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Abstract
Diabetes is a disease which caused by socio-environmental and / or genetic factors.
The negative effect of socio-environmental or lifestyle leads a susceptible individual to
become a diabetic. On the one hand, social interaction wields a great deal of influence
over lifestyle. On the other hand, genetic factors are themain cause of the birth diabetes
genetic disorder. Considering these above mentioned factors. In the present paper,
we study a discrete age continuous mathematical model that describes the dynamics
of diabetics. We highlight the negative impact of socio-environmental on diabetic
patients according to age groups. We also suggest an optimal strategy to implement
the best campaigns of rising awareness that aims at protecting diabetic patients from
the negative impact of a lifestyle that leads them to complications. In addition to
psychological treatment and follow-up of diabetic patients with complications, an
awareness campaignwill also be carried out for peoplewith potential diabetes that aims
at educating them about the dangerous of diabetes and its complications. Pontryagin’s
maximum principle is used to characterize the optimal controls and the optimality
system is solved by an iterative method. The numerical simulation is carried out using
MATLAB.
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1 Introduction

On November 14, 2019, The world celebrated International Diabetes Day on which
the World Health Organization (WHO) [1] and the International Diabetes Federation
(IDF) [2] have chosen the theme “Family and diabetes” with the slogan “Diabetes is
important for the whole family ”. The International Diabetes Day has an objective the
raising of awareness about this disease and its complications by focusingonprevention,
adoption of a healthy lifestyle, early examination, especially for peoplewho are subject
to diabetes.

According to the International Diabetes Federation [2], statistics indicate that more
than 463 million people with diabetes in 2019 and that 50 percent of people suffer
from diabetes are not aware of being a subject to disease. And these numbers increase
exponetially every year. The number of people with diabetes is expected to reach 578
million in 2030 and 700 million in 2045.

Diabetes increases the possibility to be affected by other serious illnesses, espe-
cially respiratory illnesses like the SARS-CoV-2 virus. According to the American
Diabetes Association (ADA) [42], people with diabetes are at higher risk for viral
infections. According to the Scientific Federation of Diabetics [33], In response to
the current COVID-19 pandemic, governments of many countries have restricted the
movements of their citizens, confining them to their family environment. facilities
such as, gymnasiums, sports centers and swimming pools are closed. Therefore, the
inactivity and the lack of exercising have caused many people to gain excessive weight
which will put them at a high of developing diabetes [34–41].

Diabetes can be caused by two main factors, genetics and/ or lifestyle. Lifestyle
manifested in malnutrition which stem from poverty, and social factors that can result
from work place and family problems. These factors inter alia may lead to diabetic
complications such as, kidney failure, vision loss and others.

In recent years, a large amount of research has been conducted in relation to dia-
betes in general and in mathematics particularly. These mathematical models aim at
understanding and analyzing the dynamics of diabetics. In a related research work, in
2004 Boutayeb et al. [3] introduced introduced the diabetes complication (DC) model
to find out how many changes of diabetics without complications (D) and diabetics
with complications (C). In the DC model the number of new patients (incidence) of
diabetes is assumed to be constant. In 2007Derouich et al. [4] proposed aA population
model of diabetes and prediabetes using a system of ordinary differential equations.
In 2014 Derouich et al. [4] proposed also an optimal control approach modeling the
evolution from pre-diabetes to diabetes with and without complications. They showed
the existence of an optimal control and then used a numerical implicit finite-difference
method to monitor the size of population in each compartment. Their model shows
that, using optimal control, the number of diabetics with and without complications
can be significantly reduced in a period of 10 years. In 2018 Permatasar et al. [8]
proposed Mathematical model to elaborate the prevalence of diabetics has been deter-
mined by diabetes complication (DC) model. In the DC model, people with diabetes
were classified into two compartments, uncomplicated diabetics (D) and complicated
diabetics (C). Diabetes is known as a disease caused by lifestyle and genetic factors.
A bad lifestyle leads a susceptible individual to become a diabetic. Bad lifestyle is

123



Amulti-age mathematical modeling of the dynamics… 377

strongly influenced by risky social interaction. In the other side, a genetic factor is
the main cause of the diabetes genetic disorder birth. Consider these both factors, the
DCmodel was developed into a susceptible diabetes complication (SDC) model. Sus-
ceptible individuals were involved in the calculation of risky interactions. The SDC
model is a first order nonlinear differential equation. The number and the change of
individuals in each compartment can be determined from the solution of this model. In
this paper, the SDC model is applied to predict changes of diabetics prevalence in the
United States. As a result, the SDC model is good enough to predict the prevalence,
and Al Helal et al. [32] Insulin injections and exercise scheduling for individuals
with diabetes: an optimal control model. In 2019 Kouidere et al. [5] introduced a
Discrete Time to the Dynamics of a Population of Diabetics with Highlighting the
Impact of Living Environment, and Anarina et al. [18,19] studied the dynamics of
glucose, insulin, and free fatty acids with time delay: the impact of bariatric surgery
on type 2 diabetes mellitus. In 2020 Kouidere et al. [6] In order to have realistic model.
They proposed to study an optimal control approach with delay in state and control
variables in a discrete mathematical model of kouidere et al. [5], that time with delay
represent the measuring the extent of interaction with themeans of treatment or aware-
ness campaigns. Also, many researches have focused on this topic and other related
topics, and Sweatman et al. [14] introduce a mathematical model of diabetes and diet-
related lipid metabolism, leptin sensitivity, insulin sensitivity and VLDLTG clearance
predict pathways to health and type II diabetes, and also Auni Aslah Mat Daud et
al. [46] proposed a mathematical model of the population dynamics of DM during
pregnancy is developed and analyzed. Four independent variables have been consid-
ered, namely the numbers of nonpregnancy nondiabetic women, diabetic nonpregnant
women, diabetic pregnant women and diabetic pregnant women with complication.
The model is described by a system of ordinary differential equations. The stability of
the equilibrium point is analyzed using Routh-Hurwitz criteria. The model is numer-
ically simulated using MATLAB to verify the analytical results. The model has only
one nonnegative equilibrium point which is asymptotically stable. The equilibrium
solution is further investigated using simple sensitivity analysis. The results of sim-
ple sensitivity analysis of the equilibrium solution suggest the key parameters of the
model. The equilibrium point of the model indicates the influential parameters that
can be controlled to address the issue. Also, many researches have focused on this
topic and other related topics [7–9,16,20–22].

According th World Health Organization (WHO) [43], the number of incidences
of diabetes is not constant and tends to increase every year. The increase is due to the
lifestyle of the world’s population. One of the factors influencing lifestyle is social
interaction. Social interaction is a significant factor affecting lifestyle changes so as
to increase the potential of a healthy-susceptible individual into diabetics [44]. In
addition, the incidence of diabetes is also often associated with genetic factors from
parents who have a history of diabetes [45]. However, they did not take into account
the negative impact of the socio-environmental factors according to age groups, that
is the aim of this paper.

The increase in the number of diabetics is related to several factors. Diabetes is
caused by unhealthy lifestyles such as, the lack of physical activity, unhealthy eating
patterns, and other unhealthy habits. Diabetics who have experienced complications
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are already aware of their poor heath conditions. In contrast, diabetics without com-
plications were unable to lead a healthy lifestyle, especially in undiagnosed cases. The
influence of society on diabetes varies vis-à-vis their ages. the closer people are in age,
the more influencial they become towards one another. In addition to the foregoing,
the aim of this paper is to shed light on socio-environmental such as behavioral, social,
and economic factors; these factors can be controlled in contrast to genetic factors that
are difficult to control because diabetes cannot be cured, but one can control the rate
of glucose in the blood by virtue of a balanced diet. The extent to which people who
do not suffer from diabeties negatively impact diabetics when both groups belong to
the same age group. The extent to which people who do not suffer from diabeties
negatively impact diabetics when both groups do not belong to different age group.

As previously indicated in discrete mathematical modeling of Kouidere et al., dia-
betics were divided into two main groups, namely: diabetics due to genetic factors
P , diabetics due to behavioral and economic factors in which the entourage plays
a crutial role E . furthermore, diabetics without complications D and diabetics with
complications C . can be added to the mix. And that was elaborated in detail in the
methodology section.

Besides the aforementioned works, we will study a mathematical modeling of the
dynamics of a population of diabetics which contains the following additions: * A
discrete-age continuous mathematical modeling, * Dividing age into multiple age
intervals.

We note, as mentioned above, that most researches about diabetes and its compli-
cations focusing on continuous and discrete time models and describing differential
equations. Recently, more and more attention has been paid to the study of optimal
control. (see [12,24–31] …and references cited There).

In Sect. 2 of this paper, we presented the PEDC continuous mathematical model
and we gave some basic properties, and we presented the optimal control problem
for the proposed model where we gave some results concerning the existence of
the optimal controls and we characterized these optimal controls using Pontryagin’s
maximum principle. In Sect. 3, we proposed mathematical model with multiple age
and optimal control where we gave some result concerning the existence of the optimal
control and we characterized the optimal controls. We gave numerical simulations, in
Sect. 4. Finally, we concluded the paper in Sect. 5.

2 Methods

2.1 Description of themodel

We considered a mathematical model PEDC that described the dynamics of a popu-
lation of diabetics with highlighting the effect of lifestyle. by divided the population
N into four compartments: P is Number of pre-diabetic peopole through genetics
factors (Genetic predisposition), E is represented the Pre-diabetics due to the negative
impact of socio-environmental factors on diabetics ( without Genetic predisposition),
D is represented the number of diabetics without complications, C is represented the
number of diabeticswith complications (Complication asCardiovascular disease, Foot
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Fig. 1 A model diagram of the dynamics of population diabetics

damage, neuropathy, nephropathy and retinopathy). The total population of individu-
als, N (t) at time t is given as: N (t) = N1(t) + N2(t) = P(t) + D(t) +C(t) + E(t).
The graphical representation of the proposed model is shown in Fig. 1.

Hence, we presented the PEDC diabetic mathematical model by the following
system of differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP(t)
dt = I1 − ( μ + β1 + β3)P(t)

dE(t)
dt = I2 − (μ + γ )E(t)

dD(t)
dt = β1P(t) + γ E(t) − α

D(t)E(t)
N − (μ + β2)D(t)

dC(t)
dt = β3P(t) + β2D(t) + α

D(t)E(t)
N − (μ + δ)C(t)

(1)

with P(0) ≥ 0, D(0) ≥ 0, E(0) ≥ 0, C(0) ≥ 0 are the given initial states.

– μ: Natural death rate (Natural mortality is not due to diabetes and its complica-
tions).

– I1: Denote the incidence of pre-diabetes due to genetics factors.
– I2: Denote the incidence of pre-diabetes due to lifestyle (living environment).
– β1: The rate of pre-diabetics who has been diabetics without complications.
– β2: The rate of diabetics whose complications are cured.
– β3: The rate of diabetics become diabetics with complication through the sudden
sock.

– γ : The rate of diabetics people probability of developing diabetes through the
negative effect of socio-environmental factors on diabetics.

– δ: Mortality rate due to complications.
– α: The rate of negative effect of socio-environmental factors E(t) on diabetics peo-
ple D(t)( According to Hill et al. [47], the interaction between individuals without
diabetes E(t) who have unhealthy lifestyles and diabetics without complications
D(t) leads to negative health outcomes for those with diabetes).
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2.2 Basic properties of themodel

2.2.1 Positivity of solutions

Theorem 1 If P (0) ≥ 0 , E (0) ≥ 0, D (0) ≥ 0 and C(0) > 0, the solutions P (t) ,

E (t) , D (t) and C(t) of system (1) are positive for all t ≥ 0.

Proof We have according to the first equation of the system (1) that

dP(t)

dt
= I1 − (μ + β1 + β3)P(t)

≥ −(μ + β1 + β3)P(t)
dP(t)

dt
+ ( μ + β1 + β3)P(t) ≥ 0

The both sides of the last inequality aremultiplied by exp ((μ + β1 + β3)t) , we obtain

exp ((μ + β1 + β3)t) · dP(t)

dt
+ ( μ + β1 + β3) exp ((μ + θ1 + θ2)t) · P(t) ≥ 0

So,
d

dt
(exp((μ + β1 + β3)t).P(t)) ≥ 0

Integrating this inequality from 0 to t gives:
∫ t
0

d
ds (exp((μ+β1+β3)s)·P(s)) ds ≥

0.
Then P(t) ≥ P(0) exp (−(μ + β1 + β3)t) > 0
Similarly, we prove that E(t), D(t) and C(t) are positive for all t ≥ 0. ��

2.2.2 Invariant region

Theorem 2 The set Ω =
{
(P, E, D,C) ∈ R

4/0 ≤ P + E + D + C ≤ I
μ

}
posi-

tively invariant under system (1) with initial conditions P (0) ≥ 0 , E (0) ≥ 0,
D (0) ≥ 0 and C (0) ≥ 0.

Proof By adding the equations of system (1), we obtain

dN

dt
= I − μN − δC ≤ I − μN

�⇒ N (t) ≤ I

μ
+ N (0)e−μt

where I = I1 + I2 that I is the sum of the recruitment rates I1 and I2, and N (0)
represents the initial values of the total population.

Thus, lim
t→∞ sup N (t) = I

μ
. It implies that the region Ω is a positively invariant set

for system ( 1). So, we only need to consider the dynamics of the system on the set
Ω . ��
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2.2.3 Exictence of solutions

Theorem 3 The system (1) that satisfies agiven initial condition (P (0) , E (0) , D (0) ,

C (0)) has a unique solution.

Proof Let X =

⎛

⎜
⎜
⎝

P (t)
E (t)
D (t)
C (t)

⎞

⎟
⎟
⎠ and ϕ (X) =

⎛

⎜
⎜
⎜
⎝

dP(t)
dt

dE(t)
dt

dD(t)
dt

dC(t)
dt

⎞

⎟
⎟
⎟
⎠

The system (1) can be rewritten in the following form:

ϕ(X) = .

X = AX + B(X) (2)

where

A =

⎛

⎜
⎜
⎝

−( μ + β1 + β3) 0 0 0
0 −μ − γ 0 0
β1 γ −μ − β2 0
β3 0 β2 −μ − δ

⎞

⎟
⎟
⎠

and

B(X) =

⎛

⎜
⎜
⎝

I1
I2

−α
D(t)E(t)

N
α

D(t)E(t)
N

⎞

⎟
⎟
⎠

The second term on the right-hand side of (2) satisfies:

B(X1) − B(X2) =

⎛

⎜
⎜
⎝

I1
I2

−α
D1(t)E1(t)

N1

α
D1(t)E1(t)

N1

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝

I1
I2

−α
D2(t)E2(t)

N2

α
D2(t)E2(t)

N2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

I1 − I1
I2 − I2

−α
D1(t)E1(t)

N1
+ α

D2(t)E2(t)
N2

α
D1(t)E1(t)

N1
− α

D2(t)E2(t)
N2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0

−α
D1(t)E1(t)

N1
+ α

D2(t)E2(t)
N2

α
D1(t)E1(t)

N1
− α

D2(t)E2(t)
N2

⎞

⎟
⎟
⎠

Therefore

‖B(X1) − B(X2)‖ ≤ 2α

∥
∥
∥
∥
D1(t)E1(t)

N1(t)
− D2(t)E2(t)

N2(t)

∥
∥
∥
∥

≤ 2α

N1(t)N2(t)
‖D1(t)E1(t)N2(t) − D2(t)E2(t)N1(t)‖
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≤ 2α

N1(t)N2(t)
‖D1(t)E1(t)N2(t) − D1(t)E1(t)N1(t)

+D1(t)E1(t)N1(t) − D2(t)E2(t)N1(t)‖
≤ 2α

N1(t)N2(t)
‖D1(t)E1(t) (N2(t) − N1(t))

+N1(t)(D1(t)E1(t) − D2(t)E2(t))‖
≤ 2α (‖D1(t)E1(t)‖ ‖N2(t) − N1(t)‖ + ‖N1(t)‖

‖D1(t)E1(t) − D2(t)E2(t)‖)
≤ 2α (‖D1(t)E1(t)‖ ‖N2(t) − N1(t)‖

+ ‖N1(t)‖ ‖D1(t)E1(t) − D1(t)E2(t) + D1(t)E2(t) − D2(t)E2(t)‖)
≤ 2α (‖D1(t)E1(t)‖ ‖N2(t) − N1(t)‖

+ ‖N1(t)‖ ‖D1(t) (E1(t) − E2(t)) + (D1(t) − D2(t)) E2(t)‖)
≤ 2α (‖D1(t)‖ ‖E1(t)‖ ‖N2(t) − N1(t)‖

+ ‖N1(t)‖ (‖D1(t)‖ ‖E1(t) − E2(t)‖ + ‖D1(t) − D2(t)‖ ‖E2(t)‖))
≤ 2α

(

(
I

μ
)2 ‖N2(t) − N1(t)‖ + (

I

μ
)2 ‖E1(t) − E2(t)‖

+(
I

μ
)2) ‖D1(t) − D2(t)‖

)

≤ M . ‖X1 − X2‖

where M = 2α
(
( I
μ
)2 + ( I

μ
)2 + ( I

μ
)2
)
, and M is some positive constants, indepen-

dent of the state variables P (t) , E (t) , D (t) and C(t).
then ‖ϕ(X1) − ϕ(X2)‖ ≤ V . ‖X1 − X2‖

where V = max(M, ‖A‖) < ∞.
Thus, it follows that the functionϕ is uniformly Lipschitz continuous. the restriction

on P (t) ≥ 0 , E (t) ≥ 0, D (t) ≥ 0 and C(t) ≥ 0, we see that a solution of the
system (1) exists [17]. ��

2.3 The optimal control Problem

2.3.1 Formulation of the optimal control problem

The strategy of control that has been adopted consists of an awareness program tomin-
imize the negative effect of behavioral factors on diabetics without complication. Our
main aim is to minimize the number of people evolving from the stage of pre-diabetes
to the stages of diabetes with and without complications. In this model, we included
three controls u(t), v(t) and w(t) for t ∈ [0, T ]. The first control is symbolized by u
represented treatment, Its role is manifested in treating the complications of diabetes,
and overcoming them, which gives an opportunity to control the level of glucose in
the blood at a given time t. The second control v represented the awareness program
through media and education, by raising awareness of the seriousness of the negative
impact of behavioral factors on diabetics without complication D. The third controlw
represented the awareness program, through raising awareness of non-diabetics about
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the negative imapct of behavioral, economic and social factors that lead to diabetes at
a given time t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP(t)
dt = I1 − (μ + β1 + β3)P(t)

dE(t)
dt = I2 − μE(t) − γ (1 − w(t))E(t)

dD(t)
dt = β1P(t) + γ (1 − w(t))E(t) − α (1 − v(t)) D(t)E(t)

N − (μ + β2)D(t) + u(t)C(t)
dC(t)
dt = β3P(t) + β2D(t) + α (1 − v(t)) D(t)E(t)

N − (μ + δ)C(t) − u(t)C(t)
(3)

with P(0) ≥ 0, D(0) ≥ 0, E(0) ≥ 0 and C(0) ≥ 0

2.3.2 The optimal control: existence and characterization

Our aim is to minimize the number of diabetics without complication individuals and
the cost of vaccination program. Mathematically, it can be interpreted by optimisation
of the objective functional

J (u, v, w) = C(T )−D(T )+
T∫

0

[

C(t) − D(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t)

]

dt

(4)
where A > 0, B > 0 and G > 0 are the cost coefficients. They are selected to weigh
the relative importance of u(t), v(t) and w(t) at time t . T is the final time.

In other words, we seek the optimals controls u∗, v∗ and w∗ such that

J (u∗, v∗, w∗) = min
(u,v,w)∈U J (u, v, w) (5)

where U is the set of admissible controls defined by U = {(u, v, w)/ umin ≤ u(t) ≤
umax , umin ≤ v(t) ≤ umax and wmin ≤ w(t) ≤ wmax/ t ∈ [0, T ]}

2.4 Existence of an optimal control

Theorem 4 Consider the control problem with system (3). There exists an optimal
control (u∗, v∗, w∗) ∈ U such that J (u∗, v∗, w∗) = min

(u,v,w)∈U J (u, v, w)

Proof The existence of the optimal control can be obtained using a result by Fleming
and Rishel [16], checking the following steps :

– The set of controls and corresponding state variables is nonempty. To prove this
condition we use a simplified version of an existence result of Boyce and DiPrima
([15], Theorem 7.1.1)
To prove that the set of controls and the corresponding state variables is
nonempty, we will use a simplified version of an existence result [15]. Let
X ′
i = FXi (t, X1, . . . , X4)with i = 1, . . . , 4where (X1, . . . , X4) = (P, E, D,C)

where X1, X2, X3 and X4 form the right-hand side of the system of equations
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(10). Let u, v and w for some constants and since all parameters are constants and
X1, X2, X3 and X4 are continuous, then FP , FE , FD and FC are also continuous.

Additionally, the partial derivatives
∂FXi
∂Xi

with i = 1, . . . , 4 are all continuous.
therefore, there exists a unique solution (P, E, D,C) that satisfies the initial
conditions. therefore, the set of controls and the corresponding state variables
is nonempty and condition 1 is satisfied in U .

– The control space U = {(u, v, w)/ umin ≤ u(t) ≤ umax , umin ≤ v(t) ≤ umax

and wmin ≤ w(t) ≤ wmax/ t ∈ [0, T ]} is convex and closed by definition (see
appendix 1).

– All the right hand sides of equations of system are continuous, bounded above by
a sum of bounded control and state, and can be written as a linear function of u
with coefficients depending on time and state.

– The integrand in the objective functionalC(t)−D(t)+ A
2 u

2(t)+ B
2 v2(t)+ G

2 w2(t)
is clearly convex on U
It rest to show that there exists constants ζ1, ζ2, ζ3, ζ4 > 0,
and ζ such that C(t) − D(t) + A

2 u
2(t) + B

2 v2(t) + G
2 w2(t) satisfies

C(t) − D(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t) ≥ ζ1 + ζ2 |u|ζ + ζ3 |v|ζ + ζ4 |w|ζ .

The state variables being bounded, let ζ1 = 1
2 inf
t∈[0,T ] (C(t) − D(t)) , ζ2 = A, ζ3 =

B, ζ4 = G and ζ = 2 then it follows that:

C(t) − D(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t) ≥ ζ1 + ζ2 |u|ζ + ζ3 |v|ζ + ζ4 |w|ζ .

Then from Fleming and Rishel [16], we conclude that there exists an optimal
control. ��

2.5 Characterization of the optimal control

In order to derive the necessary condition for optimal control, the Pontryagins max-
imum principle [13], given in was used. This principle converts into a problem of
minimizing a Hamiltonian H(t) at time t defined by

H(t) = C(t) − D(t) + A

2
u2(t) + B

2
v2(t) + G

2
(6)

where fi is the right side of the differential equation of the i th state variable at time t .

Theorem 5 Given the optimals controls (u∗, v∗, w∗) and the solutions P∗, E∗, D∗
and C∗ of the corresponding state system (3), there exists adjoint variables λ1(t),
λ2(t),λ3(t) and λ4(t) satisfying:

λ′
1(t) = −∂H(t)

∂P(t)
= −λ1(t) [−μ − β1 − β3] − λ3(t)β1 − λ4(t)β3
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λ′
2(t) = −∂H(t)

∂E(t)
= −λ2(t)

[−μ − γ (1 − w(t))
]

−λ3(t)

[

γ (1 − w(t)) − α(1 − v(t))
D(t)

N

]

−λ4(t)(α(1 − v(t))
D(t)

N

λ′
3(t) = −∂H(t)

∂D(t)
= 1 − λ3(t)

[

−α(1 − v(t))
E(t)

N
+ (−μ − β2)

]

−λ4(t)

[

α(1 − v(t))
E(t)

N
+ β2

]

λ′
4(t) = −∂H(t)

∂C(t)
= −1 − λ3(t) × u(t) − λ4(t) × (−μ − γ − u(t))

With the transversality conditions at time T : λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 1
and λ4(T ) = −1.

Furthermore, for t ∈ [0, T ], the optimal controls u∗, v∗ and w∗ are given by

u∗ = min

(

umax ,max

(

umin,
(λ3(t) − λ4(t))

A
C∗(t)

))

(7)

v∗ = min

(

vmax ,max

(

vmin,
(λ3(t) − λ4(t))

B
× αD∗(t)E∗(t)

N

))

(8)

w∗ = min

(

wmax ,max

(

wmin,
(λ2(t) − λ3(t))

G
× γ E∗(t)

))

(9)

Proof We use the Pontryagins maximum principle [13], for characterized the optimal
controls. So, we defined the Hamiltonian H as follows:

H(t) = C(t) − D(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t) + λ1(t) [I1 − ( μ + β1 + β3)P(t)]

+ λ2(t)
[
I2 − μE(t) − γ (1 − w(t))E(t)

]+ λ3(t)
[

β1P(t) + γ (1 − w(t))E(t) − α (1 − v(t))
D(t)E(t)

N
− (μ + β2)D(t) + u(t)C(t)

]

+ λ4(t)

[

β3P(t) + β2D(t) + α (1 − v(t))
D(t)E(t)

N
− (μ + δ)C(t) − u(t)C(t)

]

At this case it is considered that N is constant. For t ∈ [0, T ], the adjoint equations and
transversality conditions can be obtained by using Pontryagin’s maximum principle
[5,10,11,13,23] such that

λ′
1(t) = −∂H(t)

∂P(t)
= −λ1(t) [−μ − β1 − β3] − λ3(t)β1 − λ4(t)β3

λ′
2(t) = −∂H(t)

∂E(t)
= −λ2(t)

[−μ − γ (1 − w(t))
]
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−λ3(t)

[

γ (1 − w(t)) − α(1 − v(t))
D(t)

N

]

−λ4(t)(α(1 − v(t))
D(t)

N

λ′
3(t) = −∂H(t)

∂D(t)
= 1 − λ3(t)

[

−α(1 − v(t))
E(t)

N
+ (−μ − β2)

]

−λ4(t)

[

α(1 − v(t))
E(t)

N
+ β2

]

λ′
4(t) = −∂H(t)

∂C(t)
= −1 − λ3(t) × u(t) − λ4(t) × (−μ − γ − u(t))

With the transversality conditions [48] at time T :

λ1(T ) = − ∂(C(T )−D(T ))
∂P(T )

= 0.

λ2(T ) = − ∂(C(T )−D(T ))
∂E(T )

= 0,

λ3(T ) = − ∂(C(T )−D(T ))
∂D(T )

= 1

and λ4(T ) = − ∂(C(T )−D(T ))
∂C(T )

= −1.

For, t ∈ [0, T ] the optimal controls u, v and w can be solved from the optimality
condition

−∂H(t)

∂u(t)
= 0 ⇒ −Au(t) − (λ4(t) − λ3(t))C(t) = 0

−∂H(t)

∂v(t)
= 0 ⇒ −Bv(t) − (λ4(t) − λ3(t))

D(t)E(t)

N
= 0

−∂H(t)

∂w(t)
= 0 ⇒ −Gw(t) − (λ3(t) − λ2(t))γ E(t) = 0

We have

u(t) = (λ4(t) − λ3(t))

A
C(t)

v(t) = (λ4(t) − λ3(t))

B
× αD(t)E(t)

N

w(t) = (λ3(t) − λ2(t))

G
× γ E(t)

By the bounds in U of the controls, it is easy to obtain u∗, v∗ and w∗ are given by
(16, 17, 18) in the form of system(3). ��

3 Mathematical modeling withmulti age

In this section, the emphasis is on the impact of behavioral factors that can result from
the influence that non-diabetics wield over diabetics without complications by age
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groups. The negative effect of a group of children under the age of 20 on each other
behaviorally, or a group between the age of 18 and 50 years on each other, as well as a
group over the age of 50. It will also highlight how different age groups affect others,
just like adults and young adults. As we divided these age groups k into three main
groups: The first category k = 1 is less than 20 years old, the second category k = 2
is between 20 years to 50 years, and the third category k = 3 is over 50 years old.

The negative effect of no diabetics on diabetics within the same age
Diabetes is a chronic and deadly disease, it has its negative effects on the individual

and society. As previously mentioned, the individual develops diabetes by genetic,
behavioral, economic and social factors, according to IDF [2] In this section, we will
highlight the negative effect of behavioral factors directly caused by people without
diabetes. Influence of age groups of the same age as diabetics Dk.k (t)Ek.k(t)

N for k =
1, 2, 3. Children under 20 years old among themselves D1.1(t)E1.1(t)

N , young people

from 20 to 50 years old among themselves D2.2(t)E2.2(t)
N , and adults over 50 years old

among themselves D3.3(t)E3.3(t)
N . These age groups will have a significant influence

on the increase in complications of diabetics for several reasons, three of which are
having the same age, having the same way of thinking and lacking the awarness of the
dangers that diabetes may present.

The negative effect of no diabetics on diabetics within the different age
In this paragraph, we want to highlight the negative impact of behavioral fac-

tors of people who do not suffer from diabetes on diabetics from another age

group
Dk. j (t)Ek. j (t)

N for k = 1, 2, 3. Adults with children D3.1(t)E3.1(t)
N and vice versa

D1.3(t)E3.1(t)
N , young people with children D2.1(t)E2.1(t)

N and vice versa D1.2(t)E1.2(t)
N ,

adults with young people D3.2(t)E3.2(t)
N and vice versa D2.3(t)E2.3(t)

N . The graphical rep-
resentation of the proposed model is shown in Fig. 2.

The model is presented with age group k. Hence, we present the diabetic model by
the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dPk (t)
dt = �1 + (−μ − β1 − β3)Pk(t)

dEk (t)
dt = �2 + (−μ − γ )Ek(t)

dDk (t)
dt = β1Pk(t) + γ Ek(t) −

3∑

j=1
αk. j

Dk. j (t)Ek. j (t)
N + (−μ − β2)Dk(t)

dCk (t)
dt = β3Pk(t) + β2Dk(t) +

3∑

j=1
αk. j

Dk. j (t)Ek. j (t)
N + (−μ − δ)Ck(t)

(10)

with Pk(0) ≥ 0, Dk(0) ≥ 0, Ek(0) ≥ 0, Ck(0) ≥ 0.

3.1 Basic properties of themodel

3.1.1 Positivity of solutions

Theorem 6 If Pk (0) ≥ 0 , Ek (0) ≥ 0, Dk (0) ≥ 0 and Ck(0) > 0, the solutions
Pk (t) , Ek (t) , Dk (t) and Ck(t) of system (10) are positive for all t ≥ 0.
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P

C

G2
G 1

G 3

Fig. 2 The figure represents the negative effect of lifestyle on diabetes without complications

Proof We have according to the first equation of the system (10) that

dPk(t)

dt
= I1 − (μ + β1 + β3)Pk(t)

≥ −(μ + β1 + β3)Pk(t)
dPk(t)

dt
+ ( μ + β1 + β3)Pk(t) ≥ 0

The both sides in last inequality are multiplied by exp ((μ + β1 + β3)t)
we obtain

exp ((μ + β1 + β3)t) .
dPk(t)

dt
+ ( μ + β1 + β3) exp ((μ + θ1 + θ2)t) .Pk(t) ≥ 0

then d
dt (exp((μ + β1 + β3)t).Pk(t)) ≥ 0

Integrating this inequality from0 to t gives:
t∫

0

d
ds (exp((μ + β1 + β3)s).Pk(s)) ds ≥

0
then Pk(t) ≥ Pk(0) exp (−(μ + β1 + β3)t)
�⇒ Pk(t) > 0.
Similarly, we prove that Ek (t) ≥ 0, Dk (t) ≥ 0 and Ck(t) ≥ 0. ��
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3.1.2 Invariant region

Theorem 7 The set Ω =
{
(Pk, Ek, Dk,Ck) ∈ R

4/0 ≤ Pk + Ek + Dk + Ck ≤ I
μ

}

positively invariant under system (10) with initial conditions Pk (0) ≥ 0 , Ek (0) ≥ 0,
Dk (0) ≥ 0 and Ck (0) ≥ 0.

Proof By collecting system equations (10), we obtain

dN

dt
= I − μN − δC ≤ I − μN

�⇒ N (t) ≤ I

μ
+ N (0)e−μt

where I = I1 + I2, and N (0) represents the initial values of the total population.
Thus, lim

t→∞ sup N (t) = I
μ
. It implies that the region Ω is a positively invariant set

for system ( 10). So, we only need to consider the dynamics of the system on the set
Ω . ��

3.1.3 Existence of solutions

Theorem 8 The system (10) that satisfies a given initial condition (Pk (0) , Ek (0) ,

Dk (0) ,Ck (0)) has a unique solution.

Proof Let X =

⎛

⎜
⎜
⎝

Pk (t)
Ek (t)
Dk (t)
Ck (t)

⎞

⎟
⎟
⎠ and ϕ (X) =

⎛

⎜
⎜
⎜
⎝

dPk(t)
dt

dEk (t)
dt

dDk (t)
dt

dCk (t)
dt

⎞

⎟
⎟
⎟
⎠

so the system (10) can be rewritten in the following form:

ϕ(X) = .

X = AX + B(X) (11)

where

A =

⎛

⎜
⎜
⎝

−( μ + β1 + β3) 0 0 0
0 −μ − γ 0 0
β1 γ −μ − β2 0
β3 0 β2 −μ − δ

⎞

⎟
⎟
⎠

and

B(x) =

⎛

⎜
⎜
⎝

I1
I2

−α
Dk (t)Ek(t)

N
α

Dk (t)Ek(t)
N

⎞

⎟
⎟
⎠

The second term on the right-hand side of (11) satisfies

‖B(X1) − B(X2)‖ ≤ M . ‖X1 − X2‖

123



390 Abdelfatah Kouidere et al.

whereM are somepositive constants, independent of the state variables Pk (t) , Ek (t) ,

Dk (t) and Ck(t).
Then ‖ϕ(X1) − ϕ(X2)‖ ≤ V . ‖X1 − X2‖ Thus, it follows that the function ϕ is

uniformly Lipschitz continuous. the restriction on Pk (t) ≥ 0 , Ek (t) ≥ 0, Dk (t) ≥ 0
and Ck(t) ≥ 0, we see that a solution of the system (11) exists [17]. ��

4 Formulation of themodel

We will follow the same strategy above to optimize mathematical modeling with
multi category of age. We included three controls u(t), v(t) and w(t) for t ∈ [0, T ],
represented awarness program and treatment for diabetics people and sensitization
about the negative impact of behavioral, economic and social factors.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPk (t)
dt = �1 + (−μ − β1 − β3)Pk(t)

dEk(t)
dt = �2 − μEk(t) − γ (1 − wk(t))Ek(t)

dDk (t)
dt = β1Pk(t) + γ (1 − wk(t))Ek(t) −

3∑

j=1
αk. j

(
1 − vk. j (t)

) Dk. j (t)Ek. j (t)
N

− (μ + β2)Dk(t) + uk(t)Ck(t)

dCk (t)
dt = β3Pk(t) + β2Dk(t) +

3∑

j=1
αk. j

(
1 − vk. j (t)

) Dk. j (t)Ek. j (t)
N − (μ + δ)Ck(t)

− uk(t)Ck(t)
(12)

The problem is to minimize the objective functional

J (u, v, w) = Ck(T )−Dk(T )+
T∫

0

[

Ck(t) − Dk(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t)

]

dt

(13)
where A > 0, B > 0 and G > 0 are the cost coefficients.they are selected to weigh
the relative importance of u(t), v(t) and w(t) at time t . T is the final time.

In other words, we seek the optimals controls u∗,v∗ and w∗ such that

J (u∗, v∗, w∗) = min
(u,v,w)∈U J (u, v, w) (14)

where U is the set of admissible controls defined by U = {(u, v, w)/ umin ≤ u(t) ≤
umax , umin ≤ v(t) ≤ umax and wmin ≤ w(t) ≤ wmax/ t ∈ [0, T ]}

4.1 Existence of an optimal control

Theorem 9 Consider the control problem with system (12).
There exists an optimal control (u∗, v∗, w∗) ∈ U 3 such that J (u∗, v∗, w∗) =
min

u,v,w∈U J (u, v, w)

123



Amulti-age mathematical modeling of the dynamics… 391

Proof The existence of the optimal control can be obtained using a result by Fleming
and Rishel [16], checking the following steps:

– The set of controls and corresponding state variables is nonempty. To prove this
condition we use a simplified version of an existence result of Boyce and DiPrima
([15], Theorem 7.1.1)

– The control space U = {(u, v, w)/ umin ≤ u(t) ≤ umax , umin ≤ v(t) ≤ umax

and wmin ≤ w(t) ≤ wmax/ t ∈ [0, T ]} is convex and closed by definition.
– All the right hand sides of equations of system are continuous, bounded above by
a sum of bounded control and state, and can be written as a linear function of u, v

and w with coefficients depending on time and state.
– The integrand in the objective functional Ck(t) − Dk(t) + A

2 u
2(t) + B

2 v2(t) +
G
2 w2(t) is clearly convex on U
It rest to show that there exists constants ζ1, ζ2, ζ3, ζ4 > 0, and ζ such thatCk(t)−
Dk(t) + A

2 u
2(t) + B

2 v2(t) + G
2 w2(t) satisfies

Ck(t)− Dk(t)+ A

2
u2(t)+ B

2
v2(t)+ G

2
w2(t) ≥ ζ1 + ζ2 |u|ζ + ζ3 |v|ζ + ζ4 |w|ζ .

The state variables being bounded, let ζ1 = 1
2 inf
t∈[0,T ] (Ck(t) − Dk(t)) , ζ2 =

A, ζ3 = B, ζ4 = G and ζ = 2 then it follows that:

Ck(t)− Dk(t)+ A

2
u2(t)+ B

2
v2(t)+ G

2
w2(t) ≥ ζ1 + ζ2 |u|ζ + ζ3 |v|ζ + ζ4 |w|ζ .

Then from Fleming and Rishel [16] we conclude that there exists an optimal
control. ��

4.2 Characterization of the optimal control

In order to derive the necessary condition for optimal control, the pontryagins max-
imum principle [13], given in was used. This principle converts into a problem of
minimizing a Hamiltonian H(t) at time t defined by

H(t) = Ck(t)−Dk(t)+ A

2
u2(t)+ B

2
v2(t)+ G

2
w2(t)+

4∑

i=1

λi (t) fi (Pk, Ek, Dk,Ck)

(15)
where fi is the right side of the differential equation of the i th state variable at time t .

Theorem 10 Given the optimals controls (u∗, v∗, w∗) and the solutions P∗
k , E∗

k , D
∗

and C∗
k of the corresponding state system (12), there exists adjoint variables λ1(t),

λ2(t), λ3(t) and λ4(t) satisfying:

λ′
1(t) = −λ1(t) [−μ − β1 − β3] − λ3(t)β1 − λ4(t)β3

λ′
2(t) = −λ2(t)

[−μ − γ (1 − w(t))
]
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−λ3(t)

⎡

⎣γ (1 − w(t)) −
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)

N

⎤

⎦

−λ4(t)

⎡

⎣
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)

N
)

⎤

⎦

λ′
3(t) = 1 − λ3(t)

⎡

⎣−
3∑

j=1

αk. j
(
1 − vk. j (t)

) Ek. j (t)

N
+ (−μ − β2)

⎤

⎦

−λ4(t)

⎡

⎣
3∑

j=1

αk. j
(
1 − vk. j (t)

) Ek. j (t)

N
+ β2

⎤

⎦

λ′
4(t) = −1 − λ3(t) × u(t) − λ4(t) × (−μ − γ − u(t))

With the transversality conditions at time T : λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 1
and λ4(T ) = −1.

Furthermore, for t ∈ [0, T ], the optimals controls u∗, v∗ and w∗ are given by

u∗ = min

(

umax ,max

(

umin,
(λ4(t) − λ3(t))

A
C∗
k (t)

))

(16)

v∗ = min

(

vmax ,max

(

vmin,
(λ4(t) − λ3(t))

B
× αk. j D∗

k. j (t)E
∗
k. j (t)

N

))

, with j ∈ {1, , 3}
(17)

w∗ = min

(

wmax ,max

(

wmin,
(λ3(t) − λ2(t))

G
× γ E∗

k (t)

))

(18)

Proof We use the Pontryagins maximum principle [13], for characterized the optimal
controls. So, we defined the Hamiltonian H as follows:

H(t) = Ck(t) − Dk(t) + A

2
u2(t) + B

2
v2(t) + G

2
w2(t)

+ λ1(t) [I1 + (−μ − β1 − β3)Pk(t)]

+ λ2(t)
[
I2 − μEk(t) − γ (1 − w(t))Ek(t)

]

+ λ3(t)
[
β1Pk(t) + γ (1 − w(t))Ek(t)

−
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)Ek. j (t)

N
+ (−μ − β2)Dk(t) + u(t)Ck(t)

⎤

⎦

+ λ4(t) [β3Pk(t) + β2Dk(t)

+
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)Ek. j (t)

N
+ (−μ − δ)Ck(t) − u(t)Ck(t)

⎤

⎦
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For t ∈ [0, T ], the adjoint equations and transversality conditions can be obtained
by using Pontryagin’s maximum principle [5,10,11,13,50] such that

λ′
1(t) = − ∂H(t)

∂Pk(t)
= −λ1(t) [−μ − β1 − β3] − λ3(t)β1 − λ4(t)β3

λ′
2(t) = − ∂H(t)

∂Ek(t)
= −λ2(t)

[−μ − γ (1 − w(t))
]

−λ3(t)

⎡

⎣γ (1 − w(t)) −
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)

N

⎤

⎦

−λ4(t)

⎡

⎣
3∑

j=1

αk. j
(
1 − vk. j (t)

) Dk. j (t)

N
)

⎤

⎦

λ′
3(t) = − ∂H(t)

∂Dk(t)
= 1 − λ3(t)

⎡

⎣−
3∑

j=1

αk. j
(
1 − vk. j (t)

) Ek. j (t)

N
+ (−μ − β2)

⎤

⎦

−λ4(t)

⎡

⎣
3∑

j=1

αk. j
(
1 − vk. j (t)

) Ek. j (t)

N
+ β2

⎤

⎦

λ′
4(t) = − ∂H(t)

∂Ck(t)
= −1 − λ3(t) × u(t) − λ4(t) × (−μ − γ − u(t))

For, t ∈ [0, T ] the optimal controls u, v and w can be solved from the optimality
condition

−∂H(t)

∂u(t)
= 0 ⇒ −Au(t) − (λ4(t) − λ3(t))Ck(t) = 0

−∂H(t)

∂v(t)
= 0 ⇒ −Bv(t) − (λ4(t) − λ3(t))αk. j

Dk. j (t)Ek. j (t)

N
= 0

−∂H(t)

∂w(t)
= 0 ⇒ −Gw(t) − (λ3(t) − λ2(t))γ Ek(t) = 0

we have

u(t) = (λ3(t) − λ4(t))

A
Ck(t)

v(t) = (λ3(t) − λ4(t))

B
× αk. j

Dk. j (t)Ek. j (t)

N

w(t) = (λ2(t) − λ3(t))

G
× γ Ek(t)

By the bounds in U of the controls, it is easy to obtain u∗, v∗ and w∗ are given by
(16)–(18) in the form of system. ��
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Table 1 Parameter values used in numerical simulation

Parameter Description Value in month−1

μ The natural death rate 0.02

δ Mortality rate due to complications 0.001

β1 The probability of developing diabetes 0.2

β2 The probability of a diabetic person developing a
complication

0.5

β3 The probability of developing diabetes at stage of
complications

0.1

α The effective contact rate 0.8

γ The probability of a diabetic person developing through the
behavioral factors

0.8

I1 Denotes the incidence of pre-diabetes through the genetic
factors

1,000,000

I2 Denotes the incidence of pre-diabetes through the
behavioral factors

2,000,000

5 Numerical simulation

In this section, we investigate and compare numerical results of the following control
strategies when applied for reducing the the negative effect of lifestyle on diabetics
and miminizing the number complicated diabetics. Te strategies are

(i) Strategy 1: treatment with education and awareness program.
(ii) Strategy 2: the awareness program through media and education, by raising

awareness of the seriousness of the negative impact of behavioral factors on diabetics
without complication.

As explained in [51–54], the adjoint system is solved by using the backward
in time finite-difference method with terminal conditions λk(T ) = 0, where T =
120months and initial conditions P(0) = 6,660,000, D(0) = 10,200,000, E(0) =
10,000,000, C(0) = 5,500,000. The controlsu, v andw are considered to be bounded
and the weights in the objective functional are estimated to be A = 100, B = 100 and
G = 100.. With initial value of controls and the initial condition X(0) = X0, the state
solutions system is solved forward in time using the finite-difference method of order
four. The update of the controls is done using a convex combination of the current and
previous controls to obtain the new solution for X and λ. The method continues by
using these new updates aiming at finding a fixed point (X , λ, u′) that u′ = (u, v, w).
This iterative process terminates when the last and preceding iterations are negligible
close and the last iteration is the solution of the optimal problem. The parameter values
in the state system and the objective function are obtained from different literatures
and others are estimated depending on the dynamic of diabetic population as shown
in Table 1. In this paper all plots for state variables are in the logarithmic form.

Different simulations can be performed using different parameter values in Table 1
taken from [5]:
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5.1 Senario without multi-age

5.1.1 Doing-nothing strategy

Proceeding from Fig. 3, Table 2 gave the evolution of the number of diabetics without
and with complications without control after 120months.

We note in Fig. 3 and Tables 2 and 1 that the number of diabetics without compli-
cations decreased from 10.2×106 to 4.83×106 and that the number of diabetics with
complications increased from 5.5×106 to 14.03 × 107. These changes occured due
to several reasons, including the sudden development of diabetes, lack of taking the
necessary and appropriate precautions to reduce the disease, in addition to the effect of
the behavioral factors of improper eating and unorganized diet and also due to family
and work problems.

Fig. 3 Evolution of the number of diabetics with and with complications without controls

Table 2 Evolution of the number
of diabetics after 120months

After 120months Without control

Diabetics without complications 4.83 × 106

Diabetics with complications 14.03 × 107

Ordinary people 1.5 × 107

123



396 Abdelfatah Kouidere et al.

5.1.2 Optimal control strategy

Proceeding from Fig. 4, Table 3 gave the evolution of the number of diabetics without
and with complications with control after 120months.

Based on Fig. 4 and Table 3, we notice an increase in the rate of diabetics without
complications from 10.2 × 106 to 10.9 × 106. The number of diabetics with compli-
cation increased from 5.5×106 to 7.24× 106, and also increase of rate E from 106 to
10.9× 106 And by following the medical advice (as ACE inhibitors, acetaminophen,
aspirin or ibuprofen [49]) and the psychological follow-up of diabetics, as happened
in many awareness campaigns mediated by the behavior factors of diabetics to avoid
the mentioned problems, whether family or private work as possible.

Fig. 4 Evolution of the number of diabetics with and without complications with controls

Table 3 Evolution of the number of diabetics after 120months

After 120months Without control With control

Diabetics without complications 4.83 × 106 10.9 × 106

Diabetics with complications 14.03 × 107 7.24 × 106

Ordinary people 10.8 × 106 11.6 × 106
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Fig. 5 Evolution the rate of diabetics with and without complications without controls with effect of multi-
ages

Table 4 Evolution of the number of diabetics with multi age after 120months without controls

After 120months without control With same age With two ages group With three ages group

Diabetics without complications 1.4 × 106 9.8 × 105 9.5 × 105

Diabetics with complications 3.4 × 106 4.7 × 106 4.8 × 106

5.2 Scenario withmulti-category of age

5.2.1 Doing-nothing strategy

Proceeding from Fig. 5, Table 4 gave the evolution of the number of diabetics with
multi age without control after 120months.

We noted from Fig. 5 and Table 4, we wanted to highlight the behavioral factors
effecting diabetics when they are with both same and different age groups, so that we
can notice the negative impact of these groups which led to a significant decrease in the
number of diabetics without complications and at the same time an significant increase
in the number of diabetics with complications, and this decrease can be interpreted by
the fact that these groups do not take into account the dangers that diabetics can be
exposed to by means of their ignorance of the aftermaths that their careless behaviors
may have on diabetics.

5.2.2 Optimal control strategy

Proceeding from Fig. 6, Table 5 gave the evolution of the number of diabetics with
multi age without control after 120months.

In Fig. 6 and Table 5, compared to Fig. 4, we observe a slight decrease in the number
of diabetics with complications and a noticeable rise in the number of diabetics with-
out complications after making a diagnosis on the reasons leading to this dangerous
development. This decrease occured due to awareness campaigns by both the state and
specialized federations and NGOs, where all age groups are targeted and sensitized
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Fig. 6 Evolution of the number of diabetics with and without complications with controls with ages groups
effect

Table 5 Evolution of the number of diabetics with multi age after 120months with controls

After 120months With same age With two ages group With three ages group

Diabetics without complications 1.4 × 106 9.8 × 105 9.5 × 105

D with controls 2.8 × 106 2.71 × 106 2.66 × 106

Diabetics with complications 3.4 × 106 4.7 × 106 4.8 × 106

C with controls 2.02 × 106 1.98 × 106 1.9 × 106

about the risks of the negative impact of the socio-environmental factors on diabetics
according to their age. Those campaigns introduced the risks and complications of this
disease so as to reduce the development of the disease from dangerous levels that are
difficult to control, through a healthy diet, and keeping people as far away as possible
from family and work problems as mentioned previously in Fig. 4.

Remark 1 Wecan alsomergemultiple assemblies as (u(t), v(t)) and (u(t), v(t), w(t))
thus get a variety of results.

6 Conclusion

In this work, we studied a discrete age continuous mathematical model that describes
the dynamics of diabetics population. We highlighted the negative impact of the peo-
ple’s lifestyle and the socio-environmental where diabetics get influenced badly by
non-diabetics. This negative impact has a direct consequence on the health of diabetics
without complications which eventually leads to a rise in the forms of complications.
The seriousness of complications can lead directly to death. We also divided diabetes
patients into two categories: the first got the disease due to genetic factors and the
second due to the negative impact of lifestyle. We have also divided the age groups
into three groups; below 18 years old, between 18 and 50 years old, and over 50 years
old. The goal is to find out how strong is influence of each group on the other. We
have also suggested three optimal strategies to reduce the increase in the number of
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diabetic patients with complications and to reduce the negative impact of lifestyle on
diabetic patients. We presented a new application of the theory of optimal control to
reduce the impact of social and economic behavior of age groups on the health of
diabetics through systematic differential equations, awareness campaigns as well as
psychological treatment and follow-up. We applied the results of the control theory
and wemanaged to obtain the characterizations of the optimal controls. The numerical
simulation of the obtained results showed the effectiveness of the proposed control
strategies.
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Appendix

Appendix 1

Condition
The control spaceU = {(u, v, w)/(u, v, w) is measurable, 0 ≤ u(t) ≤ 1 , 0 ≤ v(t) ≤
1 and 0 ≤ w(t) ≤ 1, t ∈ [0, T ]} is convex and closed by definition.

Proof Take any controls u, v ∈ U and λ ∈ [0, 1]. then 0 ≤ λu + (1 − λ)v

Additionally, we observe that λu ≤ λ and (1−λ)v ≤ (1−λ), then λu+(1−λ)v ≤
λ + (1 − λ) = 1.

Hence, 0 ≤ λu + (1 − λ)v ≤ 1, for all u, v ∈ U and λ ∈ [0, 1]. ��

Appendix 2

The controls u, v and w in Fig. 7 were utilized to reduce the increase in the number of
diabetic with complications by means of treatment and awareness programs. In fact
diabetes is incurable, but it can be controlled. We noted that the controls curves were
remained at the same level.

for t ∈ [0, T ], the optimal controls u∗, v∗ and w∗ are given by

u∗ = min

(

umin,max

(

umin,
(λ3(t) − λ4(t))

A
C∗(t)

))

(19)
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Fig. 7 The optimal controls u∗, v∗ and w∗

v∗ = min

(

vmax ,max

(

vmin,
(λ3(t) − λ4(t))

B
× αD∗(t)E∗(t)

N

))

(20)

w∗ = min

(

wmax ,max

(

wmin,
(λ2(t) − λ3(t))

G
× γ E∗(t)

))

(21)

So, Using these standard optimality arguments, we characterize the control u∗(t),
v∗(t) and w∗(t) by:

u∗(t)=

⎧
⎪⎨

⎪⎩

umin if (λ3(t)−λ4(t))
A C∗(t) ≤ 0

(λ3(t)−λ4(t))
A C∗(t) if 0 <

(λ3(t)−λ4(t))
A C∗(t) < 1

umax if (λ3(t)−λ4(t))
A C∗(t) ≥ 1

v∗(t)=

⎧
⎪⎨

⎪⎩

vmin if (λ3(t)−λ4(t))
B × αD∗(t)E∗(t)

N ≤ 0
(λ3(t)−λ4(t))

B × αD∗(t)E∗(t)
N if 0 <

(λ3(t)−λ4(t))
B × αD∗(t)E∗(t)

N < 1
vmax if (λ3(t)−λ4(t))

B × αD∗(t)E∗(t)
N ≥ 1

w∗(t)=

⎧
⎪⎨

⎪⎩

wmin if (λ2(t)−λ3(t))
G × γ E∗(t) ≤ 0

(λ2(t)−λ3(t))
G × γ E∗(t) if 0 <

(λ2(t)−λ3(t))
G × γ E∗(t) < 1

wmax if (λ2(t)−λ3(t))
G × γ E∗(t) ≥ 1
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