
SN Operations Research Forum
https://doi.org/10.1007/s43069-020-00027-y

ORIGINAL RESEARCH

A Branch-and-Price Algorithm for the Liner Shipping
Network Design Problem

Kristian Thun1 ·Henrik Andersson1 ·Magnus Stålhane1

Received: 20 March 2020 / Accepted: 16 September 2020 /
© The Author(s) 2020

Abstract
Maritime transportation is the backbone of the global economy and one of its most
important segments is liner shipping. To design a liner shipping network is notori-
ously difficult but also very important since an efficient network can be the difference
between prosperity and bankruptcy. In this paper, we propose a branch-and-price
algorithm for the liner shipping network design problem, which is the problem of
designing a set of cyclic services and to deploy a specific class of vessels to each
service so that all demand can flow through the network at minimal cost. The pro-
posed model can create services with a complex structure and correctly calculate the
transshipment cost. The formulation of the master problem strengthens a known for-
mulation with valid inequalities. Because of multiple dependencies between ports
that are not necessarily adjacent and no defining state at any of the ports, the sub-
problem is formulated and solved as a mixed integer linear program. Strategies to
improve the solution time of the subproblem are proposed. The computational study
shows that the algorithm provides significantly tighter lower bounds in the root node
than existing methods on a set of small instances.

Keywords Liner shipping · Network design · Branch-and-price

1 Introduction

Ever since man first set sails across the oceans, transporting goods between conti-
nents has been an important part of the economy. Today, maritime transportation is

This article belongs to the Topical Collection on Decomposition at 70

� Henrik Andersson
henrik.andersson@ntnu.no

1 Department of Industrial Economics and Technology Management, Norwegian University
of Science and Technology, Gløshaugen, Alfred Getz vei 3, 7491 Trondheim, Norway

(2020) 1: 28

Published online: 21 2020October

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-020-00027-y&domain=pdf
http://orcid.org/0000-0002-0312-8072
mailto: henrik.andersson@ntnu.no

the backbone of the global economy and United Nations Conference on Trade And
Development (UNCTAD) has in its review of maritime transportation shown that
the volumes, counted in tonnes loaded, of international maritime trade has almost
doubled since 2000, from slightly above 6 · 109 tonnes loaded in 2000 to almost
12 · 109 in 2018 [18]. Many types of goods are transported and many different ves-
sels are used to do it, but maritime transportation is traditionally divided into three
segments: industrial shipping, tramp shipping, and liner shipping, [9]. An industrial
operator controls its own fleet of vessels and strives to minimize the costs of trans-
porting its own cargoes. An operator within tramp shipping has similarities with taxi
services, as the vessels follow the cargoes that become available in the market. Liner
shipping resembles bus line operations since the vessels follow published schedules
and itineraries. UNCTAD among others divided the goods transported into four cat-
egories; tanker trade, main bulk, other dry cargo, and containers [18]. The growth
of global containerized trade has been around 5.8% yearly since 2000 and has as of
2018 reached 152 million 20-ft equivalent units compared with 63 millions in 2000.
Most of the containerized trade is within liner shipping and the economic importance
of liner shipping is therefore obvious.

Many different planning problems within liner shipping have been analyzed using
operations research. Meng et al. [11] outline some of these, including fleet size and
mix and network design on the strategic level, fleet deployment and speed optimiza-
tion on the tactical level, and cargo routing and rescheduling on the operational level.
For more comprehensive overviews of planning problems within liner shipping, the
reader is referred to [5], [17], [10], and [6]. A liner shipping network consists of a
number of cyclic routes, called services, visiting two or more ports each. Each service
is assigned a given vessel class and sailed with a given frequency. Demand is given
between pairs of ports, and can be transshipped at one or more intermediate ports.
This means that the vessel picking up the demand may not be the vessel delivering it,
but instead that it can be handled by any service, even if neither origin nor destina-
tion ports are part of that service. Designing a liner shipping network is a notoriously
hard problem called the liner shipping network design problem (LSNDP); see [4] for
an introduction to LSNDP. The practical aspects that can be included when defin-
ing the LSNDP are numerous and there are therefore many versions of the problem.
Common aspects are, according to [6], transit time constraints, transshipment costs,
rejected demands, speed optimization, and the structure of the services. The methods
used to solve the LSNDP include both heuristics and exact methods, but most of them
are based on a mathematical formulation of the problem and mathematical program-
ming techniques. Here, we review the exact methods that have been proposed; for
a detailed description of solution methods for the LSNDP, both heuristics and exact
methods, the reader is referred to [6].

The seminal paper by [1] is the first that presents an exact solution method for
the LSNDP. The problem is formulated over a time-space network, where a weekly
frequency is assumed. Transit time is not included, and transshipment costs are cal-
culated once the network has been designed and are not included in the design phase.

SN Operations Research Forum (2020) 1: 2828 Page 2 of 21

Demand can be rejected, and there is a revenue for fulfilled demand. Complex ser-
vices are possible as long as the visits to one port are not on the same day. In [13],
the authors notice that disregarding transshipment costs is a weakness and propose
a four-index formulation to remedy this. Butterfly services, i.e., services where one
port can be visited twice, are handled by enumerating the order of the arcs of a ser-
vice. Transit time is not included, and each service is served by a single vessel. All
demand must be served. In [12], the authors notice that butterfly services may be too
restrictive and propose a formulation allowing for multiple visits to multiple ports
on each service. Weekly frequencies on the services are assumed and demand can be
rejected. An analysis of the effect of different structures of the services is conducted
by [16]. Simple services, i.e., no ports are allowed to be visited more than once on
each service, are compared with butterfly services and even more complex services.
The complex structure is modeled using a two-layer network, where each port is rep-
resented in both layers and the connection between the layers is only between nodes
corresponding to the same port. This allows for many different structures such as but-
terfly and pendulum where all ports except two are visited twice; see Fig. 1. Weekly
frequencies are assumed and all demand must be served. In a feeder network, all
demand either originates from or is destined for a single port. The design problem on
these networks is studied by [14]. Transshipment is not allowed and each demand is
either accepted or rejected. In [2], the authors present a new compact formulation for
the same version of the problem as studied by [16]. New valid inequalities are intro-
duced to strengthen the formulation. One of their main findings is that the gain from
using a two-layer formulation compared with a one-layer formulation is on average
2–4% at the cost of a significant increase in solution time.

This paper presents an improved formulation and a new branch-and-price algo-
rithm for the LSNDP. The work in [16] is extended with new valid inequalities and a
new solution method for the subproblem is developed. The rest of the paper is orga-
nized as follows. In Section 2, a problem description is given and the master problem
is formulated together with valid inequalities. Section 3 outlines the proposed branch-
and-price algorithm and Section 4 provides a computational study. Finally, Section 5
gives some concluding remarks.

2

2
3

3

4
4

5

5
6

6

Fig. 1 Two examples of complex service structures. Left: A butterfly service where one port is visited
twice. Right: A pendulum service where all ports except the ends are visited twice. The numbers by the
arcs show the order of traversal

SN Operations Research Forum (2020) 1: 28 Page 3 of 21 28

2 ProblemDescription andMathematical Formulation

Following the classification of liner shipping network design problems in [6], the
problem studied here does not contain transit time constraints, speed optimization,
or the opportunity to reject demand. It includes transshipment costs and the possibil-
ity to use complex route structures. We now give a description of the problem, the
notation, and the mathematical formulation.

The liner shipping network design problem studied in this paper consists of a set
of ports P . There are weekly demands, Dij , to be transported from port i to port
j and a given fleet of vessels to perform the transportation. All demands must be
fulfilled; hence, it is not possible to reject demand. The vessels are divided into vessel
classes, V , and there is an upper bound on the number of vessels, Yv , available from
each class v. The vessels are assigned to services, S, where each service represents
a given sequence of ports. The duration of a service is bounded, but the services
can be complex. For any combination of vessel class and service, we let Avs be
the number of vessels needed to keep a given (typically weekly) frequency on that
service.

Since it is possible to split a demand between different services and also to trans-
ship, there are multiple ways to load and unload goods along a service. There is no
bound on the transit time for the demands, and they can be transshipped as many
times as needed. We associate a set of delivery patterns Wvs with each possible com-
bination of service s and vessel class v. For a given delivery pattern w ∈ Wvs , let
QL

ijvsw be the number of units with final destination j that are loaded onto service s

of vessel class v at port i per week. This includes units that are loaded at their port of
origin, as well as units that have been transshipped from another service. Similarly,
we define QU

ijvsw as the number of units with final destination j that are unloaded
from service s of vessel class v and delivery pattern w at port i per week. To min-
imize the number of delivery patterns in Wvs , we may use the property that every
convex combination of feasible delivery patterns is a feasible delivery pattern; and
thus, we only need to explicitly represent the extreme delivery patterns in order to
express all of them. In [7] and [15], the authors introduce deliver patterns in a sim-
ilar way in problems with split deliveries. For each combination of service s, vessel
class v, and delivery pattern w, we denote Cvsw as the total cost of using service s of
vessel class v and delivery pattern w. The cost includes a fixed cost for operating the
vessel, sailing costs, port fees, and costs for loading and unloading goods.

The problem then consists of selecting a set of services, and assign a vessel class
and delivery pattern to each selected service, such that all demands are transported
from their origin port to their destination port. To model this, we introduce variables
pvs which is 1 if service s of vessel class v is used and 0 otherwise, and yvsw rep-
resenting the number of times service s of vessel class v with delivery pattern w is
used. Using these variables, and the notation defined above, a mathematical model
of the problem may be defined as follows:

min z =
∑

v∈V

∑

s∈S

∑

w∈Wvs

Cvswyvsw (1)

SN Operations Research Forum (2020) 1: 2828 Page 4 of 21

Subject to:
∑

v∈V

∑

s∈S

∑

w∈Wvs

(QL
ijvsw − QU

ijvsw)yvsw = Dij i, j ∈ P, i �= j (2)

∑

s∈S

∑

w∈Wvs

Avsyvsw ≤ Yv v ∈ V (3)

∑

w∈Wvs

yvsw − pvs = 0 v ∈ V, s ∈ S (4)

pvs ∈ {0, 1} v ∈ V, s ∈ S (5)

yvsw ≥ 0 v ∈ V, s ∈ S, w ∈ Wvs (6)

The objective function (1) minimizes the total cost associated with the services
used. The flow balance constraints (2) make sure that the flow of goods is preserved.
Since the destination of the goods unloaded when using a service is known, transship-
ment costs can be handled in the generation of the service and delivery pattern and
can therefore be omitted from the master problem. Constraints (3) ensure that there
are enough vessels of each class for the services used. The convexity constraints (4)
state that different delivery patterns for the same service can be weighted together,
and constraints (5) are binary restrictions. The non-negativity of the variables is
expressed in constraints (6).

To illustrate the formulation and the variables, assume that we have a small net-
work of six ports; see Fig. 2. Three services are shown; the dashed service, s1, is
operated by a vessel with capacity 12 from class v1 while the solid service s2 and the
dotted service s3 are both operated by a vessel with capacity 7 from class v2. There is
one demand defined, D15 = 10, i.e., 10 units are requested from port 1 to port 5. The
solution we illustrate is to transport 10 unit from port 1 using service s1; 7 units are
transshipped at port 3 and continue to the destination at port 5 using service s2. The
last 3 units are transshipped at port 4 and continue to the destination using service
s3. Only allowing extreme delivery patterns, i.e., patterns that cannot be expressed as
convex combinations of other patterns, we define two patterns w1 and w2 for service
s1. The non-zero coefficients of these patterns are QL

15v1s1w1
= 10, QU

35v1s1w1
= 10

and QL
15v1s1w2

= 10, QU
45v1s1w2

= 10. Correspondingly, we get QL
35v2s2w3

= 7 for

Fig. 2 A small network with six ports operated by three service

SN Operations Research Forum (2020) 1: 28 Page 5 of 21 28

the pattern w3 for service s2. Note that the coefficient for unloading at the destina-
tion is excluded. Since the extreme delivery pattern w4 for service s3 with coefficient
QL

45v2s3w4
= 7 handles too many units, we also need to define a pattern w5 for ser-

vice s3 with no non-zero coefficients. Using the defined variables, the solution is now
expressed in Table 1.

2.1 Strengthening the Formulation

In [2], the authors successfully applied the method of expressing the convex hull
of a low-dimensional polyhedron as a convex combination of its extreme points to
strengthen their formulation of the LSNDP. They specifically targeted the feasible
region defined by capacity constraints over subsets of ports and called this an inner
representation of the polyhedron. We have adopted this idea and adjusted it for the
master problem. The set of subsets of P is denoted U , and let PS

u be the subset of ports

under consideration and PS

u the complement of PS
u . The least quantity of goods that

must be transported either in or out of PS
u is max{ ∑

i∈PS
u

∑

j∈PS

u

Dij ,
∑

i∈PS

u

∑
j∈PS

u
Dij }.

If the number of vessel classes, |V|, is small, we can generate all points χS
u =

(χS
u1, . . . , χ

S
u|V |) where χS

uv is the number of times a vessel of class v enters PS
u that

fulfill:

∑

v∈V
Qvχ

S
uv ≥ max

⎧
⎪⎨

⎪⎩

∑

i∈PS
u

∑

j∈PS

u

Dij ,
∑

i∈PS

u

∑

j∈PS
u

Dij

⎫
⎪⎬

⎪⎭
(7)

and is part of the convex hull of the feasible region defined by constraint (7) inter-
sected with X = {χS

uv ∈ N∪ {0}, v ∈ V}. Define �S
u to be the number of such points

for subset PS
u and let χS

luv be the value χS
uv for point l. Since the sequence of ports

visited is known for each service, we can define GS
us to be the number of times ser-

vice s enters subset PS
u . With PS

u = {1, 3, 5} and service s = 1 → 2 → 4 → 5 →
3 → 6 → 1 we get GS

us = 2 since s enters PS
u twice, 6 → 1 and 4 → 5. With this,

the constraints presented in [2] can be adjusted to:

∑

s∈S

∑

w∈Wvs

GS
usyvsw ≥

�S
u∑

l=1

χS
luvλ

S
lu v ∈ V, u ∈ U (8)

�S
u∑

l=1

λS
lu ≥ 1 u ∈ U (9)

λS
lu ≥ 0 u ∈ U , l = 1, . . . , �S

u (10)

Table 1 A possible solution for D15 = 10 in Fig. 2

v1, s1 pv1s1 = 1 yv1s1w1 = 0.7, yv1s1w2 = 0.3

v2, s2 pv2s2 = 1 yv2s2w3 = 1

v2, s3 pv2s3 = 1 yv2s3w4 = 3/7, yv2s3w5 = 4/7

SN Operations Research Forum (2020) 1: 2828 Page 6 of 21

where λS
lu is the fraction of point l of subset u. Constraints (8)–(10) can be added to

the master problem (1)–(6) to strengthen it.

3 SolutionMethod

A major challenge with the mathematical model presented in Section 2 is that it
contains one y-variable, henceforth referred to as a column, for each combination
of vessel class, service, and delivery pattern. The total number of columns thus
grows very fast with the number of ports and demands and it becomes cumber-
some to explicitly generate all columns, even for problems with just a few ports and
demands. To circumvent this problem, we have developed a solution method based on
branch-and-price [3] to effectively solve this problem. Branch-and-price is a branch-
and-bound (B&B) tree search algorithm, where the linear program (LP) solved to
obtain dual bounds for each node of the B&B-tree is solved using column generation
[8].

Column generation is a method to solve linear programs that starts by solving a
restricted version of the problem, containing only a subset of the columns (variables).
This problem is usually referred to as the restricted master problem (RMP), and solv-
ing the RMP gives a pessimistic bound on the optimal value of the LP. To improve
this pessimistic bound, one or more subproblems are solved, which finds the col-
umn with the lowest reduced cost (assuming that the LP is a minimization problem)
based on the dual information from the solution of the RMP. If one or more negative
reduced cost columns are found, they are added to the RMP, which is then re-solved
to obtain an improved pessimistic bound and a new dual solution, and the previous
step is repeated. If the subproblems cannot obtain any negative reduced cost columns,
then we have proved that the current solution of the RMP is in fact optimal for the LP
relaxation of the full problem in the current node, and we have obtained a valid dual
bound for that node. The solution is checked for integrality, and if it is not integral,
new nodes are created using an appropriate branching strategy.

In the following, we describe first how to price (calculate the reduced cost of) a
column in Section 3.1, before giving a mathematical formulation of the subproblems
that are solved to find the minimum reduced cost columns in Section 3.2. Then,
in Section 3.3, we describe two heuristic strategies to find negative reduced cost
columns quickly, before discussing the branching strategies, and their impact on the
subproblem in Section 3.4.

3.1 Pricing of a Column

To define the reduced cost of a column, we introduce β∗
ij as the dual value from the

flow conservation constraints (2), γ ∗
v as the dual value from constraints (3), and α∗

uv

as the dual value from constraints (8). The dual values from the other constraints do
not affect the reduced cost of a column and are therefore omitted here. There are
port fees related to vessels visiting the ports and handling costs related to loading
and unloading at the ports. The cost structure for the vessels is a fixed cost for each

SN Operations Research Forum (2020) 1: 28 Page 7 of 21 28

vessel used and distance-dependent sailing costs. We denote the costs in the following
way; CF

v is the weekly fixed cost for operating a vessel of class v, CK
i is the cost of

loading/unloading one unit of goods at port i, and Cijv is the sailing cost between
ports i and j including the port fee at port j for vessel class v. Service s is represented
as a cyclic list of port visits π1 → π2 → · · · → πρs , where ρs is the number of
port visits of service s. To simplify the notation required to describe the last leg of a
cycle back to the starting point, we define πρs+1 = π1. The reduced cost of a column
representing service s with delivery pattern w for vessel class v can now be stated:

Cvsw = (CF
v + γ ∗

v)Avs +
ρs∑

i=1

Cπiπi+1v +
∑

u∈U
α∗

uvGus +

+
ρs∑

i=1

∑

j∈P

(
(CK

πi
+ β∗

πij
)QL

πijvsw + (CK
πi

− β∗
πij

)QU
πijvsw

)
(11)

3.2 Subproblem

The subproblems used to generate columns for the RMP can be stated for each ves-
sel class. Each subproblem is formulated over a two-layer graph G = (N ,A), where
each physical port is represented by exactly one node in each layer. Each layer is
a complete subgraph and the layers are only connected by arcs between the nodes
representing the same port. Figure 3 shows the ports (the left part) and the corre-
sponding graph (the middle part). Note that all arcs between nodes in the same layer
are omitted to increase readability. All simple cycles in the graph are defined as fea-
sible services. With two layers, each port can be visited at most twice on a service,
but not all services fulfilling this criterion are feasible. The right part of Fig. 3 shows
an example of a service that visits no port more than twice that cannot be represented
as a simple cycle in the graph.

Fig. 3 The left part shows the location of the ports. The middle figure shows the two-layer graph. Each port
is duplicated and the graph consists of two layers (slightly shifted and marked gray and white respectively).
The double lines between the nodes representing the same port are the only connections between the
layers. Each layer is a complete graph, but these arcs are omitted to increase readability. The right part is
an example of a route that visits no port more than twice, but that cannot be represented as a simple cycle
in the graph in the middle. The numbers by the arcs is the order of arc traversal

SN Operations Research Forum (2020) 1: 2828 Page 8 of 21

The graph has two layers and we define the nodes of the graph as N =
{1, . . . , 2|P|}. The nodes are divided into an upper layer consisting of nodes
1, . . . , |P| and a lower layer consisting of nodes |P| + 1, . . . , 2|P|. Each port i is
associated with both node i and |P| + i. The set of arcs A is the union of all arcs
connecting nodes in the upper layer, all arcs connecting nodes in the lower layer, and
arcs connecting the layers, i.e., (i, |P| + i) and (|P| + i, i) for all ports i. Hence, it is
only possible to change layers by using arcs connecting nodes representing the same

port. We also define AS
u to be all arcs (i, j) for which i ∈ PS

u and j ∈ PS

u , i.e., all
arcs leaving the subset PS

u of ports. We introduce Qv for the capacity of a vessel of
class v and Tijv for the sailing time in weeks between port i and j for a vessel of
class v. The maximum length of a service, in weeks, is restricted by T .

Both the construction of the service and the amount to load and unload in the
ports are decisions in the subproblem. We therefore introduce xij as a binary variable
stating if arc (i, j) is part of the service or not, qL

ik as the amount of goods with
final destination k that is loaded at node i and qU

ik as the amount of goods with final
destination k that is unloaded at node i. We also need the variable a for the number of
vessels deployed on the service. To handle the capacity of the vessels, we define fijk

for the amount of goods traveling along arc (i, j) with final destination k. Subtours,
i.e., two or more disjoint cycles, are elusive in this formulation. We eliminate subtours
by letting one of the visited nodes in the service be an imaginary depot. The flow of
an imaginary product along the service is forced to increase for each port visit, and
can only decrease at the depot. A subtour without the depot can therefore not exist.
To handle this in the formulation, we introduce the binary variable wi stating if node
i is the imaginary depot of the service or not, and zij as the flow of an imaginary
product from node i to j . Since each port is represented by two different nodes, we
use p(i) to denote the port associated with node i. The subproblem of the LSNDP
for vessel class v can now be formulated:

min zSP (v) = (CF
v + γ ∗

v)a +
∑

(i,j)∈A
Cijvxij +

∑

u∈U

∑

(i,j)∈AS
u

αuvxij

+
∑

i∈N

∑

k∈P
(CK

p(i) + β∗
p(i)k)q

L
ik +

∑

i∈N

∑

k∈P
(CK

p(i) − β∗
p(i)k)q

U
ik (12)

Subject to:
∑

(j,i)∈A
xji −

∑

(i,j)∈A
xij = 0 i ∈ N (13)

∑

(j,i)∈A
xji ≤ 1 i ∈ N (14)

∑

i∈N
wi = 1 (15)

zij − (|N | − 1)xij ≤ 0 (i, j) ∈ A (16)
∑

(i,j)∈A
zij −

∑

(j,i)∈A
zji + |N |wi ≥

∑

(i,j)∈A
xij i ∈ N (17)

SN Operations Research Forum (2020) 1: 28 Page 9 of 21 28

∑

(i,j)∈A
fijk −

∑

(j,i)∈A
fjik + qL

jk − qU
jk = 0 j ∈ N , k ∈ P (18)

∑

k∈P
fijk − Qvxij ≤ 0 (i, j) ∈ A (19)

fijk − Hvkxij ≤ 0 (i, j) ∈ A, k ∈ P (20)
∑

(i,j)∈A
Tp(i)p(j)vxij ≤ a (21)

a ∈ {0, 1, . . . , T } (22)

xij ∈ {0, 1} (i, j) ∈ A (23)

0 ≤ fijk ≤
∑

l∈N
Dlk (i, j) ∈ A, k ∈ P (24)

qL
ik, q

U
ik ≥ 0 i ∈ N , k ∈ P (25)

The objective function (12) is the reduced cost of the column that is created. Con-
straints (13) are balance constraints and force all services to be closed loops while
constraints (14) ensure that each node is visited at most once. Constraints (15)–
(17) eliminate subtours. Constraint (15) states that exactly one node is the imaginary
depot. Constraints (16) connect the flow on the imaginary product with the route
and constraints (17) handle the flow balance, if node i is not the depot, the outgo-
ing flow is one larger than the incoming, while the constraints are redundant if node
i is the depot. Constraints (18) balance the flow of cargo entering and leaving a
node, and capacity restrictions are enforce by constraints (19) and (20). We have here
introduced Hvk = min

{
Qv,

∑
l∈N Dlk

}
to increase readability. That the number of

vessels employed on the service must be enough to guarantee a weekly frequency is
stated in constraints (21). Constraints (22) declare the number of deployed vessel to
be integer and set the upper bound on the duration of the services. The other variables
are declared in constraints (23)–(25).

If the optimal objective value to a subproblem is negative, the solution is used
to create a new column that is added to the RMP. The cost of the new column is
calculated as:

Cvsw = CF
v a∗ +

∑

(i,j)∈A
Cijvx

∗
ij +

∑

i∈N

∑

k∈P
CK

p(i)(q
L∗
ik + qU∗

ik) (26)

The route defined by x∗
ij is transformed to a cyclic list of port visits, and a check is

made to see if the service already exists. Since the cost of a column consists of both
sailing costs and costs for loading and unloading, an already existing service with
a new delivery pattern can be optimal in the subproblem. In this case, the index of
the existing service is used and a new delivery pattern is associated with this service.
The loading and unloading parameters QL

ikvsw and QU
ikvsw are directly taken from

qL∗
ik and qU∗

ik , respectively, and the number of vessels deployed on the service, Avs is
assigned a∗. Finally, the parameter Gus is given the value

∑
(i,j)∈AS

u
x∗
ij .

SN Operations Research Forum (2020) 1: 2828 Page 10 of 21

Henceforth, the subproblem defined by objective function (12) and constraints
(13)–(25) is called the full subproblem. To increase the number of columns cre-
ated with each time the full subproblem is solved, we supply the MIP solver with
a callback routine to store all encountered solutions during the search which have a
negative reduced cost. A new column is created for each of these solutions, so that
a single iteration of solving the full subproblem may yield multiple new columns in
the master problem.

3.3 Acceleration Strategies

A major success criterion for applying branch-and-price is that the structure of the
subproblem(s) can be exploited. In most applications, the subproblems are solved
using some form of dynamic programming, e.g., by using labeling algorithms. How-
ever, constructing cyclic sequences of nodes and assigning vessels and cargo flows to
these sequences (which is the natural subproblem for the LSNDP) is not well suited
for dynamic programming, as there are multiple dependencies between ports that are
not necessarily adjacent in the sequence and no defining state at any of the nodes.
This makes it difficult to design an algorithm adhering to Bellmann’s optimality
principle.

As it is not easy to design an effective exact solution method to solve the subprob-
lems, it is important to design good heuristics to find most of the negative reduced
cost columns quickly, thus minimizing the number of times we have to solve the
subproblem as a MIP, which is known to be time consuming for large instances of
the problem. We have therefore implemented the following two heuristics to obtain
negative reduced cost columns from a given service:

– Improve delivery patterns There is (possibly) a large number of feasible delivery
patterns associated with every service. The integral variables in the subproblem
decide the port sequence (xij) and the number of vessels needed (a), i.e., the
design of the service. Therefore, if we focus on a specific service, we only need
to solve a linear program to find the best delivery pattern for that service. This
can be done for each service individually.

– Local search We do a local search on an already existing service by either remov-
ing or adding a port visit. If port p is removed in the sequence i → j → p → k,
it becomes i → j → k. If j and k represent the same port, one of them is
removed as well. If port p is added to the sequence i → j → k after j , it
becomes i → j → p → k. This is not done if j or k represents the same port as
p. After a port is added to or removed from a service, it is verified that the ser-
vice represents a simple cycle in the two-layer graph. If the check is affirmative,
a linear program is solved to find the best deliver pattern and the corresponding
reduced cost.

Even though these heuristics are computationally fast, preliminary testing showed
that it was too time consuming to run these heuristics for all services that are a part
of at least one column in the RMP. Instead, we partition S into three disjoint subsets;
SB+ is the set of all services that are part of a column with a positive value in the
current basis, SB0 is the set of all services associated with a column that has a reduced

SN Operations Research Forum (2020) 1: 28 Page 11 of 21 28

cost of zero and also a value of zero in the current basis, and SN is the set of all
services that are not part of any column in the basis.

The heuristics are run in a hierarchical fashion, and if at least one negative reduced
cost column is found in one step, the algorithm returns it to the RMP, which is then
re-solved. The hierarchy of these heuristics is as follows:

1. Improve the delivery patterns for all services in SB+
2. Improve the delivery patterns for all services in SB0

3. Perform local search on all services in SB+
4. Perform local search on all services in SB0

If none of these four steps returns a negative reduced cost column, we solve the
mathematical model presented in Section 3.2 as a MIP using a commercial solver.
However, since we only need a negative reduced cost column, we set a time limit on
the MIP, and abort the solver if at least one negative reduced cost column has been
found by that time, or as soon as one is found after this limit. Furthermore, we solve
each MIP subproblem sequentially, and return to the RMP as soon as one of the MIPs
has found a negative reduced cost column.

3.4 Branching

When a node has been solved to optimality, i.e., when no column with a negative
reduced cost is found, it is checked with respect to the integrality restrictions (4). If
the check is affirmative, we have a feasible integer solution; otherwise, we have to
branch. Designing a branching scheme is intricate since it affects the structure of the
subproblem. On one hand, the scheme should reach integer solutions fast, while on
the other the changes to the subproblem should be small. Since the subproblems here
are solved using a MIP solver, we allow for the structure to change by introducing
branching constraints. We have adopted the branching scheme from [16], where a
four-stage procedure is proposed. The procedure is hierarchical and one stage must
be integral before branching on the next.

First, we branch on the number of vessels used of each vessel class. We define
âv = ∑

s∈S
∑

w∈Wvs

Avsyvsw and v′ = arg minv∈V |âv −
âv� − 0.5|. If âv′ is fractional,

we create the branching constraints:
∑

s∈S

∑

w∈Wv′s

Av′syv′sw ≤
âv′ � (27)

∑

s∈S

∑

w∈Wv′s

Av′syv′sw ≥
âv′ � + 1 (28)

and use them to define the new subproblems. The dual values from these branch-
ing constraints are multiplied with the variable a in the objective function of the
subproblem of vessel class v′.

Second, we branch on the number of visits to each port by vessels from a given
class. We define âiv = ∑

s∈S
∑

w∈Wvs

Bisyvsw where Bis is the number of visits to port i

by service s. We let (i′, v′) = arg min(i,v)∈P×V |âiv−
âiv�−0.5|. If âi′v′ is fractional,

SN Operations Research Forum (2020) 1: 2828 Page 12 of 21

we create the branching constraints:

∑

s∈S

∑

w∈Wv′s

Bi′syv′sw ≤
âi′v′ � (29)

∑

s∈S

∑

w∈Wv′s

Bi′syv′sw ≥
âi′v′ � + 1 (30)

and use them to define the new subproblems. The dual value from the branch-
ing constraints (29) and (30) is added to all arc variables xi′j and x|P |+i′,j except
xi′,|P |+i′ and x|P |+i′,i′ in the objective function of the subproblem of vessel class v′
to encourage/discourage more visits to port i′.

Third, we branch on the total number of times vessels of class v sails from port i to
port j . We define âijv = ∑

s∈S
∑

w∈Wvs

Bijsyvsw, where Bijs is the number of times ser-

vice s visits ports i, and j in sequence and (i′, j ′, v′) = arg min(i,j,v)∈P×P×V |âijv −

âijv� − 0.5|. If âi′j ′v′ is fractional, we create the branching constraints:

∑

s∈S

∑

w∈Wv′s

Bi′j ′syv′sw ≤
âi′j ′v′ � (31)

∑

s∈S

∑

w∈Wv′s

Bi′j ′syv′sw ≥
âi′j ′v′ � + 1 (32)

and use them to define the new subproblems. The dual value from these branching
constraints is added to arc variables xi′j ′ and x|P |+i′,|P |+j ′ in the objective function
of the subproblem of vessel class v′.

Branching using the first three strategies is often enough to ensure an integer solu-
tion, but there are cases when the solution is fractional even though none of the
above strategies indicates a candidate for branching. Figure 4 shows a solution with
four services used by vessels from class v. To ease the presentation, we introduce
ys = ∑

w∈Wvs

yvsw. With y1 = y2 = y3 = y4 = 0.5 and assuming that this gives

an integer number of vessels used, we see that none of the strategies above gives a
candidate for branching.

For the solution not to be integral, there must be fractional y-variables, and among
these there must be at least one pair of services with at least one arc in common and at
least one arc only present in one service. To have a branching strategy targeting pairs
of arcs will therefore detect a candidate for branching and is thus enough to ensure
an integer solution. Because of the cyclic nature of the services, the pair can always
be constructed such that the tail of one arc is the head of the other arc. In Fig. 4, we
see that the arcs (l, i) and (i, k) are not a candidate for branching since both s1 and s2
include these arcs. If we instead choose (i, k) and (k, j), only s1 includes both arcs.

The fourth strategy is therefore to branch on pairs of arcs having one port in com-

SN Operations Research Forum (2020) 1: 28 Page 13 of 21 28

Fig. 4 A solution showing that
branching on individual arcs is
not sufficient

mon. We define âikjv = ∑
s∈S

∑
w∈Wvs

Bikjsyvsw where Bikjs is the number of times

service s visits ports i, k, and j in sequence. Also, we define (i′, k′, j ′, v′) =
arg min(i,k,j,v)∈P×P×P×V |âikjv −
âikjv� − 0.5|. If âi′k′j ′v′ is fractional, we create
the branching constraints:

∑

s∈S

∑

w∈Wv′s

Bi′k′j ′syv′sw ≤
âi′k′j ′v′ � (33)

∑

s∈S

∑

w∈Wv′s

Bi′k′j ′syv′sw ≥
âi′k′j ′v′ � + 1 (34)

and use them to define the new subproblems for vessel class v′. The dual value from
these branching constraints cannot be directly added to the variables in the master
problem. Instead, we introduce an integer variable vi′k′j ′ denoting the number of
times the ports i′, k′, and j ′ are visited in sequence and add it to the objective function
with the dual values from constraint (33) or (34). The following constraints can be
added to the subproblem to link the v variables with the x variables:

vi′k′j ′ ≤ xi′k′ + x|P |+i′,|P |+k′ (35)

vi′k′j ′ ≤ xk′j ′ + x|P |+k′,|P |+j ′ (36)

vi′k′j ′ ≤ 2 − xk′,|P |+k′ − x|P |+k′,k′ (37)

vi′k′j ′ ≥ xi′k′ + xk′,|P |+k′ + x|P |+k′,|P |+j ′ + x|P |+i′,|P |+k′ + x|P |+k′,k′ + xk′j ′ − 2 (38)

vi′k′j ′ ≥ xi′k′ + xk′j ′ − 1 (39)

vi′k′j ′ ≥ x|P |+i′,|P |+k′ + x|P |+k′,|P |+j ′ − 1 (40)

Since the dual variables corresponding to constraints (33) and (34) are non-
positive and non-negative, respectively, only constraints (35), (36), and (37) are
needed for for the subproblem created by constraints (33), while constraints (38),
(39), and (40) are needed for the subproblem created by constraints (34).

SN Operations Research Forum (2020) 1: 2828 Page 14 of 21

4 Computational Study

The proposed branch-and-price algorithm was implemented in Java SE 8, and all
mathematical models are solved using Gurobi Optimizer 9.0.1. The computational
study was performed on a computer with 2 x 3.5GHz Intel Xeon Gold 6144 CPU
8 core CPUs and 384 GB RAM. The instances on which the algorithm is tested
are presented in Section 4.1. Section 4.2 presents results from preliminary testing
where different algorithmic choices are tested and evaluated. The results using this
algorithm are compared with best known results and this comparison is made in
Section 4.3.

4.1 Test Instances

The instances used in this computational study are taken from [2]. These instances
are generated to resemble two common network structures: hub-and-spoke networks
and feeder networks (see Fig. 5). The hub-and-spoke networks are usually interconti-
nental networks where most demand is between different continents. In the instances
in [2], the hub-and-spoke networks have two regions with ports. Most of the demands
are interregional but there are also demands between ports in the same region. The
number of ports in each region is the same. General data about the instances are given
in Table 2; for more specific information, see [2].

Each instance is characterized by the structure of the network, the number of ports,
and the number of demands. The instances are named S P D, where S = F means
a feeder network and S = H means a hub-and-spoke network. P is the number of
ports and D is the number of demands. Note that in a feeder network, D = 2(P − 1)

since all demands either originate or are destined for the hub. This means that the
instance H 6 10 is a hub-and-spoke network with six ports and ten demands.

4.2 Preliminary Testing

A subset of six representative instances are used for the preliminary testing. We
first test the proposed strengthening of the master problem, constraints (8)–(10). The

Fig. 5 Left: Hub-and-spoke network with two regions, one hub in each region, one interregional service
(solid line), three feeder services in the left region (dashed lines), and two feeder services in the right
(dashed lines). Right: Feeder network with three services, the black node is the hub

SN Operations Research Forum (2020) 1: 28 Page 15 of 21 28

Table 2 General data about the instances

Characteristics Feeder Hub-and-spoke

Avg. demand size 250 250/1000

vessel classes 2 3

Fixed vessel cost 35’/56’ 35’/56’/147’

Capacity 450/800 450/800/2400

Speed (nm/h) 12/14 12/14/16

Consumption (tons/day) 18.8/23.7 18.8/23.7/57.4

Avg. port fee 26’/27’ 26’/27’/69’

Avg. transshipment cost 130 130

inner representation of the convex hull of the feasible region defined by capacity con-
straints over subsets of ports was added to the formulation presented in [2] and the
computational study showed that this had a substantial effect on the objective value
of the linear relaxation as well as the solution time. All subsets of cardinality up to
four, i.e.|PS

u | ≤ 4, u ∈ U , are generated and the corresponding constraints are added
a priori to the master problem. Table 3 summarizes the results from this first test.
We have compared the linear relaxation of four different models; the basic model of
[2], Basic, the same model with the inner representation, Best, which was found to
give the strongest relaxation in [2], the master problem proposed here, (1)–(6), and
the same model strengthened with the inner representation, (1)–(6), (8)–(10). The
table shows the relative gap between the linear relaxation and the best solution and
is defined as GLP = 100 · (zIP − zLP)/(zIP − zBASIC

LP), where zLP is the objective
value of the linear relaxation, zBASIC

LP is the objective value of linear relaxation of the
basic model in [2], and zIP is the best objective value found in [2].

First, we note that the linear relaxation of the master problem is stronger than
the linear relaxation of the formulation with the inner representation as presented
in [2] on the three largest instances. We also see a clear improvement in the objec-
tive value of the master problem with the inner representation, the mean remaining
gap decreases from 39.1 to 18.2%. Based on this preliminary testing, we decide

Table 3 A comparison of the relative gaps for the different linear relaxations

Ameln et al. [2] This work

Instance Basic Best (1)–(6) (1)–(6), (8)–(10)

F 4 6 100.0 27.7 34.1 17.2

F 8 14 100.0 29.7 27.7 17.6

F 12 22 100.0 37.7 25.9 19.0

H 4 6 100.0 44.0 53.6 22.4

H 6 8 100.0 34.6 61.0 18.7

H 8 10 100.0 52.0 39.4 17.2

SN Operations Research Forum (2020) 1: 2828 Page 16 of 21

to continue the computational study with the formulation including the proposed
strengthening of the master problem. This means that we use the models (1)–(6), and
(8)–(10) unless otherwise stated.

Finding the column with the most negative reduced cost is not necessary in each
iteration, instead we only need one column with negative reduced cost for the RMP to
produce a new dual solution. Hopefully, the full subproblem only needs to be solved
once for every vessel class in every node, to verify that there are no more columns
with negative reduced cost and thus that the node is solved to optimality. Table 4
summarizes the results from including no acceleration strategies, No acc., including
the improvement of the delivery patterns, Improve, and including both strategies,
Both acc., with respect to the number of columns generated, while Table 5 focuses
on the time spent.

Table 4 shows the number of columns generated by the different strategies in the
three different settings tested. CIP , CLP , and CLS are the numbers of columns found
by the full subproblem, by the improve delivery pattern strategy, and by the local
search strategy respectively. I IP is the number of times the full subproblem is called.
When no acceleration strategies are used, the full subproblem generates on average
1.8 columns per call, while this number decreases to 0.4 when both strategies are
used. This is a clear indication that the full subproblem is mainly verifying optimal-
ity and that the acceleration strategies find many columns. Ideally, CIP = 0 when
acceleration strategies are introduced. We do not reach this, the only exception is
F 4 6, but there is a substantial decrease in the number of columns generated by the
full subproblem and the number of times the full subproblem is solved.

The effect of this decrease on the solution time is shown in Table 5. Here, T IP ,
T LP , and T LS are time spent in the full subproblem, in the improve delivery pattern
strategy, and in the local search strategy, respectively. T is the total time spent in the
algorithm. We see a dramatic decrease in solution time by including the acceleration
strategies for the instances that are solved.

Finally, Table 6 summarizes the preliminary testing and shows the gap, G, solu-
tion time, T , and number of searched nodes, N , from the testing of the acceleration
strategies. We define the relative gap between the lower bound after 1 h and the best
solution found in [2] as G = 100 · (zIP − zLB)/(zIP − zBASIC

LP), where zLB is the
lower bound after 1 h. The lower bound after 1 h and the solution time of the model

Table 4 Results of the proposed acceleration strategies with respect to the number of columns generated

No acc. Improve Both acc.

Instance CIP I IP CIP CLP I IP CIP CLP CLS I IP

F 4 6 411 257 36 225 50 0 220 57 15

F 8 14 4527 995 1658 29816 935 747 45,891 3410 506

F 12 22 2233 192 343 17,327 56 116 6700 1624 28

H 4 6 686 1822 60 453 1141 6 414 61 1030

H 6 8 10,706 8198 629 5395 2556 166 4871 469 2080

H 8 10 4211 1131 2109 16070 2146 1094 22930 3997 1781

SN Operations Research Forum (2020) 1: 28 Page 17 of 21 28

Table 5 Results of the proposed acceleration strategies with respect to the time spent

No acc. Improve Both acc.

Instance T IP T T IP T LP T T IP T LP T LS T

F 4 6 28 29 4 0 4 1 0 0 1

F 8 14 3557 3600 3182 38 3600 2539 68 305 3600

F 12 22 3486 3600 2661 28 3600 2780 11 615 3600

H 4 6 152 161 32 1 35 29 1 0 31

H 6 8 2736 3019 360 20 456 315 23 22 429

H 8 10 3498 3600 3221 81 3600 2648 163 360 3600

in [2] with the inner representation is added as a comparison. Note that for instance
F 12 22, the root node is not solved within 1 h. No method is clearly better than
the other, [2] solves instance F 8 14 while the relative gap on instance H 8 10 is
much higher. We see a clear positive effect when comparing the acceleration strate-
gies; using both strategies gives much shorter solution times on the instances that are
solved and a much higher number of nodes, and thus a better relative gap, on the
instances that are not solved.

4.3 Comparison and Results

One of the main purposes with the Dantzig-Wolfe reformulation is to improve the
dual bound. In Section 4.2, we saw that the lower bounds at the root node produced
with the proposed formulation are clearly better than the corresponding bounds pre-
sented in [2]. Here, we present a more comprehensive study where all instances are
included, and the computational time is set to 1 h. In Table 7, we present a comparison
between results from the algorithm proposed here and results by the method proposed
in [2]. The table shows the name of the instance, the root node gap calculated as
GLP = 100·(zIP −zLP)/zIP , the final gap calculated as G = 100·(zIP −zLB)/zIP ,

Table 6 Summarized results of the proposed acceleration strategies

Best No acc. Improve Both acc.

Instance G T G T N G T N G T N

F 4 6 0.0 2 0.0 29 5 0.0 4 5 0.0 1 5

F 8 14 0.0 1809 17.6 3600 1 5.1 3600 21 5.0 3600 20

F 12 22 29.3 3600 – 3600 0 – 3600 0 – 3600 1

H 4 6 0.0 5 0.0 161 375 0.0 37 363 0.0 32 353

H 6 8 0.0 126 0.0 3018 594 0.0 456 637 0.0 429 641

H 8 10 27.6 3600 15.7 3600 8 9.1 3600 180 8.1 3600 256

SN Operations Research Forum (2020) 1: 2828 Page 18 of 21

Table 7 Comparison of the gaps between the method presented in [2] and the proposed algorithm

Ameln et al. [2] Branch-and-price

Instance GLP G Time GLP G Time

F 4 6 12.8 0 1 8.0 0 1

F 6 10 5.2 0 4 0 0 40

F 8 14 14.4 0 288 8.5 2.1 3600

F 10 18 14.4 9.0 3600 7.5 7.4 3600

F 12 22 26.2 22.4 3600 17.0 17.0 10750*

H 4 4 11.2 0 2 1.5 0 3

H 4 6 13.6 0 4 6.9 0 34

H 4 8 13.5 0 5 4.8 0 16

H 6 6 12.5 0 50 7.2 0 108

H 6 8 11.4 0 30 6.1 0 404

H 6 10 12.0 0 35 4.2 0 23

H 6 12 16.0 0 1924 9.8 4.6 3600

H 6 14 20.8 0 783 15.2 7.7 3600

H 6 16 14.9 0 1775 8.0 2.6 3600

H 8 8 21.3 2.2 3600 10.3 5.1 3600

H 8 10 18.5 4.5 3600 5.9 2.5 3600

H 8 12 21.9 14.8 3600 9.8 6.9 3600

H 8 14 17.4 6.3 3600 8.7 6.0 3600

H 8 16 22.5 17.8 3600 16.7 13.3 3600

H 10 10 18.8 10.6 3600 9.4 5.7 3600

H 10 12 26.9 20.4 3600 11.8 10.2 3600

H 10 14 25.7 20.3 3600 17.2 15.8 3600

H 10 16 25.2 19.1 3600 15.3 14.0 3600

Average 17.3 6.4 1935 9.1 5.3 2375

and the computational time for both algorithms. Note that the same upper bound is
used for both algorithms. Instances that are solved to proven optimality are marked
with a 0 in the G column.

We see that the method proposed in [2] solves 12 instances while our method
solves eight. On the other hand, the average relative gap at the root node is almost
halved, 17.3 compared with 9.1, in favor of our method and the average relative gap
after 1 h is also smaller, 6.4 compared with 5.3. This improvement is especially clear
on the larger instances, |P| ≥ 10, where the relative gaps are 22.9 and 17.0 compared
with 13.0 and 11.7. Note that instance F 12 22 is run until the root node is solved,
the reported result is the root node solution and the time to solve the root node. This
has been marked with an asterisk in the table. In [2], the authors report the gap of
F 12 22 after 10 h to be 21.6, clearly worse than the root node gap reported here.

SN Operations Research Forum (2020) 1: 28 Page 19 of 21 28

5 Conclusions

It is clear that the liner shipping network design problem is a notoriously hard prob-
lem. The transshipment possibilities decouple the loading and unloading decisions,
and clearly weaken the formulation. Many other routing problems use dynamic pro-
gramming for solving the pricing problem, but this is not a suitable method here. A
reason for this is that you do not have a node with a well-defined state from where
to start the algorithm. Often a depot is defined and the fact that the vehicle is either
empty when leaving the depot or returning to it is used to start the algorithm. Another
reason is transshipment, which creates a large number of loading and unloading
possibilities in each node.

We find that capacity cuts defined as an inner representation of the convex hull of
the feasible region from [2] significantly strengthen the master problem. The result-
ing LP relaxation of our model is considerably stronger than that of [2], giving an
improved initial dual bound at the cost of computational time needed to solve the root
node of the branch-and-bound tree. We see that closing the gap is challenging, and
we are not able to reach optimality within 1 h for instances larger than six ports and
ten demands.

There is still room for improvements within the approach taken here, and results
could likely be improved by examining more strategies in terms of branching, branch-
and-bound tree traversal, improved handling of columns in the master problem, and
better heuristic methods for finding columns. However, there are limits to what can
be done with algorithm engineering, and significant time is spent in the relatively
complex full subproblem. This needs to be solved at least once in each fully explored
branch-and-bound node to prove optimality, and makes the method impractical for
finding optimal solutions to instances of any significant size. It is clear that heuristic
methods are needed to find good primal solutions, but in terms of dual bounds we
have found an improvement over previously published results on the same instances,
especially for larger instances.

Acknowledgments We are grateful to the reviewers, whose comments helped us improve the paper.

Funding Open Access funding provided by NTNU Norwegian University of Science and Technology
(incl St. Olavs Hospital - Trondheim University Hospital). This work was partly supported by the Research
Council of Norway through the AXIOM project. This support is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

SN Operations Research Forum (2020) 1: 2828 Page 20 of 21

http://creativecommonshorg/licenses/by/4.0/

References

1. Agarwal R, Ergun Ø (2008) Ship scheduling and network design for cargo routing in liner shipping.
Transp Sci 42:175–196

2. Ameln M, Fuglum JS, Thun K, Andersson H, Stålhane M A new formulation for the liner shipping
network design problem. Int Trans Oper Res 2019. https://doi.org/10.1111/itor.12659

3. Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MPW, Vance PH (1998) Branch-and-price:
column generation for solving huge integer programs. Oper Res 46(3):316–29

4. Brouer BD, Alvarez JF, Plum CEM, Pisinger D, Sigurd MM (2014) A base integer programming
model and benchmark suite for liner-shipping network design. Transp Sci 48(2):281–312

5. Christiansen M, Fagerholt K, Nygreen B, Ronen D (2012) Ship routing and scheduling in the new
millennium. Eur J Oper Res 228(3):467–483

6. Christiansen M, Hellsten E, Pisinger D, Sacramento D, Vilhelmsen C (2020) Liner shipping network
design. European J Oper Res 286(1):1–20. https://doi.org/10.1016/j.ejor.2019.09.057

7. Desaulniers G (2010) Branch-and-price-and-cut for the split-delivery vehicle routing problem with
time windows. Oper Res 58(1):179–192

8. Desrosiers J, Lübbecke ME (2005) A primer in column generation. In: Desaulniers G, Desrosiers J,
Solomon MM (eds) Column generation. Springer, New York, pp 1–32

9. Lawrence SA (1972) International sea transport: the years ahead. Lexington Books, Lexington
10. Lee C-Y, Song D-P (2017) Ocean container transport in global supply chains: overview and research

opportunities. Transport Res Part B Meth 95:442–474
11. Meng Q, Wang S, Andersson H, Thun K (2014) Containership routing and scheduling in liner

shipping: overview and future research directions. Transp Sci 48(2):265–280
12. Plum CEM, Pisinger D, Sigurd MM (2014) A service flow model for the liner shipping network

design problem. European J Oper Res 235(2):378–386
13. Reinhardt LB, Pisinger D (2011) A branch and cut algorithm for the container shipping network

design problem. Flex Serv Manuf J 24(3):349–374
14. Santini A, Plum CEM, Stefan Ropke A (2018) Branch-and-price approach to the feeder network

design problem. European J Oper Res 264(2):607–622
15. Stålhane M, Andersson H, Christiansen M, Cordeau JF, Desaulniers G (2012) A branch-price-and-cut

method for a ship routing and scheduling problem with split loads. Comput Oper Res 39:3361–3375
16. Thun K, Andersson H, Christiansen M (2017) Analyzing complex service structures in liner shipping

network design. Flex Serv Manuf J 29(3):535–552
17. Tran NK, Haasis HD (2015) Literature survey of network optimization in container liner shipping.

Flex Serv Manuf J 27(2-3):139–179
18. UNCTAD Review of maritime transport 2019. Technical report, United Nations

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

SN Operations Research Forum (2020) 1: 28 Page 21 of 21 28

https://doi.org/10.1111/itor.12659
https://doi.org/10.1016/j.ejor.2019.09.057

	A Branch-and-Price Algorithm for the Liner Shipping Network Design Problem
	Abstract
	Introduction
	Problem Description and Mathematical Formulation
	Strengthening the Formulation

	Solution Method
	Pricing of a Column
	Subproblem
	Acceleration Strategies
	Branching

	Computational Study
	Test Instances
	Preliminary Testing
	Comparison and Results

	Conclusions
	References

