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Abstract The famous CHSH game can be interpreted with Boolean functions
while understanding the success probability in the classical scenario. In this pa-
per, we have exhaustively studied all the Boolean functions on four variables to
express binary input binary output two-party nonlocal games and explore their
performance in both classical and quantum scenarios. Our analysis finds out some
other games (other than the CHSH game) which offer a higher success probability
in the quantum scenario as compared to the classical one. Naturally, our study
also notes that the CHSH game (and the games corresponding to the similar par-
tition) is the most efficient in terms of separation between quantum and classical
techniques.

Keywords Nonlocal Game, Partition, Quantum Advantage, Device Independence

1 Introduction

Quantum computation is strikingly more powerful than classical computation and
this is evident from the evaluation of quantum algorithms which can be exponen-
tially faster [12,13] as compared to the conventional classical algorithms. Because
of this potency of quantum computation, quantum cryptography [4] offers addi-
tional security that is impossible to replicate in the classical world. This kind of
quantum advantage can also be achieved in the case of nonlocal games.
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Nonlocal games refer to the games played between multiple space-separated
players and a referee where communication between the players is strictly forbid-
den during the game. In a binary input binary output two-party nonlocal game,
the referee sends an input bit to each of the players who then respond by send-
ing output bits to the referee. Based on the winning condition, the players fix
some strategies among themselves in the classical scenario before the game begins.
Similarly in the quantum scenario, the players share some entanglement among
themselves before the start of the game to get some advantage in the winning
probability as compared to the classical scenario.

In a binary input binary output two-party nonlocal game, each player has two
choices for the input and two choices for the output. The most well known binary
input binary output two-party nonlocal game is the CHSH game [7], where a referee
provides two uniformly random bits x1 and x2 to each of the two players. After
receiving the inputs, the two parties send their output bits x3 and x4 to the referee.
The function that represents the CHSH game is of the form f(x1, x2, x3, x4) =
(x1∧x2)⊕(x3⊕x4). From the winning condition of the CHSH game, one can easily
check that the two parties can win the game whenever the values of x1, x2, x3, x4
satisfy f(x1, x2, x3, x4) = 0. It is well known that the maximum success probability
of the CHSH game in the classical scenario is 0.75 whereas the maximum success
probability using quantum resources is cos2 π

8 (which is approximately 0.85).

There are several known two-party nonlocal games that offer quantum ad-
vantages [5,8]. However, the inputs and the outputs for any of those games are
not restricted to bits. To the best of our knowledge, the CHSH game is the only
known binary input binary output two-party nonlocal game that offers a quantum
advantage.

The nonlocal games are interesting because for some of those games, the quan-
tum advantage or a separation (an advantage to the maximum quantum success
probability as compared to the maximum classical one) can be achieved which is
often useful to prove the quantumness of a system and to certify the untrusted de-
vices involved in a scheme in Device Independent (DI) scenario. In general, the DI
certification of quanutm cryptographic schemes have been done [2,10,14] consid-
ering the CHSH game. Recently, DI certification has also been done in Quantum
Key Distribution scenario considering the three party pseudo-telepathy game [3].

Although there are several known nonlocal games that offer quantum advan-
tage [5,6], to the best of our knowledge, from the class of all possible binary input
binary output two-party nonlocal games, the only known game that offers quan-
tum advantage is the CHSH game. As the CHSH game can’t be won with certainty
in the quantum scenario, it would be interesting to check whether there exists any
other binary input binary output two-party nonlocal game for which quantum ad-
vantage can be achieved and the game can be won with a better quantum success
probability than the CHSH game (because from the analysis of [1], it is clear that
if there exists any such game then it can be used for DI testing instead of the
CHSH game to reduce the overall sample size).

In this article, we have explored the performance of all possible binary input
binary output two-party nonlocal games (having atleast one successful outcome
for each possible input) by considering them as four variable boolean functions.
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1.1 Contribution and Organization

In the current article, we analyze the performance of all those binary input bi-
nary output two-party nonlocal games (in both classical and quantum scenarios)
which have atleast one successful outcome for every possible input. In Section 2,
we begin with some preliminary discussions about our notational assumptions and
introduces some definitions related to our analysis. In Subsection 2.1, we briefly
describe different groups of strategies for our classical analysis and mention the
structure of games related to the 2 + 2 partition which can’t be won with cer-
tainty. In the next Subsection (i.e., in Subsection 2.2), we derive some basic re-
sults that will be required for the performance analysis of different partitions of
games. Next we mention the strategies to find out the maximum classical and
maximum quantum success probabilities for the games corresponding to each par-
tition. In Section 3, we discuss the minor errors in the count values of boolean
functions mentioned in table 1 of [9]. Finally in Section 4, we present the detailed
analysis (both in classical and quantum scenarios) for the games corresponding to
each of the partitions. Our main contributions in this paper are twofold which is
enumerated below.

1. The CHSH game is the most well-known game from the class of all possi-
ble binary input binary output two-party nonlocal games that offer quantum
advantage. In this direction, here we have considered all possible binary input
binary output two-party nonlocal games which have at least one successful out-
come for every possible input, group them in terms of partitions of the number
of successful outcomes and analyze their performance to identify whether there
exist any such different game which offer quantum advantage.

2. The CHSH game is also used for DI certification. In [1], it is mentioned that
the number of samples required for DI testing is inversely proportional to
the success probability of the underlying nonlocal game and the maximum
success probability of the CHSH game in the quantum scenario is around 0.85.
To reduce the overall sample size, we have explored the performance of all
other games to check whether there exists any other game for which quantum
advantage can be achieved.

We conclude the paper in Section 5 with directions for future research. Be-
fore proceeding further, let us first define our notational assumptions and a few
definitions that are required for our analysis.

2 Preliminaries

Every two-party nonlocal game with the input bits (say) x1 and x2 and the output
bits (say) x3 and x4 can be represented as a 4-variable boolean function (with
variables x1, x2, x3 and x4).

In the classical scenario of a nonlocal game, the players fix some strategies
among themselves before the game begins. A strategy for a player may be either
input-dependent or input-independent. One can easily check that for every input,
a player can have exactly two input-dependent strategies (i.e., either the input
bit itself or the complement of the input bit) and exactly two input-independent
strategies (i.e., either output 0 or output 1 irrespective of the input bits). So, it is
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obvious that the two players can have a maximum of 16 different strategies in the
classical scenario. It is also evident that for a particular value of the input pair
x1x2, there may have atmost four possible values of the output pair x3x4. The
players may not win the game for all four possible values of the output pair x3x4.
Without loss of generality, here we assume that for a particular assignment to the
values of x1, x2, x3, x4, if one can win the game then the corresponding output of
the boolean function is 0, otherwise the output is 1.

Based on the distribution of the successful outcomes (i.e., the distribution of
0′s) in the output column of the boolean function, a binary input binary output
two-party nonlocal game can be represented in terms of partitions of the total
number of successful outcomes.

Definition 1 (Partition of a nonlocal game): A partition is a representation of a class

of n party nonlocal games depending on the total number of successful outcomes. A

partition of a nonlocal game is generated by splitting up the total number of successful

outcomes into 2n parts depending on the number of successful outcomes for each of

the 2n possible inputs. For an n-party binary input binary output nonlocal game with d

number of successful outcomes (where 2n ≤ d ≤ 22n), the corresponding partition will

be represented as a summation of 2n non-zero numbers (like n1 +n2 + · · ·+n2n) such

that d =
∑2n

i=1 ni where each ni is the number of successful outcomes for the i-th input

such that 0 < ni ≤ 2n.

For a binary input binary output two-party nonlocal game, there are four
possible inputs and for every input, there can have atmost four possible successful
outcomes. So for these games, the partition representation is of the form p1+ p2+
p3 + p4 where each pi denotes the total number of successful outcomes for the
i-th input such that 0 ≤ pi ≤ 4. For example, one may consider the CHSH game
(which represents a balanced 4-variable boolean function) for which the partition
representation is of the form 2 + 2 + 2 + 2. Similarly every other binary input
binary output two-party nonlocal games can be represented as a summation of
four non-zero numbers.

From these discussions, one can easily understand that many different games
have the same representation of the partition. However, all the games that belong
to a particular partition may not behave similarly. Here in this present effort, we
are interested in discovering all those games which offer quantum advantage (i.e.,
a better winning probability in the quantum scenario as compared to the classical
one).

Definition 2 (Separation for a nonlocal game): A separation denotes the difference

between the maximum classical and the maximum quantum success probabilities for

those games which offer a quantum advantage.

For the sake of simplicity, from now onwards we use the notation x and y

to denote input bits and the notation a and b to denote the output bits of the
two parties. x, y, a, b denotes the usual complements (bit complement) of x, y, a, b
respectively. Later on, if nothing is specified explicitly, whenever we use xy as
input and ab as output for the two players, we assume that xy and ab can take
any values from the set {00, 01,10,11}.
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2.1 Inconsistency for the 2 + 2 Partition and Its Subpartitions

It is well known that for a binary input binary output two-party nonlocal game,
there are 4 possible inputs and for each input, there can have atmost 4 different
outputs. It is also clear that for a particular input string (i.e., for a particular value
of xy), the two players can have atmost 16 different strategies to generate their
outcomes in the classical scenario. Based on the outcomes, here we classify the
16 different strategies into four groups where each group has 4 different strategies
and each of these strategies leads to a different outcome for a particular input.
These four groups are as follows.

Group 1 (Constant Strategies): 00,01,10,11
Group 2 (Input-dependent Strategies): xy, xy, xy, xy

Group 3 (Mixed Strategies): x0, x1, x0, x1
Group 4 (Mixed Strategies): 0y,1y,0y, 1y

Whenever two different inputs are chosen, there are two possibilities for their
values. Either the inputs are complement to each other (i.e., of the form xy, xy)
or they are not complement to each other (i.e., of the form xy, xy or xy, xy).

Now if a strategy is applied to these chosen inputs, the generated output pair
may match in all two positions or only in one position or none of the positions.
One can easily explore that for a complement input pair, if the outputs are same
then the corresponding strategy must be constant. Similarly if the outputs are
complement to each other (i.e., of the form ab, ab) for a complement input pair,
the corresponding strategy must be an input-dependent strategy and if the outputs
have only one different bit (i.e., of the form ab, ab or ab, ab) then the corresponding
strategy must be a mixed strategy (either from group 3 or from group 4). In this
similar way, one can also explore the strategies for the cases where the inputs are
not complement to each other. For complement input pair and input pair with one
bit difference, the different strategies and corresponding outputs are demonstrated
in Table 1.

Input Strategy Corresponding Output

Complement input
Constant Constant

Input dependent Complement output
Mixed One bit difference in two outputs

Input pair Constant Constant
with one Input dependent One bit difference in two outputs

bit difference Mixed Same or one bit difference in two outputs

Table 1: The strategies and corresponding outputs for different inputs

It is interesting that whenever two different inputs match in exactly one bit
position (i.e., inputs of the form xy, xy or xy, xy) but the output bits in that
position are different for different inputs then one can’t get any strategy that
satisfies atleast one output for both the inputs. More formally, whenever the inputs
and the corresponding outputs are of the form mentioned in Table 2, one can’t get
any strategy that satisfies atleast one output for both the inputs.
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Input Corresponding output

xy ab, ab

xy ab, ab

Table 2: General form of inconsistent outputs for 2 + 2 partition

This leads us to the following result.

Theorem 1 For the two input-output pairs of a game, if one bit of the input pair

remains the same and the corresponding bit of their outputs is different, then no strategy

satisfies atleast one output for both the inputs.

Proof : Without loss of generality, here we assume that the input pair is of the
form xy, xy and the corresponding outputs are of the form ab and ab respectively
(i.e., the first bit for both the inputs are same however the first bit for the two
outputs are different).

As the two outputs are different, no constant strategy can satisfy both outputs
for this input pair. One can also check that whenever a mixed strategy either from
group 3 or from group 4 is applied to this specified input pair, the first bit of the
corresponding outputs always remains the same. However for the given outputs
(as specified in Table 2), the first bits of the outputs for the two different inputs
are complement to each other. This implies that no constant or mixed strategy
can satisfy atleast one output for both inputs.

Similarly one can also explore that whenever an input-dependent strategy is
applied to this specified input pair, the corresponding outputs are of the form
ab, ab or ab, ab. This implies that no strategy from any of the groups can satisfy
atleast one output for both the inputs. Similarly one can also argue for the other
possible input-output pairs of this form.

From this result, it is clear that if a game has two inputs of the form xy, xy(xy, xy)
and the corresponding outputs are of the form ab, ab(ab, ab) and ab, ab(ab, ab) re-
spectively then, there exist no strategy which satisfies atleast one output for both
the inputs xy, xy(xy, xy).

2.2 Some Basic Results

In this section, we derive some basic results which are necessary throughout our
discussion. It is clear from the group of strategies that for a particular input, the
four different strategies of a particular group provide four different outputs. How-
ever the two different strategies from two different groups may collide, i. e., may
generate the same output for a particular input. For example, the mixed strategy
x0 (belongs to group 3) and the dependent strategy xy (belongs to group 2) both
generate the output 10 for the input 10. But the two strategies which provide
the same output for a particular input may not provide the same output for any
other inputs. For example, the constant strategy 00 and the dependent strategy
xy always provide the same output (i.e., the output 00) for the input 00 but these
two strategies always provide two different outputs for all the other inputs. Some
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interesting results (which are required for further analysis) related to these strate-
gies and the groups are mentioned below.

Theorem 2 If two different strategies either one from the constant group and the other

from dependent group or one from the first mixed group (i.e., group 3) and the other

from the second mixed group (i.e., group 4) provide same output for a particular input

then, these two strategies must provide two different outputs for all the other inputs.

Proof : Here the two different strategies are either from constant and dependent
groups or from the two mixed groups.

Case 1: For every input, there exists a constant and a dependent strategy that
provides the same output. Whenever the input changes, the constant strategy
always provides the same output as before. However the dependent strategy pro-
vides different output than the previous one as the output of a dependent strategy
always depends on the inputs and provides different outcomes for different inputs.

Case 2: For every input, there exists a strategy from the first mixed group and
another strategy from the second mixed group which provides the same output.
In a mixed strategy, one bit of the output is constant and the other bit of the
output is input-dependent. So for the first mixed group, there are two types of
strategies, namely, xc1 and xc1 and for the second mixed group, there are two
types of strategies, namely, c2y and c2y where c1 and c2 denote the constant bits
and x and y denote the corresponding dependent bits. This implies that there can
be four different choices for the pair of strategies that provide the same output.

Let us first consider the case where xc1 and c2y are the two strategies which
provide same output for the input xy. Then the corresponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

This two strategies provides same output for this input i.e., xc1 = c2y.
Now whenever these two strategies xc1 and c2y are applied to the input xy,

the corresponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

As xc1 = c2y, xc1 6= c2y. So the two outputs are different.
Similarly whenever this two strategies are applied to the input xy, the corre-

sponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

As xc1 = c2y, c2y 6= xc1. So the two outputs are different.
Similarly whenever this two strategies are applied to the input xy, the corre-

sponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

As xc1 = c2y, xc1 = c2y 6= c2y. So the two outputs are different.
In this similar way, one can also argue the cases for other pair of strategies.
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Theorem 3 If a pair of strategies from two distinct groups provide the same output

for a particular input xy then this pair of strategies must provide two different outputs

for the complement input xy.

Proof : Here xy is the input for which two different strategies from two different
groups provide the same output. From the result of theorem 2, it can be easily
argued that if the two strategies are from constant and dependent groups or from
the two mixed groups then, these two strategies must provide two different outputs
for the complement input xy.

So there are two remaining cases that may occur. The first case is that whenever
one strategy is from the constant group and the other strategy is from any one of
the two mixed groups and the second case is that whenever one strategy is from
the dependent group and the other strategy is from any one of the two mixed
groups.

Case 1: In this case, one strategy from the constant group and the other
strategy from one of the two mixed groups provide the same output (say ab) for
the input xy. Whenever these two strategies are applied to the complement input
xy, then one can easily check that the constant strategy provides the output ab
but, the mixed strategy provides the output either ab or ab.

Case 2: Similarly in this case, if one strategy from the dependent group and
the other strategy is from one of the two mixed groups provide the same output
(say ab) for the input xy, then the dependent strategy provides the output ab and
the mixed strategy provides the output either ab or ab for the complement input
xy. This proves the result.

Corollary 1 From the results of theorem 2 and theorem 3, one can conclude that

whenever there are two strategies in which one is from the constant (dependent) group

and the other is from any one of the two mixed groups provide the same output for

the input xy, then these strategies may not always provide two different outputs for the

input xy and xy.

For example, the dependent strategy xy and the mixed strategy 0y both provide
the output 00 for the input 01 however these two strategies also provide the output
01 for the input 00. So whenever the inputs are not complement to each other,
one can’t conclude anything about the outcomes.

Theorem 4 For a complement input pair (i.e., for two inputs of the form xy and xy),

if one input has m many outputs and the other input has n many outputs then there

are exactly mn many strategies such that each of them satisfies an output for both the

inputs.

Proof : For a complement input pair, we show that if each input has exactly one
valid output, then there is exactly one strategy that satisfies both inputs. Let us
consider that the input xy has output ab and input xy has any one of the four
outcomes ab, ab, ab and ab.

One can easily check that whenever xy has output ab then the common strategy
is a constant strategy, whenever xy has output either ab or ab then the common
strategy is a mixed strategy and whenever xy has output ab then the common
strategy is an input-dependent strategy which satisfies the outputs for both the
inputs xy and xy.
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This implies that there must be a strategy corresponding to every different
output pair for two complement inputs. So for a complement input pair, if one
input has m many outcomes and the other input has n many outcomes, then there
are exactly mn different pair of outcomes. Moreover for each pair of outcomes,
there exist a strategy that satisfies the outcomes for both the inputs. So, there are
exactly mn many strategies which satisfy an output for both the inputs. ⊓⊔

Theorem 5 If an input (say xy) has a complement output pair and the corresponding

complement input (i.e., xy) also has two outcomes (may not be complement), then

the four strategies corresponding to this input pair xy, xy must provide four different

outcomes for atleast one of the rest two inputs (i.e., for inputs xy and xy).

Proof : Whenever each of the inputs of the complement input pair xy, xy has two
outcomes and the input xy has a complement output pair, the input xy has two
possibilities for output. Either the outcomes of xy are complement to each other
or they are not complement to each other.

Case 1: Whenever the input xy has complement output pair, then also there
are two possibilities. Either xy has the same complement pair as in xy or the
complement pair of xy is different from the output of xy.

Whenever xy and xy have the same complement output pair, one can check
that the common strategies are 2 constant and 2 dependent strategies. We can
easily verify that for the input pairs xy, xy whenever a constant and a dependent
strategy collide for a particular input, the same constant and dependent strategy
must not collide for the other input (rather the same constant strategy collide with
the other dependent strategy for the other input). From the result of theorem 2,
we can argue that for this case, the four common strategies must provide four
different outputs for all the rest two inputs. Similarly one can conclude this same
result for the case when xy has a different complement output pair than xy.

Case 2: Whenever the input xy has non-complement output pair, then the
common strategies are one constant, one input-dependent and two mixed strategies
for xy, xy pair. One can verify that among two mixed strategies, one collides with
the constant strategy and the other collides with the dependent strategy for input
xy. But for input xy, the two mixed strategies and the constant and the dependent
strategy collide among themselves. Now for any one of the remaining two inputs,
the constant strategy collides with those mixed strategies for which they provide
different outputs for the input xy and similarly for the dependent and other mixed
strategies. So from the result of theorem 2 and theorem 3, one can conclude that
these four strategies must provide four different outputs for the remaining input.
This concludes the proof. ⊓⊔

Note: If both the inputs xy and xy have non-complement output pair, then the four

different strategies may not provide four different outputs for any of the remaining two

inputs xy and xy.

Lemma 1 : If an input (say xy) has a complement output pair and its complement

input (i.e., xy) has only one outcome, then the two strategies from xy, xy pair must

provide non-complement output pairs for each of the rest two inputs.

Proof : Let us consider that the input xy has two complement outputs of the form
ab and ab. Then the complement input xy has two possibilities, either the output
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of xy is same as one of the outputs of xy or the output of xy is different from the
output of xy.

Case 1: Whenever the output of xy is same with one of the output of xy, there
are one constant strategy and one input-dependent strategy. Let us assume that
the common output of xy and xy is ab. Then the constant strategy is ab and the
input-dependent strategy ismn (say) where m ∈ {x, x} and n ∈ {y, y}. This implies
that,

xy → ab (applying strategy mn)

xy → ab (applying strategy mn)

Thus we conclude that

x→ a (applying strategy m)

y → b (applying strategy n)

Hence it is clear that the strategy mn provides the output ab for the input
xy and provides the output ab for input xy. So the two strategies ab and mn

provide non-complement output pair ab and ab for the input xy and provide non-
complement output pair ab and ab for the input xy.

Case 2: In a similar way, whenever the output of xy is different from the
outputs of xy, there are two mixed strategies from two different groups. Let us
consider that the outputs of xy are ab, ab and the output of xy is either ab or
ab. Without loss of generality, we assume that the output of xy is ab. Let the
two mixed strategies are mc1 and c2n, where m ∈ {x, x} and n ∈ {y, y} are the
dependent bits and c1, c2 ∈ {0, 1} are the constant bits. If we consider that the
strategy mc1 provides output ab and c2n provides output ab for input xy, then one
can easily check that,

x→ a (applying strategy m)

y → b (applying strategy n)

It is also clear that c1 = b and c2 = a.
Hence, one can easily check that the strategy mc1 and c2n provide outputs ab

and ab respectively for input xy. Similarly one can also check that the strategymc1
and c2n provide outputs ab and ab respectively for input xy. This implies that the
mixed strategies from two different groups also provide non-complement output
pair for the rest of the two inputs. Similarly one can also check the other cases.

2.3 Analysis of the Maximum Success Probability in Classical Scenario

In the classical scenario of a nonlocal game, the players have to fix some strategies
before the game begins. After getting the input bits from the referee, the players
aren’t allowed to communicate with each other. For the binary input binary output
two-party nonlocal games, each player has only two possibilities for their input
bits (either 0 or 1) and has two choices (either 0 or 1) for the output bits. In this
scenario, each player has atmost 4 different strategies (either output 0 or 1 or the
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input bit itself or the complement of the input bit) to generate their output bits.
This implies that for a particular two-bit input string provided by the referee,
there are atmost 16 different strategies for the two players in a classical scenario.

Among these 16 different strategies, the strategy which provides the maximum
success probability for a particular game is the optimal classical strategy and the
corresponding success probability is the maximum classical success probability for
this game. All the possible output strategies (by the two players) for a particular
game and their corresponding success probabilities can be represented in a tabular
form as mentioned in Table 3.

In this Table, each pi denotes the fraction of inputs for which the game can
be won using the i-th strategy. Two players can choose any of these 16 different
strategies before the game begins and later can output their bits accordingly. For
example, if they choose the first strategy specified in Table 3, both of them can
choose 0 as an output irrespective of their inputs. Similarly whenever they choose
the second strategy, the first player always outputs 0 irrespective of his inputs
whereas, the second player outputs his corresponding input bit itself, i.e., if he
receives the input 0, he outputs 0, otherwise he outputs 1. After their output, the
referee checks the fraction of inputs for which the players win the game. The strat-
egy which generates the winning outcomes for most of the inputs of a particular
game is considered as the optimal strategy corresponding to that game. This im-
plies that from Table 3, one can obtain the maximum classical success probability
(pmax) as pmax = maxi pi.

Output for Alice (a) Output for Bob (b)
Output for Output for Output for Output for Success
input x = 0 input x = 1 input y = 0 input y = 1 Probability

0 0 0 0 p1
0 0 0 1 p2
0 0 1 0 p3
0 0 1 1 p4
0 1 0 0 p5
0 1 0 1 p6
0 1 1 0 p7
0 1 1 1 p8
1 0 0 0 p9
1 0 0 1 p10
1 0 1 0 p11
1 0 1 1 p12
1 1 0 0 p13
1 1 0 1 p14
1 1 1 0 p15
1 1 1 1 p16

Table 3: Success probabilities of a game for all possible classical strategies

As every binary input binary output two-party nonlocal game has 4 possible
inputs, one can easily check that the classical success probability for each of the
possible 16 strategies must belong to the set {0, 0.25,0.5, 0.75,1}. From the result
of theorem 4, it is clear that there must be a classical strategy corresponding
to each of the complement input pairs. This implies that for every binary input
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binary output two-party nonlocal game, the maximum classical success probability
must be atleast 0.5. Similarly if a game has inconsistent outputs (as mentioned in
subsection 2.1) for an input pair, then according to the discussion of subsection 2.1,
the maximum classical success probability must be less than 1 (i.e., either 0.5 or
0.75).

2.4 Analysis of the Maximum Success Probability in Quantum Scenario

In the quantum strategy of a two-party nonlocal game, the two players initially
share some entanglement among themselves (before the game begins) and then
during the game, they perform some specific (unitary) operations on their qubits
(based on the inputs) and measure their qubits to get the output bits.

Let us assume that the two players (say Alice and Bob) share the Bell-state

|ψ〉AB = |00〉+|11〉√
2

among themselves and Alice measures in θ0(θ1) rotated basis

for the input 0(1) and Bob measures in ψ0(ψ1) rotated basis for the input 0(1).

Now, it is easy to check that whenever the referee provides the input bit 0 to
both Alice and Bob (i.e., for the input 00), the shared states between Alice and
Bob (after applying their respective unitary operators) are of the form

1√
2
[(cos θ0|0〉+ sin θ0|1〉)(cosψ0|0〉+ sinψ0|1〉)]

+
1√
2
[(− sin θ0|0〉+ cos θ0|1〉)(− sinψ0|0〉+ cosψ0|1〉)]

=
1√
2
[(cos θ0 cosψ0 + sin θ0 sinψ0)|00〉+ (cos θ0 sinψ0 − sin θ0 cosψ0)|01〉]

+
1√
2
[(sin θ0 cosψ0 − cos θ0 sinψ0)|10〉+ (cos θ0 cosψ0 + sin θ0 sinψ0)|11〉]

=
1√
2
[cos(θ0 − ψ0)|00〉 − sin(θ0 − ψ0)|01〉+ sin(θ0 − ψ0)|10〉+ cos(θ0 − ψ0)|11〉]

So for the input 00, the probability of getting each of the outputs 00 and 11
is 1

2 cos
2(θ0 − ψ0) and the probability of getting each of the outputs 01 and 10 is

1
2 sin

2(θ0 − ψ0).

Similarly for the input 01, the shared states between Alice and Bob after ap-
plying the specific unitary operations are of the form cos(θ0 − ψ1)|00〉 − sin(θ0 −
ψ1)|01〉 + sin(θ0 − ψ1)|10〉 + cos(θ0 − ψ1)|11〉. So in this case, the probability of
getting each of the outputs 00 and 11 is 1

2 cos2(θ0 − ψ1) and the probability of
getting each of the outputs 01 and 10 is 1

2 sin2(θ0 − ψ1).

In this similar way, one can easily check that for the input 10, the shared
states between Alice and Bob after applying the specific unitaries are of the form
cos(θ1 − ψ0)|00〉 − sin(θ1 − ψ0)|01〉 + sin(θ1 − ψ0)|10〉 + cos(θ1 − ψ0)|11〉 and the
corresponding probabilities are 1

2 cos
2(θ1−ψ0) (for each of the outputs 00 and 11)

and 1
2 sin

2(θ1 − ψ0) (for each of the outputs 01 and 10).

Similarly for the input 11, the shared states between Alice and Bob after apply-
ing the specific unitaries are of the form cos(θ1−ψ1)|00〉−sin(θ1−ψ1)|01〉+sin(θ1−
ψ1)|10〉+ cos(θ1 − ψ1)|11〉 and the corresponding probabilities are 1

2 cos2(θ1 − ψ1)
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(for each of the outputs 00 and 11) and 1
2 sin

2(θ1 −ψ1) (for each of the outputs 01
and 10).

From these quantum success probability expressions for different inputs, it is
clear that for a particular input xy, the probability of getting each of the outputs
00 and 11 is 1

2 cos
2 α and the probability of getting each of the outputs 01 and 10

is 1
2 sin2 α where α = (θx − ψy) (according to our mentioned strategy).
As for every nonlocal game, the referee is supposed to provide the input bits

randomly, the two players calculate the overall success probability considering each
of the inputs equally likely. For any particular game, the expression of the quan-
tum success probability depends on the distribution of the successful outcomes for
all the possible inputs. Depending on this distribution, the quantum success prob-
ability expressions involve the variables θ0, θ1, ψ0, ψ1. After getting the quantum
success probability expression for a particular game, one can easily find the values
of θ0, θ1, ψ0, ψ1 for which the success probability becomes maximum. For demon-
stration, here we can consider the example of the CHSH Game that corresponds
to the partition 2 + 2 + 2 + 2. From Subsection 4.1.3, one can conclude that the
quantum success probability (according to the discussion of this section) of the
CHSH game is 1

4

[

cos2(θ0 − ψ0) + cos2(θ0 − ψ1) + cos2(θ1 − ψ0) + sin2(θ1 − ψ1)
]

.
Now, one can vary different values of θ0, θ1, ψ0, ψ1 to get the corresponding max-
imum quantum success probability. From the analysis in Subsection 4.1.3 (and
also from the previously known results), it can be concluded that one can find
some values of θ0, θ1, ψ0, ψ1 for which the quantum success probability will be
0.853, which is maximum for this partition (for a detailed analysis of this calcu-
lation, one may refer to the Subsection 4.1.3). Similarly for the other partition of
games, one can calculate the maximum quantum success probability by following
the strategy discussed in this subsection.

One can verify that for the games having inconsistent outputs, the quantum
success probabilities corresponding to the inconsistent input pair are of the form
1
2 cos

2 α and 1
2 sin

2 α. So, the maximum quantum success probability for these
games having inconsistent outputs is 0.75. This implies that all the nonlocal games
having inconsistent outputs may not offer a quantum advantage (i.e., the maxi-
mum quantum success probability is greater than the maximum classical success
probability)1.

3 Analysis of the Results in [9]

It is evident from the discussion till now that every binary input binary output two-
party nonlocal game can be represented as a 4-variable boolean function. One can
also consider the inputs and the outputs separately as 2-variable boolean functions
for binary input binary output two-party nonlocal games and compose these two
functions to construct 4-variable functions. For example in the CHSH game, the
input function is f(x, y) = x ∧ y and the output function is g(a, b) = a ⊕ b. The
actual function that represents the CHSH game is just the composition of these
two (input and output) functions.

Recently some analysis has been done in this direction in [9] (considering all
the non-constant 2-variable boolean functions and composing every possible pairs

1 In this context one should remember that every classical strategy is also a quantum one
where no entanglement is shared between the parties
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among them to construct the corresponding 4-variable boolean functions) to ex-
plore the performance of some 4-variable boolean functions (or binary input binary
output two-party nonlocal games) as distinguishers for the certification of different
dimensional quantum states. As the authors consider only non-constant boolean
functions in [9], the total number of 4-variable boolean functions that they have

considered are (22
2

− 2) × (22
2

− 2) = 14 × 14 = 196. However, there are total

22
4

= 65536 possible 4-variable boolean functions. So in [9], only a small fraction
of the games are explored from the class of all possible binary input binary output
two-party nonlocal games.

There are some miscalculations in [9, Table 1] regarding the number of different
boolean functions which we would like to point out here. In Table 1 of [9], it is
mentioned that the total number of function pairs (f, g2) such that each of f(x, y)
and g2(a, b) contains one 0(1) is 32(32). However one can verify that the total
number of such function pairs is actually 16. For a detail analysis corresponding
to this result, one may refer to Proposition 1.

Proposition 1 Let gi : Z2 × Z2 → Z2 be a boolean function such that | g−1
i (0) |= 1

where g−1
i (0) = {(x, y) ∈ Z2 × Z2 : gi(x, y) = 0} for i = 1, 2. Let f(x1, x2, x3, x4) =

g1(x1, x2) ∗ g2(x3, x4) where ∗ is a binary operation on Z2. Then given a binary oper-

ation ∗, there are atmost 16 different possibilities for f .

Proof : Since | g−1
i (0) |= 1, there is (ai, bi) such that gi(ai, bi) = 0 and gi(x, y) = 1

for (x, y) 6= (ai, bi). Now, for each of the two functions g1 and g2, there are four
different choices that satisfy the above condition namely,

g
(1)
1 (0, 0) = 0 and g

(1)
1 (x, y) = 1 for (x, y) 6= (0,0) (1)

g
(2)
1 (0, 1) = 0 and g(2)1 (x, y) = 1 for (x, y) 6= (0,1) (2)

g
(3)
1 (1, 0) = 0 and g(3)1 (x, y) = 1 for (x, y) 6= (1,0) (3)

g
(4)
1 (1, 1) = 0 and g

(4)
1 (x, y) = 1 for (x, y) 6= (1,1). (4)

Similarly for g2, there are also four different choices namely,

g
(1)
2 (0, 0) = 0 and g

(1)
2 (x, y) = 1 for (x, y) 6= (0,0) (5)

g
(2)
2 (0, 1) = 0 and g

(2)
2 (x, y) = 1 for (x, y) 6= (0,1) (6)

g
(3)
2 (1, 0) = 0 and g(3)2 (x, y) = 1 for (x, y) 6= (1,0) (7)

g
(4)
2 (1, 1) = 0 and g(4)2 (x, y) = 1 for (x, y) 6= (1,1). (8)

Thus f(x1, x2, x3, x4) = g
(i)
1 (x1, x2) ∗ g(j)2 (x3, x4) for some 1 ≤ i, j ≤ 4. As there are

maximum 4 different choices for each of g
(i)
1 and g

(j)
2 for some 1 ≤ i, j ≤ 4, there

are atmost 4× 4 = 16 different choices for f .

It is also mentioned (in [9] Table 1) that the total number of function pairs
such that f(x, y) contains one 0 and g2(a, b) contains one 1 are 6. For this case
also, similar to the derivation performed in the proof of proposition 1, one can
verify that the total number of such function pairs is also 16.

In [9], the authors have proposed the idea of distinguishing different dimen-
sional quantum states with the help of some nonlocal games. In their paper, they
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have explored the performance of some two-party nonlocal games in quantum sce-
nario with the intention of finding those games which provide significant advantage
in the quantum winning probability for different dimensional states. However, the
main limitation in their approach is that they have explored only 196 functions
from the set of 65536 possible 4-variable Boolean functions. Because of this limi-
tation, they might not consider the game which is the most efficient as the dimen-
sionality distinguisher (i.e., which has the maximum probability difference in the
quantum scenario for different dimensional states) among all possible binary in-
put binary output two-party nonlocal games. In this article, we have considered all
those binary input binary output two-party nonlocal games which have atleast one
successful outcome for every possible input and evaluate their performance both
in classical and quantum scenario (considering the strategy mentioned in Subsec-
tion 2.4). However, we haven’t analyzed anything regarding the performance of
those games as dimensionality distinguishers.

4 Analysis of the Binary Input Binary Output Two-party Nonlocal Games

In the current context, we are interested in finding all those two-party binary
input binary output nonlocal games where one can achieve quantum advantage.
So far, CHSH game is the most well known game that offers a separation around
0.1 between the maximum classical (which is 0.75) and the maximum quantum
(which is around 0.853) success probability.

From the definition of the partition introduced in definition 1, one can easily
check that the CHSH game can be represented as a 2 + 2 + 2 + 2 partition based
on the distribution of its outputs. As our main intention is to find out all those
games that offer quantum advantage (with maximum quantum success probability
greater than the existing maximum for the two party scenario, i.e., 0.853), here we
consider only those games for which the number of valid outputs corresponding to
each possible input is non-zero (so that there is a chance of achieving the maximum
quantum success probability greater than 0.853 for random inputs).

For every number of successful outcomes (i.e., the number of 0′s in the output
column of a boolean function), we first find out all possible partitions of that
outcome and then explore the performance of the games corresponding to each
of those partitions to derive the maximum classical and the maximum quantum
success probabilities. For example, the games having 8 successful outcomes (i.e.,
8 number of 0′s in the output column of the boolean function representation of
those games), there are four possible partitions such that each input has atleast
one successful outcome. In this section, we first find out all those partitions for
every possible number of successful outcomes and then analyze the performance
of the games corresponding to each of those partitions according to the techniques
mentioned in Subsection 2.3 and Subsection 2.4.

4.1 Games Corresponding to 8 Successful Outcomes

In this subsection, we analyze (in details) the performance of the games corre-
sponding to all possible partitions for 8 successful outcomes in both classical and
quantum scenario.
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4.1.1 Analysis for partition 4 + 2 + 1+ 1:

For this partition of games, there must be a complement input pair (i.e., of the form
xy and xy) either both the inputs have 1 outcome or one input has 1 outcome and
the other input has 2 outcomes. Whenever the two 1 outcomes have a complement
input pair, the strategy corresponding to this input pair must satisfy one output
for the input corresponding to 4 outcomes. Similarly if the 2 outcome and a 1
outcome has a complement input pair, then the two strategies corresponding to
this complement input pair must satisfy atleast one output for the input having 4
outcomes.

So the minimum classical success probability for all the games of this partition
is 0.75. From the discussion in subsection 2.4, one can easily check that the maxi-
mum quantum success probability corresponding to each of the inputs having 4 and
2 outcomes is 1 and for inputs having 1 outcome is 0.5. So, the maximum quantum
success probability for any game of this partition is 1

4 [1+1+0.5+0.5] = 0.75. This
implies that for this partition of games, one can’t achieve any advantage in quan-
tum scenario. For example, here we consider the following game corresponding to
this partition.

Input Corresponding output

00 00, 01, 10, 11
01 00, 11
10 01
11 10

For this game, one can easily check that for the strategy a = x and b = 0,
the players can win the game with probability 0.75 in classical scenario whereas in
quantum scenario, the maximum quantum success probability is 0.75. This implies
that for this partition of games, there is no chance of getting a quantum advantage.

4.1.2 Analysis for partition 3 + 3 + 1+ 1

For this partition of games, there must be a complement input pair either they
have 3 outcomes or one input has 3 and the other has 1 outcome. Let us consider
that the input xy has 3 outcomes. Then for the complement input xy, there are
two possibilities, either xy has 3 outcomes or xy has 1 outcome.

Case 1: Whenever xy has 3 outcomes, one can get nine strategies for xy, xy
pair. As each of the inputs xy and xy must have a complement output pair, ac-
cording to the result of theorem 5, these four strategies corresponding to these
two complement output pairs must provide four different outputs for each of the
rest two inputs. So one of these four strategies must satisfy atleast one output for
atleast one of the rest of two inputs. Hence, the minimum classical success proba-
bility for all these games is 0.75. This implies that for this partition of games, one
can’t achieve any advantage in quantum scenario. For example, here we consider
the following game corresponding to this partition.
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Input Corresponding output

00 00, 10, 11
01 00
10 11
11 00, 10, 11

For this game, one can easily check that for the strategy a = 0, b = 0 or
a = 1, b = 1 or a = x, b = y, the players can win the game with probability 0.75
in classical scenario whereas in quantum scenario, the maximum quantum success
probability is 0.75. This implies that for this partition of games, there is no chance
of getting a quantum advantage.

Case 2: Similarly whenever xy has 1 valid outcome, for xy, xy pair one can get
three strategies. Among these three strategies, the two strategies that correspond
to the complement output pair of xy must provide 2 different outputs for each of
the rest two inputs (as mentioned in theorem 5). So one of these two strategies
must satisfy atleast one output for the rest input having 3 outcomes. Hence, the
minimum classical success probability for this form of game is also 0.75. This im-
plies that for this partition of games, one can’t achieve any advantage in quantum
scenario. For example, here we consider the following game corresponding to this
partition.

Input Corresponding output

00 00, 01, 11
01 00, 10, 11
10 01
11 11

For this game, one can easily check that for the strategy a = 1, b = 1 or
a = x, b = y, the players can win the game with probability 0.75 in classical
scenario.

From the discussion of subsection 2.4, one can easily verify that the maximum
quantum success probability for each of the inputs having 3 outcomes is 1 and for
each of the inputs having 1 outcome is 0.5. So, the maximum quantum success
probability for any game of this partition (for equiprobable outcomes) is 1

4 [1+1+
0.5 + 0.5] = 0.75.

It is clear from the analysis that for this partition of games, there is no chance
of getting any advantage in quantum success probability as compared to the clas-
sical one.

4.1.3 A Game for partition 2 + 2 + 2 + 2 having quantum advantage

For this partition of games, each of the four inputs has 2 outcomes. According to
the discussion of subsections 2.3 and 2.4, one can easily check that if none of the
inputs have complement output pair, the maximum quantum success probability
is 0.5. Whenever 1 or 2 inputs have complement output pair (like the discussions
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of the previous two partitions), one can easily check that there is no advantage in
quantum success probability. So to achieve quantum advantage, the games must
have complement output for atleast three inputs. For the games having comple-
ment output for three inputs, one can verify that although the maximum quantum
success probability is greater than 0.75, the maximum classical success probability
is always 1. A well-known game of this partition having complement output pair
for all the inputs is the CHSH game which offers quantum advantage. Here we
consider this game and analyze its performance in both classical and quantum
scenarios.

Input Corresponding output

00 00, 11
01 00, 11
10 00, 11
11 01, 10

From the strategies mentioned in subsection 2.3, one can easily check that
the maximum classical success probability for this game is 0.75 and one of the
strategies to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this game is of the form

1

4

[

cos2(θ0 − ψ0) + cos2(θ0 − ψ1) + cos2(θ1 − ψ0) + sin2(θ1 − ψ1)
]

=
1

2
+

1

8
[cos 2α+ cos 2β + cos 2γ − cos 2δ]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
Now the cosines can be written as an inner product between two unit vectors.

Suppose,

u0 = cos θ0|0〉+ sin θ0|1〉
u1 = cos θ1|0〉+ sin θ1|1〉
v0 = cosψ0|0〉+ sinψ0|1〉
v1 = cosψ1|0〉+ sinψ1|1〉

Then one can easily check that for all i, j, uivj = cos 2(θi − ψj). So one can
rewrite the above expression as

1

2
+

1

8
[u0v0 + u0v1 + u1v0 − u1v1]

=
1

2
+

1

8
[u0(v0 + v1) + u1(v0 − v1)]

≤ 1

2
+

1

8
(||v0 + v1||+ ||v0 − v1||)

Let us assume, 〈v0, v1〉 = a+ ib and 〈v1, v0〉 = a− ib. Then ||v0 + v1|| =
√
2 + 2a

and ||v0−v1|| =
√
2− 2a. It is easy to check that the expression

√
2 + 2a+

√
2− 2a
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attains maximum value for a = 0 and the corresponding maximum value is 2
√
2

i.e., (||v0 + v1||+ ||v0 − v1||) ≤ 2
√
2. So, the maximum quantum success probability

for this form of games is
(

1
2 + 2

√
2

8

)

= 1
2 + 1

2
√
2
≈ 0.853.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with probability 0.853 in quantum scenario. Similarly one can
show the same upper bound for some other games of this group for which the max-
imum classical success probability is 0.75. Therefore, the maximum separation for
this partition of games is (0.853− 0.75) ≈ 0.103.

4.1.4 A Game for partition 3 + 2 + 2 + 1 having quantum advantage

From the theoretical analysis (similar to the analysis of partition 4+2+1+1 and
3+3+1+1), one can easily check that not all games for this partition can be won
with probability 1 in classical scenario and there are some games for which the
maximum classical success probability is 0.75. From the expressions of quantum
success probabilities of these games, one can easily check that for some of those
games, maximum quantum success probability is greater than the classical one.
Here we consider one of these games and analyze its performance in both classical
and quantum scenarios.

Input Corresponding output

00 00, 01, 11
01 00, 11
10 01
11 00, 11

From the strategies mentioned in subsection 2.3, one can easily check that
the maximum classical success probability for this game is 0.75 and one of the
strategies to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this game is of the form

1

4

[

1

2
+

1

2
cos2 α+ cos2 β +

1

2
sin2

γ + cos2 δ

]

=
1

2
+

1

4
[1 + cos 2α+ 2 + 2 cos 2β + 1− cos 2γ + 2+ 2 cos 2δ]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
One can think of the cosines as the inner products between unit vectors. In

that case, one can rewrite the above as

1

4
[2 +

1

4
(u0v0 + 2u0v1 − u1v0 + 2u1v1)]

≤ 1

4

[

2 +
1

4
[||v0 + 2v1||+ || − v0 + 2v1||]

]
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Let us assume, 〈v0, v1〉 = a+ib and 〈v1, v0〉 = a−ib. Then ||v0+2v1|| =
√
5 + 4a

and || − v0 + 2v1|| =
√
5− 4a. It is easy to check that the expression

√
5 + 4a +√

5− 4a attains maximum value for a = 0 and the corresponding maximum value
is 2

√
5 i.e., (||v0 + 2v1||+ || − v0 + 2v1||) ≤ 2

√
5.

Hence the maximum winning probability ≤ 1
4

[

2 + 1
4 × 2

√
5
]

≈ 0.78.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with probability 0.78 in quantum scenario. Similarly one can
show the same upper bound for some other games of this group for which the
maximum classical success probability is 0.75. Therefore the maximum separation
for this class of games is (0.78− 0.75) ≈ 0.03.

From this discussion, it is clear that for all the games corresponding to par-
titions 4 + 2 + 1 + 1 and 3 + 3 + 1 + 1, there are no chances of getting quantum
advantage. But for the partition 2 + 2 + 2 + 2 and 3 + 2 + 2 + 1, there are some
games which provide quantum advantage with a separation around 0.103 and 0.03
respectively. A summary of these results are mentioned in Table 4.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+2+1+1
0.75 0.75 NA
1.0 1.0 NA

3+3+1+1
0.75 0.75 NA
1.0 1.0 NA

2+2+2+2
0.75 0.853 0.103
1.0 1.0 NA

3+2+2+1
0.75 0.78 0.03
1.0 1.0 NA

Table 4: Analysis of partitions for 8 successful outcomes

4.2 Games Corresponding to 9 Successful Outcomes

Proceeding to the similar way as the analysis of the 8 successful outcomes, the
maximum classical and quantum success probabilities that one can achieve for
each of the partitions of the 9 successful outcomes are mentioned in the Table 5.
From these results, one can easily check that quantum advantage can be achieved
(with a separation around 0.042) only for some of the games corresponding to
the partition 3 + 3 + 2 + 1. For simplicity, here we only consider a game (having
quantum advantage) from the partition 3+3+2+1 and analyze the performance.

4.2.1 A Game for partition 3 + 3 + 2 + 1 having quantum advantage

From the results of table 5, it is clear that for the games having 9 successful
outcomes, quantum advantage can be achieved only for some of the games having
partition 3 + 3 + 2 + 1. Here we consider the following game which can’t be won
with certainty in classical scenario.
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Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+3+1+1
0.75 0.75 NA
1.0 1.0 NA

4+2+2+1 1.0 1.0 NA
3+2+2+2 1.0 1.0 NA

3+3+2+1
0.75 0.792 0.042
1.0 1.0 NA

Table 5: Analysis of partitions for 9 successful outcomes

Input Corresponding output

00 00, 11
01 00, 01, 10
10 11
11 00, 01, 11

From the strategies mentioned in subsection 2.3, one can easily check that
the maximum classical success probability for this game is 0.75 and one of the
strategies to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this mentioned game is of the form

1

4
[cos2 α+

1

2
+

1

2
sin2

β +
1

2
+

1

2
cos2 γ +

1

2
cos2 δ]

=
1

4
[2 +

1

4
+

1

4
(2 cos2α− cos 2β + cos 2γ + cos 2δ)]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
One can think of the cosines as the inner products between unit vectors. In

that case, one can rewrite the above as

1

4
[2 +

1

4
+

1

4
(2u0v0 − u0v1 + u1v0 + u1v1)]

≤ 1

4

[

2 +
1

4
+

1

4
(||u0||||2v0 − v1||+ ||u1||||v0 + v1||)

]

Let us assume that 〈v0, v1〉 = (a+ib) and 〈v1, v0〉 = (a−ib). Then one can easily
check that ||2v0−v1|| =

√
5− 4a and ||v0+v1|| =

√
2 + 2a. From these expressions,

one can easily calculate that the expression
√
2 + 2a+

√
5− 4a attains maximum

value for a = − 1
4 and the corresponding maximum value is

√
6 +

√
1.5. From this,

the maximum winning probability in quantum scenario can be written as,

1

4

[

2 +
1

4
+

1

4
(||u0||||2v0 − v1||+ ||u1||||v0 + v1||)

]

≤ 1

4

[

9

4
+

1

4
× (

√
6 +

√
1.5)

]

≈ 0.792
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This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with a probability of 0.792 in the quantum scenario. Similarly one
can show the same upper bound for some other games of this group for which the
maximum classical success probability is 0.75. Therefore the maximum separation
for this class of games is (0.792− 0.75) ≈ 0.042.

From this discussion, it is clear that for all the games corresponding to parti-
tions 4 + 3+ 1+ 1, 4+ 2+ 2+ 1 and 3+ 2+ 2+ 2, there are no chances of getting
quantum advantage. But for the partition 3 + 3 + 2 + 1, there are some games
which provide quantum advantage with a separation around 0.042.

4.3 Games Corresponding to 10 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the max-
imum classical and quantum success probabilities that one can achieve for each
of the partitions of the 10 successful outcomes are mentioned in Table 6. From
this result, one can easily check that the quantum advantage can be achieved only
for some of the games corresponding to partition 3 + 3 + 3 + 1 with a separation
around 0.05. For simplicity, here we consider one of these games having quantum
advantage and analyze its performance in both classical and quantum scenarios.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+4+1+1 1.0 1.0 NA
4+2+2+2 1.0 1.0 NA
3+3+2+2 1.0 1.0 NA
4+3+2+1 1.0 1.0 NA

3+3+3+1
0.75 0.8 0.05
1.0 1.0 NA

Table 6: Analysis of partitions for 10 successful outcomes

4.3.1 A game for partition 3 + 3 + 3 + 1 having quantum advantage

From the results of table 6, it is clear that for the games having 10 successful
outcomes, quantum advantage can be achieved only for some of the games having
partition 3 + 3 + 3 + 1. Here we consider the following game which can’t be won
with certainty in classical scenario.

Input Corresponding output

00 00
01 00, 10, 11
10 00, 01, 11
11 01, 10, 11
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From the strategies mentioned in subsection 2.3, one can easily check that
the maximum classical success probability for this game is 0.75 and one of the
strategies to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this mentioned game is of the form

1

4

[

1

2
cos2 α+

1

2
+

1

2
cos2 β +

1

2
+

1

2
cos2 γ +

1

2
+

1

2
sin2

δ

]

=
1

4

[

5

2
+

1

4
(cos2α+ cos 2β + cos 2γ − cos 2δ)

]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

One can easily think of the cosines as the inner products between unit vectors.
In that case, one can rewrite the above expression as

1
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1

4
(u0v0 + u0v1 + u1v0 − u1v1)

]
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2
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4
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Now, ||u0||||v0 + v1||+ ||u1||||v0 − v1|| ≤ ||v0 + v1||+ ||v0 − v1|| ≤ 2
√
2.

Hence the winning probability in quantum scenario ≤ 1
4

[

5
2 + 1

4 × 2
√
2
]

≈ 0.80.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with a probability of 0.80 in the quantum scenario. Similarly one
can show the same upper bound for some other games of this group for which the
maximum classical success probability is 0.75. Therefore the maximum separation
for this class of games is (0.80− 0.75) ≈ 0.05.

From this discussion, it is clear that for all the games corresponding to parti-
tions 4+4+1+1, 4+2+2+2, 3+2+2+2 and 4+3+2+1, there are no chances
of getting quantum advantage. But for the partition 3 + 3+ 3+ 1, there are some
games which provide quantum advantage with a separation around 0.05.

4.4 Games Corresponding to 11 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maxi-
mum classical and quantum success probabilities that one can achieve for each of
the partitions of the 11 successful outcomes are mentioned in the Table 7. From
this result, one can easily check that there are no games corresponding to 11
successful outcomes for which quantum advantage can be achieved.

So for all the games corresponding to 11 successful outcomes, there are no
chances of getting any advantage in quantum success probability as compared to
the classical one.
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Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+4+2+1 1.0 1.0 NA
4+3+3+1 1.0 1.0 NA
4+3+2+2 1.0 1.0 NA
3+3+3+2 1.0 1.0 NA

Table 7: Analysis of partitions for 11 successful outcomes

4.5 Games Corresponding to 12 or More Successful Outcomes

One can easily verify that each of the partitions for 12 successful outcomes is
an extension of some partitions corresponding to 11 successful outcomes. As all
the games corresponding to 11 successful outcomes can be won classically with
certainty, there is no chance of getting quantum advantage for any of the games
having 12 successful outcomes. Similarly one can also argue the same statement
for 13 or more successful outcomes.

For this reason, the games having 12 or more successful outcomes can’t achieve
quantum advantage.

4.6 Games Corresponding to 7 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the max-
imum classical and quantum success probabilities that one can achieve for each
of the partitions of the 7 successful outcomes are mentioned in the Table 8. From
these results, one can easily check that quantum advantage can be achieved only
for some of the games corresponding to partition 2 + 2 + 2 + 1 with a separation
around 0.012. For simplicity, here we consider one of these games having quantum
advantage and analyze its performance.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

3+2+1+1
0.75 0.75 NA
1.0 1.0 NA

2+2+2+1
0.75 0.762 0.012
1.0 1.0 NA

Table 8: Analysis of partitions for 7 successful outcomes

4.6.1 A game for partition 2 + 2 + 2 + 1 having quantum advantage

From the results of table 8, it is clear that for the games having 7 successful
outcomes, quantum advantage can be achieved only for some of the games having
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Input Corresponding output

00 00, 11
01 01, 10
10 11
11 00, 11

partition 2 + 2 + 2 + 1. Here we consider the following game which can’t be won
with certainty in the classical scenario.

From the strategies mentioned in subsection 2.3, one can easily check that
the maximum classical success probability for this game is 0.75 and one of the
strategies to get this success probability is a = 1 and b = 1.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this mentioned game is of the form
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cos2 α+ sin2
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]

=
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4
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4
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4
(2 cos 2α− 2 cos 2β + cos 2γ + 2 cos 2δ)

]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
One can easily think of the cosines as the inner products between unit vectors.

In that case, one can rewrite the above expression as

1

4

[

7

4
+

1

4
(2u0v0 − 2u0v1 + u1v0 + 2u1v1)

]
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Let us assume that 〈v0, v1〉 = (a+ib) and 〈v1, v0〉 = (a−ib). Then one can easily
check that ||2v0 − 2v1|| = 2||v0 − v1|| = 2

√
2− 2a and ||v0 + 2v1|| =

√
5 + 4a. From

these expressions, one can easily calculate that the expression 2
√
2− 2a+

√
5 + 4a

attains maximum value for a = − 1
2 and the corresponding maximum value is 3

√
3.

From this, the maximum winning probability in quantum scenario can be written
as,
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4
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]

≈ 0.762

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with a probability of 0.762 in the quantum scenario. Similarly one
can explore that the same upper bound can be achieved for all the other games
of this group for which quantum advantage can be achieved and the maximum



26 Jyotirmoy Basak et al.

classical success probability is 0.75. Therefore the maximum separation for this
class of games is (0.762− 0.75) ≈ 0.012.

From this discussion, it is clear that for all the games corresponding to partition
3 + 2 + 1 + 1, there are no chances of getting quantum advantage. But for the
partition 2 + 2 + 2 + 1, there are some games which provide quantum advantage
with a separation around 0.012.

4.7 Games Corresponding to 6 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the max-
imum classical and quantum success probabilities that one can achieve for each
of the partitions of the 6 successful outcomes are mentioned in the Table 9. From
these results, one can easily check that quantum advantage can be achieved only
for some of the games corresponding to partition 3 + 1 + 1 + 1 with a separation
around 0.05. Here we consider one of these games having quantum advantage and
analyze its performance in both classical and quantum scenarios.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

3+1+1+1
0.5 0.55 0.05
0.75 0.75 NA
1.0 1.0 NA

2+2+1+1
0.75 0.75 NA
1.0 1.0 NA

Table 9: Analysis of partitions for 6 successful outcomes

4.7.1 A game for partition 3 + 1 + 1 + 1 having quantum advantage

From the results of table 9, it is clear that for the games having 6 successful
outcomes, quantum advantage can be achieved only for some of the games having
partition 3 + 1 + 1 + 1. Here we consider the following game which can’t be won
with certainty in the classical scenario.

Input Corresponding output

00 00, 01, 10
01 11
10 01
11 10

From the strategies mentioned in subsection 2.3, one can easily check that the
maximum classical success probability for this game is 0.5 and one of the strategies
to get this success probability is a = 0 and b = 1.
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Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this mentioned game is of the form

1

4

[

1

2
+

1

2
sin2

α+
1

2
cos2 β +

1

2
sin2 γ +

1

2
sin2

δ

]

=
1

4

[

3

2
+

1

4
(− cos 2α+ cos 2β − cos 2γ − cos 2δ)

]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
One can easily think of the cosines as the inner products between two unit

vectors. In that case, one can rewrite the above expression as
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Now, ||u0||||v0 − v1||+ ||u1||||v0 + v1|| ≤ ||v0 − v1||+ ||v0 + v1|| ≤ 2
√
2.

Hence the winning probability ≤ 1
4

[

3
2 + 1

4 × 2
√
2
]

≈ 0.55.
This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the

game can be won with a probability of 0.55 in the quantum scenario. Similarly one
can explore that the same upper bound can be achieved for all the other games
of this group for which quantum advantage can be achieved and the maximum
classical success probability is 0.5. Therefore the maximum separation for this
class of games is (0.55− 0.5) ≈ 0.05.

From this discussion, it is clear that for all the games corresponding to partition
2 + 2 + 1 + 1, there are no chances of getting quantum advantage. But for the
partition 3 + 1 + 1 + 1, there are some games which provide quantum advantage
with a separation around 0.05.

4.8 Games Corresponding to 5 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maxi-
mum classical and quantum success probabilities that one can achieve for each of
the partitions of the 5 successful outcomes are mentioned in the Table 10. From
these results, one can easily check that quantum advantage can be achieved for
the games corresponding to partition 2+1+1+1 with a separation around 0.042.
Here we consider one of these games having quantum advantage and analyze its
performance in both classical and quantum scenarios.

4.8.1 A game for partition 2 + 1 + 1 + 1 having quantum advantage

From the results of table 10, it is clear that for the games having 5 successful
outcomes, quantum advantage can be achieved only for some of the games having
partition 2 + 1 + 1 + 1. Here we consider the following game which can’t be won
with certainty in the classical scenario.
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Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

2+1+1+1
0.5 0.542 0.042
0.75 0.75 NA
1.0 1.0 NA

Table 10: Analysis of partitions for 5 successful outcomes

Input Corresponding output

00 01, 10
01 11
10 01
11 10

From the strategies mentioned in subsection 2.3, one can easily check that the
maximum classical success probability for this game is 0.5 and one of the strategies
to get this success probability is a = 0 and b = 1.

Similarly from the discussion of subsection 2.4, one can easily check that the
expression for quantum success probability of this mentioned game is of the form
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]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
As one can think of the cosines as the inner products between unit vectors, the
above expression can be rewritten as,
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Let us assume that 〈v0, v1〉 = (a + ib) and 〈v1, v0〉 = (a − ib). Then one can
easily check that || − 2v0 + v1|| =

√
5− 4a and ||v0 + v1|| =

√
2 + 2a. From these

expressions, one can easily calculate that the expression
√
2 + 2a+
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maximum value for a = − 1
4 and the corresponding maximum value is
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From this, the maximum winning probability in quantum scenario can be written
as,
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≈ 0.542
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This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the
game can be won with a probability of 0.542 in the quantum scenario. Similarly one
can explore that the same upper bound can be achieved for all the other games
of this group for which quantum advantage can be achieved and the maximum
classical success probability is 0.5. Therefore the maximum separation for this
class of games is (0.542− 0.5) ≈ 0.042.

From this discussion, it is clear that for all the games corresponding to partition
2 + 1 + 1 + 1, there are some games which provide quantum advantage with a
separation around 0.042.

4.9 Games Corresponding to 4 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the max-
imum classical and quantum success probabilities that one can achieve for the
partition of the 4 successful outcomes are mentioned in the Table 11. From these
results, one can easily check that there are no games corresponding to 4 successful
outcomes for which quantum advantage can be achieved.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

1+1+1+1
0.5 0.5 NA
0.75 0.75 NA
1.0 1.0 NA

Table 11: Analysis of partition for 4 successful outcomes

So for all the games corresponding to 4 successful outcomes, there are no
chances of getting any advantage in quantum success probability as compared to
the classical one.

4.10 Games Corresponding to 3 or Less Successful Outcomes

One cannot divide 3 or less number of successful outcomes into four parts such that
each part has atleast one outcome. Hence for these class of games, one can easily
argue from the discussion in subsection 2.4 that the maximum quantum success
probability is always less than 0.5 and there is no chance of getting quantum
advantage.

5 Conclusion

In our analysis, we found only seven partitions (over all possible games having at
least one successful outcome for each possible input) such that the games corre-
sponding to those partitions offer a quantum advantage. The maximum classical
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No. of Partition A game corr. Max. Corr. Max. Corr. Max.
succ. with quant. to the partition classicalclassicalquantum quantum Sepa-

outcome advantage (in ANF form) succ. strategy succ. strategy ration
prob. prob.

10 3+3+3+1 a⊕ b⊕ xy ⊕ xb⊕ ya 0.75 a=0, 0.80 θ0 = 0, θ1 = π

4
0.05

⊕ab⊕ xya ⊕ xyb b=0 ψ0 = π

8
, ψ1 = 7π

8

x⊕ a⊕ b⊕ xy ⊕ xa a=0, θ0 = 0, θ1 = 21π
100

9 3+3+2+1 ⊕xb⊕ ya⊕ yb⊕ xyb 0.75 b=0 0.792 ψ0 = π

8
, ψ1 = 7π

20
0.042

⊕xab⊕ yab ⊕ xyab

8 2+2+2+2 a ⊕ b⊕ xy 0.75 a=0, 0.853 θ0 = 0, θ1 = π

4
0.103

b=0 ψ0 = π

8
, ψ1 = 7π

8

x⊕ a⊕ xy ⊕ xa a=0, θ0 = 0, θ1 = 7π
50

8 3+2+2+1 ⊕xb⊕ yb⊕ ab 0.75 b=0 0.78 ψ0 = 5π
6
, ψ1 = 7π

100
0.03

⊕xya⊕ xyb⊕ yab

x⊕ y ⊕ a⊕ b a=1, θ0 = 0, θ1 = π

3
7 2+2+2+1 ⊕xa⊕ xb⊕ xya 0.75 b=1 0.762 ψ0 = 2π

25
, ψ1 = 21π

50
0.012

⊕xyb⊕ xab⊕ xyab

6 3+1+1+1 x⊕ y ⊕ xy ⊕ xb 0.5 a=0, 0.55 θ0 = 0, θ1 = π

4
0.05

⊕ab⊕ xya ⊕ xyb b=1 ψ0 = 5π
8
, ψ1 = 7π

8
1⊕ a⊕ b⊕ xa a=0, θ0 = 0, θ1 = 21π

100
5 2+1+1+1 ⊕ya ⊕ yb⊕ xab 0.5 b=1 0.542 ψ0 = 14π

25
, ψ1 = 17π

20
0.042

⊕yab⊕ xyab

Table 12: List of partitions and the corresponding nonlocal games (in ANF form)
which offer quantum advantage

and the maximum quantum success probabilities for the games corresponding to
each of those partitions are mentioned in Table 12. We also mention an exam-
ple of such a game (in Algebraic Normal Form) for each of those partitions. It
is well known that the CHSH game is used to certify untrusted devices in the
device-independent scenario. It is also known that the required sample size for
device-independent testing is inversely proportional to the success probability of
the corresponding nonlocal game. Although the maximum success probability for
the CHSH game using quantum resources is less than 1 (around 0.85), so far no
other two-party nonlocal game is used for device-independent testing. To the best
of our knowledge, it was also unknown whether there exists any other binary in-
put binary output two-party nonlocal game which offers a quantum advantage.
To answer all these questions, in this article, we explore the performance of all
possible binary input binary output two-party nonlocal games in terms of parti-
tions of the total number of successful outcomes to check whether there exist any
such games which offer a quantum advantage with maximum quantum success
probability greater than 0.85. From our analysis, we found that there are some bi-
nary input binary output two-party nonlocal games (other than the CHSH game)
that offer quantum advantage but the CHSH game has the maximum quantum
success probability (also with a maximum separation of around 0.1) among all
these games. Further study for three (or more) party nonlocal games will be an
interesting research work in this direction.
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