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Abstract
Intraday trading is popular among traders due to its ability to leverage price fluctuations in a short timeframe. For traders, 
real-time price predictions for the next few minutes can be beneficial for making strategies. Real-time prediction is chal-
lenging due to the stock market’s non-stationary, complex, noisy, chaotic, dynamic, volatile, and non-parametric nature. 
Machine learning models are considered effective for stock forecasting, yet, their hyperparameters need tuning with the latest 
market data to incorporate the market’s complexities. Usually, models are trained and tested in batches, which smooths the 
correction process and speeds up the learning. When making intraday stock predictions, the models should forecast for each 
instance in contrast to the whole batch and learn simultaneously to ensure high accuracy. In this paper, we propose a strategy 
based on two different learning approaches: incremental learning and Offline–Online learning, to forecast the stock price 
using the real-time stream of the live market. In incremental learning, the model is updated continuously upon receiving the 
stock’s next instance from the live-stream, while in Offline-Online learning, the model is retrained after each trading session 
to make sure it incorporates the latest data complexities. These methods were applied to univariate time-series (established 
from historical stock price) and multivariate time-series (considering historical stock price as well as technical indicators). 
Extensive experiments were performed on the eight most liquid stocks listed on the American NASDAQ and Indian NSE 
stock exchanges, respectively. The Offline–Online models outperformed incremental models in terms of low forecasting error.

Keywords  Real-time forecasting · Incremental learning · Technical indicator · Intraday trading

1  Introduction

Stock prices are affected by several micro and macro fac-
tors, such as the global economy, healthcare situation, oil 
prices, interest rates, news articles, public sentiment, etc. 
It is a significant task for financial companies to forecast 
stock prices, and rational forecasts can mitigate market risks 
and produce substantial returns. Several papers and studies 
have been devoted to making the best predictions and models 
possible based on the presence of many factors. The com-
plexity of stock price prediction has made it a challenging 
problem, which has resulted in several papers and studies 
trying to make the most accurate predictions and models 
possible, owing to the massive potential for profit associ-
ated with them. In high-frequency trading, there is a large 
volume of orders, proprietary trading, and a short retention 
period, according to the Securities and Exchange Commis-
sion (Menkveld 2013). According to Aldridge and Krawciw, 
the most typical deal in 2016 started at 10%–40% of trading 
volume and 10%–15% of exchange rate and assets (Aldridge 

Riya Kalra, Suryanshi Mishra, Satakshi and Manish Kumar have 
contributed equally to this work.

 *	 Tinku Singh 
	 rsi2018006@iiita.ac.in

	 Riya Kalra 
	 mit2021055@iiita.ac.in

	 Suryanshi Mishra 
	 suryanshimishra2496@gmail.com

	 Satakshi 
	 satakshi@shiats.edu.in

	 Manish Kumar 
	 manish@iiita.ac.in

1	 Department of IT, Indian Institute of Information 
Technology Allahabad, Prayagraj, U.P., India

2	 Department of Mathematics and Statistics, SHUATS, 
Prayagraj, U.P., India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-022-09481-x&domain=pdf
http://orcid.org/0000-0002-9146-8682


920	 Evolving Systems (2023) 14:919–937

1 3

and Krawciw 2017). The frequency of performance tasks in 
the stock market has escalated to a fraction of a second due 
to the enormous expansion of the internet (Bagheri et al. 
2014). High-frequency trading is currently a very popular 
form of trading whose sole aim is to maximize profits by 
buying and selling stocks in a short span. Data patterns may 
be more valuable than sentiments and news articles. Since 
most of the news surrounding stocks is not generated regu-
larly, only those posted on Twitter and other outlets can be 
accessed. Because of the difficulty of analyzing so many 
factors simultaneously, this study focuses on high-frequency 
data, i.e., short-interval stock prices, to predict the current 
price.

Since stock market data is generated periodically, it is 
considered time-series data. Stock market data is a series of 
time-ordered data points associated with single or multiple 
time-dependent variables. It has local and global patterns 
produced by the movements of prices on a chart and is the 
basis of technical analysis. Time-series can be classified as 
univariate or multivariate. Univariate time-series models 
only have one dependent variable, whereas multivariate 
models consider multiple factors. Training a univariate time-
series model simply relies on past price movements. While 
the current stock price is affected by many factors, such as 
the closing or opening price, univariate predictive models 
reduce this complexity to a single factor and ignore all other 
dimensions. Multivariate time-series forecasting models take 
into account a variety of factors, such as the relationship 
between closing and opening prices, various technical indi-
cators, daily highs and lows, and moving averages. When 
dealing with stock market data, several time-series compo-
nents like trends, periodic swings, seasonal patterns, and 
random volatility might contribute to improved stock price 
forecasting. The trends are the result of long-term effects 
and can increase or decrease the time-series value over time. 
Periodic swings occur over the length of a time-series and 
are aimed at capturing short to medium-term gains in stock 
prices. Irregular movements exhibit rapid changes in time-
series that are difficult to repeat, such as COVID’19.

Forecasting stock market trends based on live-streaming 
data has been a challenge for financial analysts and research-
ers. A streaming data process differs from traditional pro-
cessing tools, which store and process data in batches. Stock 
prediction is one of the most widely used applications that 
require the real-time processing of streaming data. However, 
making decisions is challenging due to the market’s com-
plexity and chaotic dynamics, as well as the numerous non-
stationary, undecidable, and unpredictable factors involved. 
The need to estimate the domestic stock market in several 
countries makes accurate forecasting even more challenging 
because there are various cultures, traditions, and diverse 
sources that may impact investors’ decision-making pro-
cesses. Based on previous trends in financial time-series, 

professionals from diverse sectors have created numerous 
forecasting methodologies. To achieve promising perfor-
mance, most of these methods require careful selection of 
the input variables, the establishment of a predictive model 
coupled with professional financial knowledge, and the use 
of various statistical methods. As a result, it is difficult for 
people outside of the financial industry to estimate stock 
values using such approaches. The fluctuating nature of data 
and the heterogeneity of data types makes forecasting more 
complex based on technical analysis. Our main objective is 
to devise a lightweight prediction for the number of compa-
nies with fair accuracy, useful enough for intraday trading.

The objective of this study is to predict the closing price 
of stocks for the coming 15 mins utilizing the current stock 
price extracted through streaming data along with technical 
indicators calculated through this data to improve accuracy. 
The idea is to train a model using high-frequency histori-
cal stock market data at short intervals and then apply it in 
real-time. It is difficult to spot a trend over a short period, 
such as 1 min or 5 mins because there is a lot of noise. 
With a longer time frame, such as 15 mins, it can be easier 
to identify patterns, support, and resistance. Therefore, in 
order to get more reliable outcomes, we will use the data 
stream of a 15-min interval for real-time forecasting. Two 
different approaches have been adopted for the study: incre-
mental learning, where the model will update with every 
single collected current stock price from the data stream, 
and Offline–Online, where the model is retrained at the end 
of every trading session. Incremental linear regression has 
been utilized for incremental models, while the variants of 
LSTM and CNN have been adopted for forecasting through 
Offline–Online models. In the Offline–Online approach, 
Offline involves analyzing a batch of data and optimizing the 
model to make a prediction, whereas Online refers to taking 
samples from the streaming data and making the prediction. 
However, incremental learning targets building a learning 
model that adapts to new data without losing any existing 
knowledge. In the Offline–Online approach, the model is not 
fine-tuned on receiving every new instance from the stream, 
although it is tuned after each trading session since the stock 
market might be impacted by multiple factors throughout a 
session. The incremental learning model updates with each 
stream instance, so it does not require retraining with the 
entire dataset.

This paper makes the following contributions:

•	 Stock prices are transformed from a univariate to a mul-
tivariate time-series with technical indicators, which 
allows for better forecasting.

•	 The paper utilizes deep learning models in real-time 
forecasting, which has been achieved through the model 
training after the entire trading session, rather than after 
retrieving the next stock instance, while real-time lag val-
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ues and technical indicators of the stocks are maintained 
using local variables.

•	 Offline-Online and incremental learning approaches are 
compared for real-time forecasting.

•	 It empirically demonstrates the performance of the pro-
posed system on the eight most liquid stocks of the NAS-
DAQ and NSE, respectively, for one year.

2 � Literature review

A stock market forecast involves predicting the future move-
ment of a stock’s value on a financial exchange. The efficient 
forecasting of share prices offers investors great profit poten-
tial, and correctly predicting the price movement within a 
short span can result in substantial profits. Several methods 
have been proposed for forecasting the market and providing 
decision-making guidance. Stock prices, rather than being 
stochastic, can be viewed as discrete time-series that are 
based on well-defined numbers collected at regular intervals 
of time. To build the forecasting model, the time-series data 
must be stationary. The differencing approach can be applied 
to obtain stationary data from a non-stationary time-series. 
On the other hand, the trend information in the time-series 
will be ignored by the differencing technique. Different 
methods can be applied in this area, including statistical 
methods and machine learning models. Generally, statisti-
cal models assume that there is a linear correlation structure 
among the time-series values. However, the nature of the 
stock market time-series is non-linear, volatile, chaotic and 
highly noisy (Alves et al. 2018). The autoregressive method 
(AR), the moving average model (MA), the combination of 
both AR and MA, i.e., the autoregressive moving average 
model (ARMA), and the autoregressive integrated moving 
average (ARIMA) are all traditional statistical methods. The 
ARIMA model’s popularity originates from its statistical 
features as well as the notable Box-Jenkins model-building 
methodology. However, ARIMA models are not able to cap-
ture nonlinear patterns, and resembling complex real-life 
problems with linear models is not always practical (Zhang 
2003). The researchers proposed the Grader causality test, 
which elongates the analysis from a univariate to a multi-
variate time-series analysis. Using the vector autoregressive 
moving average (VARMA), a multivariate time-series fore-
casting model was developed, which can represent Vector 
Moving Average (VMA) and Vector Autoregressive (VAR) 
models flexibly (Liu et al. 2021). Using a generalized autore-
gressive conditional heteroscedastic (GARCH) model for 
conditional variances, Pellegrini et al. (2011) apply the 
ARIMA-GARCH model to the forecasting of a financial 
series. Since the ARIMA-GARCH models never converge 
to homoscedastic intervals, their prediction intervals may 
be inadequate.

Traditional time-series forecasting algorithms can capture 
linear correlations and yield good results for a small data-
set. But these algorithms are not very effective when used 
for time-series that are large and complex, such as stock 
market time-series (Liu et al. 2021). As a result, researchers 
focused increasingly on machine learning and deep learning 
methods in this domain. Javed Awan et al. (2021) utilized 
machine learning algorithms and sentiment analysis for fore-
casting stock prices. As per the outcomes, linear regression, 
extended linear regression, and random forest produce more 
accurate outcomes than the decision tree. Several studies 
have used linear and non-linear support vector machines 
(SVMs) for the forecasting of financial time-series (Cao 
and Tay 2001; Kim 2003; Maguluri and Ragupathy 2020). 
However, overfitting is a problem with these models, and 
the algorithms are not good at predicting large datasets. As 
compared to other models, support vector regression has bet-
ter accuracy, according to Behera et al. (2020). Tuarob et al. 
(2021) created an end-to-end framework containing three 
sub-models, i.e., Davis-C for data collection related to stocks 
in real-time, Davis-A for analysis, and Davis-V for visuali-
zation. Their framework demonstrates that a combination 
of machine learning algorithms outperforms a standalone 
machine learning algorithm by large margins. Vijh et al. 
(2020) developed two models: one that predicts the price 
trends for the next day using historical data, and another 
that predicts the price trends for the next month using his-
torical data. They employed Logistic Regression, SVM, and 
Boosted Decision Tree to forecast the trend based on volume 
volatility, sentiment, and continuous up/down.

In recent years, deep learning methods have become 
increasingly popular for predicting stock market moves. 
From complex and inconsistent data, these approaches can 
extract significant characteristics and detect underlying 
nonlinearities without relying on human skill (Kumar et al. 
2021). Several experts have used deep learning to improve 
stock forecasting and produce profits for shareholders. In 
financial time-series forecasting, deep learning methods 
like artificial neural networks (ANN), convolutional neu-
ral networks (CNN), long-short-term memory (LSTM), 
hybrid algorithms, and others lead to better outcomes than 
statistical and machine learning methods. Vijh et al. (2020) 
explored the ANN and Random Forest on multivariate 
time-series on five stocks to forecast the next day’s clos-
ing price using features such as the previous day’s open 
price, closing price, Moving Average, Highs, and Lows. 
Lu et al. (2020) proposed a hybrid CNN-LSTM stock fore-
casting method. The authors compared the suggested mod-
el’s performance to that of MLP, CNN, RNN, LSTM, and 
CNN-RNN on the Shanghai Composite Index. According 
to the experimental findings, the CNN-LSTM came up 
with the most accurate stock price forecasting, with an 
MAE of 27.564 and an RMSE of 39.688. Wen et al. (2020) 
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utilized the PCA-LSTM, which used the PCA (Principal 
Component Analysis) technique to identify technical indi-
cator features and decrease dimensionality, yielding more 
accurate forecasts. DJI. Ince and Trafalis (2008) focused 
on short-term forecasts and used the SVM model in stock 
price forecasts. Specifically, their main contribution con-
sists of comparing MLPs with SVMs and finding condi-
tions where SVM is more effective than MLP. Moreover, 
different trading strategies affect the results. They contrib-
ute primarily by comparing MLP and SVM and finding 
cases in which SVM works better than MLP. Moreover, 
different trading strategies also affect the results. Dan et al. 
(2014) demonstrated the forecasting capabilities of deter-
ministic Echo State Networks (ESNs) in stock prediction 
applications. Their experiments with the S & P 500 dataset 
show that the deterministic ESNs have improved their effi-
ciency by about 23% compared to the standard ESN while 
demonstrating a negligible gain in predicting accuracy. Li 
et al. (2022) presented an effective deep learning-based 
BiGRU-attention model for short-term voltage stability 
assessment. It extracts temporal relationships and per-
forms well even with a limited training dataset.

Intraday traders work with minute-based or sometimes 
even second-based stock market data. As a result, it is very 
crucial to determine how to analyze useful information and 
identify whether the forecasting method can be effective in 
real-time on high-frequency stock market data. Shakva et al. 
(2018), utilized ANN to predict stock prices on the Nepal 
Stock Exchange. The authors tried to predict the percentage 
increase or decrease in stock prices every second minute. 
They used technical indicators along with the data from 
the past 30 min. Selvamuthu et al. (2019) proposed the use 
of Levenberg-Marquardt, Scaled Conjugate Gradient, and 
Bayesian Regularization algorithms for predicting stock 
prices on a common ANN architecture of 20 hidden layers. 
They used the high-frequency dataset of Reliance Private 
Ltd. from Thomson Reuter over one year with 15,000 data 
points per day and were able to obtain a MAPE of 99.9% 
using tick data and 98.9% over a 15-minute dataset. Zhou 
et al. (2018) present a generic framework for adversarial 
training to anticipate the high-frequency stock market using 
LSTM and CNN. To avoid complex financial theory research 
and challenging technical analysis, this model employs a 
publicly available index offered by trading software as an 
input, which makes it more suitable for the typical non-
financial trader. Liu et al. (2021) suggest a general frame-
work for automatically developing a high-frequency trading 
strategy using a PPO-based agent. The study compares the 
LSTM and MLP for price prediction based on bitcoin prices 
in real-time. The study demonstrates the effectiveness of a 
PPO-based LSTM agent over an MLP, which earns high 
returns even when the market is in a slump and the price 
fluctuates.

According to the literature survey, most of the papers 
only forecast using historical data and do not operate with 
real-time data. The majority of them utilize historical day-
to-day closing prices rather than current stock prices and 
do not deal with short time intervals such as five minutes 
or fifteen minutes. Stock market data is highly volatile and 
produced in massive amounts, making it difficult to man-
age and much more difficult to forecast. A majority of the 
studies used univariate stock market forecasting models, 
which do not take advantage of the technical indicators 
and other influential features to improve their accuracy. To 
leverage the advantages of technical indicators, we have 
converted the univariate stock series to a multivariate 
series. Deep learning models are effective in stock fore-
casting but have limitations like complex model training 
and a long training time, which makes it challenging to 
train the model in real-time on the new stock instances. 
The motivation of this research is to use deep learning 
models in real-time to forecast high-frequency stock data 
and to leverage the advantages of technical indicators by 
converting the univariate stock series to a multivariate 
series. The system in this paper aims to fill the void left 
by existing models for high-frequency trading.

3 � Dataset

The forecasting would be centered around high-volume 
stocks since intraday traders tend to be most interested in 
them because of buyers’ and sellers’ availability through-
out the trading session. For this study, we selected financial 
time-series (stocks) from the Indian and U.S. stock markets. 
The Bombay Stock Exchange (BSE) and the National Stock 
Exchange (NSE) are India’s two major stock exchanges. We 
selected NSE because the volumes traded there are far higher 
than those traded on BSE. NIFTY 50 is an index of the top 
50 companies listed on the NSE; we considered the top eight 
Nifty-50 stocks (India NSE 2001). There are two major stock 
exchanges in the United States: NASDAQ and the New York 
Stock Exchange (NYSE). Due to the NASDAQ’s volatil-
ity and the number of listed companies, we will be using 
NASDAQ-traded stocks instead of NYSE stocks. According 
to market capitalization, the NASDAQ-100 is an index of 
the top 100 publicly traded companies, so eight of the most 
traded stocks were selected for the study (Nasdaq 2022). The 
selected stock from both exchanges can be seen in Table 1.

The high-frequency historical data of 15-min time inter-
vals and live feeds of NSE stocks have been extracted using 
web-scraping through Zerodha API [27]. AlphaVantage API 
provided both real-time as well as historical stock prices for 
NASDAQ stocks [28]. A snapshot of the live-streamed stock 
prices is presented in Fig. 1.
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4 � Methodology

This study analyzes time-series forecasting models for effi-
cient forecasting of stock prices utilizing high-frequency 
data (15-min intervals). The proposed approach is based 

on two different learning methods: incremental learning 
and Offline-Online learning. These methods are applied 
to univariate and multivariate time-series. The univariate 
time-series was created using stock prices, whereas the 
multivariate time-series was created using stock prices in 
conjunction with exponential moving averages (EMAs) 
and volume-weighted average prices (VWAPs). The incre-
mental model is continuously updated as it receives new 
instances of the stock price from the live feed of the stock 
market. On the other hand, the Offline–Online learning 
model needs to be retrained after every trading session. 
A retraining of the model will enable it to adapt to the 
current market trends, volatility, and seasonality. Figure 2 
displays a visual representation of the methodology.

A pre-processing step is required before the model can 
be adapted for forecasting. Preprocessing includes removing 
null values and duplicate instances, verifying the order of 

Table 1   Selected stocks for 
study

 S. No. NSE stocks NASDAQ Stocks

1 RELIANCE INDUSTRIES (RELIANCE) APPLE (AAPL)
2 HDFC BANK (HDFCBANK) MICROSOFT (MSFT)
3 INFOSYS (INFY) AMAZON (AMZN)
4 ICICI BANK (ICICIBANK) GOOGLE (GOOGL)
5 HDFC (HDFC) NVIDIA (NVDA)
6 TATA CONSULTANCY SERVICES (TCS) TESLA (TSLA)
7 KOTAK MAHINDRA BANK (KOTAKBANK) BERKSHIRE HATH-

WAY (BRK-B)
8 ITC LTD. (ITC) FACEBOOK (FB)

Fig. 1   Snapshot of Live stream format of extracted data

Fig. 2   Proposed model
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instances, and finally converting the string date-time value 
containing UTC into a numerical timestamp. To perform 
the forecasting of the high-frequency stock market data, it is 
mathematically suitable to consider the time-series analysis 
with this condition {Yt|t ∈ T} . A special type of examining 
stock prices (sequence of instances) collected over an inter-
val of time is known as a “time-series analysis” (González 
et al. 2017). A time-series process {Yt| t ∈ T} , is a stochas-
tic process in which a set of random variables is ordered 
through time. T stands for index sets, which are distinct and 
separated evenly in time. Random variable Yt is continuous. 
Let i ∈ ℕ, T ⊆ ℝ . A function y ∶ T → ℝ

i , t → yt or, simi-
larly, a set of indexed elements of ℝi,

is called an observed time-series. It can also written as: 
yt(t ∈ T) or (yt)t∈T.

The variance function (fluctuation) of a time-series pro-
cess (Xt) is defined as if ∀t ∈ T:

For historical stock data, if we assume that the mean and 
variance are constant then, �t = � and �2

t
= �t.

Therefore, the obvious estimate is:

A candlestick chart of the time-series for TCS over a 
15-minute interval can be seen in Fig. 3. The stock prices 
are not generated at random but rather as a discrete-time-
series created by collecting the numerical values at regular 
intervals. A candlestick shows the open, high, low, and close 
prices over an interval. Red candles represent the current 

{yt|yt ∈ ℝ
i
, t ∈ T}

�2

t
= Var[Yt], �

2

t
= E[Y2

t
] − E[Yt]

2
,∀t ∈ T

𝜇̂ =
1

n

n∑

t=1

Yt;𝜎̂
2 =

1

n − 1

n∑

t=1

(Yt − 𝜇)2

closing price being higher than the previous candle’s closing 
price, while green candles represent the lower price.

4.1 � Technical indicators

In order to be effective in stock price prediction, traders uti-
lize technical charts by analyzing price actions and techni-
cal indicators. There are numerous technical indicators that 
intraday traders use to determine when to buy or sell a par-
ticular stock, such as MACD and RSI. However, to capture 
current trends, EMA(d) and VWAP are both suitable indica-
tors. EMA(d) is the average price of the stock in the previous 
d data points weighted exponentially (this way the prices 
of recent data points are given more weight). Since EMAs 
focus on recent price movements, they tend to respond more 
quickly to price changes. When trading intraday, it is con-
sidered reliable to use the value 5 to 20 for d in EMA(d). It 
can be calculated as:

where EMAt, Yt denotes the EMA and closing price respec-
tively at time t, and � is a smoothness coefficient between 
0 and 1 that denotes the degree of weight reduction. For d 
previous observations � can be computed as:

VWAP indicates the average price of the stock being traded 
in a day based on both price and volume. It is the ratio 
between the stock value and volume traded in a specific 
period. The indicator only works for one trading session and 
resets at the beginning of the next trading session. Suppose 
(Chen et al. 2013) that we have a large order v that must be 
executed during a specified time interval T. In that case, we 
must slice it into several smaller orders vi and trade them 
over the time interval i from ti−1 to ti ( ti = i ∗ L + t0 , where 
L is the length of each time interval and t0 is the start time 
for the trade).

n = L∕T  denotes the trading periods, while v =
∑n

i=1
vi 

represents the time interval. To generate the multivariate 
time-series, the EMA(10) and VWAP are calculated using 
historical stock data, and the resultant series are combined 
with the stock price to get the final series.

4.2 � Correlation/covariance analysis

The covariance and correlation functions define the level of 
dependency between the variables for any stock instances 

EMAt = � ⋅ Yt + (1 − �) ⋅ EMA(t−1)

� = 2∕(d + 1)

VWAPS =

∑n

i=1
pi ∗ vi

v

Fig. 3   Time-series of Stock Price
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(random variables) Xp and Xq . Auto-covariance function 
(ACVF) of the time-series {Xp,Xq|p, q ∈ T} is defined as,

�p,q ∶ Auto-covariance function of the given time-series.
The auto-correlation function (ACF) for the stochastic pro-

cess is defined as:

For any two sets of stock instances (r1, r2, ..., rn) and 
(s1, s2, ....., sn) , the sample of covariance and correlation 
functions are given as:

𝜌̂r,s ∶ Auto-correlation function of the stochastic process. 
However, for time-series data the ACVF and ACF measure 
the covariance/correlation between the single time-series 
(r1, r2, ..., rn) and itself at different lags.

Using Eq. 1 & 2 at lag 0, the ACVF 𝛾̂0 , is the covariance of 
(r1, r2, ..., rn) with (r1, r2, ..., rn) (or same series) and itself then,

Similarly, the ACF 𝜌̂0 , the correlation lies itself then,

The auto-correlation function (ACF) & partial auto-corre-
lation function (PACF) can be utilized to describe the order 
of stock price movements [31]. Let Yt be the stationary time-
series and Yt−h with the lagged value of h. PACF estimates 
the degree of correlation between Yt and Yt−h but ignores the 
other time lags. We can predict x and y3 with the help of y1 
and y2 variables:

Cov[Xp,Xq] = E[(Xp − E[Xp])(Xq − E[Xq])]

�p,q = Cov[Xp,Xq] = E[XpXq] − E[Xp]E[Xq]

Corr[Xp,Xq] =
Cov[Xp,Xq]

√
Var[Xp]Var[Xq]

(1)𝛾̂r,s =
1

n − 1

n∑

t=1

(rt − r̄)(st − s̄)

(2)𝜌̂r,s =

∑n

t=1
(rt − r̄)(st − s̄)

�∑n

t=1
(rt − r̄)2

∑n

t=1
(st − s̄)2

𝛾̂0 =
1

n − 1

n∑

t=1

(rt − r̄)(rt − r̄)

𝛾̂0 =
1

n − 1

n∑

t=1

(rt − r̄)2

𝜌̂0 =

∑n

t=1
(rt − r̄)(rt − r̄)

�∑n

t=1
(rt − r̄)2

∑n

t=1
(rt − r̄)2

𝜌̂0 =

∑n

t=1
(rt − r̄)(rt − r̄)

∑n

t=1
(rt − r̄)

∑n

t=1
(rt − r̄)

= 1

Here, y1, y2, and y3 are the regression coefficients. In regres-
sion, x is a response variable, while the predictor variables 
are y1, y2, and y3 . A partial correlation exists between x and 
y3 , describing their association with y1 and y2 and indicating 
how dependent they are on one another. We define first-order 
with partial auto-correlation as being equal to first-order 
auto-correlation.

Based on Fig. 4 it can be observed that lag values of 
15 min before at position 1 have a strong positive correlation 
with the current observations. In all three features, VWAP, 
Price, and EMA, the correlation is strong up to the lag value 
of 3 or up to 45 min, but beyond that, the correlation is not 
significant. Based on the analysis, a maximum of three lags 
are required for reliable forecasting. Furthermore, the lag 
values (3, 9, 27) were tested for reliability and consistency 
with the models in this study, and lag 3 was found to be 
reasonable in most scenarios.

4.3 � Incremental approach

A stock price forecast is first derived through an incremen-
tal model. It uses incremental linear regression to predict 
the stock price for the next interval. Once the actual price 
for the next instance is captured through the data stream, it 
will estimate the prediction accuracy and update the model 
accordingly. The machine learning technique of incremental 
learning extends the existing model’s knowledge by con-
tinuously using input data, i.e., by further training, it (Iscen 
et al. 2020). The ordered pair of (yj, zj) is denoted by the jth 
pair of input and output observations. In the stock market, 
the correct output is considered to be F(yj) if the system 
has provided data specified by a function F  . As a conse-
quence of systematic noise or measurement error, the meas-
ured output zj is consistent with zj = F(yj) + �j , where �j is 
inevitable, but hopefully, it is the minor term. If the function 
F  has a mth pair of observations, these ordered pairs are: 
{(y1, z1), (y2, z2), ..., (ym, zm)} . Even if we use F(y) to estimate 
z for an unobserved y, it will define a loss function L(z,F(y)) 
to evaluate the error which will occur. New observations that 
occur outside of our training set are classified as unobserved 
y. Here, the loss functions of the target function are F .

Due to the linear regression, a linear function of the input 
vector is F(y) = WTy . Assume the loss function of the loss 
squared function is:

Therefore, the gradient of L with regard to a weight vector 
is defined as:

Cov(x, y3�y1, y2)√
Var(x�y1, y2)Var(y3�y1, y2)

L(z,WTy) = (z −WTy)2
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Since the gradient represents the increased direction of the 
function, if we want the squared loss to decrease, we have 
to move the weight vector in the opposite direction of the 
gradient. We get the tth observation yt at time t, and we may 
estimate the outcome as follows:

Updated estimate of W is defined as:

where 𝜌t > 0 is known as step size. The step size is given as

for some predefined constant �o . The cumulative regret after 
t steps provides as a metric of effectiveness, which is defined 
as:

Eq.(3), which is utilized in a financial decision-making sys-
tem, where WTyt is the optimum at step t, and the regret 
quantifies the total losses due to the non-optimal decisions.

4.4 � Offline–online approach

For the Offline–online approach, financial time-series need to 
be converted into supervised learning problems to train a model. 
Since the model learns a function that maps a sequence of past 
observations as input to an output observation while it’s being 
trained. That’s why the dataset has to be prepared in the form of 

∇WL = −2(z −WTy)y

ẑt = WT
t−1

yt

Wt = Wt−1 + 𝜌t(zt + ẑt)yt

�t =
�o√
t

(3)Regret =

T∑

t=1

(zt − ẑt) −

T∑

t=1

(zt −WT
t
yt)

2

input samples. Each sample will take the current timestamp obser-
vation as the target value with n number of the previous instance 
as features where n is called lag observations. The model is trained 
after every trading session, and checkpoints are created for the 
trained model. The checkpoints help in storing the model’s archi-
tecture, weights, and training configuration in a single file. Since 
the optimizer state of the model is recovered, it does not require 
retraining, and training can be resumed from the point at which it 
was stopped. A wide range of deep learning models for effective 
time-series forecasting have been utilized in this study, including 
LSTM and its variants; vanilla, stacked, and bi-directional LSTM, 
CNN, and CNN-LSTM.

LSTM is a type of artificial neural network (ANN) 
that excels at classification and regression tasks. LSTM 
(Graves et al. 2005) is a special kind of recurrent neural 
network (RNN) capable of handling long-term dependen-
cies. The LSTM network is an advanced RNN, a sequen-
tial network, that allows information to persist. B-LSTM 
model is based on the bidirectional RNN model, which 
passes the information (Rathor and Agrawal 2021). It gives 
any neural network the ability to store the data backward 
or forward in both directions, at the same time. We can 
also have input flow in both directions, allowing us to save 
both previous and current data at any time step. These 
equations represent the forward (→) process as follows:

��⃗Ft = �⃗𝜎(����⃗Wf ∗
��⃗Xt +

���⃗Vf ∗
������⃗ht−1 +

���⃗Zf )

�⃗It = �⃗𝜎( ���⃗Wi ∗
��⃗Xt +

��⃗Vi ∗
������⃗ht−1 +

��⃗Zi)

���⃗Ot = �⃗𝜎(����⃗Wo ∗
��⃗Xt +

���⃗Vo ∗
������⃗ht−1 +

���⃗Zo)

���⃗C�
t
= tanh(����⃗Wc ∗

��⃗Xt +
���⃗Vc ∗

������⃗ht−1 +
���⃗Zc)

���⃗Ct =
��⃗Ft ∗ Ct−1 +

�⃗It ∗
���⃗C�
t

��⃗ht = ���⃗Ot ∗ tanh(���⃗Ct)

Fig. 4   Partial auto-correlation for VWAP, price and EMA
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In the backward (←) process, there are some equations as 
follows:

Where, �⃖�Ft,
�⃖It, and �⃖��Ot represent the backward forget input and 

output gate of the B-LSTM model. A weight matrix associ-
ates �⃖���Wf ,

�⃖��Wi,
�⃖���Wo, and �⃖���Wc with the inputs �⃖�Xt . Here �⃖��Zf , �⃖�Zi, �⃖��Zo, 

and �⃖��Zc  are the biased functions of the backward process 
model. The �⃖𝜎, and tanh are the sigmoid and activation func-
tion of the model, respectively. �⃖�ht is the hidden state of the 
current timestamp, and �⃖�����ht−1  is the hidden state of the previ-
ous timestamp of the B-LSTM model. In the same way, the 
B-LSTM forward process works.

A vanilla LSTM (V-LSTM) (Wu et al. 2018) consists of 
an LSTM model with a single hidden layer and an output 
layer for the prediction. It can separate the effects of a per-
forming variant change. In V-LSTMs there is a forget gate, 
allowing continuous learning. They also train using gradi-
ents rather than weight portions, as ESNs do.

For complex sequence classification challenges, stacked 
LSTM (Du et al. 2017) has become a reliable approach. 
An LSTM model with stacked layers can be called stacked 
LSTM (S-LSTM) architecture. When there is a long-term 
range between the data or a multivariate time dataset, con-
necting with several LSTM layers enhances the forecast-
ing performance. Based on Fig. 5, Xt transmits the LSTM-1 
layer with the hidden state ht−1 as the input vector and exists 
as ht as the output vector, while ht is the input vector for the 
LSTM-2 layer. The ultimate output, hm

t
 , is generated when 

all of the LSTM-m layers have been stacked.
Figure 7 represents a hybrid CNN-LSTM deep learn-

ing model that is assessed to estimate stock prices, com-
bining the benefits of both the CNN and LSTM models. 

�⃖�Ft = �⃖𝜎( �⃖���Wf ∗
�⃖�Xt +

�⃖��Vf ∗
�⃖�����ht−1 +

�⃖��Zf )

�⃖It = �⃖𝜎( �⃖��Wi ∗
�⃖�Xt +

�⃖�Vi ∗
�⃖�����ht−1 +

�⃖�Zi)

�⃖��Ot = �⃖𝜎( �⃖���Wo ∗
�⃖�Xt +

�⃖��Vo ∗
�⃖�����ht−1 +

�⃖��Zo)

�⃖��C�
t
= tanh( �⃖���Wc ∗

�⃖�Xt +
�⃖��Vc ∗

�⃖�����ht−1 +
�⃖��Zc)

�⃖��Ct =
�⃖�Ft ∗ Ct−1 +

�⃖It ∗
�⃖��C�
t

�⃖�ht = �⃖�O ∗ tanh( �⃖��Ct)

The temporal dependencies are contained in the current 
input data and trained by the hybrid LSTM model. Figure 6 
shows the architecture of the LSTM when the CNN input 
vector Y is input and the predicted data Z is output. The 
CNN system is integrated in such a way that it can handle 
multidimensional data. The information received in the input 
layer consists of various stock price sequences {T1, T2, ..., Tr} 
which are mainly composed of the indicators dataset. Due 
to convolution and pooling layers, r convolution layers for 
each stock data have been used to produce r feature maps 
from the indicator dataset and to generate r feature vectors, 
which will also be referred to as an r channel. Every feature 
vector is fused in the matrix XTr

 as describes:

This convolution layer consists of a filter Wc ∈ Rg×h , where g 
represents the dimension and h represents the step size in the 
feature vectors. As a consequence of the filter, the following 
feature vector is generated (Ren et al. 2015):

Xdataset
Tr

= ReLU(dataset, Tr)

c = F(Conv(Xdataset
Tr

∗ Wc) + B)

Fig. 5   Architecture of stacked 
LSTM

Fig. 6   Architecture of LSTM (input feature data Y from CNN and 
predicted output data Z from LSTM)
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Where, the bigoted vector is B, namely, the function’s inter-
cept, which will be used to achieve a linear classification. 
Based on the pool data, the most commonly used technique 
is to perform max operations on each filter result and get the 
output value as shown below:

Here are the two reasons to clarify the max pooling opera-
tions: It removes the non-maximal values and speeds up the 
computations of the upper layer.

5 � Performance evaluation

The accuracy of the forecasting models was assessed by 
measuring the mean absolute error (MAE), root mean square 
error (RMSE), and mean absolute percentage error (MAPE). 
The MAE is a model evaluation metric that is generally asso-
ciated with regression models. Each prediction error repre-
sents the difference between the actual and predicted values 
of the model. It can be defined as:

where yj , ŷj indicates the actual and predicted values, respec-
tively. n represents the number of predictions. MAE pro-
vides equal weights to the errors, while RMSE is a quad-
ratic measure since errors are squared before use, therefore 
it assigns higher weights to large errors. The formula for 
RMSE is as follows:

XTr
= [max(c)]

MAE =
1

n

n∑

j=1

(yj − ŷj)

RMSE =

√√√√1

n

n∑

j=1

(yj − ŷj)
2

where yj represents the jth actual and ŷj represents the jth pre-
dicted values, respectively. While n shows the total number 
of predictions made. MAPE is similar to MAE but normal-
ized by true observations. It shows how far the predictions 
of a model are from the respective actual values, on average.

6 � Results and discussion

The experiments were carried out on real-time stock market 
data utilizing the Google Colaboratory, which uses Python 
3.7 and offers a single GPU cluster with an NVIDIA K80 
GPU, 12 GB of RAM, and a clock speed of 0.82 GHz. The 
proposed framework was being used to deploy numerous 
forecasting models on live data streams from the NSE and 
NASDAQ stock exchanges. For univariate and multivari-
ate time-series of selected stock prices, the results were 
evaluated utilizing incremental learning and Offline-Online 
methods. Univariate time-series were derived from stock 
historical prices, whereas multivariate time-series include 
the EMA and VWAP along with the historical prices. In 
order to verify the effectiveness of the model, the models’ 
forecasts were compared to the actual share prices of the 
eight most liquid stocks listed on the NSE and NASDAQ.

A variety of statistical performance measures, including 
RMSE, MAE, and MAPE, are being used to test the model’s 
accuracy. MAE and RMSE are commonly used in financial 
analysis to measure the average gap between predicted and 
actual stock prices. The MAE is less biased for financial 
series with large values since it measures the average mag-
nitude of those errors rather than taking into account the 

MAPE =
100%

n

n∑

i=1

yi − ŷi

yi

Fig. 7   Architecture of CNN-LSTM
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direction of the errors. This could, however, not adequately 
reflect performance in case of large errors. RMSE is more 
informative when the overall impact is disproportionate to 
the increase in error. In contrast, MAE is more useful when 
the overall impact is proportional to the increase in error.

The incremental model learns from the data streams, 
where new data is constantly added. In this approach, ini-
tially, the model is trained with a small subset of data, and 
as a result, it shows a large deviation between actual and 

predicted stock prices. However, once the model is trained 
on a sufficient amount of data, the results get better. In the 
incremental learning process, there were 6404 instances of 
a one-year stock closing price recorded at 15-minute time 
intervals. EMA(10) and VWAP were calculated using the 
first ten instances, and initial model training follows these 
calculations. From the 11th instance onward, training and 
testing are conducted simultaneously. Figures 8 and 9 illus-
trate the outcomes of the actual versus predicted prices 

Fig. 8   NSE incremental model results
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utilizing the incremental approach for the selected NSE and 
NASDAQ stocks, respectively.

Evaluations are done for both univariate and multivariate 
time-series. Univariate models are denoted by the abbre-
viation (U) along with the model name in this study, for 
example, univariate LSTM is denoted as LSTM(U). Table 2 
compares the forecasting effectiveness of several machine 
learning models based on RMSE and MAE for the eight 
most liquid stocks listed on the Indian stock exchange NSE. 

Additionally, Table 3 illustrates the outcomes for the eight 
most liquid stocks listed on the American stock exchange 
NASDAQ. On stock price time-series, the multivariate 
incremental model INC outperforms its univariate coun-
terpart INC(U), demonstrating the efficiency of technical 
indicators (EMA and VWAP) in estimating the future stock 
price.

Offline-Online models used in this study include the state-
of-the-art deep learning models (LSTM and its variants, 

Fig. 9   NASDAQ incremental model results
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CNN, and CNN-LSTM). The specifications of hyperparam-
eters shared by all Offline-Online models (epochs: 50 with 
early stopping; activation function: relu; optimizer: adam 
with learning rate 0.003; loss function: MSE; ) was finalized 
through grid search, while CNN and CNN-LSTM utilize the 
additional parameters (filters: 64; kernel-size:2; pool-size: 
3 for max-pooling;). Fig. 10 shows the outcome of the grid 
search for hyperparameter optimization, and the green line 
highlights the consolidation of parameters that lead to the 
minimum MAE on the training dataset. On the training data, 

these hyperparameters were used for the final model train-
ing. The train test split was in the ratio of 70%:30%, since 
May 2021, 6404 instances of NSE stocks and 8892 instances 
of NASDAQ stocks have been extracted. After using 10 
instances for calculating EMA(10), the remaining instances 
were split for training and testing purposes. It begins fore-
casting only after it has collected enough instances for train-
ing; thus, the forecasting is reliable from the start.

Figure  11 shows a comparison of RMSE for differ-
ent models across different companies for both NSE and 

Table 2   RMSE and MAE for 
the eight most liquid stocks of 
NSE

Root mean square error (RMSE)

Stock name INC(U) LSTM (U) CNN-LSTM (U) INC S-LSTM V-LSTM B-LSTM CNN

RELIANCE 83.080 54.870 21.634 16.850 11.410 12.150 7.700 10.939
HDFC 94.540 48.030 39.594 38.570 16.860 16.190 16.850 17.242
HDFCBANK 60.960 23.290 18.630 59.340 4.460 6.170 2.190 7.095
ICICIBANK 26.390 9.120 8.087 8.760 2.600 2.750 1.780 3.786
KOTAKBANK 38.320 41.310 26.294 36.200 10.210 8.920 7.450 9.691
ITC 8.510 2.020 1.663 1.920 0.270 0.430 0.350 0.778
INFY 67.040 13.340 16.494 18.110 5.330 6.180 4.390 8.028
TCS 112.450 53.460 37.141 54.720 15.430 12.430 11.350 12.948

Mean absolute error (MAE)
RELIANCE 19.793 40.196 16.070 9.445 8.260 8.950 5.582 7.830
HDFC 23.336 32.826 28.500 13.928 10.528 10.857 9.58 11.854
HDFCBANK 13.800 10.580 13.379 15.010 8.293 9.175 4.545 4.697
ICICIBANK 6.019 6.602 6.337 4.836 1.796 1.972 1.268 2.717
KOTAKBANK 13.111 31.043 19.978 19.652 7.541 6.545 4.985 7.308
ITC 1.923 1.369 1.235 1.998 0.184 0.233 0.265 0.540
INFY 33.087 9.915 12.321 10.407 8.093 8.498 6.545 5.471
TCS 28.909 42.925 27.178 27.103 11.347 9.295 8.073 9.042

Table 3   RMSE and MAE for 
the eight most liquid stocks of 
NASDAQ

Root mean square error (RMSE)

Stock name INC (U) LSTM (U) CNN-LSTM (U) INC S-LSTM V-LSTM B-LSTM CNN

AAPL 4.282 0.354 0.915 1.203 0.155 0.109 0.086 0.281
MSFT 7.039 0.395 2.205 1.493 0.256 0.381 0.169 0.763
AMZN 108.994 20.059 28.952 47.039 34.882 22.173 21.225 23.504
TSLA 19.306 4.746 8.599 7.970 5.941 6.861 3.742 3.860
GOOGL 90.697 13.381 23.371 43.205 20.201 23.570 12.794 15.526
NVDA 7.789 0.198 3.812 0.796 0.221 0.533 0.367 1.052
BRK-B 9.185 0.820 1.383 1.269 0.374 0.368 0.223 0.631
FB 9.394 3.190 2.385 2.380 2.061 2.240 0.860 1.348

Mean Absolute Error (MAE)
AAPL 1.808 0.872 0.720 0.563 0.474 0.720 0.406 0.324
MSFT 1.391 12.400 1.808 0.796 0.004 0.003 0.002 0.751
AMZN 25.707 0.872 19.375 19.385 0.750 0.720 0.642 10.391
TSLA 4.909 0.951 5.532 3.540 0.794 0.785 0.680 2.012
GOOGL 24.119 11.634 16.967 22.217 18.710 16.008 9.601 10.817
NVDA 3.094 0.671 2.631 0.796 0.670 0.554 0.574 1.022
BRK-B 1.808 1.492 1.018 0.890 0.670 1.232 0.574 0.844
FB 1.972 2.368 1.279 0.943 2.981 1.954 0.794 0.852
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NASDAQ stocks using a line graph. Deep learning models 
outperform incremental models in terms of performance 
because they remember long patterns and can manage vola-
tility and trends better. But, these models require training 
at the end of every trading session to be updated with the 
latest trends, seasonality, and sudden changes in the market. 
Forecasting outcomes using multivariate time-series was 
better, demonstrating that historical values alone cannot 

forecast better outcomes. Both LSTM and CNN produce 
good results, but B-LSTM outperforms others across all 
stocks on the NSE and NASDAQ in terms of low RMSE 
and MAE. Based on Fig. 11, it might seem that RELIANCE, 
HDFC, and TCS results are less accurate since their RMSEs 
for different models are on the higher side and so widely 
spread. However, model accuracy cannot be determined by 
RMSEs or MAEs since each company’s stock price ranges 

Fig. 10   The output from the 
tensorboard log file for hyper-
parameter tunning through grid 
search

Fig. 11   Stocks RMSE for different models
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may differ. For example, TCS’s stock price lies in the range 
of 3000, while ITC has a stock price range of 200. As a 
result, TCS’s RMSE values for all models will be greater 
than ITC’s. This is because even a 1% difference in TCS 
pricing equals 30, whereas for ITC it’s only 2. Since Apple, 
Microsoft, Berkshire Hathaway, and Facebook have low 
stock prices, their RMSE is relatively low. The MAPE of 
the models should be compared on the same financial series 
for comparisons of their accuracy.

MAPE is the most common measure to evaluate the 
model’s forecasting accuracy. Since it utilizes the percentage 

error and is scale-independent, it can be used to compare the 
model’s accuracy for the stocks in the different price ranges. 
Table 4 shows the MAPE results for the eight most liquid 
stocks listed on the NSE and NASDAQ, respectively. When 
considering univariate models, incremental linear regres-
sion is better than LSTM, while CNN-LSTM is the most 
effective. Figure 12 illustrates the graphical representation 
of Table 4 for a better interpretation of the results. LSTM 
on univariate time-series shows a high standard deviation on 
MAPE compared to other models and does not fit perfectly 
into the graph for NASDAQ stocks; therefore, LSTM results 

Table 4   MAPE for the eight 
most liquid stocks of NSE

NSE stocks

Stock name INC(U) LSTM(U) CNN-LSTM(U) INC S-LSTM V-LSTM B-LSTM CNN

RELIANCE 0.009 0.017 0.007 0.004 0.003 0.004 0.002 0.003
HDFC 0.007 0.013 0.011 0.005 0.004 0.005 0.002 0.004
HDFCBANK 0.009 0.007 0.009 0.010 0.003 0.004 0.001 0.003
ICICIBANK 0.009 0.009 0.009 0.007 0.002 0.003 0.002 0.004
KOTAKBANK 0.010 0.017 0.011 0.012 0.003 0.004 0.004 0.004
ITC 0.009 0.006 0.005 0.004 0.001 0.001 0.001 0.002
INFY 0.020 0.006 0.007 0.006 0.003 0.004 0.003 0.003
TCS 0.009 0.012 0.008 0.008 0.003 0.002 0.003 0.003

NASDAQ Stocks
AAPL 0.012 0.177 0.005 0.004 0.001 0.000 0.000 0.002
MSFT 0.005 0.075 0.006 0.003 0.001 0.001 0.000 0.003
AMZN 0.008 0.421 0.006 0.006 0.005 0.004 0.004 0.003
TSLA 0.007 0.377 0.006 0.004 0.004 0.005 0.003 0.004
GOOGL 0.010 0.344 0.006 0.008 0.004 0.006 0.003 0.004
NVDA 0.011 0.054 0.011 0.796 0.001 0.002 0.001 0.003
BRK-B 0.006 0.184 0.003 0.003 0.001 0.000 0.001 0.004
FB 0.006 1.028 0.004 0.003 0.008 0.005 0.002 0.002

Fig. 12   MAPE of different models on NSE and NASDAQ Stocks
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are removed from the NASDAQ graph. The analysis of the 
outcomes shows that B-LSTM is the most effective model 
among all, while CNN-LSTM is the most accurate univariate 
model for both NSE and NASDAQ stocks.

As B-LSTM provides the most accurate forecasts, we 
have selected it for the comparison of actual versus predicted 
stock prices for Offline-Online models. Figure 13 and 14 
demonstrate the plot of B-LSTM for current stock prices 
versus the predicted values for the selected NSE and NAS-
DAQ stocks. From the figures, it is clear that the predictions 
are very close to the actual values for all the selected stocks, 
which confirms the efficiency of the B-LSTM in forecasting.

Figure 15 shows the comparison of the mean RMSE for 
all the studied models on NSE and NASDAQ stocks. For all 

models, the average RMSE of NASDAQ stocks is lower than 
that of NSE stocks, since NSE stocks are denominated in 
rupees rather than dollars, so their range is larger. Moreover, 
the above results also indicate that multivariate models are 
more accurate than univariate models. The main reason is 
that the multivariate model considers more than one aspect. 
Multivariate models consider several independent variables 
to help forecast stock prices more accurately. Hence, multi-
variate models outperformed univariate ones even with only 
two additional indicators: the EMA and VWAP.

The models have been evaluated using real-time trading 
data during operational trading hours for a 15-min inter-
val. A time difference (latency) was calculated between 
the actual retrieval time and the forecasting time. The 

Fig. 13   NSE offline–online CNN results
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experimental findings are shown in Fig. 16. As compared 
to the incremental model, the Offline-Online model has a 
lower latency. As it does not require retraining during opera-
tional hours which results in less forecasting delay. While 
the incremental model gets updated on the retrieval of new 
instances from the live feed which requires some additional 
training time. The average forecasting delay for incremental 
learning is 940 ms, while that of Offline-Online forecast-
ing is 617 ms. The forecasting delay for both approaches is 
less than a second, which makes them closer to real-time 
forecasting. Traders might find these models useful in mak-
ing short-term trading strategies for effective trading. The 
Offline-Online model has the limitation that it must be 

retrained after each trading session to stay up-to-date with 
current trends. For training purposes, the model requires 
a significant number of high-frequency historical instances 
of stock. Thus, it might be less accurate for stocks lacking 
high-frequency historical data.

7 � Conclusion and future work

This study explores incremental and Offline-Online learn-
ing techniques for NASDAQ and NSE stock forecast-
ing. The models used for this study were trained on the 
most recent stock data while the stock’s time-series was 

Fig. 14   Nasdaq offline–online CNN results
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continuously updated from the live market feed so that 
these models could fine-tune their hyperparameters based 
on the changes that occurred in the stock’s time-series 
during the trading sessions. A thorough analysis of various 
technical indicators that help in better price prediction led 
us to select the EMA and VWAP as features to consider 
along with the stock price for creating an effective multi-
variate time-series dataset. Furthermore, the system was 
tested on the top 8 stocks listed on the NSE and NASDAQ, 
respectively, and the performance of models was evalu-
ated through RMSE, MAE, and MAPE. All the models 
forecasted better on multivariate time-series, showing the 
utility of the EMA and VWAP in predicting stock prices. 
B-LSTM was the leading performer among all for both 
Indian and US stocks, with the MAPE relatively close to 
zero. It is appropriate for short-term stock price prediction 
and may act as a helpful resource for the traders’ efforts 
to maximize the returns on intraday trading. The B-LSTM 

approach also provides real experience to anyone conduct-
ing research on high-frequency financial time-series. In the 
future, it may be useful to use deep learning in combina-
tion with incremental approaches to avoid Offline-Online 
model retraining after each trading session. Furthermore, 
global sentiment can be considered one of the features of 
multivariate time-series.
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