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Abstract

We study a two-player zero-sum game in continuous time, where the payoff -a running
cost- depends on a Brownian motion. This Brownian motion is observed in real time by one of
the players. The other one observes only the actions of his/her opponent. We prove that the
game has a value and characterize it as the largest convex subsolution of a Hamilton-Jacobi
equation on the space of probability measures.
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1 Introduction.

In this paper, we consider a two-player zero-sum game in continuous time. Given some finite
time horizon T > 0, some initial time t ∈ [0, T ] and a probability measure m on R

d, the payoff
consists in a running cost of type

Em

[∫ T

t
f(s,Bs, us, vs)ds

]

,

where (us) (resp. (vs)) is the control played by the first (resp. second) player, and (Bs) is a
standard R

d-valued Brownian motion, which, under Pm, starts with the initial law m at time t.
Player 1 wants to minimize this payoff, while player 2 wants to maximize it. This is a game with
asymmetric information: the first player observes in real time the Brownian motion and the
controls of the second player, while the second player cannot see neither the Brownian motion
nor the payoff of the game, but only the controls of the first player. The game is approximated
by a sequence of discrete time games with vanishing time increments, i.e. where the players play
more and more frequently.
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A first result is that, under Isaacs’ assumption, the sequence of the values for the discrete games
converges to some function (t,m) 7→ V (t,m) which is equal to the value of a control problem

inf
M∈M(t,m)

E[

∫ T

t
H(s,Ms)ds], (1.1)

where H(t,m) = infu supv
∫

Rd f(t, x, u, v)dm(x), and M(t,m) is the set of measure valued pro-
cesses (Ms)s∈[t,T ] which satisfy

• Mt = m,

• for all t ≤ t1 ≤ t2 ≤ T and all continuous, bounded function φ,

E

[
∫

Rd

φdMt2 |FM
t1

]

=

∫

Rd

φdp
t1,Mt1
t2

,

with pt,mr the law at time r of the Brownian motion (Bs) starting with law m at time t
and FM the filtration generated by M .

Our second and main result is that this value function V can be characterized as the largest
bounded and continuous function of (t,m) which is convex in m and subsolution of the following
equation :







∂tU(t,m) + 1
2

∫

Rd div[DmU ](t,m, x)m(dx) +H(t,m) = 0, (t,m) ∈ [0, T ] × P2,

U(T,m) = 0, m ∈ P2.
(1.2)

Here the derivative with respect to the measure m, DmU , is defined in Cardaliaguet-Delarue-
Lasry-Lions [6]. Concerning the notion of subsolution, in this case, a naive extension of the
classical notion of viscosity subsolution as it can be found in Crandall-Ishii-Lions [12] is suffi-
cient.

Dynamic games with asymmetric information were introduced in the framework of repeated
games by Aumann and Maschler in the 1960th (see [1]) and much later -in 2007- in continu-
ous time by Cardaliaguet. In his seminal paper [5], the asymmetrically observed parameters
belong to some finite sets I and J and are fixed before the game starts. It is shown that the
game has a value which is solution in some dual sense of a Hamilton-Jacobi-Isaacs’ equation (see
Cardaliaguet-Rainer [8] for a generalisation to stochastic differential games and Oliu-Barton [22]
for correlated information).
In Cardaliaguet-Rainer [9], in the case of only one non-informed player and without dynamics,
an alternative formulation of type (1.1), in terms of an optimization problem over the belief
process of the uninformed player, is given (see Grün [16] for stochastic differential games and
[15] by the authors for its extension to lack of information on both sides). This alternative
formulation permits firstly to derive some optimal strategy for the informed player. Further, in
cases where the dual approach of [5] isn’t possible (typically when the distribution of the asym-
metrically observed parameters has a continuous support), it provides an new angle of attack
for the PDE-characterization.
However, since the reinterpretation in terms of a control problem with respect to measure-valued
processes is possible only for the upper value of the game, it doesn’t permit to prove the ex-
istence of a value. This is one of the reasons why we focus here on the interpretation of the
continuous game as a limit of a sequence of discrete time games. On the other hand, it permits
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us to contribute to the growing interest for the interactions between discrete and continuous time
games: Rather simultaneously Cardaliaguet-Laraki-Sorin [7] and Neyman [21] firstly investigate
this area, showing that continuous time games may be interpreted as limits of discrete time
games where the players play more and more faster (see also a very recent paper of Sorin [24]).
This approach is then used in Cardaliaguet-Rainer-Rosenberg-Vieille [11] and Gensbittel [14] for
the asymmetric observation of a Markov process. These last two references are concerned with
the asymmetrical observation in real time of a continuous time, random process. In both, it is
a Markov process with finite state space. Our paper provides a first step to the observation of
a Markov process with continuous support.
But several problems remain open: Since, in the present work, the associated PDE has a clas-
sical solution, there is no need of a comparison theorem for viscosity solutions in the measure
space, for which a suitable definition is still to find. In the general case of the observation of an
arbitrary diffusion process, one cannot avoid this difficulty. The second open question is how to
tackle directly the continuous game and the existence of its value.

The paper is organized as follows: In Section 2, we introduce the notations relative to the
Wasserstein space, the Brownian motion and Gaussian kernels and introduce the continuous
time game and the approximating discrete time games. In section 3, the alternative formulation
(1.1) is established. Finally, in section 4, we introduce the PDE (1.2) and state and prove the
characterization of the value of the game.

2 Model: notations and reminders.

2.1 Wasserstein space and Wasserstein distance.

For fixed d, let P be the set of all probability measures on R
d. On P, we introduce, for all p ≥ 1

the normalized pth moment

|m|p =
(∫

Rd

|x|pdm(x)

)
1

p

.

The associated subspaces are :

Pp = {m ∈ P, |m|p <∞}, p ≥ 1

For all p ≥ 1, we define on Pp the p-Wasserstein distance:

dp(m,m
′) = inf

π∈Γ(m,m′)

(
∫

Rd×Rd

|x− y|pπ(dx, dy)
) 1

p

,m,m′ ∈ Pp

where Γ(m,m′) is the set of probability measures π on R
d×R

d with first (resp. second) marginal
m (resp m′). Recall that for p = 1, there is a dual formulation:

d1(m,m
′) = sup

{∫

Rd

ϕd(m−m′), ϕ 1-Lipschitz

}

.

For the above result as well as for the statements of the following Lemma 2.1 and their proofs,
we refer to Villani [25].

In this paper, we will place us mainly on the space P2, sometimes endowed with the correspond-
ing d2-metric, but more frequently seen as a subset of P1, endowed with d1.

Let us state some useful standard results.
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Lemma 2.1.

1. For all p ≥ 1, it holds that, for some well known constant Cp,

dpp(m,m
′) ≤ Cp(|m|pp + |m′|pp).

2. Let m,m′ ∈ P2. We have

d1(m,m
′) ≤

∫

Rd

|x||m−m′|(dx).

In particular, if m (resp. m′) has a density ρ (resp. ρ′), then

d1(m,m
′) ≤

∫

Rd

|x||ρ− ρ′|(x)dx.

3. The balls B2(R) = {m ∈ P, |m|2 ≤ R} are d1 compact.

4. For all φ continuous with |φ(x)| ≤ α(1 + |x|p) for some constant α, the map Pp ∋ m 7→
∫

Rd φ(x)dm(x) is dp continuous. If φ is non-negative, it is dq lower semicontinuous (l.s.c.)
for all 1 ≤ q ≤ p.

5. A sequence of measures (µn) converges in Pp if and only if it converges weakly and admits
uniformly integrable p-moments.

2.2 Law of the Brownian motion, Gaussian kernel

We fix a dimension d ∈ N
∗ and a finite time horizon T . For any δ > 0, we denote by ρδ the

Gaussian kernel

ρδ(x) =
1

(2πδ)
d
2

e
−|x|2

2δ , x ∈ R
d,

and, for any (t,m) ∈ [0, T ] × P, and s ∈ [t, T ], by pt,ms the law of the d-dimensional Brownian
motion at time s, starting at time t with law m :

pt,mt = m and, for s ∈ (t, T ], pt,ms (dx) := ρt,ms (x)dx = ρs−t ∗m(x)dx. (2.1)

It is well known that (ρt,ms )s∈(t,T ] satisfies the heat equation

∂sρ
t,m
s − 1

2
∆ρt,ms = 0, s ∈ (t, T ]. (2.2)

Recall also the Markov property: for all t ≤ t1 ≤ t2 ≤ T ,

pt,mt2 = p
t1,p

t,m
t1

t2
. (2.3)

In the sequel, we shall repeatedly use the following estimations :

Lemma 2.2. 1. For all 0 ≤ t ≤ s ≤ T and m,m′ ∈ P1, it holds that

d1(p
t,m
s , pt,m

′

s ) ≤ d1(m,m
′) ≤ d1(p

t,m
s , pt,m

′

s ) + 2
√

d(s − t). (2.4)
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2. More generally, for all t ∈ [0, T ] and all k ≥ 1, the map (s,m) 7→ pt,ms from ([t, T ] ×
Pk, λ|[t,T ] ⊗ dk) to (Pk, dk) is continuous: The following estimation holds

dk(p
t,m
s , pt,m

′

s′ )k ≤ Ck

(

dk(m,m
′)k + |s− s′|k/2

)

, (2.5)

where the constant Ck depends only on k and the dimension d.

Proof. On an arbitrary probability space (Ω̄, F̄ , P̄), let (X,X ′) be a couple of random variables
with marginals m and m′ respectively, and (Bs)s≥0 a standard d-dimensional Brownian motion
independent of (X,X ′). Then the marginals of the couple (X + Bs,X

′ + Bs′) are pt,ms (resp.

pt,m
′

s′ ) and we can write

dk(p
t,m
s , pt,m

′

s′ )k ≤ Ē[|(X +Bs)− (X ′ +Bs′)|k]. (2.6)

1. For k = 1, it follows that

d1(p
t,m
s , pt,m

′

s′ ) ≤ Ē[|X −X ′|] +
√

d|s − s′|,

and, since the couple (X,X ′) has been chosen arbitrarily,

d1(p
t,m
s , pt,m

′

s′ ) ≤ d1(m,m
′) +

√

d|s − s′|. (2.7)

The relation (2.4) follows using the estimation (2.7) for s′ = s and s′ = t and the triangular
relation

d1(m,m
′) ≤ d1(m, p

t,m
s ) + d1(p

t,m
s , pt,m

′

s ) + d1(p
t,m′

s ,m′).

2. Let us come back to the general case. From (2.6), we get

dk(p
t,m
s , pt,m

′

s′ )k ≤2k
(

Ē[|X −X ′|k] + Ē[|Bs −Bs′ |k]
)

≤Ck
(

Ē[|X −X ′|k] + |s − s′|k/2
)

.

Again, since the couple (X,X ′) has been chosen arbitrarily, the result follows.

2.3 The Brownian motion and the parameters of the game

Given the finite time horizon T , we fix an initial time t ∈ [0, T ]. On the set Ωt := C([t, T ],Rd) we
denote as usual by Bs(ω) = ω(s), ω ∈ Ωt, s ∈ [t, T ] the canonical process. The set Ωt is endowed
with Ft, the σ-algebra generated by (Bs)s∈[t,T ]. Finally, for a fixed probability measure m ∈ P,
Pt,m denotes the probability on Ωt such that, under Pt,m, (Bs)s∈[t,T ] is a Brownian motion such
that Bt is of law m.

Let U and V be two compact metric spaces.

Let f : [0, T ] × R
d × U × V → R be a map, which we suppose to be bounded, continuous in all

its variables, Lipschitz in (t, x) ∈ [0, T ]× R
d with constant Lip(f), uniformly in (u, v), i.e.:

∀(u, v) ∈ U×V, ∀t, t′ ∈ [0, T ], ∀x, x′ ∈ R
d, |f(t, x, u, v)−f(t′, x′, u, v′)| ≤ Lip(f)(|x−x′|+|t−t′|).

Set C = max{Lip(f), ‖f‖∞}.
As already explained in the introduction, the idea of the game is that, for any fixed initial condi-

tion (t,m) ∈ [0, T ]×P2 two players aim to optimize the cost function Et,m

[

∫ T
t f(s,Bs, us, vs)ds

]
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where player 1 plays (us)s∈[t,T ] with values in U and tries to minimize the cost function, while
player 2 plays (vs)s∈[t,T ] with values in V and tries to maximize it. Player 1 observes in real
time the Brownian motion (Bs) and the controls of player 2, while player 2 only observes the
controls of player 1.

We do not go more into details, because we won’t analyse this continuous time game but rather
approximate it by a sequence of discrete time games. Indeed, as in former works ([10],[11],[15]),
while the analysis of the upper value function of the continuous game would be close to what
is presented here, there is actually no way to handle its lower value function. In particular we
don’t know if the continuous time game has a value. By working on repeated games, we get
around this difficulty thanks to the minmax theorem of Von Neumann: it guaranties that a
value exists for each finite-step game. The function we call the “value of the game” will be the
limit of them.

Assumption: Throughout the paper, we suppose that the following Isaacs assumption holds:

For all (t,m) ∈ [0, T ]× P2,

inf
u∈U

sup
v∈V

∫

Rd

f(t, x, u, v)dm(x) = sup
v∈V

inf
u∈U

∫

Rd

f(t, x, u, v)dm(x), (2.8)

and we denote by H(t,m) the common value.

Remark 2.3. Under Isaacs assumption, H(t,m) is the value of the infinitesimal game. It is
also possible to work without Isaacs assumption. In this case H(t,m) has to be replaced by

H̄(t,m) = inf
σ∈∆(U)

sup
τ∈∆(V )

∫

U

∫

V
(

∫

Rd

f(t, x, u, v)dm(x))dσ(u)dτ(v), (t,m) ∈ [0, T ]× P2,

with ∆(U) (resp. ∆(V )) the set of probability measures on U (resp. V ). Remark that, since,
by assumption, f is continuous in all its variables and U, V are compacts, the infimum and
supremum commute in the above definition.

Lemma 2.4. The function H is continuous, bounded and Lipschitz in t and m ∈ P2 (with
respect to the d1-distance), with constant C.

Proof. The Lipschitz regularity of H with respect to t follows classically from the Lipschitz
regularity in t of f . To prove that H is Lipschitz in m, let’s write the dual characterization of
the Wasserstein distance: For all m,m′ ∈ P2, for all (u, v) ∈ U × V , it holds that

|
∫

f(t, x, u, v)dm(x)−
∫

f(t, x, u, v)dm′(dx)| ≤ C sup
ϕ 1−Lipschitz

(∫

ϕdm−
∫

ϕdm′
)

= Cd1(m,m
′).

It follows that the same inequality holds for H.

2.4 The discrete time game

Fix t ∈ [0, T ]. To each partition π = {t = t1 < t2 < ... < tN = T} we can associate, as a
discretization along π of the continuous time game, the following stochastic game Γπ(t,m):

• The variable Btq is observed by player 1 before stage q for q = 1, ..., N − 1.

• At each stage, both players choose simultaneously a pair of controls (uq, vq) ∈ U × V .
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• Chosen actions are observed after each stage.

• Stage payoff of player 1 equals f(tq, Btq , uq, vq) (realized stage payoffs are not observed).

• The total expected payoff of player 1 is

Et,m





N−1
∑

q=1

(tq+1 − tq)f(tq, Btq , uq, vq)



 .

The description of the game is common knowledge and we consider the game played in behaviour
strategies: at round q, player 1 and player 2 select simultaneously and independently an action
uq ∈ U for player 1 and vq ∈ V for player 2, using some lotteries depending on their past
observations. Note that even if the realized stage payoffs are not observed, Player 1 can deduce
the value of f(tq, Btq , uq, vq) from his/her observations after stage q, which is not possible for
Player 2 as he/she does not observe the trajectory of the Brownian motion.

Formally, a behaviour strategy σ for player 1 is a sequence (σq)q=1,...,N−1 of transition probabil-
ities:

σq : (R
d × U × V )q−1 × R

d → ∆(U),

where σq(Bt1 , u1, v1, ..., Btq−1
, uq−1, vq−1, Btq ) denotes the lottery used to select the action uq

played at round q by player 1, when past actions played during the game are (u1, v1, ..., uq−1, vq−1)
and the sequence of observations of player 1 is (Bt1 , ..., Btq ). Let Σ(π) denote the set of behaviour
strategies for player 1. Similarly, a behaviour strategy τ for player 2 is a sequence (τq)q=1,...,N−1

of transition probabilities depending on his/her past observations

τq : (U × V )q−1 → ∆(V ).

Let T (π) denote the set of behaviour strategies for player 2.

Let Pt,m,π,σ,τ ∈ ∆(C([t, T ],Rd)× (U × V )N−1) denote the probability on the set of trajectories
of (Bs) and actions induced by the strategies σ, τ . The payoff function in Γπ(t,m) is defined by

γπ(t,m, σ, τ) := Et,m,π,σ,τ





N−1
∑

q=1

(tq+1 − tq)f(tq, Btq , uq, vq)



 .

It is well known that the game has a value

Vπ(t,m) := sup
τ∈T (π)

inf
σ∈Σ(π)

γπ(t,m, σ, τ)

= inf
σ∈Σ(π)

sup
τ∈T (π)

γπ(t,m, σ, τ).

3 An alternative formulation of the value function

We use the notation m(φ) :=
∫

φdm.

On a sufficiently large probability space (Ω,F ,P) we introduce the following set of measure-
valued processes:
For any fixed (t,m) ∈ [0, T ]×P2, we defineM(t,m) as the set of càdlàg processesM = (Ms)s∈[t,T ]
with values in the complete separable metric space (P1, d1) which satisfy:
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(i) For all φ ∈ Cb(R
d), E[Mt(φ)] = m(φ),

(ii) for all t ≤ t1 ≤ t2 ≤ T , for all φ ∈ Cb(R
d)

E
[

Mt2(φ)|FM
t1

]

= p
t1,Mt1
t2 (φ),

where (FM
s )t≤s≤T denotes the filtration generated byM , completed and made right-continuous,

and Cb(R
d) the set of continuous, bounded functions from R

d to R.

Remarks 3.1.

1. These two properties imply:

∀φ ∈ Cb(Rd),∀t′ ∈ [t, T ], E[Mt′(φ)] = pt,mt′ (φ). (3.1)

Indeed, we have

E[Mt′(φ)] = E[E[Mt′(φ)|FM
t ] = E[pt,Mt

t′ (φ)]

= E[

∫

Rd

Mt(φ(x+ ·))ρt′−t(x)dx] =
∫

Rd

E[Mt(φ(x+ ·))]ρt′−t(x)dx

=

∫

Rd

m(φ(x+ ·))ρt′−t(x)dx = pt,mt′ (φ).

2. The equalities (i), (ii) as well as (3.1) extend to any measurable functions with at most
quadratic growth using monotone convergence.

3. In particular, (3.1) implies that the process M takes values in P2 almost surely. Indeed,
for t′ ∈ [t, T ] and ψ(x) = |x|2:

E[Mt′(ψ)] = pt,mt′ (ψ) <∞,

and thus Mt′(ψ) <∞ almost surely.

4. The càdlàg property (for d1) of the process M and point 4 of Lemma 2.1 imply that
s ∈ [t, T ] 7→ Ms(φ) :=

∫

Rd φ(x)dMs(x) is a càdlàg process for all continuous functions φ
with at most linear growth.

5. Later in the paper, we need following Jensen’s-type inequality:
for 0 ≤ t1 ≤ t2 ≤ t3 ≤ T ,

d1(p
t2,Mt2
t3 ,Mt1) ≤ E

[

d1(Mt3 ,Mt1)|FM
t2

]

. (3.2)

This relation can easily derived from the dual formulation of the d1-distance, (ii) and
Remark 2.: for all 1-Lipschitz map ϕ,

∫

Rd

ϕd(p
t2,Mt2
t3 −Mt1) = E

[∫

Rd

ϕd(Mt3 −Mt1)|FM
t2

]

≤ E
[

d1(Mt3 ,Mt1)|FM
t2

]

.

The result follows by taking the supremum over all 1-Lipschitz maps ϕ.

We set

V (t,m) = inf
(Ms)∈M(t,m)

E

[
∫ T

t
H(s,Ms)ds

]

(3.3)
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Remark 3.2. Let D([t, T ],P1) be the set of càdlàg trajectories with values in the complete
separable metric space (P1, d1) and denote (ms)s∈[t,T ] the canonical process on D([t, T ],P1).
Then an equivalent formulation for V holds:

V (t,m) = inf
µ∈M̃(t,m)

Eµ

[∫ T

t
H(s,ms)ds

]

. (3.4)

where M̃(t,m) is the family of probability measures on D([t, T ],P1) under which the canonical
process (ms)s∈[t,T ] satisfies the items (i) and (ii) of the definition of M(t,m).

Let us state the first standard property of V .

Proposition 3.3. The function V is convex in m.

Proof. Fix t ∈ [0, T ] and let m1,m2 ∈ P2 and λ ∈ (0, 1) Set mλ = λm1 + (1 − λ)m2. For
ǫ > 0 let M1 (resp. M2) be ǫ-optimal for V (t,m1) (resp. for V (t,m2)). Up to enlarge the
probability space, we may assume that there exists A ∈ F such that P (A) = λ and (A,M1,M2)
are mutually independent. Define now Mλ by

Mλ
s =M1

s1A +M2
s1Ac , s ∈ [t, T ].

At first, note that Mλ ∈ M(t,mλ). Indeed for all φ ∈ Cb(R
d), we have:

E[Mλ
t (φ)] = E[M

1

t (φ)1A] + E[M2
t (φ)1Ac ] = λm1(φ) + (1− λ)m2(φ) = m(φ).

For t ≤ t1 ≤ t2 ≤ T , denoting σ(FM1

t1 ,FM2

t1 , A) the σ-field generated by FM1

t1 ,FM2

t1 and A, we
have

E[Mλ
t2(φ)|σ(F

M1

t1 ,FM2

t1 , A)] = E[M1
t2(φ)|σ(F

M1

t1 ,FM2

t1 , A)]1A + E[M2
t2(φ)|σ(F

M1

t1 ,FM2

t1 , A)]1Ac

= E[M1
t2(φ)|F

M1

t1 ]1A + E[M2
t2(φ)|F

M2

t1 ]1Ac

= p
t1,M1

t1
t2 (φ)1A + p

t1,M2
t1

t2 (φ)1Ac = p
t1,Mλ

t1
t2 (φ).

By taking conditional expectation given σ(Mλ
s , s ∈ [t, t1]) ⊂ σ(FM1

t1 ,FM2

t1 , A) on both sides, we
obtain

E[Mλ
t2(φ)|σ(M

λ
s , s ∈ [t, t1])] = p

t1,Mλ
t1

t2 (φ).

Thus equality being true for all t ≤ t1 ≤ t2 ≤ T , it can be extended to the right-continuous

filtration generated by Mλ using that the processes Mλ(φ) and p
·,Mλ

·
t2 (φ) are càdlàg and using

the backward martingale convergence theorem. This concludes the proof of property (ii) of the
definition of M(t,m).

We deduce that

E

[

∫ T
t H(s,Mλ

s )ds
]

= λE
[

∫ T
t H(s,M1

s )ds
]

+ (1− λ)E
[

∫ T
t H(s,M2

s )ds
]

≤ λV (t,m1) + (1− λ)V (t,m2) + 2ǫ.

The result follows by letting ε go to zero.

We state now the main result of this section. It explains why we may consider V as a natural
definition of a value for the continuous-time game described in the introduction.

Theorem 3.4. For all (t,m) ∈ [0, T ]×P2, the limit lim|π|→0 Vπ(t,m) exists and coincides with
V (t,m), where for a partition π = {t = t1 < . . . < tN = T}, |π| denotes its mesh, i.e.:

|π| = sup{|ti+1 − ti|, i = 1, . . . , N − 1}.

The proof requires several preliminary results, which are presented in the next subsections.
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3.1 A generalized splitting lemma

In order to compare the limit points of (Vπ(t,m))|π|→0 and V (t,m), we have to make corre-
spond strategies in σ ∈ Σ(π) and elements of M(t,m). A classical tool for this, the so called
“splitting argument” is well known for games where the asymmetrical observed parameter has
a finite support (see the elementary version in Aumann-Machler [1] or Sorin [23], and in [11] its
adaptation to a dynamic setting). Here we need a more general version.

Let us recall a fundamental result of Blackwell and Dubins.

Theorem 3.5. (Blackwell-Dubins [3])
Let E be a polish space, ∆(E) the set of Borel probabilities on E, ([0, 1],B([0, 1]), λ) the unit
interval equipped with Lebesgue’s measure, and U the canonical element in [0, 1]. There exists a
measurable mapping

ΦE : ∆(E)× [0, 1] −→ E

such that for all µ ∈ ∆(E), the law of ΦE(µ,U) is µ.

Proposition 3.6. Let M in M(t,m) and π = {t = t1 < ... < tN = T} a partition of [t, T ].
Given a Brownian motion (Bs)s∈[t,T ] with initial law m, and (U1, ..., UN−1) some independent
random variables independent of (Bs), all uniformly distributed on [0, 1] and defined on a same
probability space (Ω̄, F̄ , P̄), there exist variables (M ′

tq )q=1,...,N−1 defined on Ω̄, having the same
law as (Mtq )q=1,...,N−1, and such that for all q = 1, ..., N − 1:

• M ′
tq is measurable with respect to (Bt1 , U1, ..., Btq , Uq).

• The conditional law of Btq given (M ′
t1 , ...,M

′
tq ) is precisely M ′

tq .

Proof. At first, let us assume thatM is defined on a probability space (Ω,F ,P) sufficiently large
so that there exists a family (Ũ1, ..., ŨN−1) of independent uniform random variables independent
of M , all defined on Ω. Define the variable B̃t1 = ΦRd(Mt1 , Ũ1), so that the conditional law of
B̃t1 given Mt1 is almost surely equal to Mt1 . Let ft1(B̃t1) denote a version of the conditional
law of Mt1 given B̃t1 , meaning that ft1 is a measurable map from R

d to ∆(P1). Define then on
the probability space Ω̄ the variable M ′

t1 = ΦP1
(ft1(Bt1), U1), so that (Bt1 ,M

′
t1) has the same

law as (B̃t1 ,Mt1), implying that the conditional law of Bt1 given M ′
t1 is almost surely equal to

M ′
t1 .

We proceed by induction. Let us assume that the variables (M ′
t1 , ....,M

′
tq−1

) are defined on

Ω̄ for some 1 ≤ q ≤ N − 2, and have the required properties. Define B̃tq = ΦRd(Mtq , Ũq),

so that the conditional law of B̃tq given (Mt1 , ....,Mtq ) is almost surely equal to Mtq . Let

ftq (B̃tq ,Mt1 , ...,Mtq−1
) denote a version of the conditional law of Mtq given (B̃tq ,Mt1 , ...,Mtq−1

),
meaning that ftq is a measurable map from R

d×(P1)
q−1 to ∆(P1). Define then, on the probabil-

ity space Ω̄, the variable M ′
tq = ΦP1

(ftq (Btq ,M
′
t1 , ....,M

′
tq−1

), Uq), so that (Btq ,M
′
t1 , ...,M

′
tq ) has

the same law as (B̃tq ,Mt1 , ...,Mtq ), implying that the conditional law of Btq given (M ′
t1 , ...,M

′
tq )

is almost surely equal to M ′
tq .

3.2 Compactness and continuity

The next step is to show that, up to enlarge the underlying probability space, the infimum in
the formulation (3.3) is attained for some law in M̃(t,m). This statement is equivalent to claim
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that the space of probability measures M̃(t,m) defined in (3.4) is compact for the appropriate
topology.

For that, we endow the set D([t, T ],P1) with the topology κ1 of convergence in measure together
with the convergence of the value at time T . It means that a sequence hn converges to h if

∀ε > 0,

∫

[t,T ]
1d1(hn(s),h(s))>εds −→

n→∞
0, d1(h

n(T ), h(T )) −→
n→∞

0.

This topology is metrizable, and makes the space (D([t, T ],P1), κ1) a separable metric space
which is not topologically complete. Let L(κ1) denote the associated convergence in law on
∆(D([t, T ],P1)).

The following lemma is a corollary of the main result in Kurtz [18] which extends the classical
result of Meyer-Zheng [20] to measure-valued processes:

Lemma 3.7 (Consequence of Theorem 1.1 and Corollary 1.4 in [18]). Consider a sequence of
processes (Mn)n≥0 ⊂ M(t,m) for m ∈ P2. Then the set of laws of the processes (Mn)n≥0 is
L(κ1)-relatively compact.

Proof. In order to exactly fit in the framework of [18], one may extend the definition of the
processes to (Mn)s∈[t,+∞) by Mn

s = Mn
T for s ≥ T . We have to verify the condition C1.1(i)

(compactness containment) of Theorem 1.1 in [18], i.e. that for all ε > 0, there exists a compact
K ⊂ P1 such that

lim inf
n→∞

P(Mn
s ∈ K,∀s ∈ [t, T ]) ≥ 1− ε.

Let ψ(x) = |x|2. Note that, using the properties of the Gaussian kernel, for all s′ ≥ s,

E[Mn
s′(ψ)|Fs] = p

s,Mn
s

s′ (ψ) =Mn
s (ψ) + d(s′ − s).

This implies that Mn(ψ) is a non-negative submartingale.
Using Doob’s inequality, we have therefore

P( sup
s∈[t,T ]

Mn
s (ψ) > C) ≤ E[Mn

T (ψ)]

C
=
m(ψ) + d(T − t)

C
.

As the set {µ ∈ P1 |µ(ψ) ≤ C} is compact in (P1, d1) (see Lemma 2.1), the condition holds by

choosing C ≥ m(ψ)+d(T−t)
ε .

We verify now the condition of Corollary 1.4. in [18], i.e. that there exists a countable separating
subset {fi}i∈I in Cb(P1) such that for all i ∈ I

sup
n

sup
0=t0<...<tk<...<tN=T

E

[

N−1
∑

k=0

∣

∣

∣E[fi(M
n
tk+1

)− fi(M
n
tk
)|FMn

tk
]
∣

∣

∣

]

< +∞. (3.5)

For this, we can choose a sequence (φi) in C
∞(Rd) which separates points in P1 (for example,

one may choose the maps cos(〈tj , ·〉) and sin(〈tj , ·〉) when tj varies in a countable dense subset
of Rd), so that the maps fi : µ →

∫

φidµ are separating in Cb(P1). Moreover for these maps,
the quantity (3.5) is bounded by (T − t)‖D2φi‖∞ since for all i, k, Itô’s formula implies:

|E[Mn
tk+1

(φi)−Mn
tk
(φi)|FMn

tk
]| = |ptk ,M

n
tk

tk+1
(φi)−Mn

tk
(φi)| ≤

d

2
‖D2φi‖∞(tk+1 − tk).
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The result of Kurtz implies (see point (b) of Theorem 1.1 having in mind that Lebesgue-almost
sure convergence of trajectories implies convergence in measure) that there exist a process M
and subsequence of Mn which L(κ1)-converges to M . The result follows.

A similar result for martingales can be found in Cardaliaguet-Rainer [10] with a proof based on
the method of Meyer and Zheng [20].

Proposition 3.8. M̃(t,m) is L(κ1) compact in ∆(D([t, T ],P1)).

Proof. Using the preceding lemma 3.7, it remains to prove that M̃(t,m) is closed in ∆(D([t, T ],P1)).
Let (µn) be a sequence in M̃(t,m) that converges for L(κ1) to some law µ in ∆(D([t, T ],P1)).
Using Skorokhod representation Theorem for separable metric spaces (see Theorem 11.7.31 in
[13]), we can find on some probability space (Ω,F ,P) a sequence of processes (Mn)n≥1 of law µn

and a process M = (Ms)s∈[t,T ] of law µ such that (Mn)
κ1→M almost surely. Up to extracting a

subsequence, we can also assume that there exists a subset R of full Lebesgue measure in [t, T ]

and containing T such that for all s ∈ R, Mn
s
d1→Ms almost surely.

Let φ ∈ Cb(R
d). Then, for all s ∈ R, we have almost surely

Mn
s (φ) →Ms(φ).

Given some bounded continuous maps f1, ..., fk : P1 → R and t1, ..., tk ≤ s ≤ s′ in R, we have

∀n ≥ 0, E[f1(M
n
t1)...fk(M

n
tk
)Mn

s′(φ)] = E[f1(M
n
t1)...fk(M

n
tk
)p
s,Mn

s

s′ (φ)].

Taking the limit as n goes to +∞, we deduce that

E[f1(Mt1)...fk(Mtk)Ms′(φ)] = E[f1(Mt1)...fk(Mtk)p
s,Ms

s′ (φ)],

since the map m′ → ps,m
′

s′ is d1-continuous. Recall now that, by definition, M is càdlàg. This
implies that σ(Mr, r ∈ [t, s]) = σ(Mr, r ∈ R ∩ [t, s]). It follows that

E[Ms′(φi)|σ(Mr, r ∈ [t, s])] = ps,Ms

s′ (φi).

This property holds true almost surely for all s, s′ in a countable dense subset of [t, T ] containing
T . It can therefore be extended to all s, s′ ∈ [t, T ] when replacing σ(Mr, r ∈ [t, s]) by its right-
continuous augmentation FM

s .

Similarly, for all n ≥ 0 and all s ∈ R, we have

E[Mn
s (φ)] = pt,ms (φ).

We deduce that E[Ms(φ)] = pt,ms (φ) by taking the limit, and the property extends to all s ∈ [t, T ]
by right-continuity. This also implies that E[Mt(φ)] = m(φ). It follows that M(t,m) is closed.
This fact, together with Theorem 3.7 gives the compactness of M̃(t,m).

3.3 d1-variation of belief processes.

Lemma 3.9. Given any partitions π = {t = t1 < .... < tN = T}, we have

lim
|π|→0

sup
M∈M(t,m)

E[

N−1
∑

q=1

(tq+1 − tq)d1(Mtq , M̂tq )] = 0,
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lim
|π|→0

sup
M∈M(t,m)

E[

N−1
∑

q=1

(tq+1 − tq)d1(Mtq+1
, M̂tq+1

)] = 0,

where we have set M̂t1 = m and for q = 2, ..., N , M̂tq = p
tq−1,Mtq−1

tq .

Proof. We only prove the first assertion as the proof of the second is completely similar.

Let L∗ denote the set of 1-Lipschitz functions on R
d taking value 0 at 0. Define the norm

‖f‖∗ := supx∈Rd
|f(x)|
1+|x|2 on the vector space of continuous functions with at most quadratic

growth. The space L∗ is compact for the norm ‖.‖∗: for all ε > 0, there exists a finite family
{fi, i = 1, ...., Nε} such that, for all f ∈ L∗, there exists fi such that ‖f − fi‖∗ ≤ ε. Let
(Ui)i=1,...,Nε denote a measurable partition of L∗ such that

∀f ∈ Ui, ‖f − fi‖∗ ≤ ε.

Note that for all f ∈ L∗, E[Mtq (f)|FM
tq−1

] = M̂tq (f) for q = 2, ..., N − 1 and E[Mt1(f)] = M̂t1(f).
For all µ, µ′ ∈ P1, we have by definition

d1(µ, µ
′) = sup

f∈L∗
µ(f)− µ′(f).

If we endow P2 with the distance d2 (which induces the same Borel structure as d1) and L∗ with
the norm ‖.‖∗, then, using point 4 of Lemma 2.1, one easily checks that the map

(µ, µ′, f) ∈ P2 × P2 ×L∗ → µ(f)− µ′(f),

is jointly continuous. Applying Proposition 7.33 in Bertsekas-Shreves [2], there exists a measur-
able selection Φ : P2 × P2 → L∗ such that

∀µ, µ′ ∈ P2, d1(µ, µ
′) =

∫

Φ(µ, µ′)dµ −
∫

Φ(µ, µ′)dµ′.

Define the random functions x 7→ gq(x) = Φ(Mtq , M̂tq )(x)1(Mtq ,M̂tq )∈P2×P2
so that

E[
N−1
∑

q=1

(tq+1 − tq)d1(Mtq , M̂tq )] = E[
N−1
∑

q=1

(tq+1 − tq)(Mtq (gq)− M̂tq (gq))].

We have, for all q,

Mtq (gq) =Mtq (
∑

i

1gq∈Ui
fi) +Mtq (

∑

i

1gq∈Ui
(gq − fi)).

Using that, for P-almost all ω ∈ Ω,

∀x ∈ R
d,

∑

i

1gq∈Ui
|gq(ω, x) − fi(x)| ≤ ε(1 + |x|2),

we deduce that

|Mtq (gq)−Mtq (
∑

i

1gq∈Ui
fi)| ≤ ε

∫

(1 + |x|2)dMtq (x).

Finally, this implies that

E[|Mtq (gq)−Mtq (
∑

i

1gq∈Ui
fi)|] ≤ ε

∫

(1 + |x|2)dpt,mtq (x) ≤ ε(1 +C1),

13



for some constant C1 depending on m and (T − t). The same argument leads to

E[|M̂tq (gq)− M̂tq (
∑

i

1gq∈Ui
fi)|] ≤ ε

∫

(1 + |x|2)dpt,mtq (x) ≤ ε(1 +C1).

We obtain:

E[
∑N−1

q=1 (tq+1 − tq)(Mtq (gq)− M̂tq (gq))]

≤ 2Tε(1 +C1) + E[
∑N−1

q=1 (tq+1 − tq)
∑Nε

i=1 1gq∈Ui
(Mtq (fi)− M̂tq (fi))]

≤ 2Tε(1 +C1) +
∑Nε

i=1 E[
∑N−1

q=1 (tq+1 − tq)|Mtq (fi)− M̂tq (fi)|]
(3.6)

Note that the second inequality is far from being precise, since we just have bounded the indicator
functions by 1. Its advantage is that the integrands are now all deterministic.

Now, for η > 0 and i = 1, ..., Nε, we define the mollification fηi = fi ∗ ρη (recall that ρη denotes
the Gaussian kernel, see section 2.2). Using that fi is 1-Lipschitz, it is then well-known that fηi
is smooth and that

‖fi − fηi ‖∞ ≤ C2
√
η, ‖∇fηi ‖∞ ≤ 1, ‖D2fηi ‖∞ ≤ C2√

η
,

with C2 =
∫

Rd |x|ρ1(x)dx. We deduce that, for all i = 1, ..., Nε:

E[
∑N−1

q=1 (tq+1 − tq)|Mtq (fi)− M̂tq (fi)|] ≤ E[
∑N−1

q=1 (tq+1 − tq)|Mtq (f
η
i )− M̂tq (f

η
i )|] + 2C2T

√
η

(3.7)
Now, by Cauchy-Schwarz, we have

E[
∑N−1

q=1 (tq+1 − tq)|Mtq (f
η
i )− M̂tq (f

η
i )|] ≤

√

|π|E[∑N−1
q=1

√
tq+1 − tq|Mtq (f

η
i )− M̂tq (f

η
i )|]

≤
√

|π|
√
T

(

E

[

∑N−1
q=1

(

Mtq (f
η
i )− M̂tq (f

η
i )
)2

])1/2

.

(3.8)
Then, using that (Mtq (f

η
i )− M̂tq (f

η
i )) is a sequence of martingale increments, we have

E





N−1
∑

q=1

(

Mtq (f
η
i )− M̂tq (f

η
i )
)2



 = E









N−1
∑

q=1

(

Mtq (f
η
i )− M̂tq (f

η
i )
)





2



= E







MtN−1
(fηi )−m(fηi ) +

N−2
∑

q=1

(

Mtq (f
η
i )− M̂tq+1

(fηi )
)





2



Therefore it holds that


E





N−1
∑

q=1

(

Mtq (f
η
i )− M̂tq (f

η
i )
)2









1/2

≤m(fηi ) + E

[

(

MtN−1
(fηi )

)2
]1/2

+



E









N−2
∑

q=1

(

Mtq (f
η
i )− M̂tq+1

(fηi )
)





2







1/2

.

Since fηi is smooth, using Itô’s formula, for all µ ∈ P2 and all t ≤ s1 ≤ s2 ≤ T , we have:

ps1,µs2 (fηi ) = Es1,µ[f
η
i (Bs2)] = Es1,µ

[

fηi (Bs1) +

∫ s2

s1

∇fηi (Br) · dBr +
1

2

∫ s2

s1

tr(D2fηi (Br))dr

]

.
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Since ‖∇fηi ‖∞ ≤ 1, the stochastic integral is a martingale, and thus

|ps1,µs2 (fηi )− µ(fηi )| =
∣

∣

∣

∣

Es1,µ

[

1

2

∫ s2

s1

tr(D2fηi (Br))dr

]∣

∣

∣

∣

≤ dC2

2
√
η
(s2 − s1).

This formula holds in particular for µ =Mtq , q = 1, ..., N − 2:

|Mtq (f
η
i )− M̂tq+1

(fηi )| = |Mtq (f
η
i )− p

tq ,Mtq

tq+1
(fηi )| ≤

dC2

2
√
η
(tq+1 − tq).

This leads to the following estimation:



E









N−2
∑

q=1

Mtq (f
η
i )− M̂tq+1

(fηi )





2







1/2

≤ dC2T

2
√
η
.

On the other hand, Jensen’s inequality implies

MtN−1
(fi)

2 ≤MtN−1
(f2i ),

which in turn implies (with ψ(x) = |x|2, recall that fi(0) = 0 so that |fi|2 ≤ ψ))

E[MtN−1
(fηi )

2]1/2 ≤ C2
√
η+E[MtN−1

(f2i )]
1/2 ≤ C2

√
η+E[MtN−1

(ψ)]1/2 = C2
√
η+

√

m(ψ) + (T − t).

Summing up, we proved that



E





N−1
∑

q=1

(

Mtq (fi)− M̂tq (fi)
)2









1/2

≤ m(fi) +
√

m(ψ) + (T − t) +
dC2T

2
√
η

+ 4C2
√
η. (3.9)

Resuming (3.6)-(3.9), we get finally

E





N−1
∑

q=1

(tq+1 − tq)(Mtq (gq)− M̂tq (gq))





≤ 2Tε(1 + C1) +Nε

√

|π|T
(

|m|2 +
√

m(ψ) + (T − t) +
dC2T

2
√
η

+ 4C2
√
η

)

+ 2NεC2T
√
η.

This implies that for all ε > 0 and η > 0,

lim sup
|π|→0

sup
M∈M(t,m)

E





N−1
∑

q=1

(tq+1 − tq)d1(Mtq , M̂tq )



 ≤ 2Tε(1 + C1) + 2NεC2T
√
η,

and the result follows by sending η and then ε to zero.

We now state a corollary of the previous Lemma.

Lemma 3.10. Let Mn be a L(κ1)-convergent sequence in M(t,m) with limit M . Then for any
sequence of partitions πn = {t = tn1 < ... < tnNn

= T} with |πn| → 0, we have

E





Nn−1
∑

q=1

(tnq+1 − tnq )H(tnq ,M
n
tnq
)



 → E

[∫ T

t
H(s,Ms)ds

]

.
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Proof. At first note that P → EP[
∫ T
t H(s,Ms)ds] is L(κ1)-continuous by construction since

x(s) ∈ D([t, T ],P1) →
∫ T
t H(s, x(s))ds is κ1-continuous. It follows that:

E

[∫ T

t
H(s,Mn

s )ds

]

→ E

[∫ T

t
H(s,Ms)ds

]

. (3.10)

On the other hand, since, by Lemma 2.4, H is C-Lipschitz, we have, for all n and all q,

∣

∣

∣

∣

(tnq+1 − tnq )H(tnq ,M
n
tnq
)−

∫ tnq+1

tnq

H(s,Mn
s )ds

∣

∣

∣

∣

≤ C

∫ tnq+1

tnq

((s− tnq ) + d1(M
n
s ,M

n
tnq
))ds (3.11)

Using that, by Lemma 2.2, it holds for all s ∈ [tq, tq+1]

d1(M
n
s ,M

n
tnq
) ≤ d1(p

s,Mn
s

tnq+1
,Mn

tnq
) +

√

d(tnq+1 − s),

we get

∣

∣

∣

∣

(tnq+1 − tnq )H(tnq ,M
n
tnq
)−

∫ tnq+1

tnq
H(s,Mn

s )ds

∣

∣

∣

∣

≤ C
(

∫ tnq+1

tnq
d1(p

s,Mn
s

tnq+1
,Mn

tnq
)ds+ (tnq+1 − tnq )(|πn|+

√

d|πn|
)

.

Now remark that for all µ ∈ P1, the map ν ∈ P1 → d1(µ, ν) is convex. Therefore, taking

conditional expectations given FMn

s and using the notation M̂n
tnq+1

= p
tq ,Mn

tq

tq+1
, it follows from

Remark 3.1 5. that:

E[d1(p
s,Mn

s

tnq+1
,Mn

tnq
)] ≤E[d1(M

n
tnq+1

,Mn
tnq
)]

≤E[d1(M
n
tnq+1

, M̂n
tnq+1

)] +
√

d(tnq+1 − tnq ).

We deduce that:

E[|(tnq+1−tnq )H(tnq ,M
n
tnq
)−

∫ tnq+1

tnq

H(s,Mn
s )ds|] ≤ C(tnq+1−tnq )

(

|πn|+ E[d1(M
n
tnq+1

, M̂n
tnq+1

)] + 2
√

d|πn|
)

and finally

|E[
Nn−1
∑

q=1

(tnq+1 − tnq )H(tnq ,M
n
tnq
)]− E[

∫ T

t
H(s,Ms)ds]| ≤

∣

∣

∣

∣

E

∫ T

t
H(s,Mn

s )ds − E[

∫ T

t
H(s,Ms)ds

∣

∣

∣

∣

+ CT



E

Nn−1
∑

q=1

(tnq+1 − tnq )d1(M
n
tnq+1

, M̂n
tnq+1

)] + |πn|+ 2
√

d|πn|



 .

The result follows by (3.10) and Lemma 3.9.

3.4 Proof of the alternative formulation

We are now ready to establish Theorem 3.4 : lim|π|→0 V
π exists and is equal to the value of

the martingale-optimization problem V , as a consequence of the two propositions 3.11 and 3.12
below.
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Proposition 3.11.

lim sup
|π|→0

Vπ(t,m) ≤ V (t,m). (3.12)

Proof. We denote by (Ω̄, F̄ , P̄) an extension of the canonical Wiener space (Ωt,Ft,Pt,m) which
supports also a family (Uq, Vq)q=1,...,N−1 of independent random variables with uniform law on
[0, 1], independent from (Bs)s∈[t,T ].
Consider an arbitrary elementM in M(t,m) and a partition π = {t = t1 < ... < tN = T}. Using
the splitting proposition 3.6, we can define some sequence of measure valued random variables
on Ω̄, (M ′

tq )q=1,...,N−1, with same law as (Mtq )q=1,...,N−1, having the following properties

a) M ′
tq is measurable with respect to (Bt1 , U1, ..., Btq , Uq).

b) The conditional law of Btq given (M ′
t1 , ...,M

′
tq ) is precisely M

′
tq .

Let (s,m) 7→ u∗(s,m) be a measurable selection of Argminu∈U maxv∈V
∫

Rd f(s, x, u, v)dm(x)
(which exists by Proposition 7.33 in [2]). Note that we have for all (s,m) ∈ [t, T ]× P2:

∀v ∈ V,

∫

Rd

f(s, x, u∗(s,m), v)dm(x) ≤ H(s,m). (3.13)

With these ingredients, we shall compose a strategy σ∗ for player 1: at each step q, the action
of player 1 is given by

u′q = u∗(tq,M
′
tq ).

Thanks to property a), this definition induces a behavior strategy σ∗ ∈ Σ(π) that does not
depend on player 2’s actions, where σ∗q (Bt1 , . . . , Btq , u1, . . . , uq−1) is simply a version of the
conditional law of u′q given (Bt1 , . . . , Btq , u

′
1, . . . , u

′
q−1).

Let player 2 chose some arbitrary strategy τ ∈ T (π). Without loss of generality, we can compute
the payoff associated to the strategies σ∗ and τ on the probability space Ω̄. Precisely, using the
notations of Theorem 3.5, we define the actions of player 2 by:

v′q = ΦV (τq(u
′
1, v

′
1, ..., u

′
q−1, v

′
q−1), Vq),

so that the joint law of (Btq , u
′
q, v

′
q)q=1,...,N−1 defined on (Ω̄, F̄ , P̄) is the same as the law of

(Btq , uq, vq)q=1,...,N−1 under Pt,m,π,σ∗,τ .

Thanks to property b) the conditional law of Btq given (M ′
ti , u

′
i, v

′
i)i=1,...,q equals the conditional

law of Btq given (M ′
t1 , ...,M

′
tq ) and thus is exactly M ′

tq . To prove this, we use first that the
actions of player 2 are maps depending on (u′i)i=1,...,q−1 and auxiliary variables (Vi)i=1,..,q that
are independent of (Btq , (M

′
ti , u

′
i)i=1,..q), implying that the variables (v′i)i=1,...,q can be removed

from the conditioning. Then, the variables (u′i)i=1,...,q can be removed as well since they are
maps depending on (M ′

ti)i=1,...,q.
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Using the above-mentioned properties and inequality 3.13, we obtain:

γπ(t,m, σ
∗, τ) =Ē





N−1
∑

q=1

(tq+1 − tq)f(tq, Btq , u
′
q, v

′
q)





= Ē





N−1
∑

q=1

(tq+1 − tq)Ē[f(tq, Btq , u
′
q, v

′
q)|(M ′

ti , u
′
i, v

′
i)i=1,...,q]





= Ē





N−1
∑

q=1

(tq+1 − tq)

∫

Rd

f(tq, x, u
′
q, v

′
q)dM

′
tq (x)





≤ Ē





N−1
∑

q=1

(tq+1 − tq)H(tq,M
′
tq )



 = E





N−1
∑

q=1

(tq+1 − tq)H(tq,Mtq )



 .

Since the strategy τ was chosen arbitrarily, it follows that

Vπ(t,m) ≤ Ē





N−1
∑

q=1

(tq+1 − tq)H(tq,Mtq )



 .

Letting tend |π| to zero on both sides of the latter inequality and using Lemma 3.10, the relation
(3.12) follows

Proposition 3.12.

lim inf
|π|→0

Vπ(t,m) ≥ V (t,m). (3.14)

Proof. For some given partition π of [t, T ], let σ ∈ Σ(π) be an arbitrary strategy for player 1.
We shall define recursively an answer τ̄ ∈ T from player 2. Since it will be a pure strategy for
each q ∈ {1, . . . , N − 1}, τ̄q will be identified with a map from (U × V )q−1 to V .

• let v∗ : (s,m′) ∈ [t, T ]× P2 7→ v∗(t,m′) ∈ U be a measurable selection of

Argmaxv∈V min
u∈U

∫

Rd

f(tq, x, u, v)dm
′(x).

• For q = 1, set τ̄1 = v∗(t,m).

• Suppose that, for some q ∈ {2, . . . , N}, τ̄1, . . . , τ̄q−1 is defined. Remark that, for any couple
(σ, τ) ∈ Σ(π)×T (π), the restriction of Pt,m,π,σ,τ on the coordinates (Bt1 , u1, v1, . . . , Btq , uq)
depends on τ only through τ1, . . . , τq−1. Therefore it makes sense to define τ̄q as

τ̄q = v∗(tq, M̂
π
tq ),

where M̂π
tq is the conditional law of Btq given (u1, v1, . . . , uq−1, vq−1) under Pt,m,π,σ,τ̄ for

q = 2, ..., N − 1, and M̂π
t1 = m.

We also need to define for all q = 1, ..., N − 1, the variable Mπ
tq as the conditional law of of

Btq given (u1, v1, . . . , uq, vq) under Pt,m,π,σ,τ̄ . Note that the variables M̂π
tq and Mπ

tq correspond
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respectively to the belief of player 2 on Btq before and after playing round q, when knowing that
the strategy σ is used by player 1. Note also that by construction, for q = 2, .., N − 1,

M̂π
tq = p

tq−1,Mπ
tq−1

tq .

At last, we extend the definition of the process (Mπ
s )s∈[t,T ] as follows:

∀q = 1, ..., N − 1,∀s ∈ [tq, tq+1), M
π
s = p

tq,Mπ
tq

s , Mπ
T = p

tN−1,M
π
tN−1

T .

By construction, the law of Mπ belongs to M̃(t,m).

Let us start the computations. For all q = 1, ..., N − 1

Et,m,π,σ,τ̄ [f(tq, Btq , uq, vq)] = Et,m,π,σ,τ̄

[

Et,m,π,σ,τ̄ [f(tq, Btq , uq, vq)|u1, v1, . . . , uq, vq]
]

= Et,m,π,σ,τ̄

[
∫

Rd

f(tq, x, uq, vq)dM
π
tq (x)

]

≥ Et,m,π,σ,τ̄

[∫

Rd

f(tq, x, uq, vq)dM̂
π
tq (x)− Cd1(M

π
tq , M̂

π
tq )

]

≥ Et,m,π,σ,τ̄

[

H(tq, M̂
π
tq )− Cd1(M

π
tq , M̂

π
tq )

]

≥ Et,m,π,σ,τ̄

[

H(tq,M
π
tq )− 2Cd1(M

π
tq , M̂

π
tq )

]

.

Taking the sum over all q, we have proven that, for all σ ∈ Σ(π), there exists τ̄ ∈ T (π) and
Mπ ∈ M(t,m) such that

γπ(t,m, σ, τ̄ ) ≥Et,m,π,σ,τ̄

[

∑

q

(tq+1 − tq)
(

H(tq,M
π
tq )− 2Cd1(M

π
tq , M̂

π
tq )

)

]

.

Let (πn)n≥1 denote a sequence of partitions such that |πn| → 0 and

lim
n
Vπn(t,m) = lim inf

|π|→0
Vπ(t,m).

Let (εn)n≥1 a sequence of positive numbers with limit 0 and for all n ≥ 1, let σn ∈ Σ(πn)
be an εn-optimal strategy in the game Γπn(t,m). Thanks to the above analysis, there exists
τn ∈ T (πn) such that

Vπn(t,m) + εn ≥ γπn(t,m, σn, τn)

≥ Eπn,t,m,σn,τn

[

∑

q

(tq+1 − tq)
(

H(tq,M
πn
tq )− 2Cd1(M

πn
tq , M̂

πn
tq )

)

]

.

By Proposition 3.8, there exists a subsequence of (Mπn)n≥1 which converges for L(κ1) to some
process M with law in M(t,m). After some eventual enlargement of (Ω,F ,P) we may consider
representations of M and the sequence (Mπn) on this same space. Using Lemmas 3.9 and 3.10,
we get finally

lim inf
|π|→0

Vπ(t,m) ≥ E[

∫ T

t
H(s,Ms)ds] ≥ V (t,m).
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4 Characterization of the value function

The main result of this paper is the characterization of the value function V as the largest
subsolution, in some class of functions, of a Hamilton-Jacobi equation. In contrast with previous
works, V depends here in a dynamic way on the probability measures m ∈ P2 which are no more
of finite support, neither can be forced to have a density with respect to the Lebesgue-measure.
We have found the appropriate framework in the paper [6].

For technical reasons (see Remark 4.1 below), we need to consider the two metrics d1 and d2
on the space P2. The reference metric is d1 and is used implicitly everywhere, and we will
say explicitly d2-continuous, d2-convergent, etc... whenever we need to use the metric d2. In
particular, functions defined on P2 or [0, T ]×P2, [0, T ]×P2 ×R

d are d2-continuous if they are
globally continuous when P2 is endowed with the metric d2 and the other spaces with the usual
topology.

Given a map F : [0, T ] ×P2 → R, we consider the following equation:







∂tU(t,m) + 1
2

∫

Rd div[DmU ](t,m, x)m(dx) + F (t,m) = 0, (t,m) ∈ [0, T ) × P2,

U(T,m) = 0, m ∈ P2,
(4.1)

where the divergence operator div acts on the spatial variable x and DmU(t,m, x) is defined in
[6] (Definition 2.2.1) as follows:

At first, a map g : P2 7→ R is said to be differentiable if there exists a measurable map δg
δm :

P2 ×R
d → R with at most quadratic growth with respect to the spatial variable and such that,

for all m,m′ ∈ P2,

lim
r→0+

g ((1− r)m+ rm′)− g(m)

r
=

∫

Rd

δg

δm
(m,x)d(m′ −m)(x),

and (as a normalization convention)

∫

Rd

δg

δm
(m,x)dm(x) = 0.

As a consequence of the definition, if g is differentiable, the map

r ∈ [0, 1] → g((1 − r)m+ rm′) ∈ R,

is differentiable on (0, 1) with derivative
∫

Rd
δg
δm ((1−r)m+rm′, x)d(m′−m)(x). If moreover, δg

δm
is d2-continuous and with at most quadratic growth with respect to x, uniformly in m, the above
derivative is C1 (using dominated convergence) and we may apply the fundamental theorem of
calculus, yielding the relation

g(m′)− g(m) =

∫ 1

0

∫

Rd

δg

δm
((1− r)m+ rm′, x)d(m′ −m)(x)dr. (4.2)

Then, if δg
δm (m,x) is C1 in x, we define the intrinsic derivative Dmg by

Dmg(m,x) := Dx

(

δg

δm

)

(m,x).
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We refer to [6] for the interpretation of Dmg, which is related to the geometry of the Wasserstein
space, coincides with the L2-derivative considered by Lions [19] and appears quite naturally as
a measure derivative along vector fields (see Proposition 2.3 in [6]).

In the sequel, we are mainly interested in the case where F = H :







∂tU(t,m) + 1
2

∫

Rd div[DmU ](t,m, x)m(dx) +H(t,m) = 0, (t,m) ∈ [0, T ) × P2,

U(T,m) = 0, m ∈ P2.
(4.3)

The problem is that H isn’t sufficiently regular. Indeed a crucial tool in our argumentation
is a classical, explicit solution for some equations of type (4.1) (see Lemma 4.5), which only
exists under strong regularity assumptions. For this reason we need to approach H by smooth
functions F .

The regularity assumptions (A1) we require for the function F in (4.1) are the following:

(A1)

{

The map (t,m) ∈ [0, T ]× P2 7→ F (t,m) is bounded and continuous,
δF
δm ,Dx

(

δF
δm

)

,D2
x

(

δF
δm

)

exist and are bounded and continuous.

We call (A2) the regularity assumptions for functions ψ that will play the role of a terminal
condition for equation (4.1):

(A2)



















The map m ∈ P2 7→ ψ(m) is continuous with at most linear growth, i.e.:
there exists M > 0 such that ∀m ∈ P2, |ψ(m)| ≤M(1 + |m|1),
δψ
δm ,Dx

(

δψ
δm

)

,D2
x

(

δψ
δm

)

exist, are continuous,

and have linear growth in x, uniformly in m.

We introduce also the weaker assumption (A3) for test functions ϕ in order to define the notion
of viscosity subsolution for equation 4.1:

(A3)















The map (t,m) ∈ [0, T ] ×P2 7→ ϕ(t,m) is lower semi-continuous and d2-continuous,
∂ϕ
∂t ,

δϕ
δm ,Dx

(

δϕ
δm

)

,D2
x

(

δϕ
δm

)

exist and are d2-continuous on [0, T ) ×P2 × R
d,

δϕ
δm ,Dx

(

δϕ
δm

)

,D2
x

(

δϕ
δm

)

have at most quadratic growth with respect to x, uniformly in (t,m)

Remark 4.1. We need to consider ϕ̃(t,m) = ϕ(t,m) + ǫ|m|22 as an admissible test function in
Lemma 4.8, where the second term is related to a compactness issue. Actually, ϕ will be more
regular than required by (A3), but note that the map ψ(m) = |m|22 is only lower semi-continuous
and not continuous, but is d2-continuous. An easy computation shows that δψ

δm (m,x) = |x|2 −
|m|22, and thus ψ satisfies (A3). The above assumptions are thus completely tailored to the
problem, and we would like to emphasize that there are several different ways to define test
functions or classical solutions in order to obtain a coherent notion of (viscosity) solutions on
measure spaces.

Definition 4.2. 1. We call a (classical) solution of (4.1) a map U : [0, T ] × P2 → R which
is continuous, satisfies assumption (A3) and for which (4.1) is satisfied for all (t,m) ∈
[0, T ]× P2.
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2. We call a subsolution of (4.1) a map U : [0, T ]× P2 → R which is upper semi-continuous
and satisfies, for all (t,m) ∈ [0, T ) × P2, and for all ϕ satisfying assumption (A3), such
that ϕ− U has a local minimum at (t,m),

∂tϕ(t,m) +
1

2

∫

Rd

div[Dmϕ](t,m, x)m(dx) + F (t,m) ≥ 0. (4.4)

Remark 4.3. It is easy to prove that a classical solution of (4.1) is also a subsolution, but there
is no need here for this result. In the definition of subsolution, local refers to the metric d1 on
P2.

We will prove in this section the following characterization of the value function V :

Theorem 4.4. V is the largest bounded and continuous subsolution of (4.3) which is convex in
m and satisfies the terminal condition V (T, ·) = 0.

We start our computations with a technical lemma in which we construct smooth solutions of
(4.5) with smooth terminal conditions and compute the derivative of test functions along the
curve s 7→ (s, pt,ms ).

Lemma 4.5. 1) If ϕ is a test function satisfying the assumptions (A3), then for all (t,m) ∈
[0, T ) × P2:

lim
sցt

ϕ(s, pt,ms )− ϕ(t,m)

s− t
= ∂tϕ(t,m) +

1

2

∫

Rd

div[Dmϕ](t,m, x)m(dx).

2) Let F : [0, T ] × P2 → R be such that assumptions (A1) hold true and let ψ : P2 → R which
satisfies (A2). Let t1 ∈ [0, T ]. Then the following equation

{

∂tϕ(t,m) + 1
2

∫

Rd div[Dmϕ(t,m, x)]dm(x) + F (t,m) = 0, (t,m) ∈ [0, t1)× P2,
ϕ(t1,m) = ψ(m), m ∈ P2,

(4.5)

admits as unique classical solution the continuous map ϕ which satisfies (A3) and is defined by:

ϕ(t,m) = ψ(pt,mt1 ) +

∫ t1

t
F (s, pt,ms )ds. (4.6)

Remark 4.6. A direct application of this lemma is that, if H satisfies assumption (A1), then

the map (t,m) 7→ U0(t,m) :=
∫ T
t H(s, pt,ms )ds is a classical solution of (4.3). But remark that

we cannot expect this map to be convex in m, unless this holds for H itself. This implies that,
in general, U0 6= V (i.e. the totally non revealing strategy is not always optimal for player 1).

Proof of Lemma 4.5.

1.1) Fix 0 ≤ t < t′ < s ≤ T and let us assume temporarily that m has compact support. Set
ms = pt,ms and mt′ = pt,mt′ .

Recall that
∂

∂s
(ρt,ms (x)) =

1

2
∆ρt,ms (x)
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We have the following chain of equalities:

ϕ(s,ms)− ϕ(s,mt′) =

∫ 1

0

∫

Rd

δϕ

δm
(s, (1− r)mt′ + rms, x) d(ms −mt′)(x)dr

=

∫ 1

0

∫

Rd

δϕ

δm
(s, (1− r)mt′ + rms, x) (ρ

t,m
s − ρt,mt′ )(x)dxdr

=

∫ 1

0

∫

Rd

δϕ

δm
(s, (1− r)mt′ + rms, x)

(
∫ s

t′
∂τρ

t,m
τ (x)dτ

)

dxdr

=

∫ s

t′

∫ 1

0

∫

Rd

δϕ

δm
(s, (1− r)mt′ + rms, x) ∂τρ

t,m
τ (x)dxdrdτ

=

∫ s

t′

∫ 1

0

∫

Rd

δϕ

δm
(s, (1− r)mt′ +ms, x)

1

2
∆ρt,mτ (x)dxdrdτ

=
1

2

∫ s

t′

∫ 1

0

∫

Rd

div[Dmϕ] (s, (1− r)mt′ + rms, x) dp
t,m
τ (x)drdτ.

Let us justify the above computations. The first equality follows from (4.2). The second equality
follows from the definition of ms,mt′ . The fourth equality follows from Fubini’s theorem, which
we may apply since δϕ

δm has at most quadratic growth in x, uniformly in (t,m), and -thanks to

the fact that m has compact support-
∫

Rd(1 + |x|2)| ∂∂s(ρ
t,m
s (x))|dx < ∞. The sixth and last

equality follows from the integration by part formula which we may apply thanks to the growth
assumptions on δϕ

δm and its derivatives.

We proved that, for m with compact support,

ϕ(s,ms)− ϕ(s,mt′) =
1

2

∫ s

t′

∫ 1

0

∫

Rd

div[Dmϕ] (s, (1− r)mt′ + rms, x) dp
t,m
τ (x)drdτ. (4.7)

1.2) Let us generalize this for an arbitrary m ∈ P2: any m ∈ P2 is the d2-limit of a sequence
(mn) of measures with finite (hence compact) support. Following Lemma 2.2, this implies that,

for any τ ∈ [t′, s], pt
′,mn

τ d2-converges to pt
′,m
τ and therefore, denoting mn

s = pt,m
n

s :

ϕ(s,mn
s )− ϕ(s,mn

t′) → ϕ(s,ms)− ϕ(s,mt′). (4.8)

Further, the d2-convergence of (mn) implies that their second order moments are bounded and
uniformly integrable and that the sequence of measures is tight, i.e.

sup
n

∫

Rd

|x|2dmn(x) <∞, sup
n

∫

|x|>K
(1 + |x|2)dmn(x) −→

K→∞
0.

Moreover, we also have

sup
τ∈(t,s]

∫

|x|>K
(1 + |x|2)dpt,δ0τ (x) =

∫

|x|>K
(1 + |x|2)dpt,δ0s (x) −→

K→∞
0.

Thus, for any ε > 0, we can find K sufficiently large such that, for all τ ∈ (t, s] and all n ∈ N,
∫

|x|>K
(1 + |x|2)dpt,mn

τ (x) =

∫

Rd

∫

Rd

1|x+y|>K(1 + |x+ y|2)ρτ−t(y)dydmn(x)

≤
∫

Rd

∫

Rd

(1|y|>K/2 + 1|x|>K/2)(1 + 2|x|2 + 2|y|2)ρτ−t(y)dydmn(x),

≤ ε,
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as well as
∫

|x|>K(1 + |x|2)dpt,mτ (x) ≤ ε.

For this K > 0, we have, for some constant C ′,

|12
∫ s
t′

∫ 1
0

∫

Rd div[Dmϕ]
(

s, (1− r)mn
t′ + rpt,m

n

s , x
)

d(pt,mτ − pt,m
n

τ )(x)drdτ |
≤ C ′

(

∫ s
t′

∫ 1
0

∫

|x|>K(1 + |x|2)d(pt,mτ (x) + pt,m
n

τ )(x)drdτ

+
∫ s
t′

∫ 1
0

∫

|x|≤K(1 + |x|2)|ρt,mτ (x)− ρt,m
n

τ (x)|dxdrdτ
)

≤ 2C ′Tε+ C ′ ∫ s
t′

∫ 1
0

∫

|x|≤K(1 + |x|2)|ρt,mτ (x)− ρt,m
n

τ (x)|dxdrdτ.

(4.9)

By dominated convergence, the last term of (4.9) converge to zero as n goes to infinity, and we
conclude that

|1
2

∫ s

t′

∫ 1

0

∫

Rd

div[Dmϕ]
(

s, (1− r)mn
t′ + rpt,m

n

s , x
)

d(pt,mτ − pt,m
n

τ )(x)drdτ | −→
n→

0.

Using dominated convergence, we also have

1

2

∫ s

t′

∫ 1

0

∫

Rd

div[Dmϕ]
(

s, (1− r)mn
t′ + rpt,m

n

s , x
)

dpt,mτ (x)drdτ

−→
n→∞

1

2

∫ s

t′

∫ 1

0

∫

Rd

div[Dmϕ]
(

s, (1− r)mt′ + rpt,ms , x
)

dpt,mτ (x)drdτ.

These two limits together with (4.8) imply that (4.7) holds true also for any m ∈ P2.

1.3) The next step is to prove that (4.7) still holds true for t′ = t, i.e.:

ϕ(s,ms)− ϕ(s,m) =
1

2

∫ s

t

∫ 1

0

∫

Rd

div[Dmϕ] (s, (1− r)m+ rms, x) dp
t,m
τ (x)drdτ. (4.10)

By Lemma 2.2, τ 7→ pt,mτ is continuous from [t, T ] to (P2, d2). And by (A3), ϕ and div[Dmϕ]
are d2-continuous. Therefore, letting tend t′ to t in (4.7) , we obtain (4.10) (the right hand side
converges by dominated convergence).

1.4) Finally we shall divide (4.10) by s− t and let tend s to t.
Since div[Dmϕ](t,m, .) has at most quadratic growth and τ 7→ pt,mτ is continuous from [t, s] to
(P2, d2),

τ 7→
∫

Rd

div[Dmϕ](t,m, x)dp
t,m
τ

is continuous. This implies that

lim
sցt

1

s− t

∫ s

t

∫

Rd

div[Dmϕ](t,m, x)dp
t,m
τ (x)dτ =

∫

Rd

div[Dmϕ](t,m, x)dm(x).

Fix ε > 0. As for (4.9),using that div[Dmϕ] has at most quadratic growth in x uniformly in
(t,m), we can find K > 0 such that, for all τ ∈ (t, s],

∫

|x|>K

∣

∣

∣
div[Dmϕ] (s, (1− r)m+ rms, x)− div[Dmϕ] (t,m, x)

∣

∣

∣
dpt,mτ (x) ≤ ε/2.

Further, by assumption (A3), div[Dmϕ] is d2-continuous. Therefore we can choose s − t suffi-
ciently small so that for any r ∈ [0, 1] and x ∈ R

d, with |x| ≤ K,

|div[Dmϕ] (s, (1− r)m+ rms, x)− div[Dmϕ] (t,m, x) | ≤ ε/2.
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in order to get

∫ 1

0

∫

Rd

|div[Dmϕ] (s, (1− r)m+ rms, x)− div[Dmϕ] (t,m, x) |dpt,mτ (x)dτ ≤ ε.

Since ε can be taken arbitrarily small, it derives from (4.10) that

lim
sցt

ϕ(s,ms)− ϕ(s,m)

s− t
=

1

2

∫

Rd

div[Dmϕ](t,m, x)dm(x).

Writing ϕ(s,ms)− ϕ(t,m) = ϕ(s,ms)− ϕ(s,m) + ϕ(s,m) − ϕ(t,m) and recalling that

lim
sցt

ϕ(s,m)− ϕ(t,m)

s− t
= ∂tϕ(t,m),

we can conclude.

2.1) The function ϕ defined in (4.6) is solution of (4.5):
Remark that, for all m,m′ ∈ P2 and r ∈ [0, 1] and s ∈ [t, T ], we have the relation

pt,(1−s)m+sm′

r = (1− s)pt,mr + spt,m
′

r .

We have therefore:

1

r

(

ϕ(t, (1 − r)m+ rm′)− ϕ(t,m)
)

=
1

r

(

ψ((1 − r)pt,mt1 + rpt,m
′

t1 )− ψ(pt,mt1 )
)

+

∫ t1

t

1

r

(

F (s, (1 − r)pt,ms + rpt,m
′

s )− F (s, pt,ms )
)

ds

Using that ψ satisfies (A2) and that F satisfies (A1), together with bounded convergence and
Fubini’s theorem, we deduce that δϕ

δm exists and is given by:

δϕ

δm
(t,m, x) =

∫

Rd

ρt1−t(y)

(

δψ

δm
(pt,mt1 , x+ y) +

∫ T

t

δF

δm
(s, pt,ms , x+ y)ds

)

dy.

We deduce easily from the assumptions on ψ,F that ϕ satisfies (A3).

It follows from point 1) that:

lim
sցt

ϕ(s,ms)− ϕ(t,m)

s− t
= ∂tϕ(t,m) +

1

2

∫

Rd

div[Dmϕ](t,m, x)dm(x).

Further, from the semigroup property (2.3), we get

ϕ(s,ms) = ψ(ps,ms

t1 ) +

∫ T

s
F (r, ps,ms

r )dr = ψ(pt,mt1 ) +

∫ T

s
F (r, pt,mr )dr, s ∈ [t, T ].

This implies that

ϕ(s,ms)− ϕ(t,m) = −
∫ s

t
F (r, pt,mr )dr,

and thus:

lim
sցt

1

s− t
(ϕ(s,ms)− ϕ(t,m)) = −F (t,m),

which implies that ϕ is a solution of (4.5).
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2.2) The function ϕ is the unique solution of (4.5):
Let ϕ′ be an arbitrary solution of (4.5). It follows from point 1) together with the semigroup
property (2.3) that the map

s ∈ [t, T ] 7→ ϕ′(s, pt,ms ) ∈ R,

is differentiable on (t, T ) with derivative ∂tϕ
′(s, pt,ms ) + 1

2

∫

Rd div[Dmϕ
′](s, pt,ms , y)ρt,ms (y)d(y).

Using dominated convergence, it is even C1 on (t, T ), and we may apply the fundamental
theorem of calculus to obtain

ϕ′(t1, p
t,m
t1 )− ϕ′(t,m) =

∫ t1

t

(

∂tϕ
′(s, pt,ms ) +

1

2

∫

Rd

div[Dmϕ
′](s, pt,ms , y)dpt,ms (y)

)

ds

Then

ϕ′(t,m) = ϕ′(t,m)− ϕ′(t1, p
t,m
t1 ) + ψ(t1, p

t,m
t1 )

= −
∫ t1
t

(

∂tϕ
′(s, pt,ms ) + 1

2

∫

Rd div[Dmϕ
′](s, pt,ms , y)dpt,ms (y)

)

ds+ ψ(t1, p
t,m
t1 )

=
∫ t1
t F (s, pt,ms )ds + ψ(t1, p

t,m
t1 ),

i.e. ϕ′(t,m) = ϕ(t,m).

Here is the a first application of Lemma 4.5:

Proposition 4.7. The value function V is a subsolution of (4.3).

Proof. Fix t ≤ s ≤ T and m ∈ P.
For ǫ > 0, let M̄ = (M̄r)r∈[s,T ] ∈ M(s, pt,ms ) be ǫ-optimal for V (s, pt,ms ). We define another
process M ′ on the time interval [t, T ] by

M ′
r =

{

pt,mr , if r ∈ [t, s),
M̄r, if r ∈ [s, T ].

Let us check that (M ′
r)r∈[t,T ] belongs to M(t,m):

• It is clear that E[M ′
t ] = m.

• To prove that M ′ satisfies item (ii) of the definition, let φ : Rd → R be continuous and
bounded.

– r 7→M ′
r(φ) is càdlàg,

– for s ≤ t1 ≤ t2 ≤ T ,

E[M ′
t2(φ)|FM ′

t1 ] = E[M̄t2(φ)|FM̄
t1 ]

= p
t1,M̄t1
t2 (φ) = p

t1,M ′
t1

t2 (φ).

– If t ≤ t1 < s ≤ t2 ≤ T , since FM ′

t1 = Fpt,m

t1 is trivial, we have

E[M ′
t2(φ)|F

M ′

t1 ] =E[M̄t2(φ)]

=ps,p
t,m
s

t2 (φ) (by (3.1))

=pt,mt2 (φ) = p
t1,p

t,m
t1

t2
(φ) (by the semigroup property (2.3))

=p
t1,M ′

t1
t2 (φ).
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– If t ≤ t1 ≤ t2 < s, we have simply

E[M ′
t2(φ)|FM ′

t1 ] = p
t1,p

t,m
t1

t2 (φ) = p
t1,M ′

t1
t2 (φ).

We can write now

V (t,m) = infM∈M(t,m) E

[

∫ T
t H(r,Mr)dr

]

≤ E

[

∫ T
t H(r,M ′

r)dr
]

=
∫ s
t H(r, pt,mr )dr + E

[

∫ T
s H(r, M̄r)dr

]

≤
∫ s
t H(r, pt,mr )dr + V (s, pt,ms ) + ǫ.

This inequality holds also without ǫ, since it can been taken arbitrarily small.
Now let ϕ be a test function for V at (t,m), i.e. such that ϕ − V has a local minimum at
(t,m). Suppose for instance that, for some ǫ ∈ (0, 1), (t,m) is the minimum over all (s,m′) such
that max(|s − t|, d1(m′,m)) ≤ ǫ. Then by relation (2.5), we have, for all s ∈ [0, T ] such that
s− t ≤ ǫ2/4d2,

ϕ(s, pt,ms )− ϕ(t,m) ≥ V (s, pt,ms )− V (t,m)

≥ −
∫ s
t H(r, pt,mr )dr.

Finally, using point 1) of Lemma 4.5, we just have to divide by s− t and let s tend to t to obtain

∂tϕ(t,m) +
1

2

∫

Rd

div[Dmϕ(t,m, x)]dm(x) +H(t,m) ≥ 0.

We already know that V is continuous and convex in m. The next step is to prove that V is
smaller than any other bounded, continuous, convex subsolution of (4.3). To this aim, we need
two lemmas. The first is a comparison theorem between a solution and a subsolution of (4.5).

Lemma 4.8. Let F : [0, T ]×P2 → R be such that assumptions (A1) hold true and let ψ : P2 → R

satisfy (A2). Let t1 ∈ [0, T ], and define φ(t,m) = ψ(pt,mt1 ) +
∫ t1
t F (r, pt,mr )dr.

Let U be a bounded, continuous subsolution of (4.5) which satisfies, for all m ∈ P2, U(t1,m) ≤
ψ(m). Then U ≤ φ on [0, t1]× P2.

Proof. Let us suppose that the assertion is wrong. Then we can find some γ > 0 and ǫ > 0 such
that

sup
(t,m)∈[0,t1]×P2

(

U(t,m)− φ(t,m)− γ(t1 − t)− ǫ|m|22
)

:= S > 0 (4.11)

Let (tn,mn) be a maximizing sequence. We can extract a subsequence, without changing the
notation, such that (tn) → t̄ < t1.
Further, from the assumption on ψ and F , it follows that φ has almost linear growth in m
uniformly in t: there exists C ′ > 0 such that, for all (t,m),

|φ(t,m)| ≤ C ′(1 + |m|1).

Now, since U is bounded and |m|1 ≤ |m|2, no term can compensate ǫ|m|22, i.e. the maximizing
sequence has to be bounded : there is some K > 0 such that, for n sufficiently large, |mn|22 ≤ K.
It follows from point 3 in Lemma 2.1 that there exists a subsequence that converges to some
m̄ ∈ P2.
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Since U is upper semi-continuous by assumption, and φ is l.s.c. because m 7→ |m|22 is lower semi-
continuous and ψ is continuous, it follows that the supremum in (4.11) is a maximum attained
at (t̄, m̄) with

U(t̄, m̄)− φ(t̄, m̄)− γ(t1 − t̄)− ǫ|m̄|22 = S > 0.

Set ϕ(t,m) := φ(t,m) + γ(t1 − t) + ǫ|m|22.
We have

U(t̄, m̄)− ϕ(t̄, m̄) = max
(t,m)∈[0,t1]×P2

(U(t,m)− ϕ(t,m)) .

Moreover ϕ satisfies the regularity assumptions (A3) ( see Lemma 4.5 and Remark 4.1). There-
fore the criterion for subsolutions applies:

∂ϕ

∂t
(t̄, m̄) +

1

2

∫

Rd

divDmϕ(t̄, m̄, x)dm̄(x) + F (t̄, m̄) ≥ 0.

But
∂ϕ

∂t
(t̄, m̄) =

∂φ

∂t
(t̄, m̄)− γ

and
divDmϕ(t̄, m̄, x) = divDmφ(t̄, m̄, x)− 2dǫ.

This, together with (4.6) leads to the impossible relation

−γ − dǫ ≥ 0.

The following construction shall be crucial in the elaboration of a special test function for (4.5).

Lemma 4.9. Let m1 ∈ P2 and δ > 0 be fixed. For all m ∈ P2, we set

ψδ(m) =

∫

Rd

√

δe−|x|2 + |x|2 (ρδ ∗m(x)− ρδ ∗m1(x))
2dx− (2π)

d
2

√
δ.

Then

1. ψδ ≥ 0 and ψδ(m1) = 0.

2. ψδ satisfies (A2).

3. for any ν > ((2π)
d
2 + 2

√
d)
√
δ, there exists α > 0 such that d1(m,m1) ≥ ν ⇒ ψδ ≥ α.

Proof. 1. The first item is obvious.
2. Let us show that ψδ is continuous.
For (mn, n ≥ 1) and m ∈ P2 such that d1(m

n,m) → 0, it holds that (see the proof of 1.2 in
Lemma 4.5)

lim
K→∞

sup
n

∫

|x|≥K
|x|ρδ ∗mn(x)dx = 0.

Given ǫ > 0, let us choose K such that

sup
n

∫

|x|≥K
|x|ρδ ∗mn(x)dx ≤ ǫ and

∫

|x|≥K
|x|ρδ ∗m(x)dx ≤ ǫ.
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As mn converge weakly to m, we have simple convergence of ρδ ∗mn(x) to ρδ ∗m(x). Remark
now that y 7→

√

δe−|x|2 + |y|2 is Lipschitz, uniformly in x. It follows that for some constant C ′

|ψδ(mn)− ψδ(m)| ≤ C ′ ∫
Rd |x||ρδ ∗mn(x)− ρδ ∗m(x)|dx

≤ 2C ′ǫ+ C ′ ∫
|x|≤K |x||ρδ ∗mn(x)− ρδ ∗m(x)|dx.

The last term goes to zero by bounded convergence and the conclusion follows as ǫ was chosen
arbitrarily.

We also have

ψδ(m) ≤
∫

Rd

|x||ρδ ∗m(x)− ρδ ∗m1(x)|dx ≤ |m|1 + |m1|1 + 2
√
dδ,

which proves the linear growth property required by (A2).

Using dominated convergence, we obtain that

δψδ
δm

(m, y) =

∫

Rd

|x|2(ρδ ∗m(x)− ρδ ∗m1(x))ρδ(x− y)
√

δe−|x|2 + |x|2 (ρδ ∗m(x)− ρδ ∗m1(x))
2
dx.

Using that
∣

∣

∣

∣

∣

∣

|x|(ρδ ∗m(x)− ρδ ∗m1(x)
√

δe−|x|2 + |x|2 (ρδ ∗m(x)− ρδ ∗m1(x))
2

∣

∣

∣

∣

∣

∣

≤ 1,

it is easy to see that δψδ

δm satisfy the regularity assumptions required in (A2).
3. By Lemma 2.2 and Lemma 2.1 it holds that

d1(m,m1) ≤ d1(p
0,m
δ , p0,m1

δ ) + 2
√
dδ

≤
∫

Rd |x||ρδ ∗m(x)− ρδ ∗m1(x)|dx+ 2
√
dδ

≤ ψδ(m) + ((2π)
d
2 + 2

√
d)
√
δ.

The result follows.

Proposition 4.10. Suppose that F satisfies the assumptions (A1). Let U be a bounded, con-
tinuous subsolution of (4.1). For all (t0,m0) ∈ [0, T ]× P2, for all s ∈ [t0, T ], we have

U(s, pt0,m0

s )− U(t0,m0) +

∫ s

t
F (r, pt0,m0

r )dr ≥ 0.

Proof. Let t1 ∈ [t0, T ], and ǫ > 0. We set m1 := pt0,m0

t1 . Since U is continuous, there exists η > 0
such that, for all m ∈ P2,

d1(m,m1) ≤ η ⇒ |U(t1,m)− U(t1,m1)| ≤ ǫ.

Let us choose δ > 0 such that ((2π)
d
2 + 2

√
d)
√
δ < η and let ψδ be as in Lemma 4.9. Following

Lemma 4.9, we can find α > 0 such that, for all m ∈ P2, d1(m,m1) ≥ η ⇒ ψδ(m) ≥ α.
Set K := supm∈P2

(U(t1,m)− U(t1,m1)) + 1 and ψ̃(m) := K
α ψδ(m),m ∈ P2, in order to get

d1(m,m1) ≥ η ⇒ ψ̃(m) ≥ K.
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This implies

sup
m∈P2

(

U(t1,m)− ψ̃(m)
)

= sup
m∈P2,d1(m,m1)≤η

(

U(t1,m)− ψ̃(m)
)

. (4.12)

Let (mn)n≥1 be a maximizing sequence for the right hand side of (4.12). Since ψ̃ ≥ 0 and U
is bounded, the two sequences (U(t1,m

n))n and (ψ̃(mn))n are also bounded and we can find a
subsequence (still denoted by (mn)) such that ã := limn U(t1,m

n) and b̃ := limn ψ̃(m
n) exist.

Moreover these limits satisfy

ã− b̃ = sup
m∈P2

(

U(t1,m)− ψ̃(m)
)

.

Finally, from the fact that, for all n ≥ 1, d1(m
n,m1) ≤ η, we deduce that |U(t1,m

n) −
U(t1,m1)| ≤ ǫ as well as

|ã− U(t1,m1)| ≤ ǫ. (4.13)

Now let ψ(m) := ã+ ψ̃(m),m ∈ P2. Then

ψ(m)− U(t1,m) = ã+ ψ̃(m)− U(t1,m)

≥ ã+ b̃− ã = b̃ ≥ 0.

It follows that Lemma 4.8 applies : for φ(t,m) = ψ(pt,mt1 )+
∫ t1
t F (r, pt,mr )dr, we get in particular

U(t0,m0) ≤ φ(t0,m0)

or equivalently

U(t0,m0)−
∫ t1

t0

F (s, pt0,m0

s )ds ≤ ψ(m1). (4.14)

Now remember that ψ(m1) = ã+ ψ̃(m1) = ã. Thus, combining (4.14) with (4.13), we obtain

U(t0,m0)−
∫ t1

t0

F (s, pt0,m0

s )ds ≤ U(t1,m1) + ǫ.

This last ǫ being arbitrary, the result follows.

Now we come back to our original equation (4.3) involving the Hamiltonian H. The purpose
of what follows is to show that the result of Proposition 4.10 holds also for F = H even if H
doesn’t satisfy the regularity assumptions (A1).

The first Lemma is a result of type Stone-Weierstrass, which is strongly inspired by the lecture
notes of P. Cardaliaguet [4] on the lecture of P.L. Lions [4].

Lemma 4.11. Let Q be a compact set in R
d and P(Q) the set of probability measures on Q. A

monomial on [0, T ] × P(Q) is a map P : [0, T ] × P(Q) → R of the form

P (t,m) = tkΠni=1

∫

Q
φi(x)dm(x),

with k, n ∈ N and φ1, . . . , φn ∈ C∞(Q). We call polynomial any linear combination of monomi-
als. The set Π of polynomials is dense in C0([0, T ] ×P(Q)) endowed with the sup-norm.
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Proof. It is easy to see that Π is a sub-algebra in C0([0, T ] × P(Q)) and that Π contains a
non-zero constant: P (t,m) ≡ 1. Π also separates points: indeed let (t1,m1) 6= (t2,m2). It is
obvious that, if t1 6= t2, P (t,m) = t gives P (t1,m1) 6= P (t2,m2). Now, if t1 = t2 but m1 6= m2,
we can find a smooth map ϕ such that

∫

Q ϕdm1 6=
∫

Q ϕdm2. This means that the monomial

P (t,m) =
∫

Q ϕdm separates the points (t1,m1) and (t2,m2). Hence the Stone-Weierstrass-
theorem applies and the result follows.

Lemma 4.12. For any K > 0 and ǫ > 0, there exists H̃ : [0, T ]×P2 → R satisfying (A1) such
that, for all t ∈ [0, T ] and all m ∈ P2 with |m|22 ≤ K,

|H(t,m)− H̃(t,m)| ≤ ǫ.

Proof. Take R > 4CK
ǫ and define Kr = {m ∈ P2 |Supp(m) ⊂ B(2R)} with Supp(m) the support

of m and B(2R) := {x ∈ R
d, |x| ≤ 2R}. Kr is weakly compact, and thus compact for d1. It

follows therefore from Lemma 4.11 that there exists a polynomial map HR,ǫ : Kr → R, such
that, for all t ∈ [0, T ] and all m ∈ Kr,

|HR,ǫ(t,m)−H(t,m)| ≤ ǫ

2
. (4.15)

Now let ϕR ∈ C∞(Rd,Rd), with

ϕR(x) =

{

x, if x ∈ B(R),
0 if x ∈ B(2R)c

and |ϕR(x)| ≤ |x|, for all x ∈ R
d. Remark that, for all m ∈ P2, ϕR♯m has its support in B(2R),

where ϕR♯m denotes the pushforward of m by ϕR defined by ϕR♯m(A) = m(ϕ−1
R (A)) for all

Borel subsets A of Rd.
Set H̃R,ǫ(t,m) = HR,ǫ(t, ϕR♯m). It is easy to see that

δH̃R,ǫ

δm
(t,m, x) =

δHR,ǫ

δm
(t, ϕR♯m,ϕR(x)),

and therefore that H̃R,ǫ satisfies (A1). Since H is Lipschitz in m, we have, for all (t,m) ∈
[0, T ] × P2 such that |m|22 ≤ K,

|H(t,m)− H̃R,ǫ(t,m)| ≤ |H(t,m)−H(t, ϕR♯m)|+ |H(t, ϕR♯m)− H̃R,ǫ(t,m)|
≤ Cd1(m,ϕR♯m) + ǫ

2
≤ C

∫

Rd |x− ϕR(x)|dm(x) + ǫ
2

≤ 2C
∫

B(R)c |x|dm(x) + ǫ
2

≤ 2C
R

∫

Rd |x|2dm(x) + ǫ
2 ≤ ǫ.

The result follows.

We are ready now to claim that Proposition 4.10 holds true for F = H:

Proposition 4.13. Let U be a bounded continuous subsolution of (4.3). Then, for all (t0,m0) ∈
[0, T ] × P2,

U(s, pt0,m0

s )− U(t0,m0) +

∫ s

t
H(r, pt0,m0

r )dr ≥ 0.
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Proof. Fix (t0,m0) ∈ [0, T ]× P2. It holds that, for any r ∈ [t0, T ],

|pt0,m0

r |22 ≤ K := |m0|22 + dT.

Using Lemma 4.12, we can find, for any arbitrarily small ǫ > 0, a map H̃ which satisfies (A1)
and such that |H̃(r, pt0,m0

r )−H(r, pt0,m0
r )| ≤ ǫ for all r ∈ [t0, T ].

If U is a subsolution of (4.3), then Ũ(s,m) := U(s,m) + ǫs is a subsolution of (4.1) for F = H̃.
From Lemma 4.10, it follows that

Ũ(s, pt0,m0

s )− Ũ(t0,m0) +

∫ s

t0

H̃(r, pt0,m0

r )dr ≥ 0,

and therefore

U(s, pt0,m0

s )− U(t0,m0) +

∫ s

t0

H(r, pt0,m0

r )dr ≥ −2ǫ(s− t0).

Since this relation holds true for all ǫ > 0, the result follows.

The above result permits us finally to conclude by the main theorem, which characterizes the
value function V as the largest bounded, continuous subsolution, which is convex in m and
vanishes at time T .

Theorem 4.14. Let U be a bounded, continuous subsolution of (4.3) which is convex in m and
satisfies U(T,m) = 0 for all m ∈ P2. Then U ≤ V .

Proof. Let (t0,m0) ∈ [0, T ] × P2 and M ∈ M(t0,m0). Consider the regular time grid t0 < t1 <

. . . < tN = T , with tk = t0 + k (T−t0)
N .

By Proposition 4.13, we have

U(tk+1, p
tk ,Mtk
tk+1

)− U(tk,Mtk) +

∫ tk+1

tk

H(r, p
tk ,Mtk
r )dr ≥ 0. (4.16)

From the definition of M(t0,m0) and since U is convex in m, it follows that

U(tk+1, p
tk ,Mtk
tk+1

) = U
(

tk+1,E[Mtk+1
|FM
tk
]
)

≤ E[U(tk+1,Mtk+1
)|FM

tk
].

And therefore

E
[

U(tk,Mtk )− U(tk+1,Mtk+1
)|FM

tk

]

≤ E

[
∫ tk+1

tk

H(r, p
tk ,Mtk
r )dr|FM

tk

]

. (4.17)

Since, by Lemma 2.4, H is Lipschitz in m, with Lipschitz constant C, we have, for any r ∈
[tk, tk+1],

E

[

|H(r, p
tk ,Mtk
r )−H(r,Mtk )|

∣

∣FM
tk

]

≤ CE

[

d1(p
tk ,Mtk
r ,Mtk )

∣

∣FM
tk

]

. (4.18)

By Lemma 2.2, we have

d1(p
tk,Mtk
r ,Mtk) ≤

√

d(r − tk).

With (4.18), this gives us for H:

E
[

∫ tk+1

tk
H(r, p

tk ,Mtk
r )dr

∣

∣FM
tk

]

≤ E
[

∫ tk+1

tk
H(r,Mtk )dr

∣

∣FM
tk

]

+ 2C
√
d

3 (tk+1 − tk)
3/2
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Coming back to (4.17), thanks to the choice of the path of the time grid, we can write

E [U(tk,Mtk )− U(tk+1,Mtk+1)] ≤ E

[∫ tk+1

tk

H(r,Mtk )dr

]

+
2C

√
d

3
(tk+1 − tk)

3/2.

Summing up over all k, we get

E [U(t0,m0)] = E [U(t0,m0)− U(T,MT )] ≤ E

[
∫ T

t0

H(r, M̃r)dr

]

+
2C

√
d(T − t0)

3/2

3
√
N

,

with M̃r equal to Mtk if r ∈ [tk, tk+1), for all k. As the mesh of the grid goes to zero, the process
s → H(s, M̃s) converges almost surely for the Skorokhod topology to s → H(s,Ms) (see e.g.
Proposition VI.6.37 in [17]), so that:

U(t0,m0) ≤ E

[
∫ T

t0

H(r,Mr)dr

]

.

And, finally, since M ∈ M(t0,m0) has been chosen arbitrarily, the result follows.
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