
Vol.:(0123456789)1 3

Evolving Systems (2023) 14:919–937
https://doi.org/10.1007/s12530-022-09481-x

ORIGINAL PAPER

An efficient real‑time stock prediction exploiting incremental learning
and deep learning

Tinku Singh1  · Riya Kalra1 · Suryanshi Mishra2 · Satakshi2 · Manish Kumar1

Received: 6 September 2022 / Accepted: 13 December 2022 / Published online: 21 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Intraday trading is popular among traders due to its ability to leverage price fluctuations in a short timeframe. For traders,
real-time price predictions for the next few minutes can be beneficial for making strategies. Real-time prediction is chal-
lenging due to the stock market’s non-stationary, complex, noisy, chaotic, dynamic, volatile, and non-parametric nature.
Machine learning models are considered effective for stock forecasting, yet, their hyperparameters need tuning with the latest
market data to incorporate the market’s complexities. Usually, models are trained and tested in batches, which smooths the
correction process and speeds up the learning. When making intraday stock predictions, the models should forecast for each
instance in contrast to the whole batch and learn simultaneously to ensure high accuracy. In this paper, we propose a strategy
based on two different learning approaches: incremental learning and Offline–Online learning, to forecast the stock price
using the real-time stream of the live market. In incremental learning, the model is updated continuously upon receiving the
stock’s next instance from the live-stream, while in Offline-Online learning, the model is retrained after each trading session
to make sure it incorporates the latest data complexities. These methods were applied to univariate time-series (established
from historical stock price) and multivariate time-series (considering historical stock price as well as technical indicators).
Extensive experiments were performed on the eight most liquid stocks listed on the American NASDAQ and Indian NSE
stock exchanges, respectively. The Offline–Online models outperformed incremental models in terms of low forecasting error.

Keywords  Real-time forecasting · Incremental learning · Technical indicator · Intraday trading

1  Introduction

Stock prices are affected by several micro and macro fac-
tors, such as the global economy, healthcare situation, oil
prices, interest rates, news articles, public sentiment, etc.
It is a significant task for financial companies to forecast
stock prices, and rational forecasts can mitigate market risks
and produce substantial returns. Several papers and studies
have been devoted to making the best predictions and models
possible based on the presence of many factors. The com-
plexity of stock price prediction has made it a challenging
problem, which has resulted in several papers and studies
trying to make the most accurate predictions and models
possible, owing to the massive potential for profit associ-
ated with them. In high-frequency trading, there is a large
volume of orders, proprietary trading, and a short retention
period, according to the Securities and Exchange Commis-
sion (Menkveld 2013). According to Aldridge and Krawciw,
the most typical deal in 2016 started at 10%–40% of trading
volume and 10%–15% of exchange rate and assets (Aldridge

Riya Kalra, Suryanshi Mishra, Satakshi and Manish Kumar have
contributed equally to this work.

 *	 Tinku Singh
	 rsi2018006@iiita.ac.in

	 Riya Kalra
	 mit2021055@iiita.ac.in

	 Suryanshi Mishra
	 suryanshimishra2496@gmail.com

	 Satakshi
	 satakshi@shiats.edu.in

	 Manish Kumar
	 manish@iiita.ac.in

1	 Department of IT, Indian Institute of Information
Technology Allahabad, Prayagraj, U.P., India

2	 Department of Mathematics and Statistics, SHUATS,
Prayagraj, U.P., India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-022-09481-x&domain=pdf
http://orcid.org/0000-0002-9146-8682

920	 Evolving Systems (2023) 14:919–937

1 3

and Krawciw 2017). The frequency of performance tasks in
the stock market has escalated to a fraction of a second due
to the enormous expansion of the internet (Bagheri et al.
2014). High-frequency trading is currently a very popular
form of trading whose sole aim is to maximize profits by
buying and selling stocks in a short span. Data patterns may
be more valuable than sentiments and news articles. Since
most of the news surrounding stocks is not generated regu-
larly, only those posted on Twitter and other outlets can be
accessed. Because of the difficulty of analyzing so many
factors simultaneously, this study focuses on high-frequency
data, i.e., short-interval stock prices, to predict the current
price.

Since stock market data is generated periodically, it is
considered time-series data. Stock market data is a series of
time-ordered data points associated with single or multiple
time-dependent variables. It has local and global patterns
produced by the movements of prices on a chart and is the
basis of technical analysis. Time-series can be classified as
univariate or multivariate. Univariate time-series models
only have one dependent variable, whereas multivariate
models consider multiple factors. Training a univariate time-
series model simply relies on past price movements. While
the current stock price is affected by many factors, such as
the closing or opening price, univariate predictive models
reduce this complexity to a single factor and ignore all other
dimensions. Multivariate time-series forecasting models take
into account a variety of factors, such as the relationship
between closing and opening prices, various technical indi-
cators, daily highs and lows, and moving averages. When
dealing with stock market data, several time-series compo-
nents like trends, periodic swings, seasonal patterns, and
random volatility might contribute to improved stock price
forecasting. The trends are the result of long-term effects
and can increase or decrease the time-series value over time.
Periodic swings occur over the length of a time-series and
are aimed at capturing short to medium-term gains in stock
prices. Irregular movements exhibit rapid changes in time-
series that are difficult to repeat, such as COVID’19.

Forecasting stock market trends based on live-streaming
data has been a challenge for financial analysts and research-
ers. A streaming data process differs from traditional pro-
cessing tools, which store and process data in batches. Stock
prediction is one of the most widely used applications that
require the real-time processing of streaming data. However,
making decisions is challenging due to the market’s com-
plexity and chaotic dynamics, as well as the numerous non-
stationary, undecidable, and unpredictable factors involved.
The need to estimate the domestic stock market in several
countries makes accurate forecasting even more challenging
because there are various cultures, traditions, and diverse
sources that may impact investors’ decision-making pro-
cesses. Based on previous trends in financial time-series,

professionals from diverse sectors have created numerous
forecasting methodologies. To achieve promising perfor-
mance, most of these methods require careful selection of
the input variables, the establishment of a predictive model
coupled with professional financial knowledge, and the use
of various statistical methods. As a result, it is difficult for
people outside of the financial industry to estimate stock
values using such approaches. The fluctuating nature of data
and the heterogeneity of data types makes forecasting more
complex based on technical analysis. Our main objective is
to devise a lightweight prediction for the number of compa-
nies with fair accuracy, useful enough for intraday trading.

The objective of this study is to predict the closing price
of stocks for the coming 15 mins utilizing the current stock
price extracted through streaming data along with technical
indicators calculated through this data to improve accuracy.
The idea is to train a model using high-frequency histori-
cal stock market data at short intervals and then apply it in
real-time. It is difficult to spot a trend over a short period,
such as 1 min or 5 mins because there is a lot of noise.
With a longer time frame, such as 15 mins, it can be easier
to identify patterns, support, and resistance. Therefore, in
order to get more reliable outcomes, we will use the data
stream of a 15-min interval for real-time forecasting. Two
different approaches have been adopted for the study: incre-
mental learning, where the model will update with every
single collected current stock price from the data stream,
and Offline–Online, where the model is retrained at the end
of every trading session. Incremental linear regression has
been utilized for incremental models, while the variants of
LSTM and CNN have been adopted for forecasting through
Offline–Online models. In the Offline–Online approach,
Offline involves analyzing a batch of data and optimizing the
model to make a prediction, whereas Online refers to taking
samples from the streaming data and making the prediction.
However, incremental learning targets building a learning
model that adapts to new data without losing any existing
knowledge. In the Offline–Online approach, the model is not
fine-tuned on receiving every new instance from the stream,
although it is tuned after each trading session since the stock
market might be impacted by multiple factors throughout a
session. The incremental learning model updates with each
stream instance, so it does not require retraining with the
entire dataset.

This paper makes the following contributions:

•	 Stock prices are transformed from a univariate to a mul-
tivariate time-series with technical indicators, which
allows for better forecasting.

•	 The paper utilizes deep learning models in real-time
forecasting, which has been achieved through the model
training after the entire trading session, rather than after
retrieving the next stock instance, while real-time lag val-

921Evolving Systems (2023) 14:919–937	

1 3

ues and technical indicators of the stocks are maintained
using local variables.

•	 Offline-Online and incremental learning approaches are
compared for real-time forecasting.

•	 It empirically demonstrates the performance of the pro-
posed system on the eight most liquid stocks of the NAS-
DAQ and NSE, respectively, for one year.

2 � Literature review

A stock market forecast involves predicting the future move-
ment of a stock’s value on a financial exchange. The efficient
forecasting of share prices offers investors great profit poten-
tial, and correctly predicting the price movement within a
short span can result in substantial profits. Several methods
have been proposed for forecasting the market and providing
decision-making guidance. Stock prices, rather than being
stochastic, can be viewed as discrete time-series that are
based on well-defined numbers collected at regular intervals
of time. To build the forecasting model, the time-series data
must be stationary. The differencing approach can be applied
to obtain stationary data from a non-stationary time-series.
On the other hand, the trend information in the time-series
will be ignored by the differencing technique. Different
methods can be applied in this area, including statistical
methods and machine learning models. Generally, statisti-
cal models assume that there is a linear correlation structure
among the time-series values. However, the nature of the
stock market time-series is non-linear, volatile, chaotic and
highly noisy (Alves et al. 2018). The autoregressive method
(AR), the moving average model (MA), the combination of
both AR and MA, i.e., the autoregressive moving average
model (ARMA), and the autoregressive integrated moving
average (ARIMA) are all traditional statistical methods. The
ARIMA model’s popularity originates from its statistical
features as well as the notable Box-Jenkins model-building
methodology. However, ARIMA models are not able to cap-
ture nonlinear patterns, and resembling complex real-life
problems with linear models is not always practical (Zhang
2003). The researchers proposed the Grader causality test,
which elongates the analysis from a univariate to a multi-
variate time-series analysis. Using the vector autoregressive
moving average (VARMA), a multivariate time-series fore-
casting model was developed, which can represent Vector
Moving Average (VMA) and Vector Autoregressive (VAR)
models flexibly (Liu et al. 2021). Using a generalized autore-
gressive conditional heteroscedastic (GARCH) model for
conditional variances, Pellegrini et al. (2011) apply the
ARIMA-GARCH model to the forecasting of a financial
series. Since the ARIMA-GARCH models never converge
to homoscedastic intervals, their prediction intervals may
be inadequate.

Traditional time-series forecasting algorithms can capture
linear correlations and yield good results for a small data-
set. But these algorithms are not very effective when used
for time-series that are large and complex, such as stock
market time-series (Liu et al. 2021). As a result, researchers
focused increasingly on machine learning and deep learning
methods in this domain. Javed Awan et al. (2021) utilized
machine learning algorithms and sentiment analysis for fore-
casting stock prices. As per the outcomes, linear regression,
extended linear regression, and random forest produce more
accurate outcomes than the decision tree. Several studies
have used linear and non-linear support vector machines
(SVMs) for the forecasting of financial time-series (Cao
and Tay 2001; Kim 2003; Maguluri and Ragupathy 2020).
However, overfitting is a problem with these models, and
the algorithms are not good at predicting large datasets. As
compared to other models, support vector regression has bet-
ter accuracy, according to Behera et al. (2020). Tuarob et al.
(2021) created an end-to-end framework containing three
sub-models, i.e., Davis-C for data collection related to stocks
in real-time, Davis-A for analysis, and Davis-V for visuali-
zation. Their framework demonstrates that a combination
of machine learning algorithms outperforms a standalone
machine learning algorithm by large margins. Vijh et al.
(2020) developed two models: one that predicts the price
trends for the next day using historical data, and another
that predicts the price trends for the next month using his-
torical data. They employed Logistic Regression, SVM, and
Boosted Decision Tree to forecast the trend based on volume
volatility, sentiment, and continuous up/down.

In recent years, deep learning methods have become
increasingly popular for predicting stock market moves.
From complex and inconsistent data, these approaches can
extract significant characteristics and detect underlying
nonlinearities without relying on human skill (Kumar et al.
2021). Several experts have used deep learning to improve
stock forecasting and produce profits for shareholders. In
financial time-series forecasting, deep learning methods
like artificial neural networks (ANN), convolutional neu-
ral networks (CNN), long-short-term memory (LSTM),
hybrid algorithms, and others lead to better outcomes than
statistical and machine learning methods. Vijh et al. (2020)
explored the ANN and Random Forest on multivariate
time-series on five stocks to forecast the next day’s clos-
ing price using features such as the previous day’s open
price, closing price, Moving Average, Highs, and Lows.
Lu et al. (2020) proposed a hybrid CNN-LSTM stock fore-
casting method. The authors compared the suggested mod-
el’s performance to that of MLP, CNN, RNN, LSTM, and
CNN-RNN on the Shanghai Composite Index. According
to the experimental findings, the CNN-LSTM came up
with the most accurate stock price forecasting, with an
MAE of 27.564 and an RMSE of 39.688. Wen et al. (2020)

922	 Evolving Systems (2023) 14:919–937

1 3

utilized the PCA-LSTM, which used the PCA (Principal
Component Analysis) technique to identify technical indi-
cator features and decrease dimensionality, yielding more
accurate forecasts. DJI. Ince and Trafalis (2008) focused
on short-term forecasts and used the SVM model in stock
price forecasts. Specifically, their main contribution con-
sists of comparing MLPs with SVMs and finding condi-
tions where SVM is more effective than MLP. Moreover,
different trading strategies affect the results. They contrib-
ute primarily by comparing MLP and SVM and finding
cases in which SVM works better than MLP. Moreover,
different trading strategies also affect the results. Dan et al.
(2014) demonstrated the forecasting capabilities of deter-
ministic Echo State Networks (ESNs) in stock prediction
applications. Their experiments with the S & P 500 dataset
show that the deterministic ESNs have improved their effi-
ciency by about 23% compared to the standard ESN while
demonstrating a negligible gain in predicting accuracy. Li
et al. (2022) presented an effective deep learning-based
BiGRU-attention model for short-term voltage stability
assessment. It extracts temporal relationships and per-
forms well even with a limited training dataset.

Intraday traders work with minute-based or sometimes
even second-based stock market data. As a result, it is very
crucial to determine how to analyze useful information and
identify whether the forecasting method can be effective in
real-time on high-frequency stock market data. Shakva et al.
(2018), utilized ANN to predict stock prices on the Nepal
Stock Exchange. The authors tried to predict the percentage
increase or decrease in stock prices every second minute.
They used technical indicators along with the data from
the past 30 min. Selvamuthu et al. (2019) proposed the use
of Levenberg-Marquardt, Scaled Conjugate Gradient, and
Bayesian Regularization algorithms for predicting stock
prices on a common ANN architecture of 20 hidden layers.
They used the high-frequency dataset of Reliance Private
Ltd. from Thomson Reuter over one year with 15,000 data
points per day and were able to obtain a MAPE of 99.9%
using tick data and 98.9% over a 15-minute dataset. Zhou
et al. (2018) present a generic framework for adversarial
training to anticipate the high-frequency stock market using
LSTM and CNN. To avoid complex financial theory research
and challenging technical analysis, this model employs a
publicly available index offered by trading software as an
input, which makes it more suitable for the typical non-
financial trader. Liu et al. (2021) suggest a general frame-
work for automatically developing a high-frequency trading
strategy using a PPO-based agent. The study compares the
LSTM and MLP for price prediction based on bitcoin prices
in real-time. The study demonstrates the effectiveness of a
PPO-based LSTM agent over an MLP, which earns high
returns even when the market is in a slump and the price
fluctuates.

According to the literature survey, most of the papers
only forecast using historical data and do not operate with
real-time data. The majority of them utilize historical day-
to-day closing prices rather than current stock prices and
do not deal with short time intervals such as five minutes
or fifteen minutes. Stock market data is highly volatile and
produced in massive amounts, making it difficult to man-
age and much more difficult to forecast. A majority of the
studies used univariate stock market forecasting models,
which do not take advantage of the technical indicators
and other influential features to improve their accuracy. To
leverage the advantages of technical indicators, we have
converted the univariate stock series to a multivariate
series. Deep learning models are effective in stock fore-
casting but have limitations like complex model training
and a long training time, which makes it challenging to
train the model in real-time on the new stock instances.
The motivation of this research is to use deep learning
models in real-time to forecast high-frequency stock data
and to leverage the advantages of technical indicators by
converting the univariate stock series to a multivariate
series. The system in this paper aims to fill the void left
by existing models for high-frequency trading.

3 � Dataset

The forecasting would be centered around high-volume
stocks since intraday traders tend to be most interested in
them because of buyers’ and sellers’ availability through-
out the trading session. For this study, we selected financial
time-series (stocks) from the Indian and U.S. stock markets.
The Bombay Stock Exchange (BSE) and the National Stock
Exchange (NSE) are India’s two major stock exchanges. We
selected NSE because the volumes traded there are far higher
than those traded on BSE. NIFTY 50 is an index of the top
50 companies listed on the NSE; we considered the top eight
Nifty-50 stocks (India NSE 2001). There are two major stock
exchanges in the United States: NASDAQ and the New York
Stock Exchange (NYSE). Due to the NASDAQ’s volatil-
ity and the number of listed companies, we will be using
NASDAQ-traded stocks instead of NYSE stocks. According
to market capitalization, the NASDAQ-100 is an index of
the top 100 publicly traded companies, so eight of the most
traded stocks were selected for the study (Nasdaq 2022). The
selected stock from both exchanges can be seen in Table 1.

The high-frequency historical data of 15-min time inter-
vals and live feeds of NSE stocks have been extracted using
web-scraping through Zerodha API [27]. AlphaVantage API
provided both real-time as well as historical stock prices for
NASDAQ stocks [28]. A snapshot of the live-streamed stock
prices is presented in Fig. 1.

923Evolving Systems (2023) 14:919–937	

1 3

4 � Methodology

This study analyzes time-series forecasting models for effi-
cient forecasting of stock prices utilizing high-frequency
data (15-min intervals). The proposed approach is based

on two different learning methods: incremental learning
and Offline-Online learning. These methods are applied
to univariate and multivariate time-series. The univariate
time-series was created using stock prices, whereas the
multivariate time-series was created using stock prices in
conjunction with exponential moving averages (EMAs)
and volume-weighted average prices (VWAPs). The incre-
mental model is continuously updated as it receives new
instances of the stock price from the live feed of the stock
market. On the other hand, the Offline–Online learning
model needs to be retrained after every trading session.
A retraining of the model will enable it to adapt to the
current market trends, volatility, and seasonality. Figure 2
displays a visual representation of the methodology.

A pre-processing step is required before the model can
be adapted for forecasting. Preprocessing includes removing
null values and duplicate instances, verifying the order of

Table 1   Selected stocks for
study

 S. No. NSE stocks NASDAQ Stocks

1 RELIANCE INDUSTRIES (RELIANCE) APPLE (AAPL)
2 HDFC BANK (HDFCBANK) MICROSOFT (MSFT)
3 INFOSYS (INFY) AMAZON (AMZN)
4 ICICI BANK (ICICIBANK) GOOGLE (GOOGL)
5 HDFC (HDFC) NVIDIA (NVDA)
6 TATA CONSULTANCY SERVICES (TCS) TESLA (TSLA)
7 KOTAK MAHINDRA BANK (KOTAKBANK) BERKSHIRE HATH-

WAY (BRK-B)
8 ITC LTD. (ITC) FACEBOOK (FB)

Fig. 1   Snapshot of Live stream format of extracted data

Fig. 2   Proposed model

924	 Evolving Systems (2023) 14:919–937

1 3

instances, and finally converting the string date-time value
containing UTC into a numerical timestamp. To perform
the forecasting of the high-frequency stock market data, it is
mathematically suitable to consider the time-series analysis
with this condition {Yt|t ∈ T} . A special type of examining
stock prices (sequence of instances) collected over an inter-
val of time is known as a “time-series analysis” (González
et al. 2017). A time-series process {Yt| t ∈ T} , is a stochas-
tic process in which a set of random variables is ordered
through time. T stands for index sets, which are distinct and
separated evenly in time. Random variable Yt is continuous.
Let i ∈ ℕ, T ⊆ ℝ . A function y ∶ T → ℝ

i , t → yt or, simi-
larly, a set of indexed elements of ℝi,

is called an observed time-series. It can also written as:
yt(t ∈ T) or (yt)t∈T.

The variance function (fluctuation) of a time-series pro-
cess (Xt) is defined as if ∀t ∈ T:

For historical stock data, if we assume that the mean and
variance are constant then, �t = � and �2

t
= �t.

Therefore, the obvious estimate is:

A candlestick chart of the time-series for TCS over a
15-minute interval can be seen in Fig. 3. The stock prices
are not generated at random but rather as a discrete-time-
series created by collecting the numerical values at regular
intervals. A candlestick shows the open, high, low, and close
prices over an interval. Red candles represent the current

{yt|yt ∈ ℝ
i
, t ∈ T}

�2

t
= Var[Yt], �

2

t
= E[Y2

t
] − E[Yt]

2
,∀t ∈ T

𝜇̂ =
1

n

n∑

t=1

Yt;𝜎̂
2 =

1

n − 1

n∑

t=1

(Yt − 𝜇)2

closing price being higher than the previous candle’s closing
price, while green candles represent the lower price.

4.1 � Technical indicators

In order to be effective in stock price prediction, traders uti-
lize technical charts by analyzing price actions and techni-
cal indicators. There are numerous technical indicators that
intraday traders use to determine when to buy or sell a par-
ticular stock, such as MACD and RSI. However, to capture
current trends, EMA(d) and VWAP are both suitable indica-
tors. EMA(d) is the average price of the stock in the previous
d data points weighted exponentially (this way the prices
of recent data points are given more weight). Since EMAs
focus on recent price movements, they tend to respond more
quickly to price changes. When trading intraday, it is con-
sidered reliable to use the value 5 to 20 for d in EMA(d). It
can be calculated as:

where EMAt, Yt denotes the EMA and closing price respec-
tively at time t, and � is a smoothness coefficient between
0 and 1 that denotes the degree of weight reduction. For d
previous observations � can be computed as:

VWAP indicates the average price of the stock being traded
in a day based on both price and volume. It is the ratio
between the stock value and volume traded in a specific
period. The indicator only works for one trading session and
resets at the beginning of the next trading session. Suppose
(Chen et al. 2013) that we have a large order v that must be
executed during a specified time interval T. In that case, we
must slice it into several smaller orders vi and trade them
over the time interval i from ti−1 to ti ( ti = i ∗ L + t0 , where
L is the length of each time interval and t0 is the start time
for the trade).

n = L∕T denotes the trading periods, while v =
∑n

i=1
vi

represents the time interval. To generate the multivariate
time-series, the EMA(10) and VWAP are calculated using
historical stock data, and the resultant series are combined
with the stock price to get the final series.

4.2 � Correlation/covariance analysis

The covariance and correlation functions define the level of
dependency between the variables for any stock instances

EMAt = � ⋅ Yt + (1 − �) ⋅ EMA(t−1)

� = 2∕(d + 1)

VWAPS =

∑n

i=1
pi ∗ vi

v

Fig. 3   Time-series of Stock Price

925Evolving Systems (2023) 14:919–937	

1 3

(random variables) Xp and Xq . Auto-covariance function
(ACVF) of the time-series {Xp,Xq|p, q ∈ T} is defined as,

�p,q ∶ Auto-covariance function of the given time-series.
The auto-correlation function (ACF) for the stochastic pro-

cess is defined as:

For any two sets of stock instances (r1, r2, ..., rn) and
(s1, s2,, sn) , the sample of covariance and correlation
functions are given as:

𝜌̂r,s ∶ Auto-correlation function of the stochastic process.
However, for time-series data the ACVF and ACF measure
the covariance/correlation between the single time-series
(r1, r2, ..., rn) and itself at different lags.

Using Eq. 1 & 2 at lag 0, the ACVF 𝛾̂0 , is the covariance of
(r1, r2, ..., rn) with (r1, r2, ..., rn) (or same series) and itself then,

Similarly, the ACF 𝜌̂0 , the correlation lies itself then,

The auto-correlation function (ACF) & partial auto-corre-
lation function (PACF) can be utilized to describe the order
of stock price movements [31]. Let Yt be the stationary time-
series and Yt−h with the lagged value of h. PACF estimates
the degree of correlation between Yt and Yt−h but ignores the
other time lags. We can predict x and y3 with the help of y1
and y2 variables:

Cov[Xp,Xq] = E[(Xp − E[Xp])(Xq − E[Xq])]

�p,q = Cov[Xp,Xq] = E[XpXq] − E[Xp]E[Xq]

Corr[Xp,Xq] =
Cov[Xp,Xq]

√
Var[Xp]Var[Xq]

(1)𝛾̂r,s =
1

n − 1

n∑

t=1

(rt − r̄)(st − s̄)

(2)𝜌̂r,s =

∑n

t=1
(rt − r̄)(st − s̄)

�∑n

t=1
(rt − r̄)2

∑n

t=1
(st − s̄)2

𝛾̂0 =
1

n − 1

n∑

t=1

(rt − r̄)(rt − r̄)

𝛾̂0 =
1

n − 1

n∑

t=1

(rt − r̄)2

𝜌̂0 =

∑n

t=1
(rt − r̄)(rt − r̄)

�∑n

t=1
(rt − r̄)2

∑n

t=1
(rt − r̄)2

𝜌̂0 =

∑n

t=1
(rt − r̄)(rt − r̄)

∑n

t=1
(rt − r̄)

∑n

t=1
(rt − r̄)

= 1

Here, y1, y2, and y3 are the regression coefficients. In regres-
sion, x is a response variable, while the predictor variables
are y1, y2, and y3 . A partial correlation exists between x and
y3 , describing their association with y1 and y2 and indicating
how dependent they are on one another. We define first-order
with partial auto-correlation as being equal to first-order
auto-correlation.

Based on Fig. 4 it can be observed that lag values of
15 min before at position 1 have a strong positive correlation
with the current observations. In all three features, VWAP,
Price, and EMA, the correlation is strong up to the lag value
of 3 or up to 45 min, but beyond that, the correlation is not
significant. Based on the analysis, a maximum of three lags
are required for reliable forecasting. Furthermore, the lag
values (3, 9, 27) were tested for reliability and consistency
with the models in this study, and lag 3 was found to be
reasonable in most scenarios.

4.3 � Incremental approach

A stock price forecast is first derived through an incremen-
tal model. It uses incremental linear regression to predict
the stock price for the next interval. Once the actual price
for the next instance is captured through the data stream, it
will estimate the prediction accuracy and update the model
accordingly. The machine learning technique of incremental
learning extends the existing model’s knowledge by con-
tinuously using input data, i.e., by further training, it (Iscen
et al. 2020). The ordered pair of (yj, zj) is denoted by the jth
pair of input and output observations. In the stock market,
the correct output is considered to be F(yj) if the system
has provided data specified by a function F  . As a conse-
quence of systematic noise or measurement error, the meas-
ured output zj is consistent with zj = F(yj) + �j , where �j is
inevitable, but hopefully, it is the minor term. If the function
F has a mth pair of observations, these ordered pairs are:
{(y1, z1), (y2, z2), ..., (ym, zm)} . Even if we use F(y) to estimate
z for an unobserved y, it will define a loss function L(z,F(y))
to evaluate the error which will occur. New observations that
occur outside of our training set are classified as unobserved
y. Here, the loss functions of the target function are F .

Due to the linear regression, a linear function of the input
vector is F(y) = WTy . Assume the loss function of the loss
squared function is:

Therefore, the gradient of L with regard to a weight vector
is defined as:

Cov(x, y3�y1, y2)√
Var(x�y1, y2)Var(y3�y1, y2)

L(z,WTy) = (z −WTy)2

926	 Evolving Systems (2023) 14:919–937

1 3

Since the gradient represents the increased direction of the
function, if we want the squared loss to decrease, we have
to move the weight vector in the opposite direction of the
gradient. We get the tth observation yt at time t, and we may
estimate the outcome as follows:

Updated estimate of W is defined as:

where 𝜌t > 0 is known as step size. The step size is given as

for some predefined constant �o . The cumulative regret after
t steps provides as a metric of effectiveness, which is defined
as:

Eq.(3), which is utilized in a financial decision-making sys-
tem, where WTyt is the optimum at step t, and the regret
quantifies the total losses due to the non-optimal decisions.

4.4 � Offline–online approach

For the Offline–online approach, financial time-series need to
be converted into supervised learning problems to train a model.
Since the model learns a function that maps a sequence of past
observations as input to an output observation while it’s being
trained. That’s why the dataset has to be prepared in the form of

∇WL = −2(z −WTy)y

ẑt = WT
t−1

yt

Wt = Wt−1 + 𝜌t(zt + ẑt)yt

�t =
�o√
t

(3)Regret =

T∑

t=1

(zt − ẑt) −

T∑

t=1

(zt −WT
t
yt)

2

input samples. Each sample will take the current timestamp obser-
vation as the target value with n number of the previous instance
as features where n is called lag observations. The model is trained
after every trading session, and checkpoints are created for the
trained model. The checkpoints help in storing the model’s archi-
tecture, weights, and training configuration in a single file. Since
the optimizer state of the model is recovered, it does not require
retraining, and training can be resumed from the point at which it
was stopped. A wide range of deep learning models for effective
time-series forecasting have been utilized in this study, including
LSTM and its variants; vanilla, stacked, and bi-directional LSTM,
CNN, and CNN-LSTM.

LSTM is a type of artificial neural network (ANN)
that excels at classification and regression tasks. LSTM
(Graves et al. 2005) is a special kind of recurrent neural
network (RNN) capable of handling long-term dependen-
cies. The LSTM network is an advanced RNN, a sequen-
tial network, that allows information to persist. B-LSTM
model is based on the bidirectional RNN model, which
passes the information (Rathor and Agrawal 2021). It gives
any neural network the ability to store the data backward
or forward in both directions, at the same time. We can
also have input flow in both directions, allowing us to save
both previous and current data at any time step. These
equations represent the forward (→) process as follows:

��⃗Ft = �⃗𝜎(����⃗Wf ∗
��⃗Xt +

���⃗Vf ∗
������⃗ht−1 +

���⃗Zf)

�⃗It = �⃗𝜎(���⃗Wi ∗
��⃗Xt +

��⃗Vi ∗
������⃗ht−1 +

��⃗Zi)

���⃗Ot = �⃗𝜎(����⃗Wo ∗
��⃗Xt +

���⃗Vo ∗
������⃗ht−1 +

���⃗Zo)

���⃗C�
t
= tanh(����⃗Wc ∗

��⃗Xt +
���⃗Vc ∗

������⃗ht−1 +
���⃗Zc)

���⃗Ct =
��⃗Ft ∗ Ct−1 +

�⃗It ∗
���⃗C�
t

��⃗ht = ���⃗Ot ∗ tanh(���⃗Ct)

Fig. 4   Partial auto-correlation for VWAP, price and EMA

927Evolving Systems (2023) 14:919–937	

1 3

In the backward (←) process, there are some equations as
follows:

Where, �⃖�Ft,
�⃖It, and �⃖��Ot represent the backward forget input and

output gate of the B-LSTM model. A weight matrix associ-
ates �⃖���Wf ,

�⃖��Wi,
�⃖���Wo, and �⃖���Wc with the inputs �⃖�Xt . Here �⃖��Zf , �⃖�Zi, �⃖��Zo,

and �⃖��Zc are the biased functions of the backward process
model. The �⃖𝜎, and tanh are the sigmoid and activation func-
tion of the model, respectively. �⃖�ht is the hidden state of the
current timestamp, and �⃖�����ht−1 is the hidden state of the previ-
ous timestamp of the B-LSTM model. In the same way, the
B-LSTM forward process works.

A vanilla LSTM (V-LSTM) (Wu et al. 2018) consists of
an LSTM model with a single hidden layer and an output
layer for the prediction. It can separate the effects of a per-
forming variant change. In V-LSTMs there is a forget gate,
allowing continuous learning. They also train using gradi-
ents rather than weight portions, as ESNs do.

For complex sequence classification challenges, stacked
LSTM (Du et al. 2017) has become a reliable approach.
An LSTM model with stacked layers can be called stacked
LSTM (S-LSTM) architecture. When there is a long-term
range between the data or a multivariate time dataset, con-
necting with several LSTM layers enhances the forecast-
ing performance. Based on Fig. 5, Xt transmits the LSTM-1
layer with the hidden state ht−1 as the input vector and exists
as ht as the output vector, while ht is the input vector for the
LSTM-2 layer. The ultimate output, hm

t
 , is generated when

all of the LSTM-m layers have been stacked.
Figure 7 represents a hybrid CNN-LSTM deep learn-

ing model that is assessed to estimate stock prices, com-
bining the benefits of both the CNN and LSTM models.

�⃖�Ft = �⃖𝜎(�⃖���Wf ∗
�⃖�Xt +

�⃖��Vf ∗
�⃖�����ht−1 +

�⃖��Zf)

�⃖It = �⃖𝜎(�⃖��Wi ∗
�⃖�Xt +

�⃖�Vi ∗
�⃖�����ht−1 +

�⃖�Zi)

�⃖��Ot = �⃖𝜎(�⃖���Wo ∗
�⃖�Xt +

�⃖��Vo ∗
�⃖�����ht−1 +

�⃖��Zo)

�⃖��C�
t
= tanh(�⃖���Wc ∗

�⃖�Xt +
�⃖��Vc ∗

�⃖�����ht−1 +
�⃖��Zc)

�⃖��Ct =
�⃖�Ft ∗ Ct−1 +

�⃖It ∗
�⃖��C�
t

�⃖�ht = �⃖�O ∗ tanh(�⃖��Ct)

The temporal dependencies are contained in the current
input data and trained by the hybrid LSTM model. Figure 6
shows the architecture of the LSTM when the CNN input
vector Y is input and the predicted data Z is output. The
CNN system is integrated in such a way that it can handle
multidimensional data. The information received in the input
layer consists of various stock price sequences {T1, T2, ..., Tr}
which are mainly composed of the indicators dataset. Due
to convolution and pooling layers, r convolution layers for
each stock data have been used to produce r feature maps
from the indicator dataset and to generate r feature vectors,
which will also be referred to as an r channel. Every feature
vector is fused in the matrix XTr

 as describes:

This convolution layer consists of a filter Wc ∈ Rg×h , where g
represents the dimension and h represents the step size in the
feature vectors. As a consequence of the filter, the following
feature vector is generated (Ren et al. 2015):

Xdataset
Tr

= ReLU(dataset, Tr)

c = F(Conv(Xdataset
Tr

∗ Wc) + B)

Fig. 5   Architecture of stacked
LSTM

Fig. 6   Architecture of LSTM (input feature data Y from CNN and
predicted output data Z from LSTM)

928	 Evolving Systems (2023) 14:919–937

1 3

Where, the bigoted vector is B, namely, the function’s inter-
cept, which will be used to achieve a linear classification.
Based on the pool data, the most commonly used technique
is to perform max operations on each filter result and get the
output value as shown below:

Here are the two reasons to clarify the max pooling opera-
tions: It removes the non-maximal values and speeds up the
computations of the upper layer.

5 � Performance evaluation

The accuracy of the forecasting models was assessed by
measuring the mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE).
The MAE is a model evaluation metric that is generally asso-
ciated with regression models. Each prediction error repre-
sents the difference between the actual and predicted values
of the model. It can be defined as:

where yj , ŷj indicates the actual and predicted values, respec-
tively. n represents the number of predictions. MAE pro-
vides equal weights to the errors, while RMSE is a quad-
ratic measure since errors are squared before use, therefore
it assigns higher weights to large errors. The formula for
RMSE is as follows:

XTr
= [max(c)]

MAE =
1

n

n∑

j=1

(yj − ŷj)

RMSE =

√√√√1

n

n∑

j=1

(yj − ŷj)
2

where yj represents the jth actual and ŷj represents the jth pre-
dicted values, respectively. While n shows the total number
of predictions made. MAPE is similar to MAE but normal-
ized by true observations. It shows how far the predictions
of a model are from the respective actual values, on average.

6 � Results and discussion

The experiments were carried out on real-time stock market
data utilizing the Google Colaboratory, which uses Python
3.7 and offers a single GPU cluster with an NVIDIA K80
GPU, 12 GB of RAM, and a clock speed of 0.82 GHz. The
proposed framework was being used to deploy numerous
forecasting models on live data streams from the NSE and
NASDAQ stock exchanges. For univariate and multivari-
ate time-series of selected stock prices, the results were
evaluated utilizing incremental learning and Offline-Online
methods. Univariate time-series were derived from stock
historical prices, whereas multivariate time-series include
the EMA and VWAP along with the historical prices. In
order to verify the effectiveness of the model, the models’
forecasts were compared to the actual share prices of the
eight most liquid stocks listed on the NSE and NASDAQ.

A variety of statistical performance measures, including
RMSE, MAE, and MAPE, are being used to test the model’s
accuracy. MAE and RMSE are commonly used in financial
analysis to measure the average gap between predicted and
actual stock prices. The MAE is less biased for financial
series with large values since it measures the average mag-
nitude of those errors rather than taking into account the

MAPE =
100%

n

n∑

i=1

yi − ŷi

yi

Fig. 7   Architecture of CNN-LSTM

929Evolving Systems (2023) 14:919–937	

1 3

direction of the errors. This could, however, not adequately
reflect performance in case of large errors. RMSE is more
informative when the overall impact is disproportionate to
the increase in error. In contrast, MAE is more useful when
the overall impact is proportional to the increase in error.

The incremental model learns from the data streams,
where new data is constantly added. In this approach, ini-
tially, the model is trained with a small subset of data, and
as a result, it shows a large deviation between actual and

predicted stock prices. However, once the model is trained
on a sufficient amount of data, the results get better. In the
incremental learning process, there were 6404 instances of
a one-year stock closing price recorded at 15-minute time
intervals. EMA(10) and VWAP were calculated using the
first ten instances, and initial model training follows these
calculations. From the 11th instance onward, training and
testing are conducted simultaneously. Figures 8 and 9 illus-
trate the outcomes of the actual versus predicted prices

Fig. 8   NSE incremental model results

930	 Evolving Systems (2023) 14:919–937

1 3

utilizing the incremental approach for the selected NSE and
NASDAQ stocks, respectively.

Evaluations are done for both univariate and multivariate
time-series. Univariate models are denoted by the abbre-
viation (U) along with the model name in this study, for
example, univariate LSTM is denoted as LSTM(U). Table 2
compares the forecasting effectiveness of several machine
learning models based on RMSE and MAE for the eight
most liquid stocks listed on the Indian stock exchange NSE.

Additionally, Table 3 illustrates the outcomes for the eight
most liquid stocks listed on the American stock exchange
NASDAQ. On stock price time-series, the multivariate
incremental model INC outperforms its univariate coun-
terpart INC(U), demonstrating the efficiency of technical
indicators (EMA and VWAP) in estimating the future stock
price.

Offline-Online models used in this study include the state-
of-the-art deep learning models (LSTM and its variants,

Fig. 9   NASDAQ incremental model results

931Evolving Systems (2023) 14:919–937	

1 3

CNN, and CNN-LSTM). The specifications of hyperparam-
eters shared by all Offline-Online models (epochs: 50 with
early stopping; activation function: relu; optimizer: adam
with learning rate 0.003; loss function: MSE;) was finalized
through grid search, while CNN and CNN-LSTM utilize the
additional parameters (filters: 64; kernel-size:2; pool-size:
3 for max-pooling;). Fig. 10 shows the outcome of the grid
search for hyperparameter optimization, and the green line
highlights the consolidation of parameters that lead to the
minimum MAE on the training dataset. On the training data,

these hyperparameters were used for the final model train-
ing. The train test split was in the ratio of 70%:30%, since
May 2021, 6404 instances of NSE stocks and 8892 instances
of NASDAQ stocks have been extracted. After using 10
instances for calculating EMA(10), the remaining instances
were split for training and testing purposes. It begins fore-
casting only after it has collected enough instances for train-
ing; thus, the forecasting is reliable from the start.

Figure 11 shows a comparison of RMSE for differ-
ent models across different companies for both NSE and

Table 2   RMSE and MAE for
the eight most liquid stocks of
NSE

Root mean square error (RMSE)

Stock name INC(U) LSTM (U) CNN-LSTM (U) INC S-LSTM V-LSTM B-LSTM CNN

RELIANCE 83.080 54.870 21.634 16.850 11.410 12.150 7.700 10.939
HDFC 94.540 48.030 39.594 38.570 16.860 16.190 16.850 17.242
HDFCBANK 60.960 23.290 18.630 59.340 4.460 6.170 2.190 7.095
ICICIBANK 26.390 9.120 8.087 8.760 2.600 2.750 1.780 3.786
KOTAKBANK 38.320 41.310 26.294 36.200 10.210 8.920 7.450 9.691
ITC 8.510 2.020 1.663 1.920 0.270 0.430 0.350 0.778
INFY 67.040 13.340 16.494 18.110 5.330 6.180 4.390 8.028
TCS 112.450 53.460 37.141 54.720 15.430 12.430 11.350 12.948

Mean absolute error (MAE)
RELIANCE 19.793 40.196 16.070 9.445 8.260 8.950 5.582 7.830
HDFC 23.336 32.826 28.500 13.928 10.528 10.857 9.58 11.854
HDFCBANK 13.800 10.580 13.379 15.010 8.293 9.175 4.545 4.697
ICICIBANK 6.019 6.602 6.337 4.836 1.796 1.972 1.268 2.717
KOTAKBANK 13.111 31.043 19.978 19.652 7.541 6.545 4.985 7.308
ITC 1.923 1.369 1.235 1.998 0.184 0.233 0.265 0.540
INFY 33.087 9.915 12.321 10.407 8.093 8.498 6.545 5.471
TCS 28.909 42.925 27.178 27.103 11.347 9.295 8.073 9.042

Table 3   RMSE and MAE for
the eight most liquid stocks of
NASDAQ

Root mean square error (RMSE)

Stock name INC (U) LSTM (U) CNN-LSTM (U) INC S-LSTM V-LSTM B-LSTM CNN

AAPL 4.282 0.354 0.915 1.203 0.155 0.109 0.086 0.281
MSFT 7.039 0.395 2.205 1.493 0.256 0.381 0.169 0.763
AMZN 108.994 20.059 28.952 47.039 34.882 22.173 21.225 23.504
TSLA 19.306 4.746 8.599 7.970 5.941 6.861 3.742 3.860
GOOGL 90.697 13.381 23.371 43.205 20.201 23.570 12.794 15.526
NVDA 7.789 0.198 3.812 0.796 0.221 0.533 0.367 1.052
BRK-B 9.185 0.820 1.383 1.269 0.374 0.368 0.223 0.631
FB 9.394 3.190 2.385 2.380 2.061 2.240 0.860 1.348

Mean Absolute Error (MAE)
AAPL 1.808 0.872 0.720 0.563 0.474 0.720 0.406 0.324
MSFT 1.391 12.400 1.808 0.796 0.004 0.003 0.002 0.751
AMZN 25.707 0.872 19.375 19.385 0.750 0.720 0.642 10.391
TSLA 4.909 0.951 5.532 3.540 0.794 0.785 0.680 2.012
GOOGL 24.119 11.634 16.967 22.217 18.710 16.008 9.601 10.817
NVDA 3.094 0.671 2.631 0.796 0.670 0.554 0.574 1.022
BRK-B 1.808 1.492 1.018 0.890 0.670 1.232 0.574 0.844
FB 1.972 2.368 1.279 0.943 2.981 1.954 0.794 0.852

932	 Evolving Systems (2023) 14:919–937

1 3

NASDAQ stocks using a line graph. Deep learning models
outperform incremental models in terms of performance
because they remember long patterns and can manage vola-
tility and trends better. But, these models require training
at the end of every trading session to be updated with the
latest trends, seasonality, and sudden changes in the market.
Forecasting outcomes using multivariate time-series was
better, demonstrating that historical values alone cannot

forecast better outcomes. Both LSTM and CNN produce
good results, but B-LSTM outperforms others across all
stocks on the NSE and NASDAQ in terms of low RMSE
and MAE. Based on Fig. 11, it might seem that RELIANCE,
HDFC, and TCS results are less accurate since their RMSEs
for different models are on the higher side and so widely
spread. However, model accuracy cannot be determined by
RMSEs or MAEs since each company’s stock price ranges

Fig. 10   The output from the
tensorboard log file for hyper-
parameter tunning through grid
search

Fig. 11   Stocks RMSE for different models

933Evolving Systems (2023) 14:919–937	

1 3

may differ. For example, TCS’s stock price lies in the range
of 3000, while ITC has a stock price range of 200. As a
result, TCS’s RMSE values for all models will be greater
than ITC’s. This is because even a 1% difference in TCS
pricing equals 30, whereas for ITC it’s only 2. Since Apple,
Microsoft, Berkshire Hathaway, and Facebook have low
stock prices, their RMSE is relatively low. The MAPE of
the models should be compared on the same financial series
for comparisons of their accuracy.

MAPE is the most common measure to evaluate the
model’s forecasting accuracy. Since it utilizes the percentage

error and is scale-independent, it can be used to compare the
model’s accuracy for the stocks in the different price ranges.
Table 4 shows the MAPE results for the eight most liquid
stocks listed on the NSE and NASDAQ, respectively. When
considering univariate models, incremental linear regres-
sion is better than LSTM, while CNN-LSTM is the most
effective. Figure 12 illustrates the graphical representation
of Table 4 for a better interpretation of the results. LSTM
on univariate time-series shows a high standard deviation on
MAPE compared to other models and does not fit perfectly
into the graph for NASDAQ stocks; therefore, LSTM results

Table 4   MAPE for the eight
most liquid stocks of NSE

NSE stocks

Stock name INC(U) LSTM(U) CNN-LSTM(U) INC S-LSTM V-LSTM B-LSTM CNN

RELIANCE 0.009 0.017 0.007 0.004 0.003 0.004 0.002 0.003
HDFC 0.007 0.013 0.011 0.005 0.004 0.005 0.002 0.004
HDFCBANK 0.009 0.007 0.009 0.010 0.003 0.004 0.001 0.003
ICICIBANK 0.009 0.009 0.009 0.007 0.002 0.003 0.002 0.004
KOTAKBANK 0.010 0.017 0.011 0.012 0.003 0.004 0.004 0.004
ITC 0.009 0.006 0.005 0.004 0.001 0.001 0.001 0.002
INFY 0.020 0.006 0.007 0.006 0.003 0.004 0.003 0.003
TCS 0.009 0.012 0.008 0.008 0.003 0.002 0.003 0.003

NASDAQ Stocks
AAPL 0.012 0.177 0.005 0.004 0.001 0.000 0.000 0.002
MSFT 0.005 0.075 0.006 0.003 0.001 0.001 0.000 0.003
AMZN 0.008 0.421 0.006 0.006 0.005 0.004 0.004 0.003
TSLA 0.007 0.377 0.006 0.004 0.004 0.005 0.003 0.004
GOOGL 0.010 0.344 0.006 0.008 0.004 0.006 0.003 0.004
NVDA 0.011 0.054 0.011 0.796 0.001 0.002 0.001 0.003
BRK-B 0.006 0.184 0.003 0.003 0.001 0.000 0.001 0.004
FB 0.006 1.028 0.004 0.003 0.008 0.005 0.002 0.002

Fig. 12   MAPE of different models on NSE and NASDAQ Stocks

934	 Evolving Systems (2023) 14:919–937

1 3

are removed from the NASDAQ graph. The analysis of the
outcomes shows that B-LSTM is the most effective model
among all, while CNN-LSTM is the most accurate univariate
model for both NSE and NASDAQ stocks.

As B-LSTM provides the most accurate forecasts, we
have selected it for the comparison of actual versus predicted
stock prices for Offline-Online models. Figure 13 and 14
demonstrate the plot of B-LSTM for current stock prices
versus the predicted values for the selected NSE and NAS-
DAQ stocks. From the figures, it is clear that the predictions
are very close to the actual values for all the selected stocks,
which confirms the efficiency of the B-LSTM in forecasting.

Figure 15 shows the comparison of the mean RMSE for
all the studied models on NSE and NASDAQ stocks. For all

models, the average RMSE of NASDAQ stocks is lower than
that of NSE stocks, since NSE stocks are denominated in
rupees rather than dollars, so their range is larger. Moreover,
the above results also indicate that multivariate models are
more accurate than univariate models. The main reason is
that the multivariate model considers more than one aspect.
Multivariate models consider several independent variables
to help forecast stock prices more accurately. Hence, multi-
variate models outperformed univariate ones even with only
two additional indicators: the EMA and VWAP.

The models have been evaluated using real-time trading
data during operational trading hours for a 15-min inter-
val. A time difference (latency) was calculated between
the actual retrieval time and the forecasting time. The

Fig. 13   NSE offline–online CNN results

935Evolving Systems (2023) 14:919–937	

1 3

experimental findings are shown in Fig. 16. As compared
to the incremental model, the Offline-Online model has a
lower latency. As it does not require retraining during opera-
tional hours which results in less forecasting delay. While
the incremental model gets updated on the retrieval of new
instances from the live feed which requires some additional
training time. The average forecasting delay for incremental
learning is 940 ms, while that of Offline-Online forecast-
ing is 617 ms. The forecasting delay for both approaches is
less than a second, which makes them closer to real-time
forecasting. Traders might find these models useful in mak-
ing short-term trading strategies for effective trading. The
Offline-Online model has the limitation that it must be

retrained after each trading session to stay up-to-date with
current trends. For training purposes, the model requires
a significant number of high-frequency historical instances
of stock. Thus, it might be less accurate for stocks lacking
high-frequency historical data.

7 � Conclusion and future work

This study explores incremental and Offline-Online learn-
ing techniques for NASDAQ and NSE stock forecast-
ing. The models used for this study were trained on the
most recent stock data while the stock’s time-series was

Fig. 14   Nasdaq offline–online CNN results

936	 Evolving Systems (2023) 14:919–937

1 3

continuously updated from the live market feed so that
these models could fine-tune their hyperparameters based
on the changes that occurred in the stock’s time-series
during the trading sessions. A thorough analysis of various
technical indicators that help in better price prediction led
us to select the EMA and VWAP as features to consider
along with the stock price for creating an effective multi-
variate time-series dataset. Furthermore, the system was
tested on the top 8 stocks listed on the NSE and NASDAQ,
respectively, and the performance of models was evalu-
ated through RMSE, MAE, and MAPE. All the models
forecasted better on multivariate time-series, showing the
utility of the EMA and VWAP in predicting stock prices.
B-LSTM was the leading performer among all for both
Indian and US stocks, with the MAPE relatively close to
zero. It is appropriate for short-term stock price prediction
and may act as a helpful resource for the traders’ efforts
to maximize the returns on intraday trading. The B-LSTM

approach also provides real experience to anyone conduct-
ing research on high-frequency financial time-series. In the
future, it may be useful to use deep learning in combina-
tion with incremental approaches to avoid Offline-Online
model retraining after each trading session. Furthermore,
global sentiment can be considered one of the features of
multivariate time-series.

Funding  No funding was received to assist with the preparation of
this manuscript.

Data availibility  The datasets analyzed during this study have been
web scraped through Zerodha and AlphaVantage APIs, the complete
details have been discussed in Sect. 3. It will also be made available
on request.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

References

Aldridge I, Krawciw S (2017) Real-time risk: What investors should
know about fintech, high-frequency trading, and flash crashes.
John Wiley & Sons

Alves SA, Caarls W, Lima PM (2018) Weightless neural network for
high frequency trading. In: 2018 International Joint Conference
on Neural Networks (IJCNN), pp. 1–7 . IEEE

Analysis ATS. Partial Autocorrelation. (Accessed on 11/10/2020).
https://​online.​stat.​psu.​edu/​stat5​10/​lesson/​2/2.2

Bagheri A, Peyhani HM, Akbari M (2014) Financial forecasting
using anfis networks with quantum-behaved particle swarm
optimization. Expert Syst Appl 41(14):6235–6250

Behera RK, Das S, Rath SK, Misra S, Damasevicius R (2020)
Comparative study of real time machine learning models for
stock prediction through streaming data. J Univers Comput Sci
26(9):1128–1147

Cao L, Tay FE (2001) Financial forecasting using support vector
machines. Neural Comput Appl 10(2):184–192

Chen CJ, Liu X, Lai KK (2013) Comparisons of strategies on gold
algorithmic trading. In: 2013 Sixth International Conference on
Business Intelligence and Financial Engineering, pp. 286–290 .
https://​doi.​org/​10.​1109/​BIFE.​2013.​61

Dan J, Guo W, Shi W, Fang B, Zhang T (2014) Deterministic echo state
networks based stock price forecasting. In: Abstract and Applied
Analysis, vol. 2014 . Hindawi

Du X, Zhang H, Van Nguyen H, Han Z (2017) Stacked lstm deep
learning model for traffic prediction in vehicle-to-vehicle commu-
nication. In: 2017 IEEE 86th Vehicular Technology Conference
(VTC-Fall), pp. 1–5 . IEEE

González JP, San Roque AMSM, Perez EA (2017) Forecasting func-
tional time series with a new hilbertian armax model: Appli-
cation to electricity price forecasting. IEEE Trans Power Syst
33(1):545–556

Graves A, Fernández S, Schmidhuber J (2005) Bidirectional lstm
networks for improved phoneme classification and recognition.

Fig. 15   Average RMSE of NSE and NASDAQ for different models

Fig. 16   A comparison of different studied approaches for forecasting
delay

https://online.stat.psu.edu/stat510/lesson/2/2.2
https://doi.org/10.1109/BIFE.2013.61

937Evolving Systems (2023) 14:919–937	

1 3

In: International Conference on Artificial Neural Networks, pp.
799–804 . Springer

Ince H, Trafalis TB (2008) Short term forecasting with support vector
machines and application to stock price prediction. Int J Gen Syst
37(6):677–687

Iscen A, Zhang J, Lazebnik S, Schmid C (2020) Memory-efficient
incremental learning through feature adaptation. In: European
Conference on Computer Vision, pp. 699–715 . Springer

Javed Awan M, Mohd Rahim MS, Nobanee H, Munawar A, Yasin A,
Zain AM (2021) Social media and stock market prediction: A big
data approach. MJ Awan, M. Shafry, H. Nobanee, A. Munawar, A.
Yasin et al.,“ Social media and stock market prediction: a big data
approach,” Computers, Materials & Continua 67(2), 2569–2583

Kim K (2003) Financial time series forecasting using support vector
machines. Neurocomputing 55(1–2):307–319

Kite Z. Kite Connect trading APIs. kite.trade. [Online; accessed
2022-06-15]

Kumar D, Sarangi PK, Verma R (2021) A systematic review of stock
market prediction using machine learning and statistical tech-
niques. Materials Today: Proceedings

Li Y, Zhang M, Chen C (2022) A deep-learning intelligent system
incorporating data augmentation for short-term voltage stability
assessment of power systems. Appl Energy 308:118347. https://​
doi.​org/​10.​1016/j.​apene​rgy.​2021.​118347

Liu FR, Ren MY, Zhai JD, Sui GQ, Zhang XY, Bing XY, Liu YL
(2021) Bitcoin transaction strategy construction based on deep
reinforcement learning. In: 2021 IEEE 2nd International Confer-
ence on Big Data, Artificial Intelligence and Internet of Things
Engineering (ICBAIE), pp. 180–183 . https://​doi.​org/​10.​1109/​
ICBAI​E52039.​2021.​93899​65

Liu Z, Zhu Z, Gao J, Xu C (2021) Forecast methods for time series
data: a survey. IEEE Access 9:91896–91912

Lu W, Li J, Li Y, Sun A, Wang J (2020) A cnn-lstm-based model to
forecast stock prices. Complexity 2020

Maguluri L, Ragupathy R (2020) An efficient stock market trend
prediction using the real-time stock technical data and stock
social media data. Int. J. Intell. Eng. Syst 13:316–332

Menkveld AJ (2013) High frequency trading and the new market
makers. Journal of financial Markets 16(4):712–740

Nasdaq (2022) Global Markets Indexes and News | Nasdaq. www.
nasdaq.com. [Online; accessed 2022-06-19]

of India NSE (2001) Daily Reports. niftyindices.com. [Online;
accessed 2022-06-19]

Pellegrini S, Ruiz E, Espasa A (2011) Prediction intervals in condi-
tionally heteroscedastic time series with stochastic components.
Int J Forecast 27(2):308–319

Rathor S, Agrawal S (2021) A robust model for domain recognition of
acoustic communication using bidirectional lstm and deep neural
network. Neural Comput Appl 33(17):11223–11232

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances
in neural information processing systems 28

Selvamuthu D, Kumar V, Mishra A (2019) Indian stock market predic-
tion using artificial neural networks on tick data. Financial Innova-
tion 5(1):1–12

Shakva A, Pokhrel A, Bhattarai A, Sitikhu P, Shakva S (2018) Real-
time stock prediction using neural network. In: 2018 8th Interna-
tional Conference on Cloud Computing, Data Science & Engi-
neering (Confluence), pp. 1–4 . IEEE

Tuarob S, Wettayakorn P, Phetchai P, Traivijitkhun S, Lim S, Noraset
T, Thaipisutikul T (2021) Davis: a unified solution for data col-
lection, analyzation, and visualization in real-time stock market
prediction. Financial Innovation 7(1):1–32

Vantage A. Free Stock APIs in JSON & Excel, Alpha Vantage. www.
alphavantage.co. [Online; accessed 2022-06-15]

Vijh M, Chandola D, Tikkiwal VA, Kumar A (2020) Stock closing
price prediction using machine learning techniques. Procedia
computer science 167:599–606

Wen Y, Lin P, Nie X (2020) Research of stock price prediction based
on pca-lstm model. In: IOP Conference Series: Materials Science
and Engineering, vol. 790, p. 012109 . IOP Publishing

Wu Y, Yuan M, Dong S, Lin L, Liu Y (2018) Remaining useful life
estimation of engineered systems using vanilla lstm neural net-
works. Neurocomputing 275:167–179

Zhang GP (2003) Time series forecasting using a hybrid arima and
neural network model. Neurocomputing 50:159–175

Zhou X, Pan Z, Hu G, Tang S, Zhao C (2018) Stock market prediction
on high-frequency data using generative adversarial nets. Math-
ematical Problems in Engineering

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.apenergy.2021.118347
https://doi.org/10.1016/j.apenergy.2021.118347
https://doi.org/10.1109/ICBAIE52039.2021.9389965
https://doi.org/10.1109/ICBAIE52039.2021.9389965

	An efficient real-time stock prediction exploiting incremental learning and deep learning
	Abstract
	1 Introduction
	2 Literature review
	3 Dataset
	4 Methodology
	4.1 Technical indicators
	4.2 Correlationcovariance analysis
	4.3 Incremental approach
	4.4 Offline–online approach

	5 Performance evaluation
	6 Results and discussion
	7 Conclusion and future work
	References

