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Abstract
The K-nearest neighbor ( K-NN) query is an important query in location-based service (LBS), which can query the nearest k 
points to a given point, and provide some convenient services such as interest recommendations. Hence the privacy protec-
tion issue of K-NN query has been a popular research area, protecting the information of queries and the queried results, 
especially in the information era. However, most of existing schemes fail to consider the privacy protection of location points 
already stored on servers. Or some schemes support no update of location points. In this paper, we present an updatable 
and privacy-preserving K-NN query scheme to address the above two issues. Concretely, our scheme utilizes the KD-tree 
( K-Dimensional tree) to store the location points of data owners in location service provider and encrypts the points with a 
distributed double-trapdoor public-key cryptosystem. Then, based on the Ciphertext Comparison Protocol and Ciphertext 
Euclidean Distance Calculation Protocol, our scheme can protect the privacy of location and query contents. Experimental 
analyses show our proposal supports some new location points for a fixed location service provider. Moreover, the queried 
results show a high accuracy of more than 95%.
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1  Introduction

Due to the development of the mobile Internet and posi-
tioning technology, LBS (location-based service) brings a 
great deal of convenience to people’s lives and is applied 
in many fields of life, such as social networks, smart travel 
and interest recommendations, etc. In the case of contagion 
of COVID-19, health codes allow residents to record their 
movements by scanning QR (quick response) codes as they 
pass through particular locations. Authorized testing agen-
cies can thus analyze the location information and health 
status of people in order to track and isolate infected and 
potentially infected people in a timely manner.

While bringing convenience, LBS also brings serious 
privacy and security problems. When some user wants to 
get a location service, he usually needs to upload his loca-
tion information and other identity-related information to 
the LSP (location service provider). After obtaining the 
information from the user, the service provider offers the 
location service and sends the service results to the user. But 
during the interaction process, the LSP can fully grasp the 
user’s location or even more private and sensitive informa-
tion. When the LSP gets the user’s location information, it 
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may immediately determine the user’s travel route or sell 
the user’s personal location information to a malicious third 
party. More seriously, LSP may infer the users’ habits, health 
status [1], family, social relationships [2, 3] and other per-
sonal sensitive information. Once an attacker gets hold of 
this information, in extreme cases, it may even bring damage 
to the user’s life and property security, causing unimaginable 
consequences and loss.

Hence, it is necessary to address the privacy protection 
in LBS. Over the years, many researchers have contributed 
to solving this problem. In 2003, Beresford and Stajano [4] 
proposed the concept of location privacy protection for the 
first time. Many privacy protection techniques have been 
proposed according to different application scenarios and 
protection means. They can be broadly classified according 
to the privacy protection techniques used: spatial obfusca-
tion techniques [5–7], data transformation techniques [8], 
false location perturbation techniques [9], and encryption 
techniques [10–12].

Spatial Obfuscation: The k-anonymity technique is one 
of the main means to achieve spatial obfuscation, first pro-
posed by Sweeney [13] in 2002 and applied to the field of 
location privacy protection by Gruteser and Grunwald [14]. 
The user forms an anonymity zone with the location infor-
mation of k other users using fuzzy data acquisition services, 
thus protecting the user’s location privacy so that an attacker 
can not associate the query information with the user. The 
R-tree structure maintaining the users’ location data and the 
Casper model was proposed by Mokbel et al. [15] in order 
to improve the user’s anonymity security level. Bamba et al. 
[16] applied the l-diversity policy to increase the success 
rate of anonymity using temporal properties.

Data Transformation: The principle of data transforma-
tion technique is to map the user’s location coordinates and 
information data to another data space. The most representa-
tive is the privacy preserving K-NN query method based on 
the Hilbert curve proposed by Khoshgozaran and Shahabi 
[17]. Lien et al. [18] used the Moore curve as the medium of 
spatial mapping and proposed a secret cyclic query protocol 
that gets rid of the third-party anonymous server.

False Location Perturbation: False location perturbation 
was first proposed by Kapadia et al. [19] as a way of que-
rying through false position points instead of real position 
points. After a user makes a query by adding location points 
and receives the queried result, the queried result corre-
sponding to the real location points is confirmed by the geo-
metric relationship among the fake location points, the user’s 
real location points and the query result location points. Yiu 
et al. [20] proposed the well-known SpaceTwist algorithm 
to search the user’s points of interest through anchor points. 
Gong et al. [21] improved on the Yiu’s scheme based on the 

central server so that the SpaceTwist algorithm satisfies the 
k-anonymity constraint.

Encryption Techniques: The core of encryption tech-
nique is to protect the location privacy of users by directly 
encrypting the location data using cryptographic algorithm 
to avoid location service providers or other third parties from 
obtaining the user’s location information. Lian et al. [22] 
proposed a fast location K-NN query scheme for outsourced 
data based on space filling curve and AES encryption algo-
rithm. Utsunomiya et al. [23] proposed a privacy-preserving 
K-NN query scheme via Hilbert curve and NTRU algorithm.

The above schemes present location privacy protection 
methods in various application scenarios, but their schemes 
are carried out for fixed interest point datasets and not suit-
able for updatable datasets supporting new location points. 
For query scenarios that require frequent updates of interest 
point sets, they are not as effective as they should be while 
ensuring query privacy for the query user.

To address the above problem, combining the above 
mentioned background of epidemic prevention, this paper 
proposes a privacy-preserving K-NN(nearest neighbor) 
query scheme to support points security update. The scheme 
encrypts the data owner’s location information by the DT-
PKC (double-trapdoor public key cryptosystem) [24] homo-
morphic algorithm and stores it in the form of KD-tree nodes 
in the cloud server to protect the location privacy. Ciphertext 
Comparison Protocol and Ciphertext Euclidean Distance 
Calculation Protocol are constructed under the double-cloud 
model. Cloud server runs the protocol to make the inser-
tion and deletion algorithms of the KD-tree. The K-nearest  
neighbor query algorithm of the KD-tree are applicable  
to the encrypted data nodes, while they are originally only 
applicable to plaintext node data. The scheme effectively 
protects the privacy of the location information uploaded 
by the user and the query information of the querier. The 
accuracy of the query is relatively higher.

The remainder of our paper is structured as follows. Sec-
tion 2 introduces some necessary background knowledge. 
The system model and design goal are given in Sect. 3. In 
Sect. 4, we describe the specific construction of the scheme. 
Moreover, Sects. 5 and 6 discuss the security analysis and 
performance evaluation, respectively. Finally, we present the 
conclusion in Sect. 7.

2 � Preliminaries

In this section, we first introduce some basic notations in 
Table 1. Then, we briefly introduce two necessary back-
ground techniques, DT-PKC scheme and KD-tree technique, 
for a better understanding of our proposed scheme later.
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2.1 � DT‑PKC

The DT-PKC scheme was presented by Liu et al. [24], 
based on BCP cryptographic system [25]. Furthermore, 
the DT-PKC is suitable for multi-user environments. The 
DT-PKC works as follows.

Key Generation (KeyGen): Given a security parameter 
� , generate two large primes p and q, s.t. L(p) = L(q) = k . 
Then compute N = pq and � = lcm(p − 1, q − 1) . Define 
function L(x) = (x − 1)∕N  , then choose an element g of 
order lcm(p − 1, q − 1) from ℤN2 . Next, randomly select 
an integer �i ∈ [1,N∕4] (See [24] for details.) for the i-th 
party and compute hi = g�i

(
mod N2

)
.

The public key for the i-th party is pki = (N, g, hi) , and 
the weak private key is ski = �i . The strong private key is 
SK = �.

Encryption (Enc): Given a message m ∈ ℤN , choose a ran-
dom integer r ∈ [1,N∕4] . The ciphertext under pki generated 
as [m]pki = (Ti,1, Ti,2) , in which Ti,1 = hr(1 + mN)

(
mod N2

)
 

and Ti,2 = gr
(
mod N2

)
.

Decryption With Weak Private Key (WDec): Input 
a ciphertext [m]pki , decrypt it under the weak private key 
ski = �i and get the plaintext

Decryption With Strong Private Key (SDec): The 
ciphertext [m]pki can be decrypted by SK = � . Calculate 
T�
i,1
mod N2 and compute the plaintext

Strong private key splitting (Skey): The strong private 
key SK = � can be split into two parts. The partial strong 
private key SKj = �j( j = 1, 2) , s.t.�1 + �2 = 0(mod �) and 
�1 + �2 = 1

(
mod N2

)
 hold at the same time.

(1)m = L

⎛
⎜⎜⎝
Ti,1

T
�i
i,2

mod N2

⎞
⎟⎟⎠
.

(2)m =
L
(
T�
i,1
mod N2

)

�
mod N.

Partial Decryption With Strong Private Key 
Step One (PSDec1): Given [m]pki and a partial private 
key SK1 = �1 , output the partial decrypted ciphertext 
CT

(1)

i
= T

�1
i,1

= h
r�1
i

⋅ (1 + mN�1)
(
mod N2

)
.

Partial Decryption With Strong Private Key Step 
Two (PSDec2): Input CT (1)

i
 and [m]pki then execute 

CT
(2)

i
= T

�2
i,1

 . At last, compute m = L(CT
(1)

i
⋅ CT

(2)

i
).

Given [m1]pk, [m2]pk , denote the multiplication between 
[m1]pk, [m2]pk as the component-wise multiplication. Then 
we have

and

In this paper, we restrict m with L(m) < L(N)∕8.

2.2 � KD‑Tree

The KD-tree is a kind of data structure that organizes 
points in a multi-dimensional Euclidean space. Each 
node of the KD-tree is a k-dimensional numerical point, 
representing a hyperplane which is perpendicular to 
the coordinate axis of the current division dimension. 
That is, if the current node is divided in dimension d, 
the coordinate values of all points in its left subtree in 
dimension d are less than the current value, and the 
coordinate values of all points in its right subtree in 
dimension d are greater than or equal to the current 
value. In this paper, since the query is performed on 
the geographic location, the dimension of the tree is 
2-dimensional, i.e., d = 2.

A simple example of the KD-tree for d = 2 is depicted 
in Fig. 1, which is divided into eight parts. In the two-
dimensional KD-tree, we take a dimensional partitioning 
of the point set by alternating the x-axis and y-axis. To 
elaborate, in the first partitioning, the x-dimension of the 
points is used as the partitioning dimension, their median 
is found (if the base of the point set is even, it can be 
taken down), and a vertical line is made through the node 
to divide the point set into two equal subsets of the base, 
which is the root node of the tree. The second partitioning 
takes the y-axis as the partitioning dimension, and each 
resultant subset is further partitioned along a horizontal 
line. The process is repeated until the base number of 
nodes drops below a certain threshold.

(3)

PDec([m1]pk ⋅ [m2]pk)

=
L
((

1 +
(
m1 + m2

)
N
)�
mod N2

)

�
mod N

=[m1 + m2]pk

(4)PDec([m1]
N−1
pk

) = [−m1]pk.

Table 1   Notations

Notation Descriptions

mod n {0, 1, 2,… , n − 1}

ℤ The integer ring
ℤN2 ℤN2 = {0, 1, 2,… ,N2 − 1}

ℤ
∗
N2 ℤ

∗
N2

=
{
a|0 < a < N2, gcd(a,N2) = 1

}
L(p) The bit length of the integer p
lcm(a, b) Least common multiple of a and b
k Query parameter of K-NN
[⋅]pki The encryption under the public key pki
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3 � Models and design goal

In this section, we formalize our system model, threat model 
and design goal.

3.1 � System model

In our system model, four entities are shown in Fig. 2, 
including query center, data owners, location server provider 
and compute server provider.

–	 Query Center (QC): In this model, the monitoring 
center of the epidemic acts as the query center. It gener-
ates and distributes public and private keys during the 

system initialization. In addition, after the system starts 
to run, query center makes K-NN query requests to the 
cloud server. It is important to note that the K-NN query 
in this scheme is based on Euclidean distance.

–	 Data Owners (DOs): In this paper, the data owners 
are a large number of independent individuals who 
upload their location data to the cloud server with 
encryption through mobile terminals. The set of data 
owners is denoted as D = {di|1 ≤ i ≤ I, I > 1} , where di 
denotes the i-th data owner and I is the total number of 
data owners. The corresponding set of location infor-
mation is P = {pi = (xi, yi, ui)|1 ≤ i ≤ I, I > 1)} , where 
xi and yi denote the horizontal and vertical coordi-
nates of di ’s location in the two-dimensional plane, ui 
denotes the identity information and health status of 
di . In addition, due to the mobility of the population, 
the provided data have to be updated and maintained 
frequently, e.g., new location information data need to 
be inserted into the database when people register, or 
obsolete data need to be deleted when people leave, 
etc.

–	 Location Service Provider (LSP): In this model, LSP 
has rich storage resources. It saves the storage of all the 
encrypted location information data uploaded by data 
owners, records the intermediate and final results gener-
ated in the query process. LSP provides computations 
over encrypted location information data and sends que-
ried results to the query center.

–	 Compute Service Provider (CSP): CSP provides 
online computing service in the model. Together with 
LSP, it provides privacy-protecting K-NN query service 
to query center via protocols running in double-cloud 
model.

0 1 2 3 4 5 76 8

1

2

3

4

5

6

Fig. 1   An example of the KD-tree for d = 2

Fig. 2   System model

LSP CSP

Co-Computing

Send query request

Return query result

QC

Send encrypted 

information

DOs

Send public key

Send public and private key

1079Peer-to-Peer Networking and Applications  (2022) 15:1076–1089

1 3



3.2 � Threat model

In the threat model, assume that the query center is 
trusted: it generates and distributes public and partial pri-
vate keys for LSP and CSP. And the query center is author-
ized to view all plaintext data and send query requests to 
the server so that it can make the maximum reasonable 
judgement on the prevention and control of the epidemic. 
Meanwhile, LSP and CSP are assumed to be honest-but-
curious. That is, they will honestly execute protocols and 
return correct results, but still try to obtain sensitive infor-
mation about others from the data they receive and store. 
We also assume there is no collude between LSP and CSP.

3.3 � Design goal

In this paper, the design goal of our scheme is to present 
an updatable and privacy-preserving K-NN query scheme 
in LBS. The scheme works with the above system model 
and threat model. Specifically, the following objectives 
should be satisfied.

–	 Correctness. In our scheme, one of the objectives 
is to obtain the information of the k nearest location 
points to the query point by performing K-NN query. 
Therefore a high accuracy of query is what this scheme 
should guarantee so that the querying center can get the 
correct result.

–	 Privacy protection. The information of queried 
request, data sets and queried result are required to be 
protected effectively during the K-NN query scheme. 
Once an attacker had access to any of them, he would 
pose a great threat to the normal life of the data own-
ers, such as habits, family and social relationships. In 
extreme cases, he may even bring damage to the user’s 
life and property security. Hence it is necessary to 
ensure the privacy-preserving of K-NN query scheme.

–	 Update. Some new location points of data owners may 
come into being for a fixed K-NN query model. In this 
case, an updatable K-NN query scheme supporting 
these new location points is more practical. Concretely, 
new location points may replace the role of existing 
ones, or are inserted into the data sets.

4 � Proposed scheme

In this section, we elaborate the K-NN query scheme 
including four parts: system initialization, location data 
upload, location data update, and K-NN query.

4.1 � System initialization

System initialization consists of three steps: key genera-
tion and distribution, initialization of KD-tree and KD-tree 
upload.

i)	 Key Generation and Distribution 
	   The query center invokes the DT-PKC’s key genera-

tion algorithm to generate the public key pk0 and strong 
private key mk for query center, and the public key pki 
for each data owner di . Then the DT-PKC’s private key 
splitting algorithm is applied for query center to parti-
tion the master private key mk into partial private keys 
mk1 and mk2 . mk1,mk2 are sent to LSP and CSP through 
trusted channel respectively.

ii)	 Initialization of KD-tree
	   We assume the query center has the initial location 

information set P� = {ps = (xs, ys, us)} before system 
initialization. As shown in Algorithm  1, the query 
center uses the KD-tree initialization algorithm to par-
tition the location information set P′ alternately with xs 
and ys as the partition dimension to obtain the KD-tree 
T = {ts ∶ ts.data = ps, ts.right, ts.left} , where ts denotes 
the node in T, ts.data denotes the data stored in the node 
ts , the elements in the location information correspond to 
the ts.data in the node of T, and ts.right and ts.left denote 
the right and left children of ts , respectively.

	   Algorithm 1 is the initialization algorithm of the K
D-tree. We input an initial set of location information, an 
empty root node to store the data, and an identifier flag 
to record the dimension of the KD-tree partition. For 
flag, flag = 0 denotes the partition axis is x and flag = 1 
means it is y . The median of the set is selected in each 
segmentation according to the corresponding dimen-
sion, and the set is divided into two subsets according 
to median value � . The elements of one subset are less 
than � in the corresponding dimension, and the elements 
of the other subset are greater than or equal to m in the 
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corresponding dimension. Until all data are assigned to 
the tree nodes, the final output is a complete KD-tree T.

iii)	KD-tree Upload 
	   The query center encrypts the ts.data of each node ts 

of KD-tree T with the encryption algorithm of DT-PKC 
under the public key pk0 . Then the encrypted KD-tree 
T ′ with encrypted ts.data to location information vector 
p′
s
 instead of the original ps stored in the node ts will be 

uploaded to LSP, where

4.2 � Location data upload

In this section, the data owner di uploads his location infor-
mation to the cloud via smart mobile terminal. Concretely, 
the data owner di encrypts the location data using DT-PKC’s 
encryption algorithm with his own public key pki . Then he 
can go offline after uploading the encrypted data to LSP 
until the next update, which does not affect the storage of 
the data in the server. The location information vector p′

i
 for 

di is denoted by

4.3 � Location data update

After verifying the data owner di , LSP executes the KD-tree 
deletion algorithm to remove the old location node of di 
from the encrypted KD-tree, then uses the KD-tree insertion 
algorithm to add the newly encrypted node.

i)	 Insertion
	   Algorithm 2 describes how to insert an encrypted 

location vector into an encrypted KD-tree T ′ . There will 
be a recursive search for the new data to be inserted in 
the left and right subtrees until the data is successful to 
form a new node.

(5)
p�
s
= (Epk0

(ps), pk0) = (Epk0
(xs),Epk0

(ys),Epk0
(us), pk0).

(6)p�
i
= (Epki

(pi), pki) = (Epki
(xi),Epki

(yi),Epki
(ui), pki).

	   This algorithm involves the Ciphertext Comparison 
Protocol which is perform by LSP and CSP interactively, 
and the protocol is shown in Fig. 3.

	   Input two ciphertexts [a]pk1 and [b]pk2 , LSP and CSP 
jointly perform the Ciphertext Comparison Protocol to 
obtain their corresponding plaintexts a and b in terms of 
their size relationship. The protocol is executed as follows.

	   Step1(@LSP): LSP selects a random integer 
r ∈ [1,N∕4] and computes A =

(
[a]pk1

)r
= [a ⋅ r]pk1 , 

B =
(
[b]pk2

)r
= [b ⋅ r]pk2 . Then he performs the partial 

decryption algorithm PSDec1() of DT-PKC over A and B 
respectively and obtains the results denoted as A′ and B′.

	   Step2(@LSP): LSP randomly selects a bit � ∈ {0, 1} , 
and sends {A,A1,B, B1} to CSP when � = 1 ; sends 
{B,B1,A,A1} when � = 0.

	   Step3(@CSP): CSP performs PSDec2() of DT-PKC 
to decrypt {A,A1, B,B1} or {B,B1,A,A1} by the par-
tial private key mk2 to obtain the plaintext {ar, br} or 
{br, ar} . Then he computes d = (a − b) ⋅ r by {ar, br} or 
d = (b − a)r by {br, ar}.

	   Step4(@CSP): When d > 0 , CSP returns � = 1 to 
LSP; when d < 0 , CSP returns � = −1 ; when d = 0 , 
CSP returns � = 0.

	   Step5(@LSP): LSP acquires the comparison result 
between a and b based on � and � , where

ii)	 Deletion
	   Algorithm 3 describes how to delete expired nodes 

before the new nodes are inserted. Search from the root 
node of the tree. If the current node is the node to be 
deleted, check the left and right subtrees of the node. 
If the right subtree is not empty, the current node is 
replaced by the same dimension node that is the smallest 
in the right subtree. Then the replaced node becomes the 
new node to be deleted, which is recursively searched 

(7)a

⎧
⎪⎨⎪⎩

> b 𝜇 = 1,𝜔 = 1 or 𝜇 = 0,𝜔 = −1

< b 𝜇 = 1,𝜔 = −1 or 𝜇 = 0,𝜔 = 1

= b 𝜇 = 1,𝜔 = 0 or 𝜇 = 0,𝜔 = 0.
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and deleted in the right subtree, likewise for the non-
empty left subtree. If both the left and right subtrees are 
empty, it means that the current node is the node to be 
deleted, and the node is directly set to be empty.

	   Note that Algorithm 3 is also called a sub-algorithm 
to find the smallest point in the specified dimension in 

the subtree. Input a sub-tree to be searched and the parti-
tion dimension to be found, first determine whether the 
specified dimension and the current partition dimension 
of the tree are the same. If the dimensions are the same, 
then judge whether the left subtree of the current node 
is empty or not. If the left subtree is empty, return the 

Fig. 3   Ciphertext Comparison Protocol
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current node directly. If not, continue to search in the 
left subtree. If the dimensions are different, then search 
in both the left subtree and the right subtree. Finally, 
the minimum of the current node, the result of the left 
subtree and the result of the right subtree are returned, 
as shown in Algorithm 4.

4.4 � K‑NN query

Firstly, the query center encrypts the location information 
p0 = (x0, y0, u0) of the point to be queried with DT-PKC under 
the public key pk0 , and then denotes the query location infor-
mation vector p′

0
 with the ciphertext and pk0 . After that, query 

center sends the query request {p�
0
, k} to LSP, where

After receiving the request, LSP executes the K-NN query 
shown in Algorithm 5 for the encrypted KD-tree.

Input the encrypted node E(p0) to be queried and the 
empty query result queue PQ, where PQ is the queue 

(8)
p�
0
=
(
Epk0

(p0), pk0) = (Epk0
(x0),Epk0

(y0),Epk0
(u0), pk0

)
.

structure that stores the position information as the 
returned result and is continuously updated during the 
recursive traversal of the KD-tree. When the result queue 
is not full, i.e., the number of elements in the queue is 
less than k or the Euclidean distance between the current 
node and the query point is less than bestlist, the cur-
rent node will be queued and bestlist will be updated. 
Next, if the value of the node to be queried is less than 
the current node in the current partition dimension, it is 
recursively queried in the left subtree, and likewise for 
the right subtree.

One more case should also be noticed is that the near-
est neighbor of the point to be queried may also exist in 
another subtree of the tree. Hence the same operation is 
required to be performed in another subtree as well. At the 
end of the recursive query, the elements in the returned 
result queue PQ are the query results sent by LSP to the 
query center.

Algorithm 5 requires the Ciphertext Comparison Protocol 
and the Ciphertext Euclidean Distance Calculation Protocol. 
The latter is shown in Fig. 4. The necessary descriptions are 
presented below.

i)	 For two coordinate points (x1, y1) and (x2, y2) in the two-
dimensional plane, their Euclidean distance is

	   Since the square of distance and the distance is equiv-
alent when the former is larger than 0, it is enough to 
find the square of distance of the query point and each 
point for our K-NN query scheme.

	   In order to calculate the square of the difference 
between two numbers a and b, we resort to the follow-
ing formula

ii)	 Input two ciphertexts [a]pk1 and [b]pk2 , LSP and CSP 
jointly perform the Euclidean Distance Calculation 
Protocol for the ciphertext data to obtain the square of 
their corresponding plaintext difference. The protocol is 
performed as follows.

	   Step1(@LSP): LSP selects two unequal random 
numbers r1, r2 ∈ ℤN and calculates R = r1 − r2 . Then 
he encrypts r1, r2,R,R2 with the encryption algorithm 
of DT-PKC under pk1, pk2,PK respectively to get [r1]pk1 , 
[r2]pk2 , [R]PK and [R2]PK.

	   Step2(@LSP): LSP computes A = [a]pk1 ⊗ [r1]pk1
= [a + r1]pk1 and B = [b]pk2 ⊗ [r2]pk2 = [b + r2]pk2 , where 
⊗ represents the component-wise multiplication of DT-
PKC. Then he performs PSDec1() of DT-PKC over A 

(9)dist =

√
(x1 − x2)

2 + (y1 − y2)
2.

(10)(a − b)2 = (a − b + R)2 − 2R(a − b) − R2
,
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and B, gets the results A1 and B1 , and sends {A,A1,B,B1} 
to CSP.

	   Step3(@CSP): CSP performs PSDec2() over A1 
and B1 to obtain A2 = a + r1 and B2 = b + r2 with mk2 . 
Then he encrypts A2 − B2 and (A2 − B2)

2 with PK to 
get S1 = [A2 − B2]PK and S2 = [(A2 − B2)

2]PK , and sends 
{S1, S2,A2,B2} back to LSP.

	   Step4(@LSP): After receiving {S1, S2,A2,B2} from 
CSP, LSP calculates S3 = S1 ⊗ ([R]PK)

N−1 and finally 
gets dist = S2 ⊗ SN−2R

3
⊗ [R2]N−1

PK
.

	   Finally, the query center decrypts k elements in the 
queue PQ with the master private key mk. And he finally 
obtains the location information of k nearest neighbors 

points of the location information to be queried. The 
correctness of this algorithm follows from the follow-
ing equation, which depends on the homomorphism of 
DT-PKC.

	   Therefore, the above K-NN query scheme holds.

(11)

dist =S2 ⊗ SN−2R
3

⊗ [R2]N−1
PK

=[(A2 − B2)
2 + (A2 − B2 − R)N−2R − R2]PK

=[(a − b + R)2 + (a − b)N−2R − R2]PK

=[(a − b + R)2 − 2R(a − b) − R2]PK

=[(a − b)2]PK .

Fig. 4   Euclidean Distance Calculation Protocol
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5 � Security analysis

In this section, we analyse the security of the proposed K-
NN query scheme.

Our prior concern is the privacy of the scheme, i.e., the loca-
tion data stored in LSP, the queried records and queried results 
of the query center. Recall that the location data the queried 
records and queried results are all encrypted with DT-PKC, 
which is secure based on the assumed intractability of the deci-
sional Diffie-Hellman assumption over ℤN2 . Then the remain is 
to prove that the Ciphertext Comparison Protocol and Cipher-
text Euclidean Distance Calculation Protocol leak no informa-
tion of the location data the queried records or queried results.

Lemma 1  The Ciphertext Comparison Protocol in Fig. 3 is 
secure to protect the information of the plaintexts and the 
secret keys of LSP, CSP.

Proof  The information of the plaintexts, including the cor-
responding plaintexts, is protected effectively since what 
always run through the Ciphertext Comparison Protocol are 
ciphertexts. Now let us first prove the zero-knowledge for 
LSP, implying that no information of LSP will be exposed. 
We describe a simulator SimLSP playing the role of LSP in 
front of any PPT (probability polynomial time) adversary B 
playing the role of CSP. 

1.	 SimLSP takes input public key, outputs mk′

2
 as the secret 

key instead of mk2 and feeds the adversary with it. Then 
the simulator SimLSP performs the Ciphertext Compari-
son Protocol as LSP with −mk�

2
 instead of mk1.

2.	 After the adversary B obtains {A,A1,B,B1} or 
{B,B1,A,A1} from SimLSP dependent on the ran-
dom value of � , where A = [ar]pk1 ,B = [br]pk2 , 
A1 = PDec1([ar]pk1 ,−mk

�

2
),B1 = PDec1([br]pk2 ,−mk

�

2
) , 

he will compute 

The correctness follows from mk1 + mk2 ≡ 0(mod �) . 
From the view of B playing the role of CSP, the behavior of 
SimLSP and LSP is indistinguishable due to the indistinguish-
ability of mk1 and −mk�

2
 . Hence the advantage for adversary 

B to distinguish SimLSP and LSP is negligible. That is, it is 
zero-knowledge for LSP.

There is no need to illustrate the zero-knowledge of semi-
honest CSP, as CSP just performs some auxiliary computa-
tions instead of obtaing the final results. Consequently, we 
finish the proof of the lemma. 	�  ◻

Lemma 2  The Euclidean Distance Calculation Protocol in 
Fig. 4 is secure to protect the information of the plaintexts 
and the secret keys of LSP, CSP.

PDec2(A1,mk
�

2
),PDec2(B1,mk

�

2
).

Proof  Here we omit the detailed proof, since it is similar 
with the simulated-based Lemma 1 except the executions of 
LSP and CSP for different functionality. One more important 
is the assumption of no collusion between LSP and CSP in 
the system model. 	�  ◻

To sum up, our K-NN query scheme applies the DT-
PKC, Ciphertext Comparison Protocol, Ciphertext Euclid-
ean Distance Calculation Protocol and KD-tree. Notice all 
the tools leak no information of the location points, queried 
requests and queried results, we can conclude our K-NN 
query scheme is privacy-preserving.

6 � Preformance evaluation

This section includes theoretical and experimental analyses 
to illustrate the performance of our K-NN query scheme.

6.1 � Theoretical analysis

In this section, we perform a theoretical comparison analy-
sis of some K-NN query schemes, from the perspective of 
data structure, multi-user support, support data update and 
security against server, as shown in Table 2.

It can be seen that, except [23], the other three schemes 
are resistant to server attacks because they store the location 
points in ciphertext on the server. The scheme proposed by 
Zhang et al. [10] supports multi-user environment while no 
update of location points. The update of location points in 
[22] holds with a heavy overhead. One is the online interac-
tion between the data owner and the query center, the other 
is that the data owner needs to reset the Moore curve for all 
location points even for an updated location point. Relatively 
speaking, our K-NN query scheme is more practical, which 
supports not only data security updates but also multi-user 
environments. Meanwhile, the data owner can go offline 
after uploading the data, reducing the cost of the data owner. 
The update of location points takes place in part nodes of 
KD-tree, not the whole KD-tree.

6.2 � Experimental analysis

In this section we perform performance evaluation of the 
proposed K-NN query scheme. The scheme is tested on an 
Inter Core I5-9300H 2.40GHz CPU and 4GBRAM on a win-
dows 10 computer running an Ubuntu18.04.1 LTS virtual 
machine via python charm package and the length of the 
public modulus N is 1024 bits.

We randomly generate 1000, 10000 and 100000 coordi-
nate points in the plane area as the test set to test the per-
formance of this scheme under different scale of data. The 
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final results are averaged for each scale of data set for several 
experiments.

i) Query Accuracy
Let R and G denote the set of K-nearest neighbor results 

returned by the experiment and the true set of K-nearest 
neighbor results, respectively, then the query accuracy can 
be expressed as

As shown in Fig. 5, a line graph of query accuracy with 
query parameter k varying is shown.

We can see that when using our scheme for K-nearest neigh-
bor query, the query accuracy can be maintained above 0.95 
for all three data sets. For a fixed number of location points n, 
the query accuracy decreases with an increasing k. Meanwhile, 
for a fixed k, the query accuracy is larger for a larger n.

ii) Time Cost
The time cost for query center mainly depends on con-

structing the KD-tree in the initialization phase, encrypting 
the tree nodes and uploading them. Even these operations 
can be performed in the phase of a pretreatment, query 
center also need to spend time to deal with them. As shown 
in Fig. 6, we show the time cost comparison of running the 
initialization algorithm to construct a KD-tree for three 
datasets over plaintexts and ciphertexts respectively. It can 
be seen that the time increases as the number of dataset 
increases. Under the same condition, the time in Fig. 6b is 

(12)r =
|R ∩ G|
|G| .

much larger than the one in Fig. 6a, since the Ciphertext 
Comparison Protocol for creating KD-tree occupy much 
time. For a dataset containing 100000 location information 
points, it takes about 600ms to construct a plaintext KD-tree, 
while it takes nearly half an hour to construct an encrypted 
KD-tree.

As shown in Fig. 7, the time to insert or delete encrypted 
nodes to generate an update KD-tree under different data 
sets is presented varying from the number of initial nodes 
and updatable nodes. Fig. 7a is for insertion 1 or 10 new 
nodes with the total number of initial nodes varying 1000, 
10000, 100000, and Fig. 7b is for deletion under the same 
circumstance. The update of the encrypted KD-tree is 
mainly performed by LSP and CSP via Ciphertext Com-
parison Protocol and Ciphertext Euclidean Distance Cal-
culation Protocol. Take 100000 location points as an exam-
ple, we note that the average time to insert an encrypted 
node is 4ms, while the average time to delete a ciphertext 
node is 96ms.

The reason for such a large difference in time is that 
when deleting a node, there are more operations. Con-
cretely, LSP and CSP performs not only the node deletion 
algorithm, but also the sub-algorithm to find the small-
est node in the current dimension. In order to improve 
the efficiency of deletion in the application of practical 
scenarios, we can consider the marker deletion method. 
That is, the dense data nodes do not need to be deleted 
immediately, but are marked to remain in the KD-tree. 
These marked points will not affect the insertion of sub-
sequent nodes and marker deletion. When the number 
of marked points exceeds the threshold value, LSP can 
delete them voluntarily, which is flexibly decided by LSP 
according to the size of the tree and his own computa-
tional capacity.

Figure 8 shows the total time of K-NN query with vary-
ing datasets and query parameters without considering the 
pretreatment phase. We can see that the average time is 
increasing with the number of new location points k for a 
fixed number of initial location points n. With respect to a 
fixed k, the average time is increasing slowly with varying 
n. Even when n = 100000 and k = 30 , the average time for 
our K-NN query scheme is only less than 3s.

Table 2   Comparison of 
schemes

Scheme data structure Multi-user support Support data 
update

Security against 
server

Utsunomiya et al. [23] Moore curve × × ×

Zhang et al. [10] Linear quad-tree
√

×
√

Lian et al. [22] Moore curve ×
√ √

Our scheme KD-tree
√ √ √

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

0.995

10 20 30

A
cc
ur
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y
ra
te

k

n=1000
n=10000
n=100000

Fig. 5   Variation of query accuracy with k 
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7 � Conclusion

In this paper, we focus on K-NN query which supports updat-
able location points without compromising the privacy of 
the data owners and query center. At the core of our scheme, 
every data owner encrypts his location points with DT-PKC 
cryptosystem under his own public key. Two novel secure 

protocols Ciphertext Comparison Protocol and Ciphertext 
Euclidean Distance Calculation Protocol under the double-
cloud model provide great help for K-NN query based on 
KD-tree of dimension 2. Theoretical analyses show that our 
scheme can protect the confidentiality of location data, que-
ried requests and queried results. Meanwhile, experimental 
evaluations demonstrate the higher efficiency of our scheme.

Fig. 6   Time cost for creating 
KD-trees
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