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Abstract
Novel coronavirus disease (COVID-19) is an extremely contagious and quickly spreading coronavirus infestation. Severe 
acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which outbreak in 2002 and 2011, and 
the current COVID-19 pandemic are all from the same family of coronavirus. This work aims to classify COVID-19, SARS, 
and MERS chest X-ray (CXR) images using deep convolutional neural networks (CNNs). To the best of our knowledge, this 
classification scheme has never been investigated in the literature. A unique database was created, so-called QU-COVID-
family, consisting of 423 COVID-19, 144 MERS, and 134 SARS CXR images. Besides, a robust COVID-19 recognition 
system was proposed to identify lung regions using a CNN segmentation model (U-Net), and then classify the segmented 
lung images as COVID-19, MERS, or SARS using a pre-trained CNN classifier. Furthermore, the Score-CAM visualization 
method was utilized to visualize classification output and understand the reasoning behind the decision of deep CNNs. Sev-
eral deep learning classifiers were trained and tested; four outperforming algorithms were reported: SqueezeNet, ResNet18, 
InceptionV3, and DenseNet201. Original and preprocessed images were used individually and all together as the input(s) to 
the networks. Two recognition schemes were considered: plain CXR classification and segmented CXR classification. For 
plain CXRs, it was observed that InceptionV3 outperforms other networks with a 3-channel scheme and achieves sensitivities 
of 99.5%, 93.1%, and 97% for classifying COVID-19, MERS, and SARS images, respectively. In contrast, for segmented 
CXRs, InceptionV3 outperformed using the original CXR dataset and achieved sensitivities of 96.94%, 79.68%, and 90.26% 
for classifying COVID-19, MERS, and SARS images, respectively. The classification performance degrades with segmented 
CXRs compared to plain CXRs. However, the results are more reliable as the network learns from the main region of inter-
est, avoiding irrelevant non-lung areas (heart, bones, or text), which was confirmed by the Score-CAM visualization. All 
networks showed high COVID-19 detection sensitivity (> 96%) with the segmented lung images. This indicates the unique 
radiographic signature of COVID-19 cases in the eyes of AI, which is often a challenging task for medical doctors.

Keywords  COVID-19 pneumonia · Computer-aided diagnostic tool · Deep convolutional neural networks · MERS · SARS · 
Transfer learning

Introduction

The World has experienced outbreaks of coronavirus infec-
tions during the last two decades: (i) the severe acute respira-
tory syndrome (SARS)-CoV outbreak in 2002–2003 from 
Guangdong, China; (ii) the Middle East respiratory syn-
drome (MERS)-CoV outbreak in 2011 from Jeddah, Saudi 
Arabia; and (iii) coronavirus disease 2019 (COVID-19) or 
SARS-CoV-2 outbreak from Wuhan, China, in December 
2019. SARS had quickly spread to 26 countries before being 
contained after about 4 months. More than 8,000 people 
got infected by SARS and 774 died (10%). Since 2004, 
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there have been no reported SARS cases. MERS is a viral 
respiratory disease that was first reported in Saudi Arabia 
in September 2012 and has since spread to 27 countries. 
According to the World Health Organization (WHO) up to 
date, there are 2,519 confirmed MERS cases and 34% (866) 
of these patients have died. Even though all three diseases 
are from the same family of coronavirus [1], the genomic 
sequence of COVID-19 showed similar but distinct genome 
composition from its predecessors SARS and MERS [1, 
2]. Despite a lower fatality rate of COVID-19, i.e., around 
3% [3] when compared to SARS (10%) and MERS (34%), 
COVID-19 has resulted in many fold deaths (> 4.9 million 
already) than combined deaths of MERS and SARS (around 
1,700) [4]. The recent outbreak of COVID-19 was and still 
is an extremely infectious disease that has spread all over 
the World, forcing the WHO to declare it as a pandemic on 
11th March 2020 [5].

These viruses are originated from animals. However, 
they can be transmitted to humans, which can cause severe 
and often fatal respiratory disease in their new host. The 
coronaviruses have a genetic structure that allows them to 
quickly replicate their presence and weaken the host’s anti-
viral defense mechanisms. The first symptom of SARS-CoV 
disease is generally high fever (> 38 °C), and may also be 
accompanied by headache, malaise, and muscle pain. At the 
onset of illness, some cases develop mild respiratory symp-
toms [6]. Typically, rash and gastrointestinal findings are 
absent, although some patients might have diarrhea during 
the early feverish stage. Besides, a lower respiratory phase 
illness begins with the onset of a dry non-productive cough 
or dyspnea (shortness of breath) with hypoxemia (low blood 
oxygen levels). The respiratory illness can be severe enough 
to require intubation and mechanical ventilation. On the  
other hand, the clinical spectrum of MERS-CoV infection ranges  
from no symptoms (asymptomatic), through mild respiratory 
symptoms, to acute respiratory distress syndrome (ARDS). 
In addition, it can develop to complete respiratory failure or 
death. Typical symptoms of MERS-CoV disease are fever, 
cough, and shortness of breath. Pneumonia is a common 
finding, but not always present. Gastrointestinal symptoms, 
including diarrhea, have also been reported. Severe illness 
can cause respiratory failure that requires mechanical ven-
tilation and support in an intensive care unit [6]. In general,  
the symptoms of MERS-CoV disease and COVID-19 are 
mostly similar, where people with a compromised immune sys-
tem, elderly people, or people with chronic diseases are at high  
risk. Besides, severe cases can undergo several organs failure, 
particularly heart, kidneys, or septic shocks.

Reliable and early detection of COVID-19 has the utmost 
importance to stop the spread of the virus. Currently, reverse 
transcription of polymerase chain reaction (RT-PCR) arrays 
and chest imaging techniques, such as computed tomography 
(CT) scans and chest X-ray (CXR) imaging, are the main 

diagnostic tools to detect COVID-19. Even though RT-PCR 
has become the gold standard tool to diagnose COVID 19 
[7], it has high false alarm rate caused by sample contam-
ination, damage to the sample, or virus mutations in the 
COVID-19 genome [8, 9]. Thus, CT scans and CXRs are 
recommended as an alternative or secondary diagnostic 
strategy [10]. In fact, several studies suggest performing CT 
as a secondary test if the suspected patients with shortness 
of breath or other respiratory symptoms showed negative 
RT-PCR findings [10, 11]. However, CT is not very conveni-
ent due to the contagious nature of the disease, and it is less 
available in low-resource countries. On the other hand, CXR 
is widely used as an assistive tool to diagnosis COVID 19 
[12]. X-ray imaging is a cheaper, faster, and easily accessible 
method with a reduced risk of radiation exposure compared 
to CT [13].

SARS and MERS emerged in 2002 and 2011 long before 
the recent advancement in artificial intelligence (AI) and 
deep learning methods. Therefore, there have been some 
modest approaches in the literature to provide an automated 
detection system for SARS or MERS using CXR images. 
Freedman et  al. [15] proposed a computer-aided detec-
tion system to detect SARS from the infected lung regions 
from 59 digital X-ray images of SARS patients. Xie et al. 
[14] proposed a computer-aided SARS detection (CAD-
SARS) system to discriminate SARS from other types of 
pneumonia. First, the lung regions were segmented using 
a multi-resolution active shape model (MRASM), divided 
into 18 blocks; then, several image features were extracted. 
Secondly, the classification and regression tree (CART) was 
used for SARS recognition. The results showed an accu-
racy of 70.94% for detecting SARS pneumonia. On the 
other hand, recently, several state-of-the-art deep convolu-
tional neural networks (CNNs) have been reported to detect 
COVID-19 from the CXR images [13, 15–27]. Sethy et al. 
[15] proposed a cascaded system, where a deep CNN was 
utilized for feature extraction followed by a support vec-
tor machine (SVM) for classification. Eleven pre-trained 
networks were investigated, where ResNet50 achieved the 
best performance with 97.2% COVID-19 sensitivity. How-
ever, the work was done on a small dataset of 25 normal 
and 25 COVID-19 images. Narin et al. [13] used a data-
set of 50 COVID-19 and 50 normal images to train and 
validate ResNet50, InceptionV3, and Inception-ResNetV2 
CNN models. ResNet50 model showed the highest classi-
fication performance with 98% accuracy and 96% sensitiv-
ity for COVID-19 detection. In [16], the authors presented 
a modified version of DarkNet, to classify a binary class 
problem (COVID-19 vs normal) and a multi-class classifi-
cation problem (COVID-19 vs. non-COVID pneumonia vs. 
normal) using 114 COVID-19 CXR images. The sensitivity 
of COVID-19 detection for 2-class and 3-class problems was 
90.65% and 85.35%, respectively. Apostolopoulos et al. [17] 
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have used a dataset of 224 COVID-19, 714 viral or bacterial 
pneumonia, and 504 normal CXR images to train and evalu-
ate MobileNetV2 CNN model. They have achieved 96.7% 
accuracy and 98.7% sensitivity for detecting COVID-19.

Wang et al. [18] proposed COVID-Net; the network was 
evaluated on a dataset of 5,941 CXR images from 1,203 
normal cases, 931 patients with bacterial pneumonia, 660 
patients with viral pneumonia, and 45 patients with COVID-
19. The COVID-Net achieved 98.9% positive predictive 
value (PPV) and 91% COIVD-19 sensitivity. Waheed et al. 
[19] proposed a synthetic data augmentation technique to 
alleviate the scarcity of public data available for COVID-19 
X-rays. Auxiliary Classifier Generative Adversarial Network 
(ACGAN) model was introduced and evaluated over 403 
COVID-19, and 721 normal CXR images. ACGAN model 
alone yielded 85% accuracy and 69% COVID-19 detection 
sensitivity while adding the synthetic X-rays boosted the 
performance to 95% and 90%, respectively. Chowdhury 
et al. [20] created a dataset of 3,487 CXR images, including 
COVID-19, viral pneumonia, and normal cases. The com-
piled dataset was used to train and validate SqueezeNet, 
ResNet18, ResNet101, MobileNetV2, DenseNet201, and 
CheXNet networks for 2-class (COVID vs. normal) and 
3-class (COVID-19 vs. viral pneumonia vs. normal) recog-
nition schemes. DenseNet201 showed the best classification 
performance with 99.7% and 97.9% COVID-19 detection 
sensitivities for 2-class and 3-class problems, respectively. A 
compact CNN architecture, called COIVD capsule network 
(COVID-CAPS), with a low number of trainable parameters 
was proposed in [21]. The authors used over 94 thousand 
CXR images to pre-train the proposed framework for classi-
fying five lung abnormalities. The pre-training was followed 
by training on the target dataset with 358 COVID-19, 8,066 
non-COVID pneumonia, and 5,538 normal CXR images. 
It was reported that COVID-CAPS achieved accuracy and 
area under the curve (AUC) of 95.7%/98.3% and 97%/99%, 
respectively, for without/with pre-training. Apostolopoulos 
et al. [22] trained MobileNetV2 on a 7-class dataset that 
includes 358 COVID-19, 1,342 normal, and 1,199 CXR 
images from five common lung abnormalities. The reported 
accuracy for the 7-class problem was 87.66%, while for 
2-class (COVID vs. other classes), it was boosted to 99.18% 
with 97.36% COVID-19 detection sensitivity. Another 
hybrid method has been proposed by Wang et al. [28], which 
used wavelet Renyi entropy with feed-forward neural net-
work and three-segment biogeography-based optimization 
(3SBBO) algorithm and have reported a mean of accuracy, 
sensitivity, and F1-Score of 86.12%, 86.40%, and 86.16%, 
respectively. Wang et al. [29] proposed a new CNN model, 
FGCNet, to learn individual image-level representations. 
Deep feature fusion (DFF) was proposed to fuse individual 
image-level features and relation-aware features from both 
graph convolutional network (GCN) and CNN, respectively. 

FGCNet provides a sensitivity of 97.71% and accuracy of 
97.14%, which outperform other state-of-the-art approaches.

Worldwide researchers have presented numerous clini-
cal and experimental results about SARS and MERS, which 
could be useful in the fight against COVID-19 [29, 30]. Sev-
eral studies are available in the literature on investigating 
the similarities between the genome structures of SARS, 
MERS, and COVID-19 viruses [8]. However, to the best of 
our knowledge, COVID-19 distinction from the MERS and 
SARS, using CXR images, has never been investigated. This 
is a major novelty of this research apart from several other 
investigations, including image enhancement, deep learn-
ing algorithms, lung segmentation, and activation mapping 
visualization to confirm the findings of this experiment. 
Due to the overlapping pattern of lung infections, it is very 
challenging for the medical doctors (MDs) to diagnose 
the lung pneumonia type (COVID-19, MERS, and SARS) 
without the aid of clinical data. SARS epidemic was started 
in July 2003. However, no new cases have been reported 
since May 2004 [31]. On the other hand, MERS still exists, 
as laboratory-confirmed cases were reported by Riyadh in 
March 2020 [32]. Therefore, investigating the similarities 
and uniqueness of coronavirus family members in the eyes 
of AI can bridge the knowledge gaps and provide MDs with 
meaningful insights that can help in the diagnosis process.

In this study, we have compiled the largest coronavirus 
family CXR dataset, so-called QU-COVID-family with 701 
CXR images for COVID-19, SARS, and MERS. Then, we 
have investigated several state-of-the-art deep CNN mod-
els for distinguishing COVID-19 from predecessor family 
members, SARS and MERS. For this purpose, we proposed 
a robust COVID-19 recognition system using a cascade 
of two CNN models. The first CNN model identifies lung 
regions using the U-Net segmentation model, one of the 
top-performing networks for biomedical image segmenta-
tion. Segmented lung CXR images were fine-tuned by the 
medical doctors and will be released with the QU-COVID-
family database. This is the first of its kind ground-truth 
masks available for COVID-family X-ray images. Next, 
a pre-trained CNN model classifies the target region as 
SARS, MERS, or COVID-19. In this study, several deep 
CNN classifiers (SqueezeNet, ResNet18, InceptionV3, and 
DenseNet201) were deployed along with different image 
enhancement techniques in order to determine the best 
model and configuration for the target problem. Further-
more, the Score-CAM visualization technique was used to 
confirm that CNN learns reliably from the main region of 
interest, i.e., segmented lungs, and to identify the potential 
distinguishable deep-layer features in the CXR images for 
COVID-19, MERS, and SARS patients.

The rest of the paper is organized as follows: “Methodol-
ogy” describes the methodology adopted, the experimental 
setup, and the evaluation metrics used in this study. “Results 
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and Discussion” presents the results and performs an exten-
sive set of comparative evaluations among the employed 
networks. Accordingly, we discuss and analyze the results, 
whereas the conclusions are drawn in “Conclusion”.

Methodology

This section is organized as follows: “Database Descrip-
tion” describes the process of creating the QU-COIVD-
family benchmark dataset using CXR images for SARS, 
MERS, and COVID-19 patients. Next, the proposed two-
stage COVID recognition system is introduced (Fig. 1). 
“Pre-processing Techniques” presents the pre-processing 
techniques applied to the CXR images before feeding 
them to the deep networks, “Chest X-ray Lung Segmen-
tation” briefly describes the U-Net segmentation model 
for lung segmentation, and “Chest X-ray Classification” 
describes four deep classification CNNs (SqueezeNet, 
ResNet18, InceptionV3, and DenseNet201) used to dis-
criminate between different coronavirus family members. 
Additionally, in “Visualization Using Score-CAM”, the 
Score-CAM visualization method is deployed to provide 

an interpretable result and investigate the reasoning behind 
the specific decisions of the deep classification CNNs. 
Finally, “Experimental Setup” describes the experimental 
setup of this study.

Database Description

Worldwide, the number of infected cases for COVID-19 
already exceeds 245 million, and the death toll is around 
5 million [33]. However, little effort has been made by 
highly infected countries on sharing clinical and radiog-
raphy data publicly. Sharing COVID-19 data will help 
researchers, doctors, and engineers around the world to 
come up with innovative solutions for early detection. 
Therefore, we have created a COVID family dataset (QU-
COVID-family) for COVID-19, MERS, and SARS with 
423, 144, and 133 CXR images, respectively. The dataset 
was created by utilizing the CXR images available publicly 
in the published or preprint articles and online resources 
[34]. In this study, we have used only posterior-to-anterior 
(PA) or anterior-to-posterior (AP) CXRs as this view of 
radiography is widely used by the radiologist.

Fig. 1   The pipeline of the proposed COVID-19 recognition system. First, the CXR image is pre-processed and segmented using a U-Net seg-
mentation model. Secondly, the segmented CXR is classified using a pre-trained CNN classifier as COVID-19, MERS, or SARS
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QU‑COVID‑family Dataset   Five major sources were used to 
create the COVID-family image database: Italian Society of 
Medical and Interventional Radiology (SIRM) COVID-19 
Database [35], Novel Corona Virus 2019 Dataset, Radiopae-
dia [36], Chest Imaging (Spain) at thread reader and online  
articles and news-portals [37]. SIRM COVID-19 database 
[35] shared 94 CXR images from 71 confirmed COVID-19 
positive patients in the database. Joseph Paul Cohen et al. 
[38] have created a public database in GitHub by collect-
ing radiographic images of COVID-19, MERS, SARS, and 
acute respiratory distress syndrome (ARDS) from the pub-
lished articles and online resources. A total of 134 COVID-
19 positive CXR images were collected from the GitHub 
database. A physician has shared 103 images from his hos-
pital from Spain to the chest imaging at thread reader, while 
60 images were collected from recently published articles 
and 32 images were collected from Radiopaedia. The arti-
cles, news-portal, and online public databases are published 
from different countries of the World, where COVID-19 
has affected significantly.  Therefore, the  CXR images   

represent different age groups, gender, and ethnicity from 
each country.

SARS and MERS CXR images are even scarcer compared 
to COVID-19; therefore, we collected and indexed CXR 
images from different publicly available online resources 
and articles. SARS and MERS radiographic images were 
collected from 55 different articles (25-MARS, 30-SARS). 
A total of 260 images was collected from articles and 18 
images were collected from Joseph Paul Cohens’ GitHub 
database [38]. Out of 260 images, 70 MERS CXR images 
were collected from [39], while 16 SARS CXR images were 
from [40]. During the collection, the authors looked to the 
peer-reviewed articles in order to ensure the quality of the 
provided information. Extremely low-resolution images 
were removed from the database. The collected dataset is 
highly diverse as CXR images are from several countries 
around the world and from different X-ray machines. The 
dataset encapsulates images of different resolution, quality, 
and SNR levels, as shown in Fig. 2.

Fig. 2   Sample X-ray images from the dataset (left): (A) COVID-19, (B) MERS, and (C) SARS. The dataset encapsulates images from different 
countries around the world with different resolution, quality, and SNR levels. All images are rescaled with the same factor to illustrate the diver-
sity of the dataset. Sample X-ray images and corresponding ground-truth masks from the segmentation database (right)
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Montgomery and Shenzhen CXR Lung Mask Dataset   This 
dataset consists of 704 CXR images with their correspond-
ing lung segmentation masks. It was used as initial ground-
truth masks to train the segmentation model for identify-
ing lung regions. The dataset was acquired by Shenzhen 
Hospital in China [41], and the Department of Health and 
Human Services of Montgomery County, MD, USA [42]. 
Montgomery dataset consists of 80 normal and 58 unhealthy 
CXR images with lung segmentation masks, while Shenzhen 
dataset compromises 326 normal and 336 unhealthy CXR 
images. Out of 662 CXRs, 566 CXR images have corre-
sponding ground-truth lung masks.

Pre‑processing Techniques

Medical images are sometimes poor in contrast and often 
corrupted by noise due to different sources of interference, 
such as the imaging process and data acquisition. As a result, 
it may become harder to evaluate them visually. Contrast 
enhancement methods can play an important role in improv-
ing the image quality to provide a better interpretable image 
to the medical doctors. Besides, it can boost the performance 
of deep recognition systems. In order to investigate potential 
enhancement on the classification performance, four differ-
ent pre-processing schemes were evaluated in this study: 
original CXR image, which did not undergo any form of 
pre-processing, contrast limited adaptive histogram equali-
zation (CLAHE), image complementation, and finally, the 
combination of the three (original, CLAHE, complemented) 
schemes applied altogether to form a 3-channel approach. 
Histogram equalization (HE) is a technique mainly used with 
images that are predominantly dark to enhance the contrast 
by effectively spreading out the most frequent intensity val-
ues [43]. The HE transformation can be defined as follows:

where X denotes the random variable representing the origi-
nal pixel intensities, px(X = x) is the probability of having 
the pixel intensity x, T(x) is the transformation function, y 
are the new intensities after transformation, and L = 2N is 
the intensity value for an N-bit image (e.g., for an 8-bit gray-
scale image, L-1 = 255 is the maximum intensity value). A 
closer look at Eq. (1) will reveal the fact that T(x) is the 
approximations of the cumulative distribution function 
[43]. An improved histogram equalization (HE) variant is 
called adaptive histogram equalization (AHE). The adaptive 
equalization performs HE over small regions (patches) in 
the image. It improves local contrast and edges adaptively 
in each patch according to the local distribution of pixel 

(1)y = T(x) = (L − 1)

x
∑

i=0

px(X = i)

intensities instead of the global information of the image. 
However, AHE could over-amplify the noise component 
in the image [44]. To address this issue, contrast limited 
adaptive histogram equalization (CLAHE) limits the amount 
of contrast enhancement that can be produced within the 
selected region by a threshold parameter. Therefore, pro-
duced images are more natural in appearance than those 
enhanced by AHE [45]. Besides, the clarification of image 
details is improved [43].

When the HE technique was applied to the CXR 
images, it was observed that it saturates some regions. 
However, CLAHE can overcome this drawback in general. 
For instance, Fig. 3 shows the application of CLAHE and 
HE techniques over a sample CXR image. The histogram 
for the equalized images shows that the values are redis-
tributed across all pixels compared with the histogram 
of the original image. The CLAHE image showed a bell-
shaped histogram as Rayleigh distribution was used for 
the transformation, while the HE showed a flat histogram 
with a uniform distribution. However, the image was satu-
rated in the center of the lungs when the HE technique was 
applied. Besides, some regions of the HE image show a 
sharp brightness difference, whereas the CLAHE image 
exhibits a smooth transition of intensities for adjacent 
pixels. As a result, in this study, CLAHE was used for 
pre-processing the CXR images instead of standard HE.

The image inversion or complement is a technique 
where the zeros become ones and ones become zeros. 
Thus, black and white are reversed in a binary image. For 
an 8-bit grayscale image, the original pixel is subtracted 
from the highest intensity value, 255; the difference is con-
sidered as pixel values for the new image. The mathemati-
cal expression is:

where x and y are the intensity values of the original and the 
transformed (new) images. This technique shows the lungs 
area (i.e., the region of interest) lighter, and the bones are 
darker. As this is a standard procedure, which is used widely 
by radiologists, it may equally help deep networks for a bet-
ter classification. It can be noted that the histogram for the 
complemented image is a flipped copy of the original image 
(Fig. 4).

Finally, as shown in Fig. 5, the 3-channel scheme was 
used as the input to the deep networks, where original, 
CLAHE, and complement images were used altogether. 
The pixel values for each image are concatenated into a sin-
gle matrix in order to create a new image. This 3-channel 
approach is expected to enhance the network performance 
compared to grayscale CXR images as the utilized deep 
CNN classifiers were initially pre-trained on RGB images 
from the ImageNet dataset.

(2)y = 225 − x
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Chest X‑ray Lung Segmentation

Recently U-Net [46] architecture has gained increasing 
popularity in different biomedical imaging applications 
achieving state-of-the-art performance in image segmenta-
tion. In this study, original U-Net architecture is utilized 
to identify the lung regions from the CXR images. U-Net 
model consists of a contracting path with four encoding 
blocks, followed by an expanding path with four decod-
ing blocks. Each encoding block consists of two consecu-
tive 3 × 3 convolutional layers followed by a max-pooling 
layer with a stride of two for downsampling. In contrast, 
the decoding blocks consist of a transposed convolutional 
layer for upsampling, followed by concatenation with the 
corresponding feature map from the contracting path, and 
two subsequent 3 × 3 convolutional layers. The number of 
feature channels is doubled at each downsampling step. 
In contrast, it is halved for each upsampling step. All con-
volutional layers are followed by batch normalization and 
rectified linear unit (ReLU) activation. At the final layer, 
1 × 1 convolution is utilized to map the output from the 
last decoding block to two-channel feature maps, where a 
pixel-wise SoftMax activation function is applied to map 
each pixel into a binary class of background or lung.

Chest X‑ray Classification

Transfer learning is a well-established deep learning 
approach, where gained knowledge from one problem is 
applied to a different but related problem. In this study, four 
pre-trained CNN models, ResNet18 [47], SqueezeNet [48], 
InceptionV3 [49], and DenseNet201 [50] were used to clas-
sify COVID family CXR images. The deep CNNs were pre-
viously trained over the ImageNet database [51]. The rich 
set of powerful and informative features learned by these 
networks was utilized through transfer learning to extract 
specific features of each corona virus-infected lung region. 
The output layer of each network was replaced by a SoftMax 
layer with three neurons to classify the X-ray images into 
one of the following classes: COVID-19, SARS, or MERS.

Overfitting, which is a well-known paradigm for deep 
networks trained over limited size datasets, can drastically 
diminish the generalization performance. The problem 
becomes worse when a high number of training epochs are 
performed where network saturation would eventually occur 
due to the vanishing gradient problem, especially at the first 
hidden layers. With  residual network (ResNet), the vanish-
ing gradient problem with deep CNN networks is solved 
by introducing the concept of shortcut connections, where 

Fig. 3   Comparison between original, HE, and CLAHE equalized X-ray images with corresponding histograms
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the activations of one layer fed to the next layer, are fed to 
the deeper layers as well. ResNet consists of eight residual 
blocks, where each block has two convolutional layers with 
3 × 3 kernels. The depth of the layers increases every two 
blocks as going deeper in the network with layer sizes of 
64, 128, 256, and 512 kernels, respectively. Besides, a 7 × 7 
Convolution layer followed by a pooling layer of stride 2 is 
used at the start and a SoftMax classification layer at the end 
of the network.

InceptionV3 showed improved performance in classify-
ing different types of problems. Typically, larger kernels are 
favored for global features that are distributed over a large 
area of images, while smaller kernels are preferred for an 
area-specific feature that is distributed over an image frame. 
This inspired the idea of inception layers, where kernels 
of different sizes (1 × 1, 3 × 3, and 5 × 5) are concatenated 
within the same layer instead of going deeper in the network. 
The Inception network starts with multiple conventional lay-
ers of 3 × 3 kernel followed by three inception blocks and 
ends with an 8 × 8 global average-pooling layer followed by 
SoftMax classifier. This architecture increases the network 
space, where the best features can be selected by training.

SqueezeNet is the smallest network considered in this 
study with 18 layers only and almost 1.24 million parameters 

compared to 11.7, 20, and 23.9 million parameters for 
Resent18, InceptionV3, and DenseNet201, respectively. 
SqueezeNet introduces fire modules, where a squeeze con-
volutional layer with 1 × 1 kernels is fed to an expand layer 
that has a mix of 3 × 3 and 1 × 1 kernels. The network begins 
with a standalone convolutional layer, followed by eight fire 
blocks, and ends with a convolutional layer followed by a 
SoftMax layer. The number of kernels per fire module is 
increased gradually through the network. The network per-
forms max-pooling operation after the first convolutional 
layer, fourth fire module, and eighth fire module. The com-
pact architecture of SqueezeNet makes it favorable over 
other networks for such problems that it can achieve com-
parable performance.

Unlike the residual networks, DenseNet concatenates all 
feature maps instead of summing residuals. All layers in a 
dense block are densely connected to their subsequent layers, 
receiving more supervision from previous layers. This will 
create compact layers with little redundancy in the learned 
feature, where dense layers can share pieces of collective 
knowledge. DenseNet201 consists of four dense blocks, 
where each block consists of multiple convolution layers 
with 1 × 1 and 3 × 3 filters. The dense blocks are separated 
by transition layers consisting of batch normalization layer, 

Fig. 4   Comparison between 
an original X-ray and its image 
complement
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1 × 1 convolutional layer, and 2 × 2 average pooling layer. 
The network starts with a 7 × 7 convolutional layer followed 
by a 3 × 3 max-pooling layer, both with a stride of 2, and 
ends with a 7 × 7 global average-pooling layer followed by 
a SoftMax layer.

Choosing the best network for a specific problem is usu-
ally a tradeoff between the following two criteria: compu-
tational complexity and classification accuracy. Therefore, 
it is important to investigate different networks to identify 
the best performing structure for a targeted problem. Since 
COVID family CXR images have been investigated for the 
first time in this work, shallow and deep networks with 
sequential, residual, and dense connections were investi-
gated to identify the best performing one.

Visualization using Score‑CAM

Visualization techniques help in understanding the internal 
mechanisms of CNN and the reasoning behind the net-
work making a specific decision. Besides, it interprets the 
results in a way that is easily understandable to a human, 
thereby increasing the confidence of CNN outcomes. The 
likelihood map of pathologies can be generated from deep 
CNN classifiers by utilizing visualization techniques. In 
general, locations with peak values in the heat map cor-
respond to the presence of the disease pattern with a high 
probability. The main visualization technique employed 
in literature is Gradient-weighted class Activation Map 
(Grad-CAM) [52], where activation maps are generated 

by backward passing the gradients of the target class back 
to the final convolutional layer in the network to produce 
the localization map. The localization map Grad-CAM 
Lc
Grad−CAM

∈ ℝ
hxw of height h and width w for class c is 

obtained by first computing the gradients of the score of 
the target class with respect to the feature map Ak as �y

c

�Ak 
where yc is the network output before SoftMax. Next, the 
gradients are backward passed through global average 
pooling to compute the � weights, which highlights the 
importance of feature map k for the decision making of 
target class c:

Finally, a weighted combination of activation maps Ak is 
followed by ReLU to obtain Grad-CAM map:

Recently, Score-CAM [52] was proposed as a promis-
ing alternative to GRAD-CAM. Score-CAM gets rid of the 
dependencies on gradients by obtaining the weight of each 
activation map through forward passing scores of the tar-
get class. Given a CNN model yc = f (CXR) that takes an 
input CXR image and outputs a scalar, yc . The contribution 
of a specific feature map Ak toward output yc is defined as 
follows:

(3)�c
k
=

1

Z

∑

i

∑

j

�yc

�Ak
ij

(4)LC = ReLU(
∑

k

�c
k
Ak)

(5)�c
k
= f

(

CXR ◦ Dk
l

)

− f (CXR)

Fig. 5   Illustration of 3-channel 
scheme
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where

Up(.) denotes the upsampling operation of A into the input 
( CXR ) size, n(.) is a normalization function that maps ele-
ments of the input matrix into [0, 1], and ◦ is the element-
wise multiplication. Finally, the Score-CAM saliency map 
is computed using the same equation as Grad-CAM (Eq. 
(4)). In this study, the Score-CAM method was deployed to 
visualize the classification outputs of the proposed COVID 
family recognition system.

Experimental Setup

The proposed framework is a 2-stage image recognition sys-
tem using the concatenation of lung segmentation and clas-
sification networks. The U-Net segmentation network was 
pre-trained and validated on the Montgomery and Shenzhen 
dataset [41, 42], which consists of 704 CXR images with 
their corresponding lung masks. The pre-trained U-Net 
model was used to create lung masks for COVID-19, MERS, 
and SARS CXR images. The masks created by the trained 
U-Net model were qualitatively assessed to evaluate the 
performance of the segmentation model. Lung masks were 
fine-tuned by the MDs to develop ground-truth masks for 
the QU-COVID-family dataset, which will be released as the 
ground-truth masks for the QU-COVID-family dataset. The 
deep classification networks were evaluated on the compiled 
QU-COVID-family dataset and their corresponding lung 
masks. Two classification schemes were considered: plain 
CXR classification and segmented CXR classification.

Both segmentation and classification networks were 
trained using fivefold cross-validation (CV), with 80% 
train and 20% test (unseen folds), where 20% of train-
ing data is used as a validation set to avoid overfitting. 
Class imbalance in the dataset has a major impact on 
the model performance of deep learning classification 
problems. Therefore, we balanced the size of each class 
in the train set using data augmentation. We performed 
data augmentation by applying rotations of 5, 10, 20, 25, 
and 30 degrees and horizontal and vertical image transla-
tions within the interval [− 0.15, + 0.15] for the SARS and 
MERS images. Table 1 summarizes the number of images 
per class used for training, validation, and testing at each 
fold. U-Net segmentation model was implemented using 
PyTorch library with Python 3.7 while MATLAB 2020a 
was used to train and evaluate the deep CNN classifica-
tion networks (SqueezeNet, ResNet18, InceptionV3, and 
DenseNet201); on Intel® Xeon® CPU E5-2697 v4 @2.30 
GHz and 64 GB RAM, with an 8-GB NVIDIA GeForce 
GTX 1080 GPU card. U-Net model was trained using 
Adam optimizer with learning rate, � = 10−3 , momentum 

(6)Dk
l
= n(Up(Ak

l
))
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updates, �1 = 0.9 and �2 = 0.999 , mini-batch size of 4 
images with 50 backpropagation epochs. On the other 
hand, classification CNN models were trained using sto-
chastic gradient descent (SDG) with momentum optimizer, 
with learning rate, � = 10−3 , momentum update, � = 0.9 
and mini-batch size of 4 images with 10–20 backpropaga-
tion epochs, as shown in Table 2. Early stopping criterion 
of six maximum epochs when no improvement in valida-
tion loss is seen was used for both cases. Fivefold cross-
validation results were accumulated to produce the final 
receiver operating characteristic (ROC) curve, confusion 
matrix, and evaluation metrics.

The performance of different CNNs was assessed using 
different evaluation metrics with 95% confidence inter-
vals (CIs). Accordingly, CI for each evaluation metric was 
computed as follows:

where, N is the number of test samples and z is the level of 
significance that is 1.96 for 95% CI.

Evaluation Metrics for Segmentation Model

The performance of the U-Net segmentation network 
was evaluated on pixel-level, where the foreground (lung 
region) was considered the positive class, and background 
the negative class. Three evaluation metrics were com-
puted to evaluate the segmentation performance:

where accuracy is the ratio of the correctly classified pixels 
among the image pixels. TP, TN, FP, and FN represent the 
true positive, true negative, false positive, and false negative 
respectively.

(7)r = z

√

metric(1 − metric)∕N

(8)Accuracy =
TP + TN

TP + TN + FP + FN

where both IoU and DSC are a statistical measure of spatial 
overlap between the binary ground-truth segmentation mask 
and the predicted segmentation mask, whereas the main dif-
ference is that DSC considers double weight for TP pixels 
(true lung predictions) compared to IoU.

Evaluation Metrics for Classification Models

Five evaluation metrics were considered for the classifica-
tion scheme: accuracy, sensitivity, precision, f1-score, and 
specificity. Per-class values were computed over the overall 
confusion matrix that accumulates all test fold results of the 
fivefold cross-validation.

where accuracy is the ratio of correctly classified CXR sam-
ples among all the data.

where precision is the rate of correctly classified positive 
class CXR samples among all the samples classified as posi-
tive samples.

where sensitivity is the rate of correctly predicted positive 
samples in the positive class samples,

where f1_score is the naïve average of precision and 
sensitivity.

where specificity is the ratio of accurately predicted nega-
tive class samples to all negative class samples. Besides 
classi = COVID_19,MERS or SARS.

The overall performance was computed using the weighted 
average values of each class. The weighted average gives a 

(9)Intersection over Union (IoU) =
TP

TP + FP + FN

(10)

Dice Similarity Coefficient (DSC) =
2 ∗ TP

2 ∗ TP + FP + FN

(11)

Accuracyclass_i =
TPclass_i + TNclass_i

TPclass_i + TNclass_i + FPclass_i + FNclass_i

(12)Precisionclass_i =
TPclass_i

TPclass_i + FPclass_i

(13)Sensitivityclassi =
TPclassi

TPclassi
+ FNclassi

(14)F1_scoreclassi = 2
Precisionclassi × Sensitivityclassi

Precisionclassi + Sensitivityclassi

(15)Specificityclass_i =
TNclass_i

TNclass_i + FPclass_i

Table 2   Details of segmentation and classification models training 
parameters

Training parameters Segmentation 
model

Classification model

Batch size 4 4
Learning rate 0.001 0.001
Learning rate drop factor 0.1 0.1
Max epochs 50 20
Epochs patience 3 3
Epochs stopping criteria 6 6
Optimizer Adam Stochastic gradient 

descent (SGD)
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better estimation of the overall performance as class frequen-
cies vary for the presented problem.

where metric
x
= Accuracy, Precision, Sensitivity, F1score,

or specificity . Finally, class1, class2, and class3 are COVID-
19, MERS, and SARS with n1, n2, and n3 samples, 
respectively.

In the segmentation task, we aimed to minimize the false 
negatives (FNs), which are the misclassified lung pixels, and 
to minimize the false positives (FPs), the background pixels, 
which are misclassified as lung areas to ensure that the network 
learns from the exact region of interest for the subsequent clas-
sification task. Equivalently, we aim to maximize the DSC and 
IoU values. The main objective of our recognition scheme is 
to maximize per class sensitivities for COVID-19, MERS, and 
SARS classes, especially for the COVID-19 class. This ensures 
reliable medical diagnosis, which can save time and resources 
and help in delivering the right treatments for patients in the 
current pandemic.

Results and Discussion

The performance of the proposed 2-stage image recogni-
tion system is detailed in this section. The deep CNN-based 
classification networks were evaluated on the CXR images 
of the compiled QU-COVID-family dataset. Two classifica-
tion schemes (plain and segmented CXR classification) were 
evaluated, and the outcome was interpreted with the help of 
Score-CAM visualization technique.

The U-Net segmentation model was trained and evaluated 
on 704 CXR samples with ground-truth lung masks of the 
Montgomery and Shenzhen dataset as shown in Table 3. The 
model showed promising segmentation performance with 
IoU and DSC of 93.11% and 96.35%, respectively, on the two 
publicly available datasets. The qualitative evaluation of the 
trained U-Net model on the compiled QU-COVID-Family 
dataset is presented in Fig. 6. The model can reliably segment 
the lung images if the lung areas are distinguishable. However, 
the segmentation network suffers from severely infected lungs 
due to the whitened infection area in the lungs. Predicted lung 
masks by the U-Net model were revised by medical doctors 
to ensure that the segmentation masks encapsulate the entire 
lung region. This ensures that neither important lung areas, 
such as peripheral parts with infection, are discarded, nor non-
lung regions, such as heart and spines, are included within the 
lung mask.

(16)
metricx =

n1(metricx_class_1) + n2(metricx_class_2) + n3(metricx_class_3)

n1 + n2 + n3

Table 4 summarizes the classification performances of 
the deep CNN models in terms of the per-class performance 
metrics for plain and segmented X-ray image classifications. 
For each network, four different pre-processing schemes 
(original, CLAHE, complemented, and 3-channel) were 
compared, and the best performing scheme is presented. 
For plain X-ray images, it was observed that SqueezeNet 
achieved the best classification performance on original 
images, while ResNet18 and Inceptionv3 outperformed on 
3-channel images. For the segmented lung X-ray images, 
SqueezeNet and InceptionV3 showed the best performance 
with the original lung images without any pre-processing, 
and InceptionV3 outperformed all the networks. On the 
other hand, ResNet18 and DenseNet201 performed better on 
3-Channel images. In general, the investigated CNN mod-
els showed high COVID-19 sensitivity values (> 96%) for 
segmented data, while it showed varying results with plain 
X-rays. For instance, with plain X-ray, SqueezeNet showed 
91.97% COVID-19 sensitivity, while InceptionV3 showed 
99.53% COVID-19 sensitivity. For SARS and MERS cases, 
the InceptionV3 network achieved the highest sensitivities 
for plain and segmented lung X-ray images. The sensitivi-
ties for MERS and SARS detection were 93.1%/79.68% and 
97.04%/90.26% for plain/segmented lung CXRs, respec-
tively. It is evident that the overall performance for MERS 
detection significantly degrades for the segmented lung 
images. This is most likely due to a large number of lower 
quality CXR images in the MERS dataset. Even though the 
performance degrades with segmented lungs, as the net-
work learns from the main region of interest (lung area), the 
results obtained from the segmented lungs are much more 
reliable.

Figure 7 shows the comparative ROC curves for differ-
ent networks for different pre-processing schemes with plain 
and segmented X-rays. For plain X-rays, it is apparent from 
Fig. 7A that Inceptionv3 outperforms other models over the 
original dataset while DenseNet201 and ResNet18 obtain 
a close performance, even though DenseNet201 is a very 
deep network compared to ResNet18. In contrast, the per-
formance of SqueezeNet is comparable to the significantly 
deeper network, DenseNet201. Interestingly, the perfor-
mances of InceptionV3, ResNet18, and DenseNet201 are 
comparable in the case of CLAHE images, and SqueezeNet 
shows a promising performance as well (Fig. 7B). However, 
there is no notable performance improvement observed by 
this pre-processing scheme rather than making the classifi-
cation less network independent. Figure 7C shows that sig-
nificant performance improvement can be achieved using 
deeper networks with the complemented image. In contrast, 
the performance degrades for ResNet18 and especially for 
SqueezeNet. Figure 7D clearly depicts that the 3-channel 
scheme significantly improves the classification performance 
of InceptionV3 and ResNet18. However, this is not the case 

Table 3   CXR lung segmentation results (%)

Network Accuracy IoU DSC

U-Net 98.21 ± 0.98 93.11 ± 1.87 96.35 ± 1.39
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Fig. 6   Qualitative evaluation of the U-net model. Original X-ray images (left), lung mask generated by the trained U-net model and correspond-
ing segmented lung, fine-tuned mask by the radiologist and their corresponding lung segment
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for DenseNet201 and SqueezeNet. InceptionV3 using a 
3-channel scheme achieved the overall best classification 
performance among the four networks. Interestingly, these 
four pre-trained networks showed similar comparative accu-
racies while evaluated on the ImageNet database [53]. On 
the other hand, with segmented X-rays, the four networks 
showed close performance for different pre-processing 
techniques (Fig. 7E-H). Therefore, it can be concluded that 
proper segmentation can guide the network to learn from 
lung regions mainly. Thus, it makes the classification prob-
lem less dependent on the pre-processing technique. In addi-
tion, it eases the recognition task for the shallow networks, 
allowing them to achieve comparable results to their deeper 
competitors. Consequently, InceptionV3 using the original 
dataset without any pre-processing showed the best clas-
sification performance for segmented X-rays.

Since InceptionV3 is the top-performing network, 
we used this network to investigate the role of differ-
ent pre-processing schemes on the classification per-
formance (Table 5). An interesting observation for the 
plain X-rays is that the network’s performance has been 
significantly dropped for the images enhanced with the 
CLAHE technique, while the complement and 3-chan-
nel approach showed a significant boost in the network 
performance. However, image enhancement techniques 
failed to provide any boost in the network performance 
for the segmented X-ray images. This is most likely 
because the image complement technique was providing 
a performance boost for the plain X-ray images. Thus, 
the 3-channel approach was boosted. On contrary, for the 
segmented lungs, image complement was not showing 
superior performance compared to the original image. 

Table 4   Comparison between four classification networks: SqueezeNet, ResNet18, InceptionV3, and DenseNet201, in terms of accuracy, pre-
cision, sensitivity, F1-score, and specificity (%). The best preprocessing technique is reported for each network  (The best sensitivity of the 
COVID-19 class and overall are shown in bold)
 Input Image Type Network Class Accuracy Precision Sensitivity F1-score Specificity

Plain X-rays SqueezeNet
(Original)

COVID-19 88.27 ± 3.07 89.31 ± 2.94 91.97 ± 2.59 90.48 ± 2.8 82.63 ± 3.61
MERS 91.56 ± 4.54 84.97 ± 5.84 72.09 ± 7.33 77.58 ± 6.81 96.58 ± 2.97
SARS 91.86 ± 4.63 77.32 ± 7.09 81.25 ± 6.61 78.9 ± 6.91 94.36 ± 3.91
Overall 89.77 ± 2.24 86.13 ± 2.56 85.84 ± 2.58 85.98 ± 2.57 88.02 ± 2.4

ResNet18
(3-Channel)

COVID-19 94.04 ± 2.26 92.99 ± 2.43 97.88 ± 1.37 95.29 ± 2.02 88.21 ± 3.07
MERS 96.03 ± 3.19 94.34 ± 3.77 85.49 ± 5.75 89.5 ± 5.01 98.75 ± 1.81
SARS 97.16 ± 2.81 96.17 ± 3.25 88.89 ± 5.32 91.97 ± 4.6 99.12 ± 1.58
Overall 95.02 ± 1.61 93.88 ± 1.77 93.61 ± 1.81 93.74 ± 1.79 92.41 ± 1.96

Inceptionv3
(3-Channel)

COVID-19 97.87 ± 1.38 97.13 ± 1.59 99.53 ± 0.65 98.29 ± 1.24 95.36 ± 2
MERS 98.3 ± 2.11 98.4 ± 2.05 93.1 ± 4.14 95.56 ± 3.36 99.64 ± 0.98
SARS 99.29 ± 1.42 99.2 ± 1.51 97.04 ± 2.87 98.08 ± 2.32 99.82 ± 0.72
Overall 98.22 ± 0.98 97.79 ± 1.09 97.73 ± 1.1 97.76 ± 1.1 97.07 ± 1.25

DenseNet201
(complement)

COVID-19 96.17 ± 1.83 96.55 ± 1.74 97.18 ± 1.58 96.85 ± 1.66 94.64 ± 2.15
MERS 97.02 ± 2.78 93.57 ± 4.01 91.72 ± 4.5 92.63 ± 4.27 98.39 ± 2.06
SARS 98.86 ± 1.8 97.23 ± 2.78 97.04 ± 2.87 97.05 ± 2.86 99.3 ± 1.41
Overall 96.84 ± 1.29 96.07 ± 1.44 96.03 ± 1.45 96.05 ± 1.44 96.28 ± 1.4

Segmented X-rays SqueezeNet
(Original)

COVID-19 92.12 ± 2.57 91.51 ± 2.66 96.22 ± 1.82 93.71 ± 2.31 85.83 ± 3.32
MERS 91.26 ± 4.61 83.01 ± 6.13 71.31 ± 7.39 75.92 ± 6.98 96.41 ± 3.04
SARS 92.88 ± 4.35 82.58 ± 6.42 80.6 ± 6.7 81.28 ± 6.6 95.78 ± 3.4
Overall 88.13 ± 2.39 88.05 ± 2.4 88.13 ± 2.39 88.09 ± 2.4 89.89 ± 2.23

ResNet18
(3-Channel)

COVID-19 93.01 ± 2.43 91.74 ± 2.62 97.16 ± 1.58 94.37 ± 2.2 86.69 ± 3.24
MERS 92.44 ± 4.32 85.27 ± 5.79 76.39 ± 6.94 80.59 ± 6.46 96.59 ± 2.96
SARS 95.44 ± 3.53 91.13 ± 4.81 84.33 ± 6.16 87.6 ± 5.58 98.06 ± 2.34
Overall 91.12 ± 2.11 91.2 ± 2.1 91 ± 2.12 91 ± 2.12 93.58 ± 1.81

Inceptionv3
(Original)

COVID-19 94.84 ± 2.11 94.85 ± 2.11 96.94 ± 1.64 95.82 ± 1.91 91.63 ± 2.64
MERS 93.41 ± 4.05 86.87 ± 5.52 79.68 ± 6.57 82.62 ± 6.19 96.95 ± 2.81
SARS 96 ± 3.32 88.97 ± 5.3 90.26 ± 5.02 89.58 ± 5.17 97.35 ± 2.72
Overall 92.12 ± 1.99 92.08 ± 2 92.12 ± 1.99 92.1 ± 2 93.81 ± 1.78

DenseNet201
(3-Channel)

COVID-19 94.12 ± 2.24 93.2 ± 2.4 97.64 ± 1.45 95.3 ± 2.02 88.74 ± 3.01
MERS 93.27 ± 4.09 89.75 ± 4.95 75.57 ± 7.02 81.93 ± 6.28 97.84 ± 2.37
SARS 94.86 ± 3.74 86.38 ± 5.81 87.21 ± 5.65 86.42 ± 5.8 96.66 ± 3.04
Overall 91.12 ± 2.11 91.18 ± 2.1 91.12 ± 2.11 91.15 ± 2.1 92.11 ± 2
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(C) ROC for CLAHE Equalized X-rays
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Fig. 7   Comparison of the ROC for all folds for four networks using plain X-ray images (A–D) and segmented lung images (E–H): original 
images (A/E), complemented images (B/F), CLAHE images (C/G), and 3-channel images (D/H)
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Therefore, the 3-channel approach did not add any gain 
in the process. In a nutshell, the performance gain from 
a specific pre-processing technique is both problem and 
network dependent. Additionally, for our future work, it 
is worth investigating the effect of the ensemble tech-
nique on the X-ray classification scheme. The ensemble 
approach combines the output from several networks 
trained with different pre-processing techniques to gen-
erate the final classification output. This is different from 
the 3-channel scheme used in this study, where the vari-
ants of the pre-processed X-ray are combined and fed to 
a single network to make the final decision.

Figure 8 shows the overall confusion matrix cumu-
lated from all folds of InceptionV3 network for plain and 

segmented lung X-ray images. It is apparent from Fig. 8 
that the performance of the InceptionV3 has degraded by 
the use of segmentation, and more images were misclas-
sified. However, the network is restricted to learn from 
the lung areas, as confirmed by the Score-CAM saliency 
map (Fig. 9). In contrast, with plain X-rays, the network 
is learning irrelevant features from non-lung regions, such 
as the heart, bones, or background. Figure 10 shows sam-
ple misclassified X-ray images, corresponding lung image 
and Score-CAM visualization for COVID-19, MERS, and 
SARS images to identify the potential reasons of the net-
work failure. It can be seen from Fig. 10 that InceptionV3 
failed to classify the lung images properly if the network 
did not learn from the lung areas exclusively. On the other 

Table 5   Comparison between different pre-processing schemes for the best performing network for COVID-19 recognition, InceptionV3, in 
terms of accuracy, precision, sensitivity, F1-score, and specificity (%) (Best preprocessing method for each input type is shown in bold)

 Input Image Type Preprocessing Class Accuracy Precision Sensitivity F1-score Specificity

Plain X-rays Original COVID-19 92.86 ± 2.45 93.68 ± 2.32 94.54 ± 2.17 94.08 ± 2.25 90.28 ± 2.82
MERS 94.86 ± 3.61 88.48 ± 5.21 86.08 ± 5.65 87.24 ± 5.45 97.12 ± 2.73
SARS 96.57 ± 3.08 91.25 ± 4.78 91.03 ± 4.84 90.98 ± 4.85 97.88 ± 2.44
Overall 93.87 ± 1.78 92.15 ± 1.99 92.13 ± 1.99 92.14 ± 1.99 92.93 ± 1.9

CLAHE COVID-19 90.56 ± 2.79 90.17 ± 2.84 94.79 ± 2.12 92.4 ± 2.53 84.11 ± 3.48
MERS 92.85 ± 4.21 89.22 ± 5.07 74.19 ± 7.15 80.72 ± 6.44 97.67 ± 2.46
SARS 95.71 ± 3.43 88.23 ± 5.46 89.54 ± 5.18 88.71 ± 5.36 97.17 ± 2.81
Overall 92.04 ± 2 89.6 ± 2.26 89.56 ± 2.26 89.58 ± 2.26 89.43 ± 2.28

Image complement COVID-19 96.6 ± 1.73 96.49 ± 1.75 98.12 ± 1.29 97.24 ± 1.56 94.28 ± 2.21
MERS 97.59 ± 2.5 97.75 ± 2.42 90.34 ± 4.83 93.66 ± 3.98 99.46 ± 1.2
SARS 98.44 ± 2.1 95.35 ± 3.57 97.04 ± 2.87 96.02 ± 3.31 98.77 ± 1.87
Overall 97.14 ± 1.23 96.53 ± 1.35 96.31 ± 1.4 96.42 ± 1.38 96.18 ± 1.42

3-Channel COVID-19 97.87 ± 1.38 97.13 ± 1.59 99.53 ± 0.65 98.29 ± 1.24 95.36 ± 2
MERS 98.3 ± 2.11 98.4 ± 2.05 93.1 ± 4.14 95.56 ± 3.36 99.64 ± 0.98
SARS 99.29 ± 1.42 99.2 ± 1.51 97.04 ± 2.87 98.08 ± 2.32 99.82 ± 0.72
Overall 98.22 ± 0.98 97.79 ± 1.09 97.73 ± 1.1 97.76 ± 1.1 97.07 ± 1.25

Segmented X-rays Original COVID-19 94.84 ± 2.11 94.85 ± 2.11 96.94 ± 1.64 95.82 ± 1.91 91.63 ± 2.64
MERS 93.41 ± 4.05 86.87 ± 5.52 79.68 ± 6.57 82.62 ± 6.19 96.95 ± 2.81
SARS 96 ± 3.32 88.97 ± 5.3 90.26 ± 5.02 89.58 ± 5.17 97.35 ± 2.72
Overall 92.12 ± 1.99 92.08 ± 2 92.12 ± 1.99 92.1 ± 2 93.81 ± 1.78

CLAHE COVID-19 94 ± 2.26 94.12 ± 2.24 96.23 ± 1.82 95.11 ± 2.06 90.59 ± 2.78
MERS 93.29 ± 4.09 86.37 ± 5.6 80.49 ± 6.47 83 ± 6.14 96.59 ± 2.96
SARS 94.74 ± 3.78 87.73 ± 5.56 85.81 ± 5.91 86.21 ± 5.84 96.84 ± 2.96
Overall 91.01 ± 2.12 91.3 ± 2.09 91.01 ± 2.12 91.16 ± 2.1 93.02 ± 1.89

Image complement COVID-19 92.55 ± 2.5 92.08 ± 2.57 96.22 ± 1.82 94.02 ± 2.26 86.94 ± 3.21
MERS 93.11 ± 4.14 88.7 ± 5.17 75.47 ± 7.03 80.72 ± 6.44 97.66 ± 2.47
SARS 94.86 ± 3.74 86.13 ± 5.85 87.29 ± 5.64 86.58 ± 5.77 96.65 ± 3.05
Overall 90.26 ± 2.19 90.25 ± 2.2 90.26 ± 2.19 90.25 ± 2.2 90.99 ± 2.12

3-Channel COVID-19 94.56 ± 2.16 95.03 ± 2.07 96.23 ± 1.82 95.56 ± 1.96 92 ± 2.59
MERS 92.83 ± 4.21 84.24 ± 5.95 79.68 ± 6.57 81.56 ± 6.33 96.22 ± 3.11
SARS 94.29 ± 3.93 84.78 ± 6.08 85.75 ± 5.92 85.03 ± 6.04 96.3 ± 3.2
Overall 90.84 ± 2.14 90.85 ± 2.13 90.84 ± 2.14 90.85 ± 2.13 93.68 ± 1.8
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hand, for those images that are correctly classified by the 
network, Score-CAM is showing that the CNN model is 
learning from the entire lung region. Therefore, it can be 
summarized that the reliable segmentation of lungs from  

the X-ray images and the use of segmented X-ray 
images for the classification problem can significantly 
increase the reliability  of AI-based computer-aided-diag-
nostic applications.

Fig. 8   Confusion matrix of all folds for COVID-19, MERS, and SARS for plain (A) and segmented lung (B) X-ray classification using Incep-
tionV3

Fig. 9   Examples of probabilistic 
saliency maps for COVID-19, 
MERS, and SARS patients: (A) 
Plain CXR image, (B) Score-
CAM for plain CXR inferred 
by InceptionV3 network, and 
(C) Score-CAM for segmented 
CXR inferred by InceptionV3 
network
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Fig. 10   Comparison of the 
Score-CAM for correctly clas-
sified and miss-classified lung 
CXR images by InceptionV3

Table 6   Comparing the proposed work with recent literature about automatic COVID-19 diagnosis using CXR images, in terms of achieved 
accuracy, specificity, and sensitivity (%)

Ref Dataset Methodology Lung Seg-
mentation

Best Network Accuracy Specificity Sensitivity

[16] 25 COVID-19,
25 Viral/Bacterial Pneumonia

Classification:
COVID-19/
Pneumonia

No Pretrained CNN as a 
feature

extractor:
ResNet50

95.4 93.4 97.2

[18] 224 COVID-19
714 viral/bacterial pneumonia
504 normal

Classification:
COVID-19/
Pneumonia/
Normal

No Pretrained CNN:
MobileNetv2

96.7 96.5 98.7

[19] 358 COVID-19
8,066 viral/bacterial Pneumonia
5,538 normal

Classification:
COVID-19/
Pneumonia/
Normal

No Proposed CNN:
COVID-Net

93.3 N/A 93.3

[20] 403 COVID-19
721 normal

Classification:
COVID-19/
Normal

No Pretrained CNN:
VGG16

95 97 90

[21] 423 COVID-19
1485 Viral Pneumonia
1579 normal

Classification:
COVID-19/
Viral /
Normal

No Pretrained CNN:
DenseNet201

97.9 97.9 97.9

[26] 180 COVID-19
20 viral-pneumonia
54 bacterial-pneumonia
57 tuberculosis
191 normal

Viral pneumonia 
(including COVID-
19)/

Bacterial Pneumonia/
Tuberculosis/Normal

Yes Patch-based classification:
ResNet-50

88.9 96.6 85.9

This work 423 COVID-19/144 
MERS/134 SARS

Classification:
COVID-19/
SARS/
MERS

Yes Pretrained CNN:
3-Channel Inception V3

98.2/
92.12

97.07/
93.8

97.7/
92.12
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Conclusion

In this study, we aim to investigate if it is possible to dis-
criminate coronavirus family (COVID-19, MERS, and 
SARS) infestations directly from CXR images. For this 
purpose, we trained and evaluated several state-of-the-art 
Deep Learning networks. To accomplish this objective, we 
compiled a unique dataset, so-called QU-COIVD-family 
that will be released along with this study as a benchmark 
dataset in this domain. The dataset encapsulating 701 X-ray 
images from numerous countries (e.g., Italy, Spain, China, 
etc.) and different X-ray machines with varying quality, 
resolution, and noise levels. Due to the scarcity of the data, 
we have used the transfer-learning paradigm with certain 
data augmentation and several pre-processing schemes 
to improve the classification performance and robust-
ness. We proposed a cascaded COVID family recognition 
system, where first lung regions are identified using the 
U-Net model, and then a deep CNN classifier (SqueezeNet, 
ResNet18, DenseNet201, or InceptionV3) is used to clas-
sify the patient as COVID-19, MERS, or SARS. The pro-
posed system was evaluated on two recognition schemes: 
plain X-ray classification and segmented X-ray classifica-
tion. InceptionV3 model with 3-channel data yields the 
best performance for the first scheme with 98.2% accuracy, 
97.8% precision, 97.7% sensitivity, 97.8% f1-score, and 
97.1% specificity. In contrast, InceptionV3 with segmented 
lungs from the original X-ray images showed the best 
results with 92.2% accuracy, 92.1% precision, 92.1% sen-
sitivity, 92.1% f1-score, and 93.8% specificity. Even though 
segmented CXR showed lower performance compared to 
plain X-ray classification, their results are more reliable 
and trustworthy as the network is restricted to learn only 
from the lung areas. Furthermore, all networks showed 
high COVID-19 sensitivity (> 96%) with segmented lung 
images. This indicates the unique radiographic signature 
of COVID-19 cases in the eyes of AI, which is often a 
challenging task for medical doctors. Besides, compar-
ing the achieved results with recent literature as shown in 
Table 6, our proposed model performed very well. More-
over, several interesting observations can be made from 
the obtained results. Firstly, the proposed pre-processing 
schemes can be useful particularly for some networks and 
can improve network performance significantly. In particu-
lar, the 3-channel scheme yielded the overall best perfor-
mance level for the deep CNN, InceptionV3; however, it 
cannot be generalized for all networks. This shows that the 
performance gain from a particular pre-processing scheme 
is both network and problem dependent. A close look at 
the successful and failed cases reveals the fact that CNN 
was learning predominantly from the segmented lung X-ray 
images for the successful cases while that was not the case 

for the miss-classified images. Therefore, lung segmenta-
tion along with Score-CAM-based visualization technique 
can significantly help to produce reliable performance from 
the deep learning models in the computer-aided-diagnostic 
applications.
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