determine the probability of trade in the latter case, we denote by j the 
number of the sellers who set price at v. If fewer than half of the sellers choose v, 
that is j < n , only j low-valuation buyers trade and the rest, n − j , remain 
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unserved. The high-valuation buyers who enter the market choose the cheapest 
goods available. Therefore, the seller with price p = 1 does not trade.

If at least half of the sellers choose v, that is j ≥ n , all buyers are served and 
the market clears. Thus, the indifference condition is given by

where the probability �L
(n)

 is the solution to the above equation.

Lemma 4 For any n > 0 and v ∈ (0, 1∕2) , the solution to the probability of asking 
price v, �L

(n)
 , is unique.

We analyze �L
(n)

 numerically in Sect. 4. Here we sketch the proof of the existence 
of the limit of �L

(n)
 when n grows without bound; a rigorous proof is in Appendix 1. 

We then provide an approximate solution to �L
(n)

 for large values of n.

Lemma 5 As n grows without bound �L
(n)

 approaches 1/2.

Proof Think of {�L
(n)
}∞
n=1

 as a sequence of real numbers satisfying Eq. (5) and denote 
the limit of the sequence by �̂� if there exists any. Let S2n−1 = Bin

(
2n − 1, �L

(n)

)
 repre-

sent a sum of 2n − 1 Bernoulli-�L
(n)

 random variables Xj . We have

Standardising by subtracting the mean and dividing by the standard deviation, the 
right-hand side of the above equation is equal to

Denote the cumulative distribution function of 
S2n−1−(2n−1)�

L
(n)√

(2n−1)�L
(n)(1−�n)

 by F2n−1 . Then, the 

above expression is equivalent to

where an =
n−1−(2n−1)�L

(n)√
(2n−1)�L

(n)(1−�n)
 . The central limit theorem implies that F2n−1

(
an
)
≈ Φ

(
an
)
  

where Φ is the distribution function of the standardised normal distribution. If �L
(n)

 

(5)

U(1) = U(v)

⇔

2n−1∑
j=n

(
2n − 1

j

)(
�L
(n)

)j(
1 − �L

(n)

)2n−1−j

= v,

2n−1∑
j=n

(
2n − 1

j

)
�j
n

(
1 − �n

)2n−1−j
= 1 − Pr

(
S2n−1 ≤ n − 1

)
.

1 − Pr

⎛
⎜⎜⎜⎝

S2n−1 − (2n − 1)�L
(n)�

(2n − 1)�L
(n)

�
1 − �n

� ≤

n − 1 − (2n − 1)�L
(n)�

(2n − 1)�L
(n)

�
1 − �n

�
⎞
⎟⎟⎟⎠
.

(6)1 − F2n−1

(
an
)
,
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approaches anything but one-half, then an approaches either plus or minus infinity, Eq. 
(5) cannot hold, i.e. �L

(n)
≈ 1∕2.   ◻ 

Next, we define the probability �L
(n)

 of choosing the low price p = v in terms of 
quantity b(n) that can be determined from the distribution function of the stand-
ardised normal distribution, and which is used in the numerical analysis.

Lemma 6 For large values of n, the probability of asking price v is approximately 
given by

where

and y is determined by Φ(y) = 1 − v.

Note that Lemma 6 can be used to verify the result in Lemma 5. Equation (15) 
shows that b(n) decreases in n and converges to zero. The approximation of �L

(n)
 , as 

shown in Eq. (16), thus converges. The limit is8

�L
(n)

=

√
2 + b(n) −

�
2 +

�
b(n)

�2
2b(n)

b(n) =
y√
n

8 As �L
(n)

 approaches one-half, it may seem that Condition X(�L
(n)
) = 0 cannot hold for large n because v 

can be anything less than one-half. The resolution is that �L
(n)

 grows slowly with n so that the condition 
remains valid. We check the rate of convergence. Assuming, for instance, that v = 0.1 , we have

from which we get

Note that the Z-table is required for the value of y. Therefore we have

The sequence �L
(n)

 converges to 1/2 sublinearly and logarithmically. The rate of convergence is 1.

1 − Φ(y) = 0.1 or Φ(y) = 0.9

y ≈ 1.28 or b(n) ≈
1.28√

n
.

�L
(n)

=

√
2 + b(n) −

�
2 + b2

(n)

2b(n)

=

√
2 +

1.28√
n
−

�
2 + (

1.28√
n
)2

2
1.28√

n

⇒ lim
n→∞

��n+1 − 1∕2�
��n − 1∕2� = 1 and lim

n→∞

��n+2 − �n+1�
��n+1 − �n� = 1.
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Based on the analysis above, we get

Proposition 2 In the Low-valuation case, the symmetric mixed strategy equilibrium 
is such that the sellers ask price v with probability �L

(n)
 which is the solution to the 

indifference condition

The probability �L
(n)

 approaches 1/2 when the economy grows without bound.

The total ex-ante value created in equilibrium is given by

The first sum represents the value created if less than half of the sellers asks 
price v, or j < n . In this case, j low-valuation and n high-valuation buyers are 
served, leaving n − j goods unconsumed. The second sum represents the value 
created if at least half of the sellers ask price v, or j ≥ n . In this case, all the buy-
ers are served. Thus, the measure of market efficiency becomes

3.2  High‑Valuation First

Next we cover the other polar case where the high-valuation buyers enter the mar-
ket first and the low-valuation buyers after them. The high-valuation buyers buy 
the lowest-priced goods, which may leave some (or all) of the low-valuation buy-
ers unserved depending on how many low-priced goods remain by the time they 
enter the market. This, of course, depends on the sellers’ pricing strategy.

Consider a pure strategy p = v that generates expected profit v. There is no 
profitable deviation from this strategy. A deviation to price p′ > v leads to no 
trade and zero profit. A deviation to price p′ < v ensures trade with one of the 
high-valuation buyers but generates a profit less than v. There is also not a sym-
metric mixed strategy equilibrium as in the previous section as the highest pric-
ing seller would not trade at all. We state this reasoning as

𝜌L
(n)

→ 1∕2 ∶= �̂�.

2n−1∑
j=n

(
2n − 1

j

)(
�L
(n)

)j(
1 − �L

(n)

)2n−1−j

= v.

n−1∑
j=0

(
2n

j

)(
�L
(n)

)j(
1 − �L

(n)

)2n−j

(j ⋅ v + n ⋅ 1) +

2n∑
j=n

(
2n

j

)(
�L
(n)

)j(
1 − �L

(n)

)2n−j

(n ⋅ v + n ⋅ 1).

(7)

ML
(n)

=
TL

T
=

Value created by trades

Value created under market clearing

=

∑n−1
j=0

�2n
j

��
�L
(n)

�j�
1 − �L

(n)

�2n−j

(j ⋅ v + n ⋅ 1) +
∑2n

j=n

�2n
j

��
�L
(n)

�j�
1 − �L

(n)

�2n−j

(n ⋅ v + n ⋅ 1)

n ⋅ 1 + n ⋅ v
.
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Proposition 3 In the High-valuation case, the symmetric equilibrium is a pure pric-
ing strategy p = v.

Proof The reasoning above shows that p = v constitutes a pure strategy equilibrium. 
It is clear that there are no other pure strategy equilibria. Neither are there symmet-
ric mixed strategy equilibria. The lowest price in the support is not less than v, and 
let the highest price be p̄ > v . It is clear that there is not a mass point at p̄ , and con-
sequently any seller asking p̄ would trade with probability zero.   ◻ 

In equilibrium, all the sellers get v, and buyers of both types are served clear-
ing the market. The value of the efficiency measure is therefore MH = TH∕T = 1 
regardless of the market size which is indexed by n.

4  Comparison

In this section, we conduct numerical analysis, and compare the models of Sects. 2 
and 3.1. We discuss how market size, the valuation of low-type buyers and the buy-
ers’ entry order affect market efficiency.

Table 1 reports the numerical solutions for the probabilities �R
(n)

 , as solved explic-
itly in Eq. (3), and �L

(n)
 , as shown in Eq. (5), or Lemma (6). The market size is 4n 

Table 1  The probabilities of asking price v in the benchmark and the coordination cases

a The first column of the table shows the values of n. The number of sellers and buyers are both 2n which 
make the size of the economy 4n

 Valuation (v)

Market size 
indexed by na

0.1 0.2 0.3 0.4

�L
(n)

�R
(n)

�L
(n)

�R
(n)

�L
(n)

�R
(n)

�L
(n)

�R
(n)

2 0.1958 0.4472 0.2871 0.6325 0.3633 0.7746 0.4329 0.8944
3 0.2466 0.5848 0.3266 0.7368 0.3898 0.8434 0.4463 0.9283
4 0.2786 0.6687 0.3501 0.7953 0.4052 0.8801 0.4539 0.9457
5 0.3010 0.7248 0.3661 0.8326 0.4156 0.9029 0.4590 0.9564
6 0.3177 0.7647 0.3779 0.8584 0.4232 0.9184 0.4627 0.9635
7 0.3309 0.7946 0.3870 0.8773 0.4290 0.9296 0.4656 0.9686
8 0.3415 0.8178 0.3944 0.8918 0.4337 0.9381 0.4679 0.9725
9 0.3504 0.8363 0.4004 0.9032 0.4376 0.9448 0.4698 0.9755
10 0.3579 0.8513 0.4056 0.9124 0.4408 0.9502 0.4713 0.9779
50 0.4360 0.9683 0.4579 0.9818 0.4737 0.9898 0.4873 0.9955
100 0.4547 0.9840 0.4702 0.9909 0.4814 0.9949 0.4910 0.9978
1000 0.4857 0.9984 0.4906 0.9991 0.4941 0.9995 0.4972 0.9998
2000 0.4899 0.9992 0.4933 0.9995 0.4959 0.9997 0.4980 0.9999
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where the values of n are chosen from 2 to 2000. The low-valuation types are given 
four different valuations v ∈ {0.1, 0.2, 0.3, 0.4} . As n grows, the probability �R

(n)
 in 

the Random Entry case approaches 1 while the probability �L
(n)

 in the Low-valuation 
case approaches 1/2 for each v. It is also clear that �R

(n)
 and �L

(n)
 increase in v, holding 

n constant.
Figure 1 illustrates how the valuation v affects the equilibrium probabilities, espe-

cially in small economies. The values of �L
(n)

 at v = 0.1 (green dots) are much lower 
than at v = 0.4 (red dots) for small values of n. When the economy grows, dots in 
both colours move upwards, as the arrow points. The green curve increases quickly 
and gets very close to the red one at n = 30 . For sufficiently large n, say n ≥ 45 , the 
values of �L

(n)
 are close to 1/2 and become much less dependent on the selection of v. 

The trend for �R
(n)

 is very similar, as illustrated in blue (for v = 0.1 ) and grey dots (for 
v = 0.4).

We report the measures of market efficiency in Table 2. The columns with MR
(n)

 
measure the performance in the Random Entry case given in Eq. (4), and the columns 
with ML

(n)
 in the Low-valuation case given in Eq. (7). The market size is given by 4n 

where n ∈ {5, 10, 50, 100} . The low-valuation buyers’ valuation, v, ranges from 0.1 
to 0.475. We find that the values of market efficiency in both models vary in the 
same way but differ in levels. In each column, n is constant and the valuation v varies. 
We find that both MR

(n)
 and ML

(n)
 decrease first and then increase. The cut-off points 

are highlighted in the blue cells. For each pair of n and v, MR
(n)

 is always larger than 
ML

(n)
 . It shows that when the buyers enter the market randomly, market inefficiency is, 

by comparison, a smaller problem. Buyers’ coordination in the Low-valuation case 
results in a greater level of inefficiency. In each row, v is constant and n increases. We 
find that the higher the valuation v, the higher MR

(n)
 and ML

(n)
 are. The values of market 

efficiency approach 1 as v approaches 0.5.
Figure 2 illustrates how the efficiency measures MR

(n)
 and ML

(n)
 change in v when n 

gets values of 5 and 10. They are all U-shaped curves with different minimum points. 
Given n = 5 , the value of MR

(n)
 (magenta dots) drops slightly until it reaches the lowest 

Fig. 1  The comparison of the probabilities
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point 0.971, after which it rises. Meanwhile, the value of ML
(n)

 (brown dots) is much 
smaller. It starts from 0.962 (at v = 0.1 ), moves downwards to the lowest point 0.947 (at 
v = 0.275 ) and increases thereafter. For n = 10 , MR

(n)
 and ML

(n)
 follow a similar pattern, 

as illustrated in orange (for MR
(n)

 ) and cyan dots (for ML
(n)

 ). The cause of the shape for 
MR

(n)
 has been discussed in the benchmark case and the same argument applies to ML

(n)
 . 

Recall that market efficiency is measured by the ratio between the total ex ante value 
created from trades that each equilibrium generates ( TR, TL and TH ) and the total value 
created when the market clears (T). We provide the graphs for TR and T in Appendix 2.

Note that the measure of market efficiency (MH
(n)
) is 1 in the High-valuation case, 

as described in Proposition 3. Therefore, such coordination effectively solves the 
market inefficiency problem.

Table 2  The measures of the market efficiencies

Fig. 2  The comparison of the market efficiencies
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5  Discussion

A natural starting point to study the lack of coordination, and the resulting ineffi-
ciencies, is to assume that the buyers enter the market in a random order. This leads 
to pricing by mixed strategies, and indeed, to inefficient outcomes as some high 
pricing sellers are left with low-valuation buyers for whom the prices are too high.

We compare this to two polar cases, one in which the low-valuation buyers enter 
first, and the other in which the high-valuation buyers enter first. The former might 
be regarded as a natural solution to the problem that the early entering high-valuation 
buyers acquire the low-priced goods leaving low-valuation buyers without trading 
opportunities. This, however, ignores the sellers’ reactions, and it turns out that fewer 
trades are consummated and more goods are wasted than in the benchmark.

When the low-valuation buyers arrive first, competition for the high-valuation 
buyers is the fiercest as the probability of asking the low price v is the smallest. 
In the model, competition manifests as high prices contrary to the standard mar-
ket setting where competition lowers prices, and competition in our setting is harm-
ful. That competition is not necessarily beneficial is no big news but the point is 
rarely made in a market setting. The underlying reason for the inefficiency is that the 
high-valuation buyers are a fixed and valuable resource, and competition for a fixed 
resource tends to be wasteful.

In the other case, the high-valuation buyers enter first. This turns out to be the 
most efficient order of entry; as the high-valuation buyers are the first in the market, 
there is no need to compete for them. Rather, the pricing, where all the sellers ask 
price v, reflects the fear of not being able to trade. The situation is very much like the 
sellers facing a downward sloping demand curve. This entry order is the choice of a 
social planner, and it can also be rationalised by the following informal argument.

Assume that the market is opened at a predetermined time and the buyers arrive 
in random order to a queue. This corresponds to our benchmark case. Consider the 
high-valuation buyers in the queue, and allow each of them to ask the person just 
before them whether the person would like to swap positions for a small sum of 
money. Each low-valuation buyer would be willing because they expect no more in 
the market than buying a good worth v at price v.

If this procedure is allowed to go on for sufficiently many rounds, the end result 
is that all the high-valuation buyers are before the low-valuation buyers in the queue. 
Notice that no high-valuation buyer is willing to pay enough to another high-valuation 
buyer to swap places. As far as the sellers understand what is going to happen, they 
revise their pricing strategy accordingly. This shows that in principle there is a decen-
tralised solution to the potential inefficiencies and no policy measures are needed.

6  Conclusion

Efficiency considerations are of central interest in any market-mediated activity, 
and there are many causes of inefficiency. In this article, we study an issue that has 
not received much attention, that is, the buyers’ entry order. We employ a simple 
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game where identical sellers compete for the buyers of heterogeneous valuations. 
We derive the sellers’ equilibrium pricing strategies, and find that in the benchmark 
model where the buyers enter the market in a random order, the sellers use mixed 
strategies in pricing. In equilibrium, not all the low-valuation buyers trade, which 
results in an inefficient outcome. We then compare the equilibrium results in the 
benchmark with those of two extreme cases of coordination where the same type 
buyers enter the market at the same time. We find that the sellers react to the buyers’ 
new entry order by changing their pricing in a way that retains the level of equilib-
rium pay-off constant. In each of these three cases, the symmetric equilibrium is 
unique.

We then measure the performance of the market by the ratio between the ex ante 
expected value created and the total value created when the market clears. This com-
parison provides us with a measure of inefficiency, and also an understanding of 
how it vanishes as the economy grows. It is notable that in the limit the inefficiency 
vanishes regardless of the buyers’ order of entry. The order only affects the speed of 
convergence to the efficient outcome.

Some real-life markets where the entry order may be important include markets 
for goods that do not keep very well such as fish. The resale markets for tickets to 
concerts or comparable events are such that high pricing sellers often do not manage 
to sell their tickets. Also, small labour markets, say for a particular occupation, with 
firms in the role of sellers and job seekers in the role of buyers may fit our theoreti-
cal framework.

Appendix 1. Proof of Lemmas

Proof of Lemma 2

Proof Denote the number of sellers who ask price v by j. We first note that if fewer 
than half of the sellers ask price v, that is, if j < n , the number of unsold goods var-
ies between n − j (if the low-valuation buyers happen to enter the market first) and n 
(if the high-valuation buyers happen to enter the market first). The probability that 
the number of unsold items is n − j + k , k ∈ {0, 1, ..., j} , is given by 
Pr(n − j + k) =

( n

j−k
)(n

k
)

(2n
j
)

 . In the denominator, there is the number of ways to choose j 

from a total of 2n buyers in the market. In the numerator, there is the product of 
choosing j − k low-valuation buyers and k high-valuation buyers amongst the first j 
buyers.

Analogously, when j ≥ n , the number of unsold goods varies between zero, if 
the low-valuation buyers happen to enter the market first, and 2n − j , if the high-
valuation buyers enter first. The probabilities of unsold goods are given by 
Pr(k) =

( n

j−(n−k)
)( n

n−k
)

(2n
j
)

 , k ∈ {0, 1, ..., 2n − j}.

The expected number of unsold goods, when j < n , is given by

50   Page 16 of 22 Operations Research Forum (2022) 3: 50



1 3

This event happens with probability 
(
2n

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

 . Consequently, the 
ex ante expectation of the number of unsold goods, conditional on j < n , is given by

where �R
(n)

 is the probability that sellers set the price at v. By Vandermonde’s iden-
tity, we have 

∑j

k=0

�
n−1

j−k

��
n

k

�
=
�
2n−1

j

�
 . Therefore, the last equality is simplified to

When j ≥ n , the expected number of unsold goods is given by

This event happens with probability 
(
2n

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

 . Consequently, the 
ex ante expectation of the number of unsold goods, conditional on j ≥ n , is given by

Again, by Vandermonde’s identity, we have 
∑2n−j−1

k=0

�
n

2n−j−1−k

��
n−1

k

�
=
�

2n−1

2n−1−j

�
 . 

Therefore, the last equation is equivalent to

(8)
j∑

k=0

(
n

j−k

)(
n

k

)
(
2n

j

) (n − j + k).

j∑
k=0

(
n

j−k

)(
n

k

)
(
2n

j

) (n − j + k)

(
2n

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

=

j∑
k=0

(
n

j − k

)(
n

k

)
(n − j + k)

(
�R
(n)

)j(
1 − �R

(n)

)2n−j

=

j∑
k=0

n

(
n − 1

j − k

)(
n

k

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

(9)
(
2n − 1

j

)
n
(
�R
(n)

)j(
1 − �R

(n)

)2n−j

.

(10)
2n−j∑
k=1

(
n

j−(n−k)

)(
n

n−k

)
(
2n

j

) k.

2n−j∑
k=1

(
n

j−(n−k)

)(
n

n−k

)
(
2n

j

) k

(
2n

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

=

2n−j∑
k=1

(
n

j − (n − k)

)(
n

n − k

)
k
(
�R
(n)

)j(
1 − �R

(n)

)2n−j

=

2n−j∑
k=1

n

(
n

2n − j − k

)(
n − 1

k − 1

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

by

(
n

j − (n − k)

)
=

(
n

2n − j − k

)

=

2n−j−1∑
k=0

n

(
n

2n − j − 1 − k

)(
n − 1

k

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

.
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From Expressions (9) and (11), the expected number of unsold goods for any j is 
given by

Denote the distribution function of a random variable with density Bin(p, n) by 
F(p, n, x) . The above expression is equivalent to

which reduces to n
(
1 − �R

(n)

)
 . This completes the proof of Lemma 2.   ◻ 

Proof of Lemma 4

Proof Inspired by Eq. (5), we define the function

We show that for any n > 0 and v ∈ (0, 1∕2) , there exists a unique solution 
�L
(n)

∈ (0, 1) satisfying X(�L
(n)
) = 0 . X(�L

(n)
) is clearly continuous. X(0) = −v < 0 and 

X(1) = 1 − v > 0 . By the intermediate value theorem, there exists at least one � such 
that X(�) = 0 . Also by X�(𝜌L

(n)
) > 0 on the interval (0,  1),9 the function X(�L

(n)
) is 

monotonically increasing. Therefore for each pair (n, v), the solution to Equation (5) 
is unique in the range of (0, 1).   ◻ 

Proof of Lemma 5

By Barry-Esseen theorem

(11)n

(
2n − 1

2n − 1 − j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

.

n−1∑
j=0

n

(
2n − 1

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

+

2n−1∑
j=n

n

(
2n − 1

2n − j − 1

)(
�R
(n)

)j(
1 − �R

(n)

)2n−j

= n
(
1 − �R

(n)

) n−1∑
j=0

(
2n − 1

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−1−j

+ n
(
1 − �R

(n)

) 2n−1∑
j=n

(
2n − 1

j

)(
�R
(n)

)j(
1 − �R

(n)

)2n−1−j

.

n
(
1 − �R

(n)

)[
F
(
�R
(n)
, 2n − 1, n − 1

)
+
(
1 − F

(
�R
(n)
, 2n − 1, n − 1

))]

(12)X(�L
(n)
) =

2n−1∑
j=n

(
2n − 1

j

)(
�L
(n)

)j(
1 − �L

(n)

)2n−1−j

− v.

9 The formula of X�(�L
(n)
) is available upon request.
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Since F2n−1

(
an
)
= 1 − v for all n, we get

Next, we show that �L
(n)

 does not converge to zero or unity, and to simplify we 
denote it by �n . First, we have

Consequently, 4�n ≥ (2v)
1

n , and limn→∞ �n ≥
1

4
.

By the same reasoning

and from this we get 4
(
1 − �n

)
≥ (2(1 − v))

1

n . Taking limits, we get limn→∞

(
1 − �n

)
≥

1

4
limn→∞ (2(1 − v))

1

n =
1

4
.

Since the sequence 
{
�L
(n)

}
 belongs to a compact set, to show convergence to 1

2
 , it 

is enough to show that every convergent subsequence converges to one-half. From 
the reasoning above, we see that for large enough n we have 1

8
< 𝜌L

(n)
<

7

8
 . This 

means that the right-hand side of (13) goes to zero when n grows indefinitely. Con-
sequently, we have Φ

(
an
)
limn→∞ 1 − v ∈

(
1

2
, 1
)
.

Note that an =
√
n
�
1−2�L

(n)

�
�

(2−1∕n)�L
(n)

�
1−�L

(n)

� −
1−�L

(n)�
(2n−1)�L

(n)

�
1−�L

(n)

� where the denominator of 

the first term remains bounded and the second term converges to zero as n grows 
without limit.

Let us next assume that the subsequence 
{
�nk

}∞

k=1
→ c . If c > 1∕2 then 

ank → −∞ , and Φ
(
ank

)
→ 0 which is a contradiction. Analogously, if c < 1∕2 then 

ank → ∞ , and Φ
(
ank

)
→ 1 which is a contradiction.

Since every convergent subsequence converges to 1
2
 , by compactness, the whole 

sequence converges to 1/2.   ◻

�F2n−1

�
an
�
− Φ

�
an
�� ≤ 3�

��X1�3
�

�3
√
2n − 1

=
3�L

(n)�
�L
(n)

�
1 − �L

(n)

��3∕2

1√
2n − 1

(13)
|1 − v − Φ

(
an
)| ≤ 3(

1 − �L
(n)

)3∕2

1√
(2n − 1)�L

(n)

v =

2n−1∑
k=n

(
2n − 1

k

)
�k
n

(
1 − �n

)2n−1−k
≤ �n

n

2n−1∑
k=n

(
2n − 1

k

)

≤ �n
n

2n−1∑
k=0

(
2n − 1

k

)
= �n

n
22n−1 =

(
4�n

)n 1
2

1 − v =

n−1∑
k=0

(
2n − 1

k

)
�k
n

(
1 − �n

)2n−1−k
≤
(
1 − �n

)n n−1∑
k=0

(
2n − 1

k

)

≤
(
1 − �n

)n
22n−1 =

(
4
(
1 − �n

))n 1
2
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Proof of Lemma 6

Proof For large n, normal distribution is a good approximation for binomial distri-
bution. We rewrite expression 

∑2n−1

j=n

�
2n−1

j

��
�L
(n)

�j�
1 − �L

(n)

�2n−1−j

 as Pr
(
S2n−1 ≥ n

)
 , 

where S2n−1 is a binomial random variable with the success probability �L
(n)

 . When n 
is large, the expression is about

where Z is the standardised normal distribution. Let

The probability can be expressed as

Given any v ∈
(
0,

1

2

)
 , we solve y from Φ(y) = 1 − v using the Z-table, and we get 

b(n) by

Rewriting Expression (14), we get

  ◻

Appendix 2. The Values Created in Equilibrium and Under Market 
Clearing

The figure shows how the valuation of low-type buyers (v) affects the total ex ante 
value created from trades that equilibrium generates in the benchmark model (TR) 
and the total ex ante value created under market clearing (T), when n is set to be 2 
(see Fig. 3). For large ns, the two curves are very close to each other; therefore, we 
cannot see their difference properly. TR is convex and T is linear. The difference in the 
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rates of increase for TR and T is the cause for the trend of market efficiency measures, 
as stated after Proposition 1. The efficiency MR

(n)
 evaluated by the ratio between TR 

and T has the trend such that for a given n, the efficiency decreases for small vs, and 
after some cutoff point, increases. ML

(n)
 follows a similar trend, as illustrated in Fig. 2.
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